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EFFECTS OF PROMPTING STUDENTS TO USE MULTIPLE 

SOLUTION METHODS WHILE SOLVING REAL-WORLD 

PROBLEMS ON STUDENTS’ SELF-REGULATION 

Kay Achmetli, Stanislaw Schukajlow, André Krug 

University of Münster, Germany 

 

In the project MultiMa (Multiple solutions for mathematics teaching oriented toward 

students’ self-regulation), we investigated the effects of prompting students to use 

multiple solution methods while solving real-world problems on their learning. In this 

quasi-experimental study, we compared three treatment conditions. In one condition, 

students solved real-world problems by using multiple solution methods. These 

solution methods consisted of a solution using a table and a solution using differences. 

In the other two conditions, the same real-world problems were solved using only one 

of the methods. About 307 ninth graders from twelve middle track classes took part in 

this study during four lessons. Before and after a teaching unit, students’ 

self-regulation was tested.  

INTRODUCTION 

The development of multiple solutions is an important component of school curricula 

in different countries. Encouraging students to use multiple solution methods improves 

students’ mathematical knowledge. However, we do not know much about the 

influence of the use of multiple solution methods on students’ self-regulation, which is 

crucial for lifelong learning. As solving real-world problems is an important part of 

mathematics education, we chose this type of task to investigate the effects of 

prompting students to use multiple solution methods on students’ self-regulation while 

solving real-world problems.  

THEORETICAL BACKGROUND 

Self-regulation 

Boekaerts (2002) defines self-regulation as “students’ attempts to attain personal goals 

by systematically generating thoughts, actions, and feelings at the point of use, taking 

account of the local conditions.” Thus, self-regulation is divided into three main parts: 

(1) students’ orientation toward the attainment of their own goals, (2) the thoughts, 

feelings, and actions that can help them to attain these goals, and (3) working toward 

the attainment of their goals. It is further set within the framework of local conditions.  

Self-regulatory processes can be acquired from and are sustained by social as well as 

self-sources of influence. Zimmerman (2000) describes four developmental levels of 

self-regulatory skills. The development of self-regulation begins on the first level, 

which is called an observational one. On this level, learners vicariously observe and 

imitate skills from a proficient model. On the level of emulation, learners imitate these 
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skills with social assistance before they can work independently under structured 

conditions on the next level (the level of self-control). A self-regulated level is 

achieved when learners can flexibly and systematically adapt their performance to 

changing conditions.  

Multiple solutions and self-regulation  

Heinze, Star, and Verschaffel (2009) claim that the ability to use multiple 

representations (or multiple solution methods) and to flexibly switch between a range 

of representations is a critical component of the skills needed to solve mathematical 

problems. Recently, some experimental studies were carried out to identify the 

influence of prompting students to construct multiple solutions on students’ learning in 

mathematics (Rittle-Johnson & Star, 2007). Students who developed two solution 

methods for the same task outperformed students who developed one solution at a 

time. Comparing two solution methods for the same problem or presenting two 

solution methods using different problems improved students’ procedural flexibility. 

Students who developed two solution methods were more flexible in their choice of the 

appropriate solution method. In addition, Große and Renkl (2006) state that reflecting 

on various solution methods helps learners to apply methods more flexibly and 

effectively. Furthermore, Tabachneck, Koedinger, and Nathan (1994) found that it was 

more effective to employ a combination of strategies than to rely on a single strategy 

for solving algebra problems. Flexibility and adaptivity are important parts of 

self-regulatory skills. Prompting students to construct multiple solutions can improve 

their flexibility and adaptivity and thereby also improve their self-regulation.  

The influence of prompting students to construct multiple solutions while solving 

real-world problems with missing information on students’ self-regulation was 

investigated in the study by Schukajlow and Krug (2012). The results showed that, 

while controlling for self-regulation on a pre-test, students in the condition in which 

multiple solutions were prompted reported significantly higher self-regulation on the 

post-test than students in the condition in which they were instructed to develop one 

solution only.  

Multiple solutions, modelling, and self-regulation 

We distinguish between three types of multiple solutions that can be constructed in 

solving real-world problems (cf. a similar approach by Tsamir, Tirosh, Tabach, & 

Levenson, 2010). First, multiple solutions may result from variability in mathematical 

solution methods. The second type of multiple solutions can be developed if students 

have to make assumptions about missing data and thus arrive at different 

outcomes/results. The third one includes variability in mathematical solution methods 

as well as in different outcomes/results. The effects of prompting the second kind of 

multiple solutions on students’ self-regulation were examined by Schukajlow and 

Krug (2012). In the current paper, we explored the effects of prompting the first type of 

multiple solutions on students’ self-regulation. 
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The important activities that need to be implemented while modelling consist of 

simplifying a complex situation that is presented in the task, mathematizing, and 

working mathematically to reach a mathematical result. While solving a real-world 

problem, there are several ways in which the learner can simplify the problem, 

mathematize, or work mathematically. Solution methods can be pre-formal or formal 

ones while the outcome/results stay the same. Whereas formal solution methods are the 

final stage in a genetic development, pre-formal solution methods refer to a certain 

basis of formal argumentation, but are codified in a non-formal way (Blum, 1998).  

To illustrate a solution process and to exemplify two pre-formal solution methods, we 

will analyze the solution of the task “BahnCard,” which was developed in the 

framework of the project MultiMa. First, the problem solver has to understand the 

problem “BahnCard” and construct a model of the situation. Then the model of the 

situation needs to be simplified and structured and the important values need to be 

identified. These values are the costs per year for each card and the amounts for the 

outward and return journeys that would be paid using each card.  

 

Figure 1: Modelling task “BahnCard” 

Next, the simplified situation needs to be mathematized, and different mathematical 

solution methods can be applied to solve the problem. One solution method that can be 

applied is a “pre-formal solution method using differences.” In order to solve a 

real-world problem using differences, one has to understand the meaning of the 

important values and to transfer information between reality and mathematics several 

times. Whereas the “BahnCard 50” is 181 € (= 240 € - 59 €) more expensive than the 

“BahnCard 25,” each outward and return journey with the “BahnCard 25” is 25 € (= 

50 € - 25 €) more expensive than with the “BahnCard 50.” Obviously, one has to 

calculate a difference for the costs per year and a difference for the cost per journey as 

well as to interpret the mathematical results. The question is how often one has to take 

a trip with the more expensive “BahnCard 50” until the cheaper prices for the journeys 

pay off. This is exactly after 7.24 (= 181 € ÷ 25 €) journeys per year. This result has to 

be interpreted—for example, “For up to 7 journeys per year, the “BahnCard 25” is 

cheaper.”—and validated. Another way to solve this problem is to apply a “pre-formal 



Achmetli, Schukajlow, Krug 

2 - 4 PME 2014 

solution method using a table.” Students can make assumptions about a possible 

number of journeys per year (e.g. 1, 3, 6…), calculate the total cost for owners of the 

“BahnCard 25” and the “BahnCard 50,” compare the costs, identify up to what number 

of journeys owners should take the “BahnCard 25”, and write a recommendation about 

which offer is preferable for a certain number of journeys. 

This analysis of solving the task “BahnCard” shows two ways to solve a real-world 

problem. Specifically, using different solution methods leads to the same result. 

Being able to choose between different solution methods grants problem solvers the 

ability to solve tasks more flexibly and monitor their own solution process. Therefore, 

we assumed that similar effects as by Schukajlow and Krug (2012) could be found in 

our present study in which we prompted another way to provide multiple solutions to 

real-world problems: multiple solution methods (MSM). In addition, we assumed that 

the effects on self-regulation would not differ between our one solution method (OSM) 

conditions.  

RESEARCH QUESTIONS 

1. How many solutions will students develop in the MSM-condition and will there 

be differences in the number of solutions developed between the MSM-condition 

and the OSM-conditions?  

2. Will students’ self-regulation differ according to the opportunity to develop 

multiple solution methods? In particular, will students in the MSM-condition 

report more self-regulation than students in the OSM-conditions? 

3. Will students’ self-regulation differ between the different types (i.e., table vs. 

differences) of prompted solution methods? More precisely, will there be 

differences in the reported self-perceptions of students in the OSM-conditions? 

 METHOD 

Design and sample 

307 German ninth graders (48.26% female; mean age=14.6 years) were asked about 

their self-regulation before and after a teaching unit (see Figure 2). The teaching unit 

consisted of two sessions: the first and second lessons as well as the third and fourth 

lessons. Four schools with three middle track classes each took part in this study. Each 

of the twelve classes was divided into two parts with the same number of students in 

each part. The average achievements in the two parts did not differ, and there was 

approximately the same ratio of males and females in each part. There were three 

different treatment conditions “multiple solution methods” (MSM), “one solution 

method (table)” (OSM1), and “one solution method (differences)” (OSM2). At each 

school, there were six different groups, which were evenly assigned to the three 

treatment conditions. Furthermore, each part of a class was assigned to a different 

treatment condition. In total, there were 24 groups: eight groups in the 

MSM-condition, eight in the OSM1-condition, and eight in OSM2-condition. The 

students in MSM, OSM1, and OSM2 were taught in different classrooms.  
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Figure 2: Overview of the study design 

To implement the treatment, which consisted of solving real world problems using 

different solution methods, three teaching scripts were developed. Six teachers who 

participated in this study received these scripts with all tasks to be administered and a 

detailed plan for each teaching unit. Each teacher taught the same number of student 

groups in each treatment condition, so the influence of a teacher on students’ learning 

did not differ between conditions. In each lesson, at least one member of the research 

group was present to videotape and to observe the implementation of the treatment.  

Treatment 

In the recent study, we used the student-centered learning environment from the 

DISUM project, which was complemented by direct instructions for the teaching unit. 

In all treatment conditions, the same methodological order was implemented for the 

first session. In the first session, a teacher first demonstrated how real-world problems 

can be solved using one specific method (in the OSM-conditions) or using multiple 

solution methods (in the MSM-condition). Then students solved tasks using the 

demonstrated solution methods according to a special kind of group work (alone, 

together, and alone) and discussed their solutions with the whole group in the 

classroom. The teacher summarized the key points of each treatment condition. 

Furthermore, in the MSM-condition, the teacher emphasized the development of two 

different methods. 

In the second session, four problems were solved in the OSM-conditions and three 

tasks were addressed in the MSM-condition by applying the same kind of group work. 

After the fourth task in the MSM-condition, the teacher highlighted and summarized 

the link between the two methods and fostered discussions about students’ preferences 

for one or the other solution method, whereas in the OSM-conditions, an additional 

task was given. Finally, in the MSM-condition, students had the opportunity to choose 

their preferred solution method to solve the last two tasks and discussed their choice in 

the classroom.  

Four out of six tasks given in the MSM-condition required the development of the two 

solution methods: “Use two different solution methods to solve this problem. Write 

down both solutions.” In the OSM-conditions, students solved a standard version of 

this task (see e.g. Fig. 1) using the demonstrated solution method. 
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Measures 

After the second and third lessons, students were asked to report their self-regulation 

using a 5-point Likert scale (1=not at all true, 5=completely true) before and after a 

teaching unit (see Figure 2). The sample item is “While learning mathematics, I set my 

own goals that I would like to achieve.” This scale consists of 6 items and was adapted 

from the longitudinal PALMA study (Pekrun et al., 2007). Reliability values 

(Cronbach’s Alpha) for self-regulation were .66 and .75 on the pre-test and post-test 

respectively. The number of solutions developed (0=no solution; 1=one solution; 

2=two solutions; 3=more than two solutions) was estimated by two independent raters 

for 20% of the tasks. The values for inter-rater agreement (Cohen’s Kappa) were 

between .89 and .94. 

RESULTS  

For statistical analysis, we used t-tests, and examined that our data met the statistical 

assumptions for applying these tests. Levene’s tests showed that there was 

heterogeneity of variance for some measures. For these tests, we used the adjusted 

values for degrees of freedom and t-values.   

Number of solutions developed 

First, we investigated how many solutions were developed across all problems in the 

MSM-condition. The analysis of students’ answers showed that 1% of the students did 

not solve any of the posed problems, 5% of the students used one solution method, and 

94% used two or even more than two solution methods. Thus, nearly all of the students 

in the MSM-condition used two or more solution methods (mean=1.92, standard 

deviation SD=0.25) as intended in our study. In the OSM-conditions, students did not 

or rarely used two or more solution methods (mean=1.01, SD=0.08 and mean=1.04, 

SD=0.24). The t-tests (MSM-OSM1: t(116)=34.0; p<0.001; effect size Cohen’s 

d=4.97 and MSM-OSM2: t(194)=25.2; p<0.001; d=3.61) indicated that there were 

highly significant differences between the numbers of solution methods that were used 

in the respective conditions. These results revealed that nearly all students will use 

multiple solution methods while solving real-world problems if one prompts them to 

do so.  

Multiple solutions and self-regulation 

To examine the influence of prompting students to use multiple solution methods 

while solving real-world problems on students’ self-regulation, we compared 

self-regulation on post-tests while taking into account the respective pre-test measures. 

The t-tests indicated that there were no significant differences between the 

MSM-condition and the OSM-conditions (MSM-OSM1: t(185)=0.33; p=0.78 and 

MSM-OSM2: t(169)=0.36; p=0.72). Thus, students in the MSM-condition did not 

report more self-regulation on the post-test than students in the OSM-conditions when 

controlling for self-regulation on the pre-test. 
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Self-regulation 
Pre 

mean (SD) 

Post 

mean (SD) 

Adjusted post
a
 

mean (SD) 

MSM 3.64 (.59) 3.47 (.63) 3.47 (.57) 

OSM1 3.60 (.67) 3.48 (.73) 3.50 (.58) 

OSM2 3.62 (.57) 3.54 (.70) 3.50 (.56) 

 a Adjusted by the pretest. 

Table 1: Students’ self-regulation on the pre-test, post-test, and adjusted post-test. 

Different solution methods and self-regulation 

To investigate the potential impact of prompting students to use different types of 

solution methods (i.e., table vs. differences) on students’ self-regulation, we compared 

self-regulation in the one-solution conditions on the post-tests, taking into account the 

pre-test measures. The adjusted post-test means for self-regulation in the two 

OSM-conditions were identical with just a minor difference in the SD. A t-test showed 

that there were no significant differences between self-regulation in the 

OSM-conditions (t(170)=0.36; p=0.97). Thus, in the present study, we were able to 

confirm our assumption that students’ self-regulation does not differ according to the 

type of solution method applied. 

DISCUSSION 

The results indicated that there were significant differences in the number of solutions 

developed between the MSM-condition and the OSM-conditions, as intended in our 

recent study. Furthermore, there was no difference in the impact of prompting different 

solution methods on the self-perceptions of students’ self-regulation. However, we did 

not find any effects of prompting students to use multiple solutions on students’ 

self-regulation. Although prompting the use of multiple solutions has previously been 

shown to increase flexibility (Rittle-Johnson & Star, 2007) and also self-regulation 

(Schukajlow & Krug, 2012), we could not find any effects of prompting students to use 

multiple solution methods on self-regulation in the recent study.  One explanation for 

this result may be that students in the MSM-condition were not instructed to use certain 

solution methods according to the specific task but were rather instructed to use their 

preferred method to solve all tasks of this type. The highest level of self-regulation in 

Zimmerman’s hierarchal order – flexibly and systematically adapting one’s 

performance to changing conditions – was not achieved in the MSM-condition. The 

ability to choose a solution method based on individual-, task-, and context-specific 

criteria is an important part of being flexible and adaptive (Heinze et al., 2009). These 

criteria should be taken into account in future studies. 

Compared to the results by Schukajlow and Krug (2012), where significant differences 

in students’ self-regulation were found, students did not have the opportunity to make 

assumptions about missing information and to apply their assumptions to the task. This 
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lack of autonomy could be a reason for the failure to find an increase in students’ 

self-regulation in the current study.  
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AN ANALYTIC FRAMEWORK FOR DESCRIBING TEACHERS’ 

MATHEMATICS DISCOURSE IN INSTRUCTION 

Jill Adler, Erlina Ronda 

University of the Witwatersrand 

 

We illustrate an analytic framework for teachers’ mathematics discourse in instruction 

(MDI). MDI is built on three interacting components of a mathematics lesson: a 

sequence of examples and related tasks; accompanying talk; patterns of interaction. 

Together these illuminate what is made available to learn. MDI is grounded 

empirically in mathematics teaching practices in South Africa, and theoretically in 

socio-cultural theoretical resources. The framework is responsive to the goals of a 

particular research and professional development project with potential for wider use.  

INTRODUCTION 

Recent reviews of research on mathematics teachers, teaching and teacher education 

evidence the growth of this work (e.g. Sullivan, 2008). In their review of such research 

in thirty years of PME, Ponte & Chapman (2006) conclude with a call for future 

research that attends to “…innovative research designs to deal with the complex 

relationships among various variables, situations and circumstances that define 

teachers’ activities” (p. 488). The framework offered in this paper responds to this call. 

Our central concern is a framework that illuminates the complexity of teaching 

mathematics in ways that are productive in professional development research and 

practice; a framework that characterise teaching per se, across classroom contexts and 

practices, and captures shifts in practice.  

The framework we present developed within the Wits Maths Connect Secondary 

Project (WMCS), a five-year research and professional development project aimed at 

improving the teaching and learning of mathematics in ten relatively disadvantaged 

secondary schools in one education district in South Africa, through ongoing 

engagement with what we have come to describe as teachers’ MDI. MDI characterises 

the teaching of a mathematics lesson as a sequence of examples/tasks (which we 

distinguish below), and the accompanying explanatory talk - two commonplaces of 

mathematics teaching that occur within particular patterns of interaction in the 

classroom. In previous work in WMCS and a similar project in primary schools, we 

conceptualised MDI to examine coherence within a task, and so between the stated 

problem or task, its exemplification or representation, and the accompanying 

explanations; and more recently to examine coherence across a sequence of 

tasks/examples and accompanying explanatory discourse within a lesson, and in 

relation to the intended object of learning (e.g. Adler & Venkat, forthcoming). It was 

our empirical data that emphasized the need for coherence, and teaching that mediates 
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towards mathematics viewed as a network of scientific concepts (Vygotsky, 1978), and 

so towards generality (Watson & Mason, 2006), and objectification (Sfard, 2008).  

There are clear commonalities with other frameworks, particularly aspects of the 

Mathematical Quality of Instruction (MQI) framework (Hill, 2010) and that of Borko 

et al (2005), both of which include attention to language/discourse (depending on their 

orientations to language), and to justification and/or explanation. In particular we share 

the concern of MQI to foreground the importance of generality in mathematics, and so 

what mathematically is made available to learn. Neither pay attention to examples, and 

so the specificity of example/task selection. This is a key element of the MDI 

framework, and we hope the elaboration that follows below illustrates its salience. 

SOCIAL CONTEXT 

It is common cause in South Africa today to hear that school mathematics is “in crisis”. 

Learner performance in local, national and international comparative mathematics 

assessments are poor across levels, and while explanations increasingly acknowledge 

system wide failure, considerable ‘blame’ is placed on the knowledge of practice of 

mathematics teachers (Taylor, Van der Berg, & Mabogoane, 2013) 

Of course, Teachers’ MDI is only a part of a set of practices and conditions through 

which performance is produced, not least of which is social class and related material 

and symbolic resources in the school. That said, our concern from both a research and 

professional development perspective is to understand how teachers’ MDI is 

implicated in what is made available to learn. In the majority of schools in South Africa 

(as is the case in schools serving disadvantaged learner populations in many parts of 

the world), schools provide the sole sites of access to formal learning. Within this, 

learners’ access to mathematical learning resources is through the teacher’s discourse. 

Understanding how teachers’ MDI supports mathematical learning matters deeply. We 

want to be able to describe whether and how teachers’ MDI shifts over time, in what 

ways, and how MDI is related to what is made available to learn in school. 

SOME THEORETICAL ROOTS AND RESOURCES  

MDI has its roots in analytic tools developed for describing the constitution of 

mathematics in mathematics teacher education practice (e.g. Adler & Davis, 2006). 

Based on Bernstein’s insight that evaluation is “key to pedagogic practice” (2000 

p.36), and following Davis’ elaboration of this through the notion of evaluative 

judgment (Davis, 2005), we described three key features of mathematics pedagogy 

(school or teacher education). First, for something to be learned/taught, it has to be 

presented in some form. In mathematics, this is always a representation rather than the 

thing itself, one that as yet has to be invested with particular mathematical meanings. 

What then follows is reflection on this ‘object’ – semiotic mediation – so as to fill out 

its meaning. At some point reflection will need to end, and meaning fixed as to what 

can/does count as legitimate with respect to the ‘object’. Description, while important, 

is not sufficient for linked research and development. In the first year of WMCS 



Adler, Ronda 

PME 2014 2 - 11 

(2010), we observed that teachers typically selected, sequenced and explained some 

examples for the announced focus of a session, often with poor levels of coherence 

between the example and its elaboration, and/or across a sequence of examples. Many 

lessons began and ended with teacher-directed whole class interaction. In some lessons 

there was opportunity for independent learner work on set problems. Across classroom 

contexts, opportunity for learner ideas to enter the discourse varied from none to 

substantive, with the former dominant.  

The detail of our responsive professional development practice is not the focus here. 

Our position was that we needed to start where we all were – the teachers themselves, 

and their well-oiled practices; and the project team, with its goal of enhancing 

opportunities to learn mathematics. We constructed a simple framework foregrounding 

the intended object of learning: improved coherence, in our view, rested firstly on 

appreciation of that which was to be learned. We found further resonance with the 

work on examples (e.g. Watson & Mason, 2006) and variation theory (e.g. Runesson, 

2006) as resources for bringing the object of learning into focus. This broad framing is 

operationalised into an analytic framework for describing teachers’ lessons over time.  

AN ANALYTIC FRAMEWORK FOR MDI 

Table 1 below presents the framework. It is not possible here to elaborate it in full, nor 

illustrate it in detail. We briefly discuss each of the analytic resources, and how we 

have assigned levels in the example and explanation spaces constructed – increasing 

generality in examples; increasing complexity in tasks; towards objectified talk in 

naming; and towards generality and use of mathematics in legitimating/substantiating 

– and with respect to participation, towards increasing opportunity for learners talk 

mathematically, and teachers’ increasing use of learners’ ideas. We illustrate our use of 

this framework through a WMCS Grade 10 Algebra lesson. 

Our unit of study is a lesson, and units of analysis within this, an event. The first 

analytic task is to divide a lesson into events, distinguished by a shift in content focus, 

and within an event then to record the sequences of examples presented. Each new 

example becomes a sub-event, as illustrated in Table 1 below. Our interest here is 

whether and how this presentation of examples within and across events brings the 

object of learning into focus, and for this we recruit constructs from variation theory 

(Marton & Pang, 2006). The underlying phenomenology here is that we can discern a 

feature of an object if it varies while other features are kept invariant, or vice versa, and 

different forms of variation visibilise the object in different ways. Variation through 

separation is when a feature to be discerned is varied (or kept invariant), while others 

are kept invariant (or made to vary); contrast is when there is opportunity to see what is 

not the object, e.g. when an example is contrasted with a non-example; fusion is 

experienced when there is simultaneous discernment of aspects of the object is 

possible; and generalisation is possible when there are a range of examples in different 

contexts so that learners can discern the invariants – an expanded form of separation. 

These four forms of variation can operate separately or together, with consequences for 
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what is possible to discern – and so, in more general terms, what is made available to 

learn. In WMCS we are interested in analysing the teacher’s selection and sequencing 

of examples within an event and then across events in a lesson, and then whether and 

how, over time, teachers expand the example space constructed in a lesson. 

Object of learning – mediation towards scientific concepts 

Exemplification Explanation Learner 

Participation Examples Tasks Talk/Naming Legitimating criteria 

Examples 

provide 

opportunities 

within lesson 

for learners to 

experience 

Level 1- 
separation or 

contrast  

Level 2- any 

two of 

separation, 

contrast, and 

fusion 

Level 3- 
fusion and 

generalizatio

n 

 

 

Level 1 – Carry 

out known 

operations and 

procedures e.g. 

multiply, 

factorise, solve 

Level 2 – Apply 

level 1 skills;& 

learners have to 

decide on (explain 

choice of) 

operation and /or 

procedure to use 

e.g. Compare/ 

classify/match 

representations;  

Level 3 – Multiple 

concepts and 

connections. e.g. 

Solve problems in 

different ways; 

use multiple 

representations; 

pose problems; 

prove; reason.etc 

Level 1 – 
Colloquial 

language 

including 

ambiguous 

referents such 

as this, that, 

thing, to refer 

to objects 

Level 2 – Some 

math language 

to name object, 

component or 

simply read 

string of 

symbols when 

explaining 

Level 3- Uses 

appropriate 

names of math 

objects and 

procedures 

Level 1NM (Non- Math) 

Visual: Visual cues or 

mnemonics 

Metaphor: Relates to 

features or characteristics 

of real objects  

Level 2M (Math) (Local) 

Specific /single case 

(real-life application or 

purely mathematical)  

Established shortcuts; 

conventions 

Level 3M (General, 

partial) 

equivalent 

representations, 

definitions, previously 

established 

generalization but 

explanation unclear or 

incomplete,  

principles, structures, 

properties but 

unclear/partial 

Level 4M (General full)  

Level 1 
–Learners 

answer yes/no 

questions or 

offer single 

words to teachers 

unfinished 

sentence 

Level 2 
–Learners 

answer (what/ 

how) questions 

in phrases/ 

sentences  

Level 3- 
Learners answer 

why questions; 

present ideas in 

discussion; 

teacher revoices / 

confirms/ asks 

questions  

Table 1: Analytic framework for mathematical discourse in instruction. 

Of course, examples do not speak for themselves. There is always a task associated 

with an example, and accompanying talk. With respect to tasks, we are interested in its 

cognitive demand in terms of the extent of connections between and among concepts 

and procedures. Hence, in column two we examine whether tasks within and across 

events require learners to carry out a known operation or procedure, and/or whether 

they are required to decide on steps to carry out, and/or whether the demand is for 

multiple connections and problem solving. These three levels bear some resemblance 

to Stein et al’s (2000) distinctions between lower and higher demand tasks.  

With respect to how explanation unfolds through talk, and again the levels and 

distinctions have been empirically derived through examination of video data, we 

distinguish firstly between naming and legitimating, between how the teachers refer to 

mathematical objects and processes on the one hand, and how they legitimate what 
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counts as mathematics on the other. For the latter, we have drawn from and built on the 

earlier research discussed above, together with aspects of Sfard’s (2008) word use and 

endorsements as key elements of mathematical discourse. Specifically, we are 

interested in whether the criteria teachers transmit as explanation for what counts is or 

is not mathematical, is particular or localised, or more general, and then if the 

explanation is grounded in rules, conventions, procedures, definitions, theorems, and 

their level of generality. With regard to naming, we have paid attention to teacher’s 

discourse shifts between colloquial and mathematical word use.  

Finally, all of the above mediational means (examples, tasks, word use, legitimating 

criteria) occur in a context of interaction between the teacher and learners, with 

learning a function of their participation. Thus, in addition to task demand, we are 

concerned with what learners are invited to say i.e. whether and how learners have 

opportunity to use mathematical language, and engage in mathematical reasoning, and 

the teacher’s engagement with learner productions. 

A LESSON 

The illustrative lesson, as stated by the teacher, is a Grade 10 revision lesson on 

algebraic fractions leading to a focus on the operation of division of algebraic 

fractions. The lesson consists of five events, with a new event marked by a new key 

concept in focus. The first event focused on a review of the meaning of a term in an 

algebraic expression. The teacher presented six examples of expressions (sub-events) 

in increasing complexity, with each next example of an expression produced by her 

performing an operation on the present expression. The task for learners was to agree 

to the number of terms in the new expression. The second event reviewed a common 

factor using just one example of a binomial expression. Event 3 signals new work. The 

teacher presented a sequence of four examples (sub-events) of algebraic fractions. The 

task was simplifying (through factorization) the expressions in each of the numerator 

and denominator to produce a single term. Complexity increased in terms of the type of 

factorisation required in successive examples. The task in events 4 and 5 was division 

of algebraic fractions. The examples in event 4 were of positive algebraic fractions 

only and event 5 included examples with negative algebraic fractions. We illustrate the 

use of our framework through detailed analysis of Event 4, particularly sub-event 4.3. 

in the box on the following page  

Our analysis of Event 4 shows the Teacher operating at Level 3 with respect to 

examples, Level 1 with respect to tasks (which remain at the level of learners carrying 

out known procedures), and interaction (learners answers yes, no questions, and 

provide words/phrases in response to teachers questions on what to do). With respect 

to explanatory discourse, the teacher’s words while frequently including ambiguous 

referents, move on to rephrase using mathematical language to name objects and 

processes, and thus at level 2; criteria shift between emphasis on visual features of 

expression, conventions, with some reference to structure and generality and so across 

levels 1 - 3. 
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Event 4: Sub-events 4.1 – 4.4                     Examples and tasks  

T writes example 4.1 on the board, asks questions mainly requiring yes/no answers, completion of 

sentences by learners in unison, leading to the solution. Occasionally learners respond with a phrase 

or sentence to a what or how question. Any why question she answers herself. Examples 4.2 and 4.3 

follow the same form. The transcript extract below details the talk leading to the solution for 4.3. 

Example 4.4 is then given for learners to do independently.  

4.1      4.2         4.3        4.4         

Examples: Level 3 - Variation is by separation, generalization and fusion. The structure of the 

division of one fraction by another is kept constant and terms varied (Separation). These range from 

simple to complex; from numerical to algebraic. Eg 4.4 extends to three fractions and a product 

(Generalization). Egs 4.3 and 4.4 require associating common factor with fraction division (Fusion). 

Tasks: Level 1 - Perform the indicated operations to simplify expressions 

Sub-Event 4.3                         Talk and legitimating criteria  

Analysis of explanatory talk highlighted as follows: italics for colloquial and underlining for formal 

language; and bold type for criteria/legitimations; 

1.T: It’s one and the same thing. They give you something like this (writes symbols on board),.... x 

cubed minus x squared  the whole thing over, over four divided by x squared over eight...ok? 

2. Ls: Yes 

3. T: So it’s, it’s one and the same concept.  Over here (points to number 4.1 ) ) you just have 

two numbers, a fraction divided by a fraction, ok? 

Ls: Yes 

4. T: Over here (pointing back to 4.3) is the same thing.  I’ve got, 

here’s one fraction divided by one fraction (circles each 

fraction).  So the examiner is just making your life difficult, ok?  

5. T: So....what are we going to do over here? (points to first 

fraction) 

6. Ls (some): we are going to divide 

7. T: ...remember the rule that we learnt over there? (points to 

similar expression, Event 2,factors obtained to simplify fraction)  

8. Ls: Yes.   

9. T: For before we can go and divide, what must I do? 

10.Ls: Take out the common factor. 

11.T: Take out the common factor, ok? 

12.Ls: Yes  

 

  

13. T: So, the same thing applies here.  It is everything that you, that you have learned, but they just 

put it into one thing to make it look a bit complicated.  It’s actually very simple...ok? 

14. Ls: Yes 

15. T: So, over here we need the common factor.  Why? Because we want to have one, one term at 

the top and one term below, ok? 

16. Ls: Yes 

17. T: So, what is common factor to the two terms? 

 

[18-36] – not shown; includes reference to “change the sign” shift from division to multiplication 

 

37. T: So, you just apply the same principle, it’s just that when it looks complicated just pause 

and say what must I do here?  Because I know terms like this (points to ,  I cannot just...go 

and say this (pointing to divided by this (points to 4) ...ok? 
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38. Ls: Yes 

39. T: Make sure that you have got one term at the top and one term below.  So from here I can, what 

must I do? … 

[T, together with Ls and with similar interactional pattern, produce the answer.] 

Talk: Level 2 – Uses some math language (e.g. ln 3) to name individual components or simply read 

string of symbols when explaining 

Legitimation: Level 1 Reference to visual features (e.g. ln 3, 4, 13) and Level 2M (Local) 

Established shortcuts; conventions (e.g. lns 7, 10, 11, 30) and Level 3M (General) Makes reference 

to structure/principle but not clear due to naming (e.g. ln 37) 

Event 4: Interaction pattern 

Interaction pattern: Dominantly Level 1 Ls answer yes/no questions or supply words to T’s 

unfinished sentence; Occasional Level 2 Ls answer what/how questions in phrases or sentences 

DISCUSSION 

Our MDI framework allows for an attenuated description of practice, prising apart 

parts of a lesson that in practice are inextricably interconnected, and how each of these 

contribute overall to what is made available to learn. It co-ordinates “various variables, 

situations and circumstances” of teacher activity (Ponte & Chapman, op cit) There is 

much room for the teacher to work on learner participation patterns, as well as task 

demand (and these are inevitably inter-related); at the same time her example space 

even in sub-event 4.3, evidences awareness of and skill in producing a sequence of 

examples that bring the operation of division with varying algebraic fractions into 

focus, hence the value of this specific aspect of MDI. While not within scope here, 

contrasting levels in earlier observation of this teacher indicates an expanded example 

space and more movement in her talk between colloquial and mathematical discourse. 

The MDI framework is thus helpful in directing work with the teacher (practice), and 

in illuminating take up of aspects of MDI within and across teachers (research); e.g. 

our analysis across teachers suggests that take-up with respect to developing generality 

of explanations is more difficult. We contend further that content illumination through 

examples is productive across pedagogies and so across varying contexts and practices. 

The MDI framework provides for responsive and responsible description. It does not 

produce a description of the teacher uniformly as in deficit, as is the case in most 

literature that works with a reform ideology, so positioning the teacher in relation to 

researchers’ desires (Ponte & Chapman, op cit). We have illustrated MDI on what 

many would refer to as a ‘traditional’ pedagogy. MDI works as well to describe lessons 

structured by more open tasks, indeed across ranging practices observed.  

CONCLUSION 

In this paper we have communicated the overall framework, and illustrated its potential 

through analysis of selected project data. What then of its wider potential? While we 

have suggested this in pointing to our use across a range of practice in our data, we 

recognize that MDI arises in a particular context. Its potential beyond the goals of the 

WMCS project needs to be argued. Analytic resources are necessarily selective, 
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reflecting a privileged reading of mathematics pedagogy. We have made these visible 

and explicit, and hold that its generativity lies in their theoretical grounding. 
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This paper concerns a competencies-based analysis of the outcomes of a role-play 

activity aimed to foster conceptual understanding of mathematics for first year 

engineering students. The teacher role has been considered in order to investigate the 

competencies addressed by the questions created by the students and their matching 

with the activity’s educational goal. The analysis shows that the quality of the posed 

questions made by the students highlights the moving from the instrumental approach, 

the students are used to, towards a relational one. 

INTRODUCTION 

In this paper we focus on the analysis of the outcomes of a role-play activity aimed to 

foster conceptual understanding of mathematics for first year engineering students. 

The design of the activity was suggested from the fact that, during some interviews, 

some students ascribed their poor performance to strange and unexpected questions. 

This suggested the idea to support the students by on-line, time restricted activities 

based on role-play, which actively engage them and induce them to face learning 

topics in a more critical way. Students are expected to play the role of a teacher in order 

to force them to ask questions. 

In the following we are going to investigate the outcomes produced by the students and 

to discuss the findings with respect the goal of the activity. We have used the Niss 

competencies framework (2003), also referred by the European Society for 

Engineering Education – SEFI (2011), to analyse the questions created by the students 

assuming the teacher role. Our research questions were: 

a. what competencies are addressed by the questions posed by the students? 

b. does the posed questions address relational knowledge/conceptual understanding 

rather than instrumental ones? 

Finally, we try to draw some ideas for further work concerning the other roles played 

by the students. 

 THEORETICAL BACKGROUND 

Competence in mathematics is something complex, hard to define which requires the 

students not only knowledge and skills, but at least some measurable abilities, which 

Niss names competencies (Niss, 2003). He has distinguished eight characteristic 

cognitive mathematical competencies. The following table lists them in two clusters: 
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The ability to ask and answer questions 

in and with mathematics 

The ability to deal with mathematical 

language and tools 

  

[1] Mathematical thinking competency [5] Representation competency 

[2] Problem handling competency [6] Symbols and formalism competency 

[3] Modelling competency [7] Communication competency 

[4] Reasoning competency [8] Tools and aids competency 

  

Table 1: Cluster related to cognitive mathematical competencies 

Mathematical thinking competency includes understanding and handling of scope and 

limitations of a given concept; posing questions that are characteristic of mathematics 

and knowing the kinds of answers that mathematics may offer; extending the scope of 

a concept by abstracting and generalizing results; distinguishing between different 

kinds of mathematical statements (theorems, conjectures, definitions, conditional and 

quantified statements). 

Problem handling competency includes possessing an ability to solve problems in 

different ways; delimitating, formulating and specifying mathematical problems. 

Modelling competency includes analysing the foundations and properties of existing 

models, and assessing their range and validity; decoding existing models; performing 

active modelling in given contexts. 

Reasoning competency includes understanding the logic of a proof or of a 

counter-example; uncovering the main ideas in a proof, following and assessing 

other’s mathematical reasoning; devising and carrying out informal and formal 

arguments. 

Representation competency includes understanding and utilising different kinds of 

representations of mathematical entities; understanding the relations between different 

representation of the same object; choosing, making use of and switching between 

different representations. 

Symbols and formalism competency includes decoding symbolic and formal language; 

understanding the nature of forma mathematical systems; translating back and forth 

between symbolic language and verbal language; handling and manipulating 

statements and expressions containing symbols and formulas . 

Communication competency includes understanding other’s mathematical texts in 

different linguistic registers; expressing oneself at different levels of theoretical and 

technical precision. 

Tools and aids competency includes knowing and reflectively using different tools and 

aids for mathematical activity. 
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EXPERIMENT SETTING AND METHODOLOGY 

The setting is a University with a 3-year BSc degree in Electronic Engineering and first 

year students taking part in a two trimester intensive modules in mathematics. Our 

research focus on the second module, which concerns topics from linear algebra and 

calculus. The module has ten hours per week in face-to-face traditional 

lectures/exercises sessions, supported by an e-learning platform which provides the 

students with various learning resources and communication tools. The experiment has 

been performed with voluntary students, who were liked to be involved in a massive 

and more interactive use of the e-learning platform. 

From the viewpoint of the theory of mathematics education, the online experimental 

activity, we are going to describe, can be framed within the so-called ‘discoursive’ 

approach (Kieran et al., 2001). The activity is based on role-play and has been 

organized as follows. The course contents have been split into different parts and each 

part into as many topics as the involved students. For each part a cycle of activities 

based on role-play has been created. Three topics have been assigned to each student, 

corresponding to three roles played by the student. Each cycle took nine days, three per 

role. For the first topic, the student acts as a teacher who wants to evaluate the topic’s 

learning so he/she has to prepare some suitable questions – at least six questions. For 

the second topic, the student has to answer to the questions prepared by a colleague. 

Finally for the third topic, the students again acts as a teacher, checking the correctness 

of the work made by the previous two colleagues. At the end of each cycle, the files 

produced by the students were revised by the teacher-tutor of the course and the 

revised files were made available to the students. All the produced worksheets were 

stored in a shared area of the platform in order to be available to all the students. 

A COMPETENCIES-BASED ANALYSIS 

In the following we want to analyse students’ work concerned the first role using the 

framework of the above Niss competencies. The methodology used for the analysis has 

been adapted from Jaworski (2012, 2013).   

Let us see some examples (the number in the square brackets refers to the table 1). 

In the first role we find questions asking for: 

The definition of some concepts involved in the topic at stake: 

Q1: “What is an Euclidian space?” 

Q2: “Which means “f differentiable in x”?” 

Q3: “Given the basis B = {u1,…,un} of V, you can write v = x1u1+…+xnun for suitable 

(x1,…,xn)  є to..?”  

Q4: “Which relation does exist between vector space and Euclidean space?” 

We note the different formulation of the first two questions, which refers to different 

expectations and then different competencies. While in all the cases the expected 
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answers require the student to recognize and the scope and limitation of the 

mathematical concept [1], in the second case the ability to deal with mathematical 

language seems to be stressed [5, 6, 7]. In fact, questions such as “what is…?” let the 

students to answer using for instance only formal language, reproducing a definition in 

a textbook; questions such as “which means…?” require more deeply understanding 

which allow the student to use various mathematical representations, including verbal, 

to understand formal language and to translate it to verbal language and finally to 

express oneself mathematically in different ways. The third question refers to the span 

property of a basis. It requires the students to includes to handle symbolic expression 

[6], recognize the concept/property [1] and knowledge its scope and limitations [1]. 

The fourth question, instead, concerns the scope and the limitation of the two concepts 

at stake [1], but it also requires to make connections between them, recognizing for 

instance if and how one extends the properties of the other class of objects. 

The understanding of the steps in a given proof: 

Q5: “In which steps of the proof the linearity of the function is used?”  

Q6: “Why the Lagrange theorem is applied in the interval [x,x+h]?” 

Q7: “The equation y '(x) = g (x) for which theorem has solution in [a, b]?” 

The above questions refer to proof of theorems seen by students during lectures and 

available in their textbooks (Q5 – differential theorem, Q6 – dimension theorem, Q7 – 

Cauchy problem for differential equations). All of them require the students first of all 

the ability to understand already existing chain of logical arguments in order to prove a 

statement starting from fixed hypotheses [4]. Moreover, questions such as Q5 require 

the student to make his own chain of arguments in order to justify the application of a 

given theorem [4] and also to express himself mathematically [7], whilst questions 

such as Q7 require to make connections with previous knowledge to justify a statement 

in the proof. Finally, we note that, in order to answer the questions, students need to 

recognize some mathematical concepts (homomorphism in Q5) and to understand their 

scope and limitation (Lagrange theorem in Q6) [1]. 

The recognition of  the main ideas in a proof: 

Q8: “Which are the main steps in the proof of the differential theorem?” 

Q9: “In the proof of the Steinitz lemma, which is the fundamental step allowing to 

prove the thesis? 

Both questions refer to the ability of uncovering the central ideas in given proofs [4]. 

At the same time the answer requires the student from one hand the ability of express 

himself mathematically in different ways [7], also using verbal language, and thus it 

requires the capability to understand symbolic language in formal proof and translate 

in verbal language [6]. Moreover, the answer to Q9 requires the student to connect the 

existence of non-trivial solutions of a suitable homogeneous linear system to the 

existence of non-trivial solutions of the vector equation in the definition of linear 

dependence of vectors [1]. 
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The construction of their own proofs: 

Q10: “In the proof of the Steinitz lemma, why the rank of A is less or equal to n?” 

Q11: “In the proof of the differential theorem, prove that all the hypotheses needed to 

apply the Lagrange theorem are verified” 

Q12: “Is in R
n
 (n>1) differentiability equivalent to continuity?” 

The above first two questions refer to the ability of constructing informal and formal 

own arguments in order to justify and make clear some steps in a given proof [4]. This 

require the capability of handling and manipulating symbolic statements and 

expressions and switch between them and verbal language [6] and the ability of 

express himself at a certain level of theoretical and technical precision [7]. The 

difference between the two questions seems to be a greater formality of Q11 with 

respect to Q10, made evident by the use of the word “prove”, highlighting different 

weights of  [6] and [7] for each of them. The last question requires the student to 

identify the scope of the equivalence between differentiability and continuity – just R 

[1] – and it is expected that the student is able to prove the true implication and to give 

a counter-example in the other case [4, 7].  

The conversion among various semiotic representations: 

Q13: “In the Cauchy’s problem which means the expression y’(x0) = y0 graphically?” 

Q14: “Explain in words the Cauchy problem” 

Q15: “Write the Cauchy problem (in mathematical language)” 

The above questions refer explicitly to the ability of using different kinds of semiotic 

representation systems of mathematical entities, including verbal language, and the 

capability of passing from one to another, which is the Duval conversion process 

(Duval, 2006). Even if we have already noted that such process is implicitly required in 

other questions, here it is the main focus and it seems us important since Duval states 

that such capability has to be trained and suggests to make such kind of explicit 

activities. The pre-requisite of such questions concerns symbol and formalism 

competency and the answer to Q13 and Q14 requires communication competency. 

According to the methodology shown by the above examples, all the questions made 

by the students has been analysed and for each of them the addressed mathematical 

competencies have been individuated. The following table resumes the outcomes of 

this analysis – L* refers to linear algebra topics and C* to calculus ones. 

The course setting does not make use of tools, so the related competency has not taken 

into consideration.  

Looking at the outcomes, we can note that the quite predominant competencies 

addressed by the questions concern the ability to ask and answer questions in and with 

mathematics, in particular thinking and reasoning mathematically. Interviews have 

give evidence that it depends on the teacher role played by the students, which have 

emulated the way their teachers act with them during exam sessions. 
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Competency\ 

Topic 

L1 L2 L3 L4 L5 L6 L7 L8 C1 C2 C3 C4 C5 

Thinking math. 3 7 6 5 11 9 5 5 3 6 6 3 4 

Problem solving 1 2 1 1 5 0 2 1 0 0 3 1 2 

Modeling math. 0 1 0 0 0 0 0 0 0 0 0 0 0 

Reasoning math. 3 1 4 3 0 5 2 3 2 8 4 1 0 

Representation 4 1 0 0 0 5 0 0 2 0 1 4 5 

Symbols  6 2 0 0 0 5 2 0 0 2 1 5 3 

Communication 6 8 10 6 10 13 8 6 6 7 6 9 9 

Aids and tools - - - - - - - - - - - - - 

Table 2: Analysis of mathematical competencies in posing questions. 

Moreover, also the communication competency is strongly addressed, for the nature 

itself of the activity which requires the students to express mathematically each other.  

Considering the above remarks, we can state that most of the questions address 

relational knowledge/conceptual understanding rather than instrumental ones, and thus 

the goal of the activity seems to be achieved from our point of view.  

This conclusion has been also supported by: 

 students’ feedbacks, which reports their appreciation of  the teacher role, 

because it has allowed them to be in the teacher’s perspective, so getting able 

to understand the educational goals which are more conceptual than 

instrumental; 

 students’ marks at the next exams, which have obtained a better advancement, 

due to the fact that this kind of activity has given the students a sort of 

guidance for the organization of their study, providing time constrictions, 

topics to revise, indications of the relevant activities. 

Moreover, the students report that to ask questions have helped them to study in a more 

critical and deeper way, with greater care, because it is not simple to pose a question 

due to the fact that there is no method to do that. At the same time, the request of a 

certain minimum number of questions on a topic requires to range over all the 

programme, not only concentrating on the specific and restricted topic but also paying 

attention to all the other linked topics. It is also interesting to note that some students 

has used this role to make critical points clear (posing as questions exactly their own 

doubts). Finally we noticed some non-cognitive aspects such as the trend to pose non 

trivial questions, also for pride reasons, and this has required the mastery of the topics. 
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CONCLUSIONS AND FUTURE WORK 

In this paper we have began to analyze the outcomes of a role-play activity aimed to 

foster conceptual understanding of mathematics for first year engineering students. 

The analysis has been performed using the Niss competencies and SEFI framework 

and has concerned the work of the students in the teacher role.  

We plan to continue the analysis of the second role, in particular we are interesting to 

see what competencies are addressed by answering to the posed questions and its 

matching with the expected competencies revealed by the questions. 
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In this paper, patterns-of-participation theory serves as a lens to interpret and 

understand Saudi high school mathematics teachers’ practices during the current 

reform movement and the role the new textbooks play in influencing teachers practice. 

The data presented is about Haya and Nora, two experienced, high school 

mathematics teachers. Generally, Nora’s and Haya’s practice as high school 

mathematics teachers reveals patterns of tension and confusion with regards to 

understanding the current reform movement in Saudi Arabia. 

INTRODUCTION  

One of the main goals of most education reform initiatives has been to change 

teachers’ classroom practices. The most recent reform curricula focuses on 

highlighting teacher practices that promote and evoke students’ understanding of 

mathematics alongside the changes in content (Tirosh & Graeber, 2003). Changes to a 

teacher’s role that are included in the education reform movement call for more 

research in order to understand and theorise about teachers’ classroom practices. The 

Saudi Arabian education system has undergone major changes in the past decade. 

Government agencies involved in education have introduced new policies, standards, 

programs, and curricula with the expectation that teachers incorporate the changes 

seamlessly and without consideration of existing beliefs and practices. My main 

research goal is to gain a better understanding of how high school mathematics 

teachers in Saudi Arabia are coping with recent education reform including how their 

practices are changing in response to the changes that are happening in the education 

system in general, and specifically, to the introduction of the new mathematics 

textbooks. In this article, patterns-of-participation (PoP) (Skott, 2010, 2013) approach 

will serve as a lens to interpret and understand Saudi high school mathematics 

teachers’ practices during the current reform movement and the role the new textbooks 

play in influencing teachers practice.  

Textbooks in mathematics classroom: 

For a long time, school mathematics has been associated with textbooks and 

curriculum material (Remillard, 2005). According to Trends in International 

Mathematics and Science Study (TIMSS), textbooks and documents such as exercise 

resources for use in classrooms as teaching aids, remain important elements in 

mathematics classrooms in many countries. Textbooks play an important role in 

shaping the curriculum experiences of mathematics (TIMSS 2011). This fact is 
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especially true in Saudi Arabian high schools. Textbooks provide teachers with a basic 

outline for thinking about what mathematics should be taught, when, and how. In 2010, 

the Ministry of Education introduced new mathematics textbooks, the primary, and 

sometimes only, resource for teachers. The Ministry sees this initiative as a major step 

towards creating change in teaching practices. 

In Saudi Arabia textbooks have official status clearly reflecting official curriculum. 

The new approved mathematics textbooks in Saudi Arabia are based on the curricula 

published by McGraw Hill Education learning company. According to the ministry of 

education in Saudi Arabia, the new mathematics curriculum aims to (a) help students 

to develop higher-order mathematics thinking skills,  (b) develop ways of mastering 

these skills, (c) construct a strong conceptual foundation in mathematics that enable 

students to apply their knowledge, (d) make connections between related mathematical 

concepts and between mathematics and the real world, and (e) apply mathematics 

logically to solve problems from daily life (Ministry of Education of Saudi Arabia, 

2013).  

Traditionally, curriculum materials or textbooks have been a center agent of policies to 

regulate mathematics practice in ways that parallel instruction with the reform 

perspective (Remillard, 2005). Textbooks are often the main resource for students and 

teachers in the classroom, offering the everyday materials of lessons and guiding the 

activities teachers and students do. As a result, educational policy makers use 

textbooks as an essential means to decide what students learn (Battista & Clements, 

2000). 

Research on teachers’ curriculum use focuses on understanding how teachers “interact 

with, draw on, refer to, and are influenced by” curricular materials when designing 

their lessons (Remillard, 2005, p.212). While effective student learning is one expected 

outcome of textbook use, the development of teachers’ techniques and practice is an 

additional desired outcome. Researchers have only recently started to shed the light on 

the impact of curriculum materials on teachers and how teachers use them (Remillard, 

Herbel-Eisenmann, & Lloyd, 2009). The focus of how teachers interact with and use 

curriculum materials has not been always considered significant to studying 

curriculum. Historically, research about school curricula relied mainly on examining 

the textbooks to restructure the contents of classroom practice (Love & Pimm, 1996). 

Reform efforts in mathematics education are the product of curriculum development 

supported by standards adopted by the National Council of Mathematics Teachers 

(NCTM, 2000). Teachers face the demand of applying new curriculum materials, and 

adopt new conceptual and pedagogical approaches to teach new standards-based 

curriculum (Remillard, 2005). 

THEORETICAL FRAMEWORK 

Skott (2010, 2013) introduced PoP as a promising framework, which provides 

coherent and dynamic theoretical understandings of mathematics teacher practices. 

Skott’s (2009, 2013) main motivation in developing this framework was to overcome 
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the conceptual and methodological problems of belief research. Although some 

researchers such as McLeod and McLeod (2002) note that there has been significant 

advancement in the study of beliefs and affect in mathematics learning, the progress 

can be more noticed in relation to theoretical aspects, researchers still call for more 

extensive studies to assure that progress exists in the quality of instruction. However, 

Skott (2009, 2013) views the call for more work to do, after all what has been done, in 

the field for beliefs research as a negative sign. “To a large extent, then, belief research 

is still conceived of as a promising field of study. Phrased negatively, however, its 

still-promising character suggests that after 20 years of persistent effort, the field has 

still not lived up to the expectations of its founders” (Skott, 2009, p. 28). 

The challenges and complexity associated with beliefs research has led some 

researchers, such as Skott (2009, 2013) and Gates (2006), to call for more social 

approaches to beliefs research. Gates (2006) indicates that there is a need to take a 

social approach when studying teacher belief systems because it will shift focus from 

cognitive constructs. A change toward sociological constructs will balance existing 

views about the nature and genesis of beliefs. Skott (2010) also supports this view 

indicating that taking a context – practice approach by adopting PoP as a framework 

provides more coherent and dynamic understandings of teaching practices. 

Furthermore, it will help in resolving some of the conceptual and methodological 

problems of a belief–practice approach while maintaining an interest in the meta-issues 

that constitute the field of beliefs.  

The social approach of research in mathematics education has progressively promoted 

the notion that practice is not only a personal individual matter; it is in fact situated in 

the sociocultural context. Although the relationships between individual and social 

factors of human functioning have generated much debate in mathematics education, it 

is mainly in relation to student learning (Skott, 2013). Therefore, PoP is a theoretical 

framework that aims to understand the relationships between teachers’ practice and 

social factors. To a considerable degree, PoP adopts participationism as a metaphor for 

human functioning more than mainstream belief research. Therefore, PoP draws on the 

work of participationism researchers, specifically Vygotsky, Lave and Wenger, and 

Sfard.  

Skott (2010) initially developed the patterns-of-participation framework in relation to 

teachers’ beliefs. However, in order to develop a more coherent approach to 

understand teachers’ practices, Skott (2013) extended the framework to include 

knowledge and identity. Research on teachers has mainly focused on studying three 

relatively distinct domains: teachers’ knowledge, beliefs, and identity. This leads to 

some incoherence that negatively influences the understanding of the teachers’ role in 

classrooms. Skott presents PoP as a coherent, participatory framework that is capable 

of dealing with matters usually faced in the distinct fields of teachers’ knowledge, 

beliefs, and identity.  
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METHODOLOGY 

This paper is part of an ongoing study that intends to develop more coherent 

understandings of Saudi high school mathematics teachers’ practices during the 

current reform movement. The data presented in this paper comes from two 

experienced high school mathematics teachers Nora and Haya. Nora has 13 years of 

experience teaching mathematics in public and private middle and high school in Saudi 

Arabia. She has a Bachelor degree of Science with a specialization in mathematics. 

Nora has never taken any education courses. Haya has 10 years of experience in public 

high school. She has a Bachelor degree of Education with a specialization in 

mathematics. The education courses Haya had in university focused on general issues 

related to teaching, such as lesson planning and classroom management. 

I conducted a 60-minute, semi-structured interview with both participants. I invited 

them to reflect on their experiences with mathematics and its teaching and learning 

during their years of experience. During the interview, they expressed their views 

about the recent reform movement in Saudi Arabia. I also asked them to reflect on their 

experience teaching mathematics using the old and new textbooks. Interviews were 

audio recorded and transcribed. As used by Skott (2013), I used a qualitative analysis 

approach based on grounded theory method.  

DISCUSSION 

Being a teacher in an era of educational reform 

Nora shows her deep personal commitment to current educational reform in Saudi 

Arabia. She believes that the pace of educational reform has been increasing at the 

global level and Saudi Arabia needs to join the global movement of education reform. 

She emphasizes the need to be reasonable and fair when we talk about recent reform 

efforts.  She explains, “reform is one of the controversial topics among people who are 

interested in educational issues in Saudi Arabia...but we have to admit, changing is 

difficult and complicated”. In the interview, Nora indicates that success of reform 

movements depends, at least in part, on the degree of match between teachers’ 

perceptions of the teaching practice and their role as teachers, and the demands of the 

reform movement. She states that “creating a positive change starts with creating a 

motivated teacher”.  

Haya on other hand has more skeptical view abut recent reform movement in Saudi 

Arabia. She states, “I think reform ideas are something nice to read about in a book or 

something. These ideas usually are not applicable to a real world classroom”. She 

argues that many teachers are confused when it comes to understanding the goals of the 

recent reform movement. She blames the Ministry of Education for this confusion. She 

explains that, on one hand, the Ministry introduces new mathematics curriculum which 

they claim will change the culture of mathematics learning in schools towards a focus 

on reasoning and problem solving, but on the other hand, the Ministry established new 

standardized tests for high school students which maintains a traditional 
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teacher-centered and exam-based educational environment. She claims that the 

ultimate teaching objective “was and still is” to improve students’ exam marks and the 

recent reform movement failed to change this objective. 

New mathematics textbooks impact 

Nora expresses that before the introduction of the new textbooks, she was very 

enthusiastic. She believes that the new textbooks are generally better than the old 

textbooks. She also believes that the new textbook supports student learning and 

creates more positive and engaging environment in the classroom. However, Nora 

indicates that she feels isolated and unsupported in her use of the new curriculum 

materials. She states, “Very often I have questions about the textbook, but I don’t know 

where I can’t find answers”. She complains that the Ministry of Education did not take 

teachers’ preparation of the use of the new textbooks into account. She indicates that 

the only other resource she has besides the teacher's guide is her communication with 

other mathematics teachers in her school. Conversations Nora has with other teachers 

provide support and a rich resource for Nora’s practice. After the implementation of 

the new textbooks, Nora and her colleagues started talking more about teaching 

mathematics.  

Nora comments about her teaching using the new textbooks; “although I feel that the 

new textbook could offer a better learning experience to the student.., I am not sure if I 

am using it effectively...I’ve been trying to change since we adopted the new 

textbooks, but sometimes I feel that changes are not obvious in my practice.” She 

indicates that the textbooks motivate her to reflect on her own teaching practice. She 

explains that teachers need to learn not only from textbook but also from their own 

teaching practice.  

Nora argues that one of the most positive aspects about the new textbooks is that many 

of the activities ask students to explain and express their understanding. Nora says that 

her students find it difficult to put their understanding into words because they are 

simply not used to talking in the mathematics classroom as they do in other classes. 

However, Nora indicates that some of the activities presented in the textbook do not 

make sense. She explains, “I honestly don’t feel that I should let the textbook control 

what I do in the classroom all the time”. It seems to me that Nora struggles with 

eliminating the authority of the textbook on her practice.  

Haya’s unsettling sense of confusion regarding curriculum change is noticeable in her 

remarks. While she indicated that the new textbooks are better than the old textbooks, 

she is sceptical about the impact these textbooks could have on teaching practice. Haya 

believes that most mathematics teachers have outdated perceptions of mathematics 

teaching and learning and merely changing the textbooks is not going to change 

teachers’ perceptions.  She expresses her frustration about the big gap between 

society’s high expectations towards teachers and teachers’ real capability of meeting 

these expectations. 
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When Haya describes her teaching practice after she started using the new textbooks, 

she explicitly indicates that change is something she thinks about more than she 

actually applies in her classroom. She explains that sometimes her classroom seems 

more interactive and engaging, but what students actually learn is very limited. She 

also criticizes the new textbooks because they do not address students’ different 

mathematical ability levels. She thinks the textbooks are designed for students with 

strong mathematical skills but students with low skills find many activities of the 

textbooks confusing. 

What does it mean to do mathematics? 

During the interview, Nora discusses the issues of classroom culture around what it 

means to “do mathematics”. She believes that there is a common culture in school 

mathematics which views doing mathematics as sitting quietly at a desk, finishing a 

worksheet, using the textbook as a main resource and turning in the completed work 

prior to class ending. The new textbooks, in Nora’s view, challenge this old lasting 

culture. Nora comments on the textbook’s presentation of situational problems which 

are connected with real life situations. She believes that the textbook surely make some 

positive transformations compared to old textbooks, which simply delivered 

mathematical concepts in a very isolated manner. However, she also indicates that 

making the connection is not always easy.  

Both teachers consider examinations as being powerful force in forming and directing 

how teachers and students do mathematics. Doing mathematics in Haya’s classroom is 

extremely influenced by students’ achievement and tests marks.  She argues that high 

school students care most about doing well in school exams and standardized tests.  

She explains her job as a teacher is to help her students “know how to do mathematics”. 

Haya also comments on some activities in the textbook which encourage students to 

explain their understanding and justify their solutions. She indicates that she tries as 

much as she can to include these activities in her classroom practice, but at the same 

time, she claims that high school is too late to start encouraging students to master 

these types of communication skills in the mathematics classroom.  

RESULTS AND CONCLUSION 

Both teachers show their commitment to the profession and express their concern for 

doing what is best for their students. They both indicate that the content and structure 

of the textbooks changed significantly from the former textbooks.  Students’ 

achievement and tests marks are significant to the classroom practice of both teachers. 

Also, Nora’s and Haya’s practice as high school mathematics teachers reveals patterns 

of tension and confusion with regards to understanding the current reform movement 

in Saudi Arabia. The lack of support and guidance both teachers received before and 

after the implantation of the new textbooks has a negative impact on their use of the 

textbooks in their classrooms. Both teachers developed a sense of isolation in the 

current reform movement. Also, part of the tension both teachers are experiencing 
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comes from their struggle with eliminating the authority of the textbook in their 

practice. 

Both teachers have developed a sense of obligation and stress to improve their teaching 

practice. Nora seems more motivated about improving her teaching practice; she uses 

the new textbook as a tool for self-directed professional development. The different 

perspective the new textbook offers about mathematics learning encourage her to 

reflect more on her teaching practice. Also, Nora’s interaction with other teachers in 

her school is significant to her classroom practice.  

Haya on the other hand appears less motivated about the making changes to her 

teaching practice. It seems that her perceptions on teaching and learning are being 

compelled to change in order to keep up with reform demands. She is uncertain about 

the meaning of the change and has some resistances to making changes in her practice.  

With her struggles to make some changes in her practice, her conceptions of teaching 

and learning mathematics seem to remain the same. Although she indicates she was 

very supportive about the implementation of the new textbooks, a sense of uncertainty 

about the value of the new textbooks started to emerge in her practices.  

Understanding the patterns in the ways in which the two teachers participate in these 

practices and contribute to their constant reconstitution and renegotiation of their 

teaching is a complex task. Using the data I collected from the interviews, I was able to 

get a sense of some of the practices that are significant to the two teachers’ classrooms 

participation. However, to develop a better understanding of both teachers’ practice as 

mathematics teachers, more data is needed. The use of multiple open interviews in 

combination with observations of classroom and staff-room interactions may allow 

access to practices and figured worlds beyond the classroom (Skott, 2013). Skott 

(2013) also suggest that “teacher’s narratives about her own schooling; about formal 

and informal collaborative activities with her colleagues; and about discursive 

manifestations such as the reform” provide deeper understanding to the meanings 

teachers bring to their classroom practice (p. 552).  
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PARENT-CHILD MATHEMATICS: A STUDY OF MOTHERS’ 

CHOICES   

Ann Anderson, Jim Anderson 

University of British Columbia 

 

Research on mathematics found in ‘everyday’ interactions (e.g., Walkerdine, 1988) 

often relies on analysis of parent-child talk during studies of social interactions and/or 

literacy events more generally. In contrast, from the outset of the current study, 

parents were aware that mathematics was the focus of study and that each of them 

would determine the activities to be video-taped in their home. In this paper, we report 

on the types of activities six middle class mothers perceived as opportunities to engage 

their preschool child with mathematics. Analysis also included the patterns found 

within and across families. Overall, the mothers documented play-based events, many 

of which were common across four or more homes and entailed ‘less conventional’ 

mathematics. Parental styles of mathematical engagement are discussed.   

BACKGROUND 

Gifford (2004) argued that the formal and informal pedagogy that supports children’s 

development of early mathematical competence has not been well documented. While 

we know children enter school with considerable mathematical knowledge, we know 

much less about the ways in which parents and significant other family members 

support them in developing that knowledge prior to school. Much of the recent 

research, into young children’s mathematics learning within the context of home and 

family relies on parent reports (e.g., Lefevre et. al. 2009) or observations of 

parent-child interactions during activities or tasks, using materials provided by the 

researchers (e.g., Vandermaas-Peeler, Nelson, Bumpass & Sassine, 2009; Anderson, 

Anderson & Shapiro, 2005: Anderson, 1997). This research on young children’s 

engagement in mathematical activities at home demonstrates considerable diversity 

across families in terms of the frequency and types of math, although findings across 

studies indicate that families tend to emphasize counting and number concepts (e.g., 

Anderson, Anderson & Thauberger, 2008). Of particular relevance to the current study 

are the few studies (Walkerdine, 1988; Aubrey, Bottle & Godfrey, 2003; Trudge & 

Doucet, 2004), which investigated parent-child interactions during ‘naturally 

occurring’ events at home through audio or video recording or direct observations. In 

these studies, although researchers identify the mathematics evident in activities and 

events or in parent-child interactions, it is unclear whether the parents construed the 

activities as mathematical. In contrast, in the present study, we were interested in 

having parents identify the activities that they believed were examples of ways in 

which they engaged their young children in mathematics. Thus this study investigated 

the types of activities parents view as contexts for mathematics learning, and the ways 

in which the activities evolved when parents knew the focus of the study was on 
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parent-child mathematical activities and events and the interactions that occurred 

therein. We documented parents’ self-selected mathematical activities in the context of 

their home, providing insight into the nature of activities that mothers perceive as 

opportunities to engage their preschool child with mathematics. By asking participants 

to identify and document mathematical activities and events in the home, the current 

study augments previous studies, which rely on parent reports alone. Likewise, unlike 

studies where researchers provide the materials and tasks for the parents and children, 

the current study observed the ways in which the parent-child dyads constructed 

activities using resources found in their homes. 

Our research is informed by socio-historical theory (e.g. Vygotsky, 1978; Wertsch, 

1998) and the notion that learning is social, as well as individual. Children learn to use 

the “cultural tools” such as mathematics of their community and culture 

inter-psychologically as they are guided and supported by parents and significant other 

people. As they practice using these “tools” and support is gradually withdrawn, 

children learn to use them intra-psychologically or independently. 

METHOD 

Six families were recruited from an unaffiliated Child Study Centre located on a 

university campus. The children (5 girls, 1 boy) were two and a half years old at the 

beginning of the study. The parents were well-educated, middle to upper-middle class, 

and lived in relatively affluent neighbourhoods adjacent to the university campus. On 

mutually convenient occasions spread over two years, we videotaped parent-child 

dyads (4 mother-daughter, 1 father- daughter, 1 mother-son) participating in everyday 

‘at home’ events of their choosing (e.g., baking cookies, viewing photos). As indicated 

earlier, we informed parents at the outset that the research focus was on children’s 

early mathematics in the home. At the beginning of each home visit, the mother 

designated the shared activity that was to be videotaped. Four of the families were 

video taped by the same research assistant, who remained the field researcher for the 

duration of the study. Two of the mothers opted to carry out their own videotaping, an 

option made available to all parents. The number of video taped sessions varied across 

the families (i.e. 4-10), with all sessions lasting at least 15 minutes.  

To analyse the data, we viewed the videotapes of each family three times, and wrote 

comprehensive notes during each viewing. We then transcribed each videotaped 

session for each family in its entirety. The first author read the transcripts three times, 

referring to the initial notes each time so as to provide thorough documentation and 

understanding of each episode. Each transcription was then analysed in terms of the 

types of activities and events in which each family engaged. Patterns across and within 

families and similarities and differences across activities and events were determined. 

Secondly, parent-child interactions were analysed according to the extent to which 

mathematics was explicitly present in the interactions as the activity evolved. For that 

analysis, we used five a five point scale, namely mathematics was deemed: (a) 
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prevalent b) a major focus c) an equal focus with other aspects d) a minor focus or e) 

incidental throughout the activity, from an observers’ perspective. 

RESULTS 

Because each mother individually identified the activities and events to videotape 

without consulting any other participants, diversity across families was anticipated. 

Overall, 44 specific activities (e.g., playing Snakes & Ladders; viewing Photos) were 

documented. When these were clustered according to general defining features (e.g., 

board games; family time), thirteen categories emerged (see Table 1). Eleven of the 13 

categories contained activities chosen by at least half of the mothers. The most 

common categories were puzzles, pretend play, board games, story time, family time 

and playing with toys. Closer examination revealed that the activities chosen were 

mainly those we intuitively associate with children’s play (i.e., using stickers to create 

pictures) and child’s at-home participation in family routines (i.e., baking cookies) 

with minimal examples of school-like activities. Indeed, these mothers predominately 

chose to videotape adult-child play of one sort or another. 

As might be expected from the design of the study, each videotaped activity within the 

categories was unique to the parent, child and materials involved. For instance, the 

‘number’ puzzles that the Adam (pseudonyms are used throughout) family used 

incorporated puzzle pieces with a numeral fitting onto a background space showing the 

same number of objects. On the other hand, the jigsaw puzzles that the Pimm family 

used involved a picture broken into a number of irregular, interlocking pieces. Such 

contrasts led us to consider to what extent the mothers’ choices were based on overt 

mathematical features of some materials marketed to homes. We labelled an activity 

‘conventional’, when numerals, shapes and counting were key features of the material 

(e.g., BINGO) and ‘less conventional’ when mathematical elements or features were 

not deemed key to the typical use of the material (e.g., Hungry Hippos). Analysis 

revealed that about one-quarter of the activities (11), which the mothers chose to 

videotape, involved commercially produced mathematical materials, while over half of 

the activities (27), were characterized as less conventional, mathematically. 

Finally, to describe the extent to which mathematics was explicit during the chosen 

activities, we used a 5-point scale described earlier (See Table 2). For example, as the 

Beet dyad played checkers, the mother often explained her moves and what might 

happen if the child moved one way or another. After a checkmate, the mother counted 

the checkers, and on one occasion the child made (and named) a square with four 

checkers. Here, counting and shape recognition were deemed explicit attempts to 

include mathematics, whereas the mother’s explanations appeared to illustrate “how 

to” play the game. Thus we assigned “(d) Math occupies a minor portion of the activity 

but seems conscious” to best describe the minor role explicit mathematics seemed to 

play here. (See Table 2, Beet, board game.) 
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Category Each family’s activity 

 Adam Star Penn Pimm Liu Beet 

Puzzles Number  Jigsaw(2) Jigsaw Number Jigsaw 

Play   Store Stickers  Pegboard Traintrac

ks 

Tea party 

Board game Snakes & 

Ladders 

Hungry 

Hippos 

BINGO   Checkers 

Story time Number & 

shapes 

Felt story 

board 

 Sounds of 

World 

 Matching 

objects 

Family time  Lunch   Photos Videos  Baking 

Toys  Traintracks Cars Food/dolls Pop up   

Playdoh Sharing 

pizza 

Happy face    Making 

food 

Physical 

games 

Hopscotch   Follow the 

leader 

 Water 

sprinkler 

Matching 

games 

Cards:word 

numeral, 

dots 

  Cards: 

images 

Rods: 

“Ten” 

family 

 

School like Word 

problems 

  Yearbook 

entry 

Compu- 

ter 

game 

 

Songs 1,2,buckle 

my shoe 

Row, row 

your boat 

  ABCs  

Other games    Dreydel Macaroni   

Miscellaneous    Penny 

tracing 

  

Table 1: Activities mothers chose to videotape  

Activity Adam Liu Penn Star Beet Pimm 

Puzzle a a c  e c 

Play a b  a d d 

Board game a  a b d  

Story time a   e d e 

Familytime  b  d a e 

Toys  b b e  e 

Playdoh a   d d  

Physical a    e e 

Matching a a    e 

School a a    d 

Songs a e  e   

Other games  a    e 

Misc      e 

a: Math is the core and goal of the activity. 

b: Math occupies a major portion of the activity but was not the original goal 

c: Math occupies an equal part of the event, other aims and content are achieved. 

d: Math occupies a minor portion of the activity but seems conscious. 

e: Math is incidental or subtle for the most part and may/may not be apparent 

Table 2: Activities ranked on a continuum of mathematical involvement 
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Once each activity/family was coded, the analysis revealed that while one mother 

(Adam), chose the same type of activity each time, the other mothers chose activities, 

which varied somewhat according to the explicitness of the mathematics. In addition, 

we were surprised to see that the families’ profiles appeared to fall along a similar 

continuum (See Table 2). That is, these mothers’ choices suggested parental styles of 

engagement whereby for two families (Adam, Liu) the majority of the activities video 

taped were explicitly mathematical, for two other families (Pimm, Beet) the majority 

of activities videotaped were incidentally mathematical and for the remaining two 

families (Penn, Starr) an eclectic style of engagement was evident. 

DISCUSSION 

Due to the small size and the homogenous nature of the sample, some caution is called 

for interpreting the findings of this study.  However, we believe the findings from the 

study are significant and contribute to the literature on young children’s engagement in 

mathematics at home. In previous research using self-reports and surveys (e.g., 

Lefevre et. al.), families have reported similar activities as these mothers chose to 

videotape (e.g. baking cookies; playing board games). Thus the current study provides 

further evidence of the “myriad of ways in which everyday practices common to many 

home environments” (Benigno & Ellis, 2008, p. 298) may support children’s 

mathematics development. However, although many of the families in the current 

study engaged in playing board games for example, analysis revealed that families 

played an array of board games with different affordances in terms of mathematical 

learning. Thus the present study provides a more nuanced insight and understanding of 

these ‘taken-for-granted’ activities (i.e. ‘doing puzzles’), as a site for children’s early 

mathematics learning.  

That the mothers chose mainly play based activities appears to reaffirm that “[m]uch of 

young children’s exposure to math does not occur during explicitly didactic 

interactions” (Benigno & Ellis, 2008, p. 294).  Likewise, it seems the mothers in the 

current study concur with the majority (77%) of parents interviewed by Canon and 

Ginsburg (2008) who believed “children’s mathematical learning should be 

incorporated into their daily living” (p. 250). However, further research with families 

from diverse backgrounds is needed to determine the extent to which this holds for 

those outside the mainly Euro-Canadian, middle class homes represented here, 

especially since some cultural groups favour a more didactic form of teaching and 

learning with an emphasis on rote memory. 

Unlike the somewhat dichotomous “instrumental or pedagogical typifications” put 

forth by Walkerdine (1988) and Aubrey et al. (2003) for mother-child mathematical 

interactions, in the current study, at home mathematical activity appeared to fit along a 

continuum as identified by the 5-point scale. Thus in addition to those activities at the 

extremes where mathematics was core or mathematics was incidental, we documented 

activities where mathematics played a major or minor role as well as those where 

mathematics seemed equally important to non-mathematical goals or aspects of the 



Anderson, Anderson 

2 - 38 PME 2014 

activities.  Looking across the six families, the results of this study suggest that in 

addition to mothers who take on a “pedagogic stance”, and others who share more 

instrumental activity with their child, some mothers adopt a more eclectic style of 

mathematical engagement than a dichotomous view permits us to see. Of course, it 

remains to be seen if preferences seen in the video taped sessions reported here, will 

prevail in other data sources (parent interviews, diaries) yet to be analysed or if an 

eclecticism within all families might be revealed as more of the families’ everyday 

practice is examined. While we concede that a continuum of parental practice 

complicates our search for a definitive explanation as to how and why children enter 

school with a range of mathematical knowledge, it likely better represents the 

complexity of the ways in which parents and children engage in mathematics at home. 

Further research, which accounts for the breadth and depth of mathematical 

experiences in families, is needed to better understand the nature of children’s 

mathematics learning prior to school.  
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METRIC EQUIVALENCE IN INTERNATIONAL SURVEYS: 

CULTURAL EDGES 

Annica Andersson, Lisa Österling 

Stockholm University 

 

This is a critical methodological paper concerning the translation and cultural 

adaptation processes of an international mathematics education survey questionnaire. 

Metric equivalence concerns not only language, but also content and activities chosen 

as indicators in the survey. We here focus the challenges when making cultural, 

historical and societal considerations when adapting a survey to a new language and 

cultural context. We conclude that the recommended back translation is not enough to 

ensure metric equivalence when adapting surveys to a new country. Therefore, we 

suggest an elaborated method for cultural adaptation. Regarding our survey, this 

resulted in a survey translation that is better culturally adapted for respondents. 

INTRODUCTION 

The background for this paper is the now reflected and elaborated answers to an 

important question posed at the discussion after our presentation at PME37 (Andersson 

& Österling, 2013): “What were your considerations during the translation process?” 

Cross-cultural surveys imply translations of questionnaires to new languages and 

cultural contexts. To be able to compare results across the borders, the translations 

need to obtain metric equivalence. The aim of this paper is to document and describe 

the methodology we developed for translating and adapting a questionnaire from an 

Australian-Asian context into Swedish language and school culture. We here account 

for our experiences and critical reflections after the translation and adaptation of the 

international survey questionnaire within The Third Wave Project, “What I Find 

Important” (WiFi) (Seah & Wong, 2012), a survey that across cultures investigates 

what students value as important when learning mathematics. This large-scale 

quantitative investigation consists of a web-based questionnaire with 89 questions to 

be distributed to 11 and 15-year old students in 19 different countries. Our task was to 

translate the questionnaire, into Swedish with possibilities to, first, research what 

Swedish student value and, second, to be able to make international comparisons.  

In a quantitative study, a good measure of values is hard to obtain (see Andersson & 

Österling, 2013). The problems can be compared to the methodology of attitude 

surveys, where indicators of attitudes are used instead of posing direct questions 

(Sapsford, 2007). To obtain metric equivalence, it is crucial that an indicator indicates 

the same value after a translation. We aim in this study to keep the metric equivalence 

by conserving the intended meaning of each indicator after translation. Hence, we need 

to choose either culturally neutral indicators, if such exist, or we need to adapt 

indicators that conserve the intended meaning across cultural borders.  
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The WiFi-study is based on value categories from different theoretical frameworks, 

mainly mathematical values (Bishop, 1988) and cultural values (Hofstede, Hofstede & 

Minkov, 2010). The value diversity meant a need to differentiate amongst the many 

dimensions and layers of values that are portrayed in the classroom. To give some 

examples; Seah & Wong (2012) take the stance that “values are regarded in [the Third 

Wave project] from a sociocultural perspective rather than as affective factors.” This 

sociocultural perspective may imply that values can be found in relationships, 

languages and available discourses. Hofstede et al. (2010) instead define values as “the 

core of culture”, explaining that culture reproduces itself and its values through 

cultural practices. Those practices can be what parents say and do when fostering their 

children, or what activities teachers choose to do in the classroom. How activities are 

values is decided by the members of the cultural group.  

The questions in the WiFi-survey questionnaire consist mainly of activities from 

mathematics classrooms. Respondents are asked to answer how important each 

activity is when learning mathematics. The different activities were chosen as value 

indicators in the WiFi-questionnaire. Therefore, we need to address cultural practices 

in the mathematics classroom to validate that the intended meaning of our indicators 

was culturally stable. In this validation process, we used several methods: repeated 

pilot tests, interviews with targeted students and educational and historical research to 

understand the cultural background of Swedish mathematics education.  

Historical, Societal and Cultural Background of Swedish Mathematics Education 

From the results of WiFi-study we will learn more about what students express as 

important learning activities in mathematics. To obtain a cultural adaptation while 

maintaining metric equivalence during translation, we needed deeper knowledge about 

societal and historical facts that form mathematics educational practices. Otherwise, it 

is hard to determine what value a value indicator indicates. To give an example, 

Lundin’s (2008) work shows that when Swedish schools became public and mandatory 

in 1842, teachers had to deal with a large number of children that were the first 

generation attending school. The first early schoolbooks had two aims; to support the 

learning of mathematics and support teachers to cope with disciplinary problems. 

“This need led to the promotion of schoolbooks filled with a large number of relatively 

simple mathematical problems, arranged in such a way that they (ideally) could keep 

any student, regardless of ability, busy – and thus quiet – for any time span necessary.” 

(Lundin, 2008, p.376). Mathematics was used as a medium for fostering children. The 

School Inspectorate’s research report (2009) concludes that teachers are still relying on 

textbooks when planning their teaching, hence trust the textbook to fulfil curriculum 

objectives. Lundin’s (2008) explanation of the historical development might explain 

the School Inspectorate’s (2009) results. This particular way of organising 

mathematics education is believed to support teachers in managing non-homogeneous 

student groups so that each student can work according to his/her previous learning and 

needs. It is likely that parents and students expect mathematics classes to be conducted 
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this way. Hence, working quietly in the textbook has become part of the culture of 

Swedish mathematics classrooms. 

METHODOLOGY 

As commonly practiced, the WiFi-study Research Guidelines (not published) 

suggested translation and back translation as a way of obtaining metric equivalence. 

However, after having done successful back translations, we conducted a pilot test of 

the translated questionnaire with a sample of 11-year-old students. It turned out that 

there was several questions the targeted students did not understand. Therefore, we 

needed to consider how we best could adapt the questionnaire to a Swedish context, 

and how best choose contents and activities as indicators that Swedish students are 

familiar with. A back translation did not serve our purposes. We needed other methods 

for the cultural and linguistic adaptation.  

Exploring methods of cultural adaptation 

Translation and back translation can be conducted to investigate problems in the target 

text. However, this produces limited information of the quality of the target text – 

which also, as described, became our experience. Harkness, Villard & Edwards (2010) 

criticizes the use of back translation as a standard method, drawing on research that 

shows that appraisal of the target text directly is more efficient.  

We explored, evaluated and adapted the guidelines for cross-cultural research, 

published by the Survey Research Center (2010). Harkness et al. (2010) suggests “The 

TRAPD Team Translation Model” as current best practice. The steps in this model are; 

Translation, where two translators make two independent translations; Review, where 

the translations are compared and refined; Adjudication, where the translation is 

separated from review with focus on, amongst other things, a cultural adaptation; Pilot 

test and finally Documentation of every step in this process. A team should include 

translator, reviewer and adjudicator. Adjudication is suggested to follow these steps; 

linguistic mistakes in the translation process, cultural adaptation problems, questions 

that do not work in the intended group and generic problems from the source version. 

Each survey is unique, and we adapted this model to suit the circumstances of our 

project. The frames of this project did not allow for hired professional translator or to 

organize extensive pilot tests. But we had a team, consisting of three mathematics 

teachers’ educators and researchers. We used the different stages iteratively, and went 

back to new translations, reviews and adjudications. During this process, we added 

scoping interviews with students as well as knowledge from earlier educational 

research to improve the cultural adaptation. Below we describe how this adapted 

model was used to improve the quality of the translated questionnaire and to keep the 

metric equivalence. 
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RESULTS 

Results from the adapted TRAPD-process 

Scoping interviews: We needed to learn more about how the intended group of 

students themselves expressed their valuing and interpreted our questions. 

Semi-structured scoping interviews (Bryman, 2012) were hence conducted. In the 

translation process, this was intended to help us use students wording and examples in 

our translation and to facilitate the understanding of the questions. 

1
st
 translation: In this stage, the translators, three persons in our case, made a close 

translation of the WiFi-questionnaire from English to Swedish. 

1
st
 review: The translators compared and reviewed each other’s translations in review 

meetings to decide on the best translation. We focused at this stage to keep the 

translation as close to the original version as possible for a successful back translation. 

Back translation: Two persons, who had not previously seen the questionnaire, 

conducted the back translation from the Swedish translated questionnaire to English. 

1
st
 adjudication: In our project, also the adjudication was a team work. We compared 

the original and the back translated questionnaires and used colour codes to grade the 

similarities/differences between them. Since the 1
st
 translation was close to the source 

questionnaire, the back translation was acceptably similar to the source questionnaire. 

1
st
 pilot test: In this pilot test, a group of 28 eleven-year-old students were asked to 

answer the questionnaire, and when doing so, indicating what questions they found 

difficult to understand or interpret. 

2
nd

 adjudication: When analyzing the pilot test, there were too many questions 

students found difficult to understand. We concluded that we needed to improve the 

cultural adaptation as well as the adaptation to the intended group. We looked up items 

in research texts and in the curriculum to check for meaningful and proposed activities 

in a Swedish context. An example can illustrate the process so far: 

Example 1: Q9 focuses ”Mathematics debates”. In the 1
st
 translation, this was easily 

translated to “Debatter med matematik”, and the back translation was close enough, 

“debating maths”. However, when trying out the questionnaire in the pilot test, eleven 

students out of 28 did not understand the question. And when discussing “Mathematics 

debates” in the 2
nd

 adjudication, not even we as adjudicators were sure about how such 

a debate is enacted in the classroom. “Mathematics debates” are in the WiFi Research 

Guidelines (not published) classified as an indicator of valuing openness and 

exploration. Mathematics debates is not an activity that is common in Swedish 

classrooms, so out of what it is supposed to indicate, we tried to adapt the indicator, 

and describe an activity that children could recognize. In the 2
nd

 translation, the 

question was formulated “Debattera och ifrågasätta lösningar i matematik” (Debate 

and question mathematical solutions), a cultural adaptation so respondents can 

visualize a situation while still relating to valuing openness and exploration.  
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Documentation was kept during the whole process of all the different versions of each 

question. It supported our evaluation of the improvement of quality. 

This process made us realize that translation and back translation is not a good 

instrument to ensure metric equivalence when researching students valuing when 

learning mathematics. We need to use other methods and decided to take the 

adaptation one step further. Consequently we followed up the pilot test with interviews 

of participating students in order to better understand the intended meaning of their 

answers to some of the questions.  

Understanding respondents’ intended meaning 

Respondents obviously need to understand survey questions. Therefore, we asked 

them how they interpreted the questions and what their intended meaning was when 

answering our questions.  

Example 2: According to the pilot test a large proportion of students valued Q36 

“Practicing with lots of questions” as important or absolutely important. However, 

Sara, 11, did not. We discuss this result in particular, since it aligns with research 

results, which show that this is an important trait of Swedish mathematics education.  

This question was not hard to understand or to translate. Still, we got contradictory 

answers in the interviews. We wanted to find out what students valued when they 

responded that “practising a lot” (öva genom att göra många uppgifter) is important or 

not.  Sara, 11, expressed:  

Interviewer: - Do you think you need to practise a lot to learn mathematics? 

Sara:  - Well, if you are already good at it… no! 

Her reasoning and intended meaning of this response was more elaborated and very 

different from what we predicted. She here stated that “good” students don’t need to 

practice that much.  However, later in the interview, she gives us examples of 

mathematical content one always needs to practise a lot, which is practicing the 

times-tables. She also recognises that there is a different learning process in learning 

times-tables from learning problem solving, but she cannot express what she finds 

important for learning problem solving. Her rating of “Practicing with lots of 

questions” was “neither important nor unimportant”.  Therefore, using “Practicing 

with lots of questions” as an indicator becomes hazardous, since respondents make 

connections and reflections we cannot predict.  Interviews with students allowed us to 

discover some of those unpredicted responses, thus allowing us to problematize 

conclusions from the data.  

3
rd

 adjudication: We worked further on finding expressions and concepts from 

Swedish classroom contexts. We used previous educational and historical research, as 

well as our years of experiences as teachers and teacher educators to find the best 

expressions that could fit classroom cultures and the selected age group of the 

respondents. At this stage, the team used all information we had gathered to reconsider 

our translation and adaptation. We used results from the pilot test, from interviews, 
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from a curriculum analysis and the back translation. This method allowed us to 

evaluate our translation from several perspectives.  

2
nd

 translation: We moved away from our initial intention of keeping the target 

questionnaire (the translated version) as a close translation to pass a back translation. 

Instead, we put a lot of effort in analyzing what activities that could be the best 

indicators of the requested value. The use of indicators in the WIFI-study has 

previously been discussed by Andersson & Österling (2013). We give an example to 

show how we worked through the whole process.  

Example 2: Q11 focuses “Appreciating the beauty of maths“ and Q60 “Mystery of 

maths“ were not comprehensible for the Swedish students due to the pilot test. The 

version we tried out was a close translation. In the 2nd translation we chose to give 

examples to illustrate what “beauty and mystery of maths” can be.   Q11: “Uppleva att 

matematik kan vara vacker (som mönster i konst, arkitektur och natur)” (Experience 

that mathematics can be beautiful (like patterns in art, architecture and nature) and  

Q60: ” Undersöka gåtfulla matematikexempel (till exempel kan du lätt mäta en 

tredjedel av 9 cm exakt med linjal, men en tredjedel av 10 cm går inte att mäta exakt)”, 

(Exploring enigmatic mathematical examples (e. g. you can measure a third of 9 cm 

exactly with your ruler, but you cannot measure a third of 10 cm exactly). If those 

questions were to be back translated, a comparison would say that they are quite 

different. But the intended meaning is easier for respondents to understand. Therefore, 

this way of adapting questions to what is familiar of respondents conserves the 

intended meaning, and thus improves the metric equivalence, since the new question 

works as an indicator of the values intended.  

To sum up, there were a large proportion of questions where the mathematical content 

and/or the mathematical activities in classrooms were not familiar to Swedish 

eleven-year-old students. There were also questions that could be interpreted 

differently, due to cultural differences or due to individual experiences amongst 

respondents. Therefore, we made some clarifying examples, or even chose a different 

activity, to try to improve the metric equivalence and construct validity.  

CONCLUDING DISCUSSION 

Quantitative cross cultural surveys and assessments like TIMSS or PISA are 

increasingly important aspects of policy making decisions about mathematics 

education.  Those investigations pose the same questions in all countries, since the aim 

is to compare knowledge between countries.  

Recognizing that there are historical and cultural differences between participating 

countries make it problematic to compare the assessed knowledge, since it is based on 

the assumption that mathematical content is valued equally everywhere. The WiFi- 

study is different; it surveys what students find important and does not assess students’ 

mathematical knowledge. But the survey still suffers from the same difficulties, that 

we are not sure if mathematics or mathematical activities are valued equally across the 
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participating countries. Translating a questionnaire with questions about learning 

mathematics does not imply only linguistic aspects. The indicators need to be 

evaluated out of what mathematical content students recognize when being part of the 

subject of mathematics and what mathematical activities students from different 

countries or cultures are familiar with.  

The WiFi Research Guidelines (not published) suggested translation and back 

translation. However we could conclude that a successful back translation is not 

enough to ensure metric equivalence. Having our minds set on how to translate 

questions so that they would suite the back translation resulted in a too close 

translation, and respondents in the pilot test did not understand all the questions. 

Therefore, a back translation did not help us neither with the meaningfulness of item 

content to each culture, or with the metric equivalence. Instead, an adapted 

TRAPD-model (Survey Research Centre, 2010) gave us useful tools to improve the 

cultural adaptation. However, a cultural adaptation cannot be drawn too far without 

affecting the instrument validity across languages. We had to pay careful attention to 

maintain the metric equivalence in order to have the possibility of making 

cross-cultural comparisons of students’ values, as intended in the WiFi-project (Seah, 

2013). From the results from a finished WiFi-study we can learn more about 

differences between cultures and values in mathematics learning. However, our 

dilemma is that at the same time, we depend on some of this knowledge when adapting 

a proper questionnaire. 

Until our larger research study shows us where edges of cultural values can be found in 

mathematics education, we recommend the other seventeen teams within the 

WiFi-project, or similar cross cultural projects, to reflect on the translations and 

cultural adaptations and maybe adopt and adapt further the team translation process. 

Within the adjudication stages, there are rich opportunities to critically reflect on 

cultural adaptations through interviews, pilot tests and previous research to improve 

metric equivalence in cross-cultural research. 

References 

Andersson, A., & Österling, L. (2013). Measuring immeasurable values. In A. M. Lindmeier 

& A. Heinze (Eds.), Proc. 37
th

 Conf. of the Int. Group for the Psychology of Mathematics 

Education (Vol. 2., pp. 17-24). Kiel, Germany: PME. 

Bishop, A. (1988). Mathematical enculturation: A cultural perspective on mathematics 

education. Dordrecht: Kluwer Academic Publishers. 

Bryman, A. (2012). Social research methods (4
th

 ed.). Oxford: Oxford University Press. 

Harkness, J. A., Villar, A., & Edwards, B. (2010). Translation, adaptation and design. In J. 

Harkness, M. Braun, B. Edwards, T. P. Johnsson, L. Lyberg, P. P. Mohler, … T. W. Smith 

(Eds.), Survey methods in multinational and multiregional contexts (pp. 117-139). 

Hoboken, NJ: John Wiley & Sons. 



Andersson, Österling 

2 - 48 PME 2014 

Hofstede, G., Hofstede, G. J., & Minkov, M. (2010). Cultures and organizations, software of 

the mind: Intercultural cooperation and its importance for survival (3
rd

 ed.). New York: 

McGraw Hill. 

Lundin, S. (2008). Skolans matematik: en kritisk analys av den svenska skolmatematikens 

förhistoria, uppkomst och utveckling (Unpublished doctoral dissertation). Acta 

Universitatis Upsalensis, Uppsala. 

Sapsford, R. (2007). Survey research. London: Sage Publications. 

Seah, W. T. (2013). Assessing values in mathematics education. In A. M. Lindmeier & A. 

Heinze (Eds.), Proc. 37
th

 Conf. of the Int. Group for the Psychology of Mathematics 

Education (Vol. 3., pp. 193-201). Kiel, Germany: PME. 

Seah, W. T., & Wong, N. Y. (2012). What students outside Asia value in effective 

mathematics learning: a 'Third Wave Project'-research study. ZDM, 44, 1-2. 

Skolinspektionen [School Inspectorate]. (2009). Skolinspektionens Kvalitetsgranskning, 

Undervisningen i matematik - utbildningens innehåll och ändamålsenlighet: Rapport 

2009:5 [Teaching of mathematics - the content and efficiency of education]. Stockholm: 

Frizes. 

Skolverket [The Swedish National Agency for Education]. (2011). Läroplan för grundskolan, 

förskoleklass och fritidshem [Curriculum for the compulsory school, preschool class and 

the recreation center]. Stockholm: Fritzes 

Survey Research Center. (2010). Guidelines for best practice in cross-cultural surveys. Ann 

Arbor, MI: Institute for Social Research, University of Michigan. Retrieved from 

http://www.ccsg.isr.umich.edu/ 

 

 



2014. In Nicol, C., Liljedahl, P., Oesterle, S., & Allan, D. (Eds.) Proceedings of the Joint Meeting 2 - 49 

of PME 38 and PME-NA 36,Vol. 2, pp. 49-56. Vancouver, Canada: PME. 

‘I SENSE’ AND ‘I CAN’: FRAMING INTUITIONS IN SOCIAL 

INTERACTIONS 

Chiara Andrà
1
, Peter Liljedahl

2
 

1
University of Torino, Italy & Polytechnic of Milan, Italy; 

2
Simon Fraser University, Canada 

 

In this article we examine intuitions as they emerge in groupwork activities. We 

provide a framework and a methodology to code various aspects of the activity, social 

and mathematical. Focusing mostly on students’ gazes, we explore how affective 

moves give rise to, and determine, students’ interactions and thoughts. We argue that 

intuition does not take place in the mind of the individual, it is not a matter of ‘I think’, 

but it arises from actions and reactions, in relationships with others and with artefacts. 

Data from a 50 minutes groupwork activity of four grade-9 students allows us to 

further discuss our framework. 

INTRODUCTION AND BACKGROUND 

Dewey (1938) states that intuitions and illuminations are not "part of the theories of 

logical forms" (p.103). Illumination is the phenomenon of sudden clarification arriving 

in a flash of insight and accompanied by feelings of certainty (see Liljedahl, 2012, and 

references therein). Intuition, as well, is a form of thinking that provides the learner 

with a sense of certainty (Fischbein, 1987): it is perceived as global (rather than 

analytical), coercive and self-evident. Sometimes intuitions from everyday experience 

contrast with mathematical knowledge and can impede learning: misconceptions are 

such kind of intuitions (Fischbein, 1987).  

Andrà & Santi (2013) underline that intuitions are a way of establishing a relationship 

between the learning subject and the object of knowledge, they are a mode of existence 

of the consciousness which intertwines with perception, sensorimotor activity, 

emotions (which provide the learner with a sense of likelihood of success, see Roth & 

Radford, 2011), and mathematical generalization. They conclude that intuitions can 

start in a private, individual moment, but it is in the communitarian self (Radford, 

2012) that they develop towards mathematical generalizations. If so, which is the 

relationship between the individual moment of illumination (see also Liljedahl, 2012) 

and the emerging of shared intuitions in the communitarian self, which can develop 

into mathematical deductive forms of thinking and proving? In order to answer to this 

question, we have developed a methodological framework (Liljedahl & Andrà, in 

press) that helps us capturing and decoding the turbulent undercurrents of groupwork 

mathematical activities. After briefly presenting the framework that informs our 

research, we apply it to the analysis of an episode in a grade-9 class working on basic 

concepts in probability. We will discuss illuminations that emerge and develop in the 
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social interactions, as well as how they inter-relate with other modes of existence of the 

consciousness. 

FRAMEWORK, THEORETICAL AND METHODOLOGICAL 

Groupwork activities in the classroom have gained more and more attention in the last 

decades. In such activities, communication plays a primary role. Sfard (2001) points 

out that “communication may be defined as a person’s attempt to make an interlocutor 

act, think or feel according to her intentions” (p.13). Following this view, thinking is 

thus subordinated to and informed by the demand of making communication effective. 

Within this domain (called interactionist or participationist) learning is seen as 

becoming participant in a mathematical activity. Activity is sensitive to context and 

allows the growth of mutual understanding and coordination between the individual 

and the rest of the community. Accordingly, each activity has its roots in our cultural 

heritage and can be shaped and re-shaped by the group of practitioners. It is within this 

framework that thinking is conceptualized as a case of communication, since 

interactionist research postulates the inherently social origin of all human activities 

(Sfard, 2001).  

Sfard (2001) suggests that in learning processes, seen as initiations to become skillful 

participant in mathematical discourses, two key factors need to be considered: the tools 

that mediate the communication and the meta-discursive rules that regulate it. The 

focus of this paper is on the latter.  

Meta-discursive rules have an implicit nature, they are tacit, and it is within the system 

of such rules that culturally-specific norms, values and beliefs are encoded (Sfard, 

2001). According to Merlau-Ponty (2002), awareness is not a matter of ‘I think that’ 

but of ‘I can’: before the reflective, the positing thought, there is an act (‘I can do this’). 

Specifically, since learning “occurs in and through relations with others in the pursuit 

of collectively motivated activity” (Roth & Radford, 2011), motivation is the 

orientation of the activity. Emotions express the student’s current state with respect to 

the motive of the activity, they express her sense of likelihood of success in realizing 

such motive (Roth & Radford, 2011). Given the social environment in which the 

students act, interact and determine the moves of the activity on the ground of their 

emotions, we methodologically exploit the idea of interactive flowchart. 

Interactive flowcharts were introduced by Sfard and Kieran (2001) as a way to capture 

“two types of speaker’s meta-discursive intentions: the wish to react to a previous 

contribution of a partner or the wish to evoke a response in another interlocutor” 

(p.58). A conversation can be coded as being comprised of a series of invisible arrows 

aimed at specific people and/or specific utterances. The scheme follows two basic 

structures: (a) a vertically or diagonally upward arrow is called a reactive arrow and 

points towards a previous utterance; (b) a vertically or diagonally downward arrow is 

called a proactive arrow and it points towards the person from whom a reaction is 

expected. Add to this a distinction between arrows that are on task or mathematical in 

nature (solid) and off-task or non-mathematical in nature (dashed). Sfard and Kieran 
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(2001) developed this scheme to code conversations between two people. Ryve (2006) 

extended this scheme to account for more than two people by assuming that a proactive 

utterance is meant to address each of the other participants. Table 1 in our example is 

read as follows: M in 1 makes a proactive statement to L and D, D reacts in 2, and so 

on. In our earlier research (Liljedahl & Andrà, in press), we found it was necessary to 

consider the flow of conversation, but also who the participants are looking at. As such, 

we introduce new set of arrows, meant to represent where someone is gazing during 

each utterance. We use red arrows to represent the speaker and blue arrows to represent 

non-speakers. In Table 1, for example, M looks at the paper in 1, D looks at the paper in 

2. 

METHODOLOGY 

At the core of the research presented here is a 45 second video clip of a group of four 

students working on a mathematics problem.  

The problem was inspired by the work of Iversen and Nilsson (2005), who used a 

similar task to see how students make sense of random phenomena. The problem is:  

 

A robot walks along a corridor, it turns right with probability 

1/3 and it turns left with probability 2/3. The map shows the 

labyrinth where the robot has to move. Compute the 

probability for the robot to be in each of the rooms. 

 

Iversen and Nilsson (2005) asked the students to say which is the room with the highest 

probability. Our problem was crafted so as to use the representation provided by the 

task in order to introduce the concepts and the algorithms related to the tree diagram: 

why should one multiply subsequent branches? Why and when should one add? The 

task was presented like a game, and the students seemed willing to work on it as such. 

The task was used as part of a series of four lessons on probability in a grade-9 (14-15 

year olds) class in Bologna, Italy. The task formed a significant portion of the second 

lesson. Four students, Luca (L), Fabio (F), Davide (D), and Marco (M) were selected to 

be videotaped while they worked on the task as a group. They worked on the task in a 

separate room and were filmed by a grade-12 student from the same school. The entire 

session lasted 50 minutes. The first 5 minutes of this video were transcribed. From this, 

the first 45 seconds were selected to constitute the data for the research being presented 

here. This subset of the data was selected because it exemplified some very interesting 

and turbulent undercurrents of group interactions. We also introduce a new interlocutor 

to the interaction – the paper (P) with the problem on it. This paper holds the gaze of 

the participants at different times of the conversation (we do not code blue arrows 

when the students are looking at P). Unlike the arrows representing utterances all of the 

gaze arrows are diagonally downward to represent the passage of time. 
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READING DATA 

Table 1 presents the transcript and interactive flowchart with the blue-red gaze arrows. 

Figure 1 shows some snapshots from the video overlaid with some gaze arrows (for 

ease of reading, each student has assigned a color: yellow for L, blue for F, green for D 

and red for M); the arrows help the reader to focus on gazes and do not follow the 

blue-red coding used in Table 1. We first present the data codified according to our 

methodological framework, then we analyze the codified data. 

   L D M P 

00:00 M: To the left two thirds, to the right one third. o o o o 

00:01 D: Yes, I don’t  remember. (speaks over M) o o o o 

00:03 M: Then it goes two thirds, two thirds.  o o o o 

00:06 M Can you give me a pen, please? o o o o 

00:07 L: No, let’s do the first case, which is the one 

where it goes always … 

o o o o 

00:10 M: … left. You have two thirds here … o o o o 

00:11 L: That is the most probable one. (speaks over M) o o o o 

00:13 M: …and here is one third. o o o o 

00:15 L: Should you erase? o o o o 

00:16 M: Yes, bravo! o o o o 

00:17 D: I’m cute! o o o o 

00:19 M: Two thirds and here one third, hence these two 

thirds… 

o o o o 

00:21 F: ... they g ... they go …. o o o o 

00:22 M: Two thirds of two thirds.  o o o o 

00:25 D: But … but what are you saying? Then no …  o o o o 

00:27 M: Of these two thirds you should do … o o o o 

00:28 D: We have … but what do we have to compute? 

(speaks over M) 

o o o o 

00:30 L&M: The probability that the robot will arrive in each 

one … 

o o o o 

00:34 M: of these rooms. o o o o 

00:35 D: In the meantime, let’s see … o o o o 

00:36 L: Why don’t we first compute how many 

probabilities there are in all?  

o o o o 

00:37 M: To me this is the room with the highest 

probability.  

o o o o 

 D: Why?  o o o o 

00:42 L: There are 8 in all. o o o o 

 M: Because here there are the highest number of 

probabilities, and then … 

o o o o 

00:45 D: Of course o o o o 

 M: … the probability is higher. o o o o 

Table 1: Interactive Flowchart with Gaze Arrows 
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Figure 1: Some snapshots from the video overlaid with gaze arrows. 

Data codified with our methodology 

If we look at the verbal transcript, we see that the students are making sense of the task. 

Both L (00:11) and M (00:37) come to notice that the highest probability is related to 

the first room, an observation (coming from the students) which is in line with the 

original formulation of the task by Iversen and Nilsson (2005). 

The interactive flowchart shows that M is contributing the most proactive statements 

(n=7) as opposed to L (n=3) or D (n=0). M and D responds to the most number of 

proactive statements (each n=5) as compared to L (n=1 not counting the self-talk as a 

reaction). Finally, there is a marked difference in the number of proactive statements 

that each person makes that are reacted to – M (n=6), D (n=3), and L (n=1, not 

counting the self-talk). 

The gaze arrows show that D never looks at L. D doesn’t look at anyone – he only 

looks at the paper when he is speaking. Figure 1 tells us that the students spend a lot of 

time looking at the paper, indeed. M, on the other hand, spends more time looking at L 

(n=6 in Table 1) than at the paper (n=5). At 00:25 D is asking a question while gazing 
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at the paper. But M is not looking at D – he is looking at L. Then, while M responds to 

D’s question at 00:27 he continues to look at L. This happens again at 00:34. At the 

same time L only looks at M three times. Once at 00:15, then again at 00:25 while D is 

asking a question, and finally 00:36 while M is looking at the paper.  

ANALYSIS 

Gaze arrows in Table 1 and Figure 1 tell us that, as much as M is attending to L, L is 

ignoring, maybe even avoiding, M. Why is M so intent on L and why is L ignoring M?  

We can see something interesting happening at 00:25. While D is asking the question, 

L and M are looking at each other. But these are not looks of equal intensity. In the 

video M is clearly more intense in his gaze upon L, who, after a while, glances away 

from M (see also Figure 1). From that moment on M continues to be very intensely 

focused on L. L seems to sense this and diverts his gaze from M, only looking back at 

him while M is looking at the paper (00:36). Clearly there is an affective aspect to the 

interaction between L and M. There are emotions, efficacy, will, and motivation in 

how L and M are interacting with each other.  

True, all the students express their will to solve the task: D’s questions aimed at letting 

him follow M’s reasoning, his posture, his repeated and attentive gazes at the paper 

speak to D’s will to be part, to contribute to the solution. On the side of both M and D 

there are many attempts to make their interlocutors act, think or feel (Sfard, 2001). M 

addresses mostly L, D prompts M. Power relationships are established: power to do. 

We see that an ‘I can’ and an ‘I sense’ intervene in this groupwork activity: M’s and 

L’s ones, respectively. M is working with fractions, he is interested in the procedure. 

We see that an ‘I can’ (‘I can deal with this kind of computations’, ‘I can do this kind of 

math’) emerge in his speech, in his interactions with his classmates. L, instead, seems 

more interested in understanding the overall sense of the activity (“Why don’t we first 

compute how many probabilities are there in all?” 00.36). We rather see an ‘I sense’ in 

L’s words. We have already commented that both L (00:11) and M (00:37) come to 

notice that the highest probability is related to the first room, but seemingly from 

different standpoints: L makes his conclusion based on the fact that room 1 is arrived at 

by always going left, which has a higher probability than right. We can say that L has 

an illumination, a rapid coming to mind of the features of the room with the highest 

probability, coming out of the blue, few seconds after the beginning of the activity. M, 

on the other hand, arrives at the same conclusion much later, by means of 

computations. Only after considering fractions can he say that room 1 has the highest 

probability.  

There is a tension between L and M, between conceptual ‘I sense’ and operational ‘I 

can’. Moreover, we see that each of these stances prevents each student from seeing the 

other’s point of view. ‘I can’ might be inclusive: in our example, M is trying to pull L 

in. On the other hand illumination (‘I sense’) is rather individual and private, it does not 

need to pull others into it: after the moment of illumination, in fact, there is a distinct 

phase of validation—aimed at put such an ‘I sense’ into sharable, communicable, 
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terms (see Liljedahl, 2012). Communication takes place in order to stimulate a 

reaction: L’s illumination at 00:11, in fact, takes the form of a rather self-thought, and 

it is not reacted. L’s illumination is as sudden as private. 

M’s intensive gazes on L speak to M’s ‘I can’: he can go on with his reasoning if L is 

with him. L’s avoiding, expressed by (absence of) gazes to M, tells us that L is 

avoiding this kind of ‘I can’: L ‘cannot’ use fractions, he prefers to reason at another 

level, more theoretical. In Figure 1, at 00:37, M taps with his pencil on the paper, 

pointing at room 1. M is sharing his ‘I can’, his claim about the room with the highest 

probability. L is reacting to M, neither verbally nor with gazes, but with his own pencil, 

opening and closing it repeatedly (CLICK CLICK CLICK in Figure 1). Interaction is 

taking place at another level: M is expressing his ‘I can’ while L is again expressing his 

avoidance of fractions, his ‘I can’t use fractions’. At the same time, we see the will to 

participate, to solve the task, expressed by all the students—in different manners. 

DISCUSSION AND CONCLUSION 

Stemming from findings in interactionist research (Sfard, 2001), we have explored 

how affective moves give rise to and determine groupwork activity. Affective moves 

are meant as meta-discursive rules that shape actions, motivation, and interactions of 

students, thus directing learning (see also Roth and Radford, 2011). Participation in a 

groupwork activity is social, but it is also mathematical: we can distinguish the social 

and the mathematical in our analysis, but we cannot separate them. Many moves of the 

activity we have analyzed are both social and mathematical in nature. 

According to our framework, we can also say that even L’s ‘I sense’ originates from an 

‘I can’. In other words, we can see that it is from L’s ‘I can see a structure’ that the 

illumination about room 1 at 00:11 starts, and it is from M’s ‘I can use fractions’, ‘I am 

good with fractions’, that all his proactive statements arise. L’s ‘I can’, more 

conceptual in nature than M’s one, is expressed by an ‘I sense’ at 00:11 (“That is the 

most probable one”). The initial ‘I sense’ at 00:11 mirrors another ‘I can’, more 

operational, at 00:36 (“why don’t we count how many probabilities are there in all?”). 

M also expresses an ‘I sense’, which is rather procedural and it is linked to the fractions 

involved: M’s ‘I can’ is thus operational. Following Merleau-Ponty (2002), we can say 

that intuition is first an ‘I can’, it is originated by will and power to do. Intuition is 

socially communicated, expressed, as an ‘I sense’. In social interactions, sometimes 

there emerge mostly the ‘I can’ (which is also more involving, as we have argued), 

other times the ‘I sense’ is predominant. 

‘I can’ is conveyed by gazes in our methodological framework: M, in fact, expressed 

his ‘I can’ by looking intensively to L, and L’s avoidance of fractions is mirrored by his 

avoidance of glancing at M. Also D’s absence of gazes to M and L speaks to a 

consonant absence of ‘I can’: D is not good in math, while M and L are (we know this 

from the teacher). Looking at the paper expresses D’s need to adhere to the task. His 

prompts to M express his need to go slow. 



Andrà, Liljedahl 

2 - 56 PME 2014 

The ‘I can’, might become shared with others when the nature of this ‘I can’ is 

involving. For example, when it entails actions (operations with fractions, in our 

example). Illuminations of different nature need a subsequent moment to become 

sharable. Our findings also confirm the unavoidably central role of emotion and 

motivation in learning processes—especially in interactionist researches.  
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COLLECTIVE PROBLEM POSING AS AN EMERGENT 

PHENOMENON IN MIDDLE SCHOOL MATHEMATICS GROUP 

DISCOURSE 

Alayne Armstrong 

University of British Columbia 

 

This naturalistic case study investigates the problem posing patterns that emerge as 

four small groups of 12 year old students in Western Canada work collectively on a 

structured mathematics task. A method of data analysis is introduced that blurs the 

data to create transcript “tapestries” providing visual evidence of collective patterns 

of posed problems that emerge over time. Results in progress suggest that groups vary 

widely in terms of the problems posed, and in terms of the patterns in which these 

problems emerge in their discourse. The reposing of problems helps to structure each 

group’s discussion, with the role that each problem plays in the conversation evolving 

as it reemerges in the discourse.   

INTRODUCTION 

Problem posing has been defined as “the creation of questions in a mathematical 

context and… the reformulation, for solution, of ill structured existing problems” 

(Pirie, 2002). Working from this definition, one might argue that there are two kinds of 

problem posing, depending on the purpose of the problem being posed (Silver, 1994), 

and where it occurs in relation to the problem solving process. In the first half of the 

definition, a new problem is generated from a situation, a problem, or an experience. In 

the second half of the definition – the “How can I (re)formulate this problem so that it 

can be solved?” type – a related problem is generated in response to the original 

problem, as a way of making that original problem more accessible. This study focuses 

on this second kind of problem posing, describing the behavior of small groups in a 

mathematics classroom who pose their own problems in the process of solving an 

assigned problem task. My research question is: What problem posing patterns emerge 

as small groups of students work collectively on a mathematics task? 

THEORETICAL FRAMEWORK 

The current National Council of Teachers of Mathematics’ Standards document (2000) 

notes that problem posing is an important component of problem solving, recognizing 

it as an indication of a “mathematical disposition.” Students can be supported as they 

move from a novice level to an expert level through various forms of instructor 

intervention ranging from introductory activities to specific problem posing strategies  

(Bonotto, 2013; Singer, 2009; Singer & Mascovici, 2008) to participating in problem 

posing (and solving) programs (Brown & Walter, 2005; Crespo, 2003; Crespo & 

Sinclair, 2008; English, 1997, 1998; Leung, 1993; Pirie, 2002).  
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Many studies of problem posing rely on their subjects’ written work, a static product, 

as the focus of analysis. While this has the advantage of allowing researchers the 

ability to draw on a large pool of subjects, it also has the effect of (appropriately 

enough) triggering yet more questions about the research itself. In an excellent 

discussion of the results of one such study (Silver & Cai, 1996), the researchers 

wondered if middle school students only recorded problems they knew they could 

solve; perhaps they were able to generate more complex questions, but hesitated to 

write them down because they were not able to solve them. The researchers also 

questioned the trend of simpler questions being posed before the more complex ones 

were. Perhaps the subjects originally had the more complex question in mind first but 

decided to record the simpler questions at the beginning of their written responses. All 

of this points to problem posing being difficult, and perhaps simply inappropriate, to 

capture with an end product consisting of a written list of problems.  

Some argue that group work has the potential to provide a safe structure for building 

problem posing competence (Kilpatrick, 1987; Silver & Marshall, 1989), and offers 

the opportunity for students to work together less competitively and more productively 

(Brown & Walter, 2005). Yet, despite these and similar recommendations (English, 

1997; Lester, 1994; Silver, 1994; Silver, Mamona-Downs, Leung, & Kenney, 1996), 

there is little in the literature about how problem posing works on a collective level.  

Little documentation exists about the group itself as a learner, how its understanding 

unfolds (Martin, Towers, & Pirie, 2006), and how it thinks. Although in casual 

conversation, a teacher might refer to what a certain group thinks or, for example, 

describe the personality of the class in period three (Bowers & Nickerson, 2001), it can 

be difficult for researchers to conceptualize the group as a unit of analysis, even a small 

group. Thus, studies of small groups have often tended to focus on how working within 

the group affects the learning of the individuals within the group rather than on the 

group itself (Stahl, 2006). The concept of group learning is “a difficult, 

counter-intuitive way of thinking for many people” (Stahl, 2006, p. 16) due to the 

strong association of cognition with an individual psychological process.  

There is a benefit for the researcher who studies groups: the group’s discourse may be 

considered to represent its thinking (Stahl, 2006). However, the discourse cannot “be 

analyzed by solely considering a sequence of statements that are made’’(Yackel, 2002, 

p. 424). One might even argue that the individual pathways of growth of understanding 

within the collaboration do not exist at all (Martin et al., 2006). An utterance is linked 

to the past in that it is a response to another utterance, or utterances. An utterance is 

also a response to what has been, or what is currently, happening and the utterance is 

connected to the future, in that it is formed in anticipation of an impending utterance. 

The “conversation” of a group “is crisscrossed by other places and temporalities, by 

absent third parties, who may express their voice through the participants’ discourse” 

(Grossen, 2009, p. 266) and also by the uptake and reuptake of individual threads of 

ideas. One might envision the utterance as a part of a tapestry that comes from the past 

and stretches into the future, an idea I will connect to in my methodology. 
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METHODOLOGY 

The research took place at a middle school (ages 10 – 13 years) in a large suburban 

school district in British Columbia. Sixteen students from each of two classes of 30 12 

year old students (i.e. just over half) participated in the study for a total of 32 students. 

The groups were composed of students who were all working at grade level but who 

had mixed levels of ability in mathematics. The study occurred in the spring of the 

school year, with session tapings taking place roughly every two weeks depending on 

the school schedule, for a total of five sessions for each class, with each session lasting 

approximately 40 minutes. As I was using a grounded theory approach (Glaser & 

Strauss, 1967), I selected groups “for their ability to contribute to the 

developing/emergent theory” (Miles & Huberman, 1994, p. p. 28) – namely those who 

were working collectively on the tasks. Participating groups were videotaped by 

stationary cameras and also audiotaped. I took field notes throughout the sessions from 

a location at the back of the classroom, and compared these notes to the video and 

audio recordings to clarify events captured in the tapings. Other data sources included 

the task sheets where group members recorded their work and solutions, and the class 

whiteboard where some groups chose to write their ideas while presenting their 

solutions to the rest of the class. I refer to the groups through the acronyms JJKK, 

REGL, NIJM and DATM. 

The task that is the focus of this case study reads as follows:  

The Bill Nye Fan Club Party 

The Bill Nye Fan Club is having a year-end party, which features wearing lab coats and 

safety glasses, watching videos and singing loudly, and making things explode. As well, 

members of the club bring presents to give to the other members of the club. Every club 

member brings the same number of gifts to the party. If the presents are opened in 5 minute 

intervals, starting at 1:00 pm, the last gift will be opened starting at 5:35 pm. How many 

club members are there? 

DATA ANALYSIS 

As this study involves elaborating upon and building theory about problem posing as a 

process, I analyzed the data using a constant comparison method (Glaser & Strauss, 

1967). The process of determining whether or not a group had posed a problem was 

necessarily a subjective one. Rather than looking at the actual uttered problem, I was 

looking more at the conversational fabric around the utterance, both before the 

utterance occurred (what did the intent of the utterance seem to be?) and afterwards 

(namely, how did the group respond to the utterance?), indications of surfacing 

differences that the group appeared to be exploring. 

The metaphor that I use to document the patterns of collective problem posing, and 

reduce the transcript to its “visual essence,” is that of the “tapestry.” Composed of 

strands of fabric and color, a tapestry reveals different faces depending on its physical 

distance from the observer. From afar, which would be the equivalent of summarizing 

a group conversation and then considering it from both a temporal and contextual 
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distance, the tapestry shows a panoramic scene – a whole composed of a number of 

parts. Closer, the landscape of the tapestry might still be evident, but now the 

individual strands are more visible. Move closer still, and now the individual strands 

are the focus and the overall scene is no longer clear – much in the same way in which 

it may be easy to follow the individual turns of a conversation but difficult to 

summarize the gist of the discussion as a whole while it is taking place. At this level, an 

overall pattern is invisible, but individual contributions and ideas stand out. These 

strands of individual utterances are ones that weave together into a tapestry as the 

conversation proceeds.  

The production of the tapestry involved a data blurring process, which started with the 

transcript itself. After multiple iterations of reading and comparing transcripts from the 

four groups’ sessions, I identified the posed problem categories I color coded the 

utterances in the transcripts according to the problem posing category they best fit. The 

color-coded transcripts were then shrunk in size, using computer screenshots, to the 

point where the words of the transcript were no longer visible and the lines of color 

coding appeared as a visual pattern. The resulting tapestry provides an overall image of 

the problems posed during the course of the group’s session. 

RESULTS AND DISCUSSION 

At first glance, the structured nature of the Bill Nye task would not appear to allow for 

many creative possibilities for mathematics students. To solve it, one must understand 

what the range of time is for opening the gifts, determine the number of time intervals 

that exist within that time frame, and then find the pair of factors of the number such 

that one factor is one greater than the other (i.e. 8 and 7). Yet, in working through this 

apparently straightforward task, these four groups take very different paths to 

eventually arrive at the same correct solution.  

Tapestries 

A striking aspect of group work that a tapestry helps to illustrate is how posed 

problems weave in and out of conversations. A color may appear briefly early in a 

session – for instance, medium blue in NIJM (“What are the factors of x?”) – and not 

appear again until over halfway through when it begins to occur quite frequently. A 

problem may be posed and seemingly ignored, only to be reposed later in the 

discussion, while other problems that seem to have been discussed and resolved may 

also reappear for more discussion. This suggests that the mention of a posed problem 

early on in a session may help to seed a later discussion. It also seems to highlight the 

idea of all ideas being part of the tapestry, visible or not – no utterance truly disappears. 

The width of the color bands indicates the approximate length of time a problem is 

being discussed, and how many connections are made with other posed problems. For 

example, the chunky
1
 pattern displayed in the first third of JJKK’s tapestry (Figure 1) 

is quite distinctive from the tapestries of the other three groups. The chunkiness 
                                           
1
Thick bands of color in the tapestry 



Armstrong 

PME 2014 2 - 61 

reflects how a problem is posed, discussed at some length until some kind of agreement 

is reached, and then disappears, presumably either having been resolved or dropped 

completely. This pattern also reflects how JJKK poses and reposes far fewer problems 

than the other groups do (Figure 2).  

 

Figure 1: Tapestries 

 

Group # of different 

problems posed 

Total # of 

problems posed 

and reposed 

JJKK 13 23 

DATM 16 61 

NIJM 17 45 

REGL 16 66 

Figure 2: Comparison of # of problems posed and reposed. 
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In comparison, “thready”
2
 patterns found in the tapestries of DATM, NIJM and REGL 

tend to show that a number of different problems are being posed and put “on the 

table,” so to speak. For all three groups there tends to be a thready pattern of different 

colors at the beginning of their tapestries when they are first considering the task. 

Finally, the thready pattern also tends to occur late in the sessions when the three 

groups have come up with a tentative answer, when earlier problems are reposed as a 

way of checking their thinking.  

While lavender and a few other colors appear in all of the tapestries, there are many 

other colors which do not. For instance, there is a shade of teal (“Is it a square root?”) 

that only appears in NIJM and JJKK. And still other colors are unique to certain 

groups, like the light green (“How can we use the 24 hour clock?”) that occurs at the 

end of DATM’s tapestry. It might be expected that unique problems might be due to 

experiences/knowledge that is unique to the group, but this is not necessarily the case. 

For instance, the topic of square roots was one that the groups were all studying in their 

regular mathematics class, yet only two of the four groups reference it. 

Characteristics of problem posing 

A notable trend across the sessions is how the role a posed problem plays in a 

discussion changes each time it is posed even if, on the surface, the wording of the 

problem appears to be much the same. On the surface, problems like “Do we use time 

and divide by 5?” which is featured predominantly in at least three of the group’s 

discussions, may seem to be a clarification problem. For example, consider it functions 

during NIJM’s session. Posed and reposed eleven times, this problem functions in 

order to: propose a method of entry into the task; discuss what method would be 

easiest; discuss how it might eventually lead to solving the entire task; estimate/predict 

possible answers; narrate ongoing calculations; check possible answers. Most of the 

other posed problems in the study also show evidence of their roles evolving as the 

group discussion develops. The only time that a problem does not appear to evolve is 

when a group does not repose it.  

The number of different individual problems posed (Figure 2) is fairly consistent 

between the groups but there is a large range in the total number of problems posed. 

One might posit that the difference is due to each group’s “personality.” For example, 

REGL, who tends to explore concepts more deeply and connect ideas more frequently 

than the other groups, poses more problems than JJKK who tends to argue about one 

problem at a time until a consensus appears to be reached. While some problem posing 

studies in the literature have focused on the number of problems posed, or the quality 

of problems posed, my findings suggest that the pattern in which problems are both 

posed and reposed may ultimately tell us more about students’ mathematical behavior 

and understanding. 

                                           
2
 Slim bands of color that alternate with slim bands of other colors. 
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. CONCLUSIONS 

This study offers a description of problem posing as collective behavior at the level of 

the group as an agent. It also provides evidence of the groups’ ability to problem pose 

collectively without having been directed to do so, and without having received any 

formal instructions about how to do so. It is noteworthy that problems do not emerge in 

the same order for each of the groups. The varied ways in which groups in this study 

approach the Bill Nye task may suggest that educators need to be careful of presenting 

problem solving heuristics as lock-step procedures to be followed in a specific order. 

Even though the four groups have some common experiences with which to work, the 

fact that certain groups do not necessarily draw on these experiences, or if they do, do 

not do so in the same way as other groups, suggests that the process of problem posing 

is more than simply sitting down and “working with what you have.” Perhaps the 

strength of problem posing is not the generation of a list of problems at the end of the 

task, but the emerging patterns of problems as the discussion continues and how these 

problems in turn structure pathways to a solution. 
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This paper contributes to the theory and evidence that mathematical cognition is 

embodied. Drawing on the practices of primary teachers in South Africa engaged in a 

longitudinal research and development project – Wits Maths Connect–Primary – we 

report on aspects of lessons aimed at developing number sense through whole-class 

teacher-learner interaction. Two episodes are analysed from an embodied cognition 

perspective. The episodes focus on helping Grade 1 (6-year-olds) learners become 

fluent in counting forward and back or ordering numbers. Analysis reveals different 

embodied metaphors underlie the teachers’ actions, the nature of which are likely to 

lead to different learning opportunities. We conclude that our analysis supports a 

theory of embodied cognition, and demonstrates its usefulness as an analytical tool. 

INTRODUCTION 

Authors are increasingly arguing that cognitive understandings in general and 

mathematics in particular are embodied – rooted in perceptual and physical 

interactions between the body and the world (Barsalou, 2008, Alibali & Nathan, 2012). 

In this paper we examine two assertions that flow from this theoretical position. First, 

that teachers, as mathematical knowers, will themselves have embodied 

understandings and will, often intuitively, draw on these in their teaching. Second, that 

any such use of embodied metaphors must take the learners’ embodiments into 

consideration if the metaphors are to be supportive of learning.  

RESEARCH CONTEXT 

National standardized and international comparative test results consistently present a 

bleak view of mathematical performance in South Africa. For example, the 2012 

Annual National Assessments (ANAs) results indicate 27% as the national mean mark 

at Grade 6 (predominantly 11- to 12-year-olds) (Department of Basic Education 

(DoBE), 2013-a), down three percentage points from 2011 and well below the target of 

60%. In this context, a longitudinal research and development project – Wits Maths 

Connect–Primary (WMC–P) – is developing and investigating interventions to 

improve the teaching and learning of mathematics in ten government primary schools. 

One particular intervention is the Lesson Starters Project (LSP) focusing on improving 

number teaching in the Foundation Phase so that the students’ develop better number 

sense. 

The focus of the LSP is linked to the national South African Curriculum and 

Assessment Policy Statement (Department of Basic Education, 2011) and the district 
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Gauteng Primary Language and Mathematics Strategy (http://gplms.co.za/) that 

together prescribe content, sequencing and teaching timeframes. Our partner schools 

are under pressure to follow these policy drivers so we are focusing on the policy 

mandated ‘mental mathematics’ within ‘whole class activity’ lesson sections.  

The CAPS documents provide brief guidance on approaches and tasks expected to 

figure within this mental mathematics teaching, for example: 

Mental mathematics will include brisk mental starters such as “the number after/before 8 

is; 2 more/less than 8 is; 4+2; 5+2, 6+2” etc. (DBE, 2011, p. 11) 

Despite such exemplification a diagnostic report on Grade 3 learners’ performance on 

the 2012 ANAs identified mental skills as a particular weakness that included poor 

understanding of ‘number concept as demonstrated in being able to count forwards and 

backwards’ (DBE, 2013-b, p. 6).  

Collecting baseline data in 2011, the project team observed and videotaped a numeracy 

lesson from each of the Grade 2 classes in the ten project schools, to gain insights about 

the nature of teaching and learning, and the classroom contexts. Analysing this data 

revealed teachers’ random selection and sequencing of tasks led to a lack of coherence 

in and across tasks, and in task enactment. The resulting weak coherence within 

teaching exhibited ‘extreme localization’ and ‘ahistoricity’ (Venkat & Naidoo 2012). 

Such practices, it is argued, severely impair possibilities for learners to understand 

number as a connected network of ideas. 

Two years later, video data from Grade 1 classes (in the same ten schools) show 

improvements in coherence and pacing, so our analysis is now examining nuances in 

how teachers bring coherence to the lesson starters. In doing so, we find embodied 

cognition a helpful theoretical tool. 

THEORETICAL BACKGROUND 

As yet there is no unified theory of embodied cognition. Wilson (2002) suggests that 

there are at least six different views of embodied cognition, one of which is that 

‘off-line’ cognition is body based – this is broadly the view taken here. Dehaene (1999) 

argues that there are spatial aspects to developing number understanding, such as the 

representation of integers spaced along a line, while Lakoff and Núñez (2000) argue 

for an embodied view of mathematical understanding, suggesting that developing 

understanding that goes beyond subitizing small quantities draws on learners’ 

metaphorising capacities – making sense of numbers (as concepts) through various 

bodily experiences, such as associating number with distance, movement and location, 

as well through handling collections of objects. 

Such metaphorising capacity is linked, Lakoff and Núñez argue, to two types of 

metaphors: grounding and linking. ‘Basic’ grounding metaphors ‘allow you to project 

from everyday experiences (like putting things into piles) onto abstract concepts (like 

addition)’ (p. 53) while linking metaphors lead to ‘sophisticated’ or ‘abstract' ideas 

and, in contrast to grounding metaphors 'require a significant amount of explicit 
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instruction' (p. 53). Other theorists support this notion of grounding as setting up a 

mapping between the familiar and concrete and the abstract (Nathan, 2008). 

Our videos of the more recent lessons reveal teachers intuitively making use of 

embodied metaphors. Below we analyse two instances to explore how such metaphors 

play out in practice and whether this likely to help learners better understand number. 

DATA SOURCES 

Our data are drawn from the 2013 videotaped classroom lessons of Grade 1 teachers 

who had also been filmed teaching Grade 2 in 2011 (n = 7). The two lessons focused on 

here represent the broader dataset in having extended instances of whole class talk 

around typical tasks. But they also provide ‘telling cases’ (Sheridan, Street, & Bloome 

2000) as both teachers drew on different bodily metaphors.  

The first teacher, M is an experienced teacher in a disadvantaged school, whose 

medium of instruction is Tsonga. The second teacher, R is another experienced teacher 

at the same school but whose medium of instruction is Tshivenda. 

DATA ANALYSIS 

Analysis comprised 4 phases: (a) creating a transcript, (b) fleshing out the evidence (c) 

interpreting (d) producing a ‘thick description’ and analysis of selected episodes.  

Creating a transcript 

Bilingual speakers transcribed the video recording, following instruction to capture all 

the teacher’s talk within the lesson and any objects/representations referred to.  

Fleshing out the evidence 

A narrative account of the unfolding of the lesson was created, using the video to 

include detail not captured in the transcribing. This account was then parsed into 

episodes, usually identified by the introduction of a new task, but sometimes marked 

by shifts of attention within tasks. To improve accuracy and detail, the project team 

viewed the video recordings several times to clarify the interaction between the 

enactment of the episode (teacher talk and actions and pupil responses), the choice and 

sequencing of examples, and the use artifacts to support the teaching. 

Interpreting 

The team examined and discussed each episode to reach consensus on the likely (a) 

teaching intentions, and (b) learning opportunities. These interpretations were 

warranted through reference to the data with the teaching intentions imputed through 

the enactment of the episode, and not necessarily as explicitly articulated by the 

teacher. Similarly we interpreted learning opportunities through how the episode 

played out and the likely consequences for learning. 
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Producing a ‘thick description’ and analysis of selected episodes 

Many of the episodes identified were, empirically and theoretically, of limited interest 

as they focused on learners practicing what they already knew. Lessons were then 

examined for ‘critical incidents’ – particular episodes where it was clear that learners 

were not already confident in content being addressed. The team discussed, analysed 

and wrote up these incidents. We report on two such critical incidents here. 

LESSON STARTER CRITICAL INCIDENTS 

Incident 1: Teacher M – Forward and backward counting between 1 and 20  

This episode was towards the beginning of the starter activity. The teacher settled the 

learners down and then asked them to count forward from 1 to 20 as a whole class. 

Some learners were seen using their fingers putting out 1, 2, 3, … while counting. M 

asked learners to count backwards from 20 to 1. Several learners were heard to say 

‘twenty, ninety, eighty, seventy,...’ and many learners were observed not saying 

anything. The teacher stopped the class count, saying, ‘when counting backward you 

should say twenty, nineteen, eighteen as you are reversing’. She demonstrated this by 

taking three steps backwards and gesturing in the direction of her movement by 

pointing both thumbs back over her shoulders.  

M: If we are counting forward we say one two three up to twenty. In the backward counting 

we say twenty, nineteen, eighteen. Now let’s count backwards again.  

Learners started counting: again many could be heard saying ‘twenty, ninety, eighty, 

seventy’. M stopped the counting and shook her head.  

M: We are counting within the range of twenty. You should say, twenty, nineteen not 

ninety.  

M moved from the front of the class to take up position at the back of the room. 

Stepping towards the front, M counted her steps ‘one, two, three, ...’ At twenty she 

stopped counting and stepping, and pointed forward (to the front the class, the direction 

she had been walking in) with both hands. She then made a backward gesture by 

pointing her thumbs over her shoulders, saying, ‘We are reversing, reversing’. Without 

turning round, M retraced her steps from the front of the class to the rear, 

simultaneously counting backwards from twenty to one. As she did this she 

emphatically enunciated ‘nineteen, eighteen’ and so on. M asked learners to again 

count forward from one to twenty. She coordinated this with pointing on her fingers 

‘one’ (thumb), two (forefinger) and so forth as everyone counted, clapping on ‘ten’ and 

‘twenty’. Learners were seen to follow the teacher and use their fingers similarly. M 

asked learners to count backward from 20 to 1. Most learners were observed to count 

correctly: twenty, nineteen, eighteen down to one.  

M: That is good. So next time don’t say ninety. It’s nineteen, eighteen. 
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Analysis 

The task enactment showed that learners were fluent in the forward counting sequence 

but struggled with the backward number word sequence, confusing, for example, 

ninety with nineteen. M stopping the backward counting and commenting on the errors 

reveals her awareness of this difficulty. Her actions of stepping forward and backward, 

language of ‘reversal’ and gestures of forwards and backwards coheres with the task 

and teaching intent.  

Establishing a sense of numbers as points on line draws on what Lakoff and Núñez (op. 

cit.) refer to as the ‘source-path-goal’ schema based in metaphors of a moving 

trajectory, from a source to a goal. This schema has an internal spatial logic with 

implications such as having followed a trajectory to a goal, then all prior places on that 

trajectory must have been passed through. Learning to count backwards could 

therefore be metaphorically linked to retracing one’s path along the trajectory, 

revisiting all the previous locations in reverse order.  

M’s actions explicitly embody this metaphor of a moving trajectory. By physically 

moving to the back of the room, her stepping forward and back and accompanying 

gestures all were coordinated with the perspectives of the learners: forward in the 

direction to which the learners faced, backwards being in the same direction over 

everyone’s shoulders. Stepping forward M physically laid out a trajectory, orally 

indexing locations along her path through counting her steps out loud. Arriving at, and 

still facing the front of the room, she gestured to indicate the forward direction of the 

trajectory and then the reverse of this by pointing back over her shoulders and stressing 

‘we are reversing’. The use of ‘we’ can be taken as an invitation to the learners to 

imagine themselves moving, even though only the teacher was actually moving. 

Without turning round, she retraced her steps, orally indexing these with the backward 

counting sequence. Thus M clearly enacted a ‘source-path-goal’ and reverse trajectory 

metaphor in ways that fitted with the learner’s embodied positions and how they would 

experience the trajectory were they to travel it themselves. Although Lakoff and Núñez 

take the trajectory metaphor to be a linking metaphor, the teacher’s treatment here 

suggests to us that it can be used as a grounding metaphor as it is set up and used with 

little explicit explanation and learners appeared to relate to it. 

There is also evidence of M’s awareness that the counting back errors might arise from 

the difficulty in hearing the distinction between ‘nineteen’ and ‘ninety’ and confusion 

with the other counting sequence of ‘ninety, eighty, seventy, ...’ that is frequently 

practiced. Here again, the teacher addressed this in an embodied way through 

over-emphasising the enunciation of the counting words. While elsewhere in our data 

we have found teachers using enunciation to address isolated difficulties, the teacher 

here incorporates her handling of enunciating words within a coherent and connected 

moving trajectory metaphor that emphasizes a traversing back through the same path 

that has just been travelled in the forward direction. Thus ‘ninety’ is not just an error of 

enunciation; it is treated as a spatial error in that this indexing of position did not 

feature in the forward direction. 
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Incident 2: Teacher R – Numbers ‘behind’ or ‘in front of’ in the range 1 to 10 

Up to this point in the lesson R had taken the class through counting forward and 

backwards to ten and combining two numbers with a sum less than ten (using fingers as 

artifacts). R turned to a partially completed number line on the chalkboard (0, 4 and 6 

labelled, ending at an unmarked 8) to work on finding the missing numbers. 

R walked towards the board, which had taped to it a column of numeral flashcards 

from 0 to 10. Taking down the numeral ‘5’ R asked ‘what number comes behind this 

number?’ She spoke facing the class and simultaneously gestured by raising her right 

hand and pointing over her right shoulder towards the board. Some learners said ‘four’, 

others ‘six’. R restated ‘which number comes behind this number?’ More learners were 

heard to state ‘four’.  

R: Isn’t the number four coming in front?  

Now most learners said ‘six’. R took down the numeral ‘8’ flashcard and asked ‘which 

number comes behind this one?’ As she spoke she again accompanied this with her 

gesture of raising her hand towards and over her right shoulder. Some learners said 

‘nine’, others ‘seven’.  

R: Seven? Is this not a number that comes in front? 

Learners said ‘nine’. R took numeral 3 down. 

R: What number comes in front of this one?  

Learners: ‘Three’, ‘two’, ‘four’ 

R: Four? That is the number that comes behind.  

Immediately some learners called out ‘two’. R responded with ‘that is the number that 

comes in front’. However, at the same time, other learners were still heard to say ‘four’. 

The teacher did not respond and moved on to the next task. 

Analysis 

Within a moving trajectory metaphor, four could be considered to be behind five in the 

sense that having travelled past point four to point five, the former is left behind. The 

language of behind can also suggest a metaphor of following not leading – if numbers 

(represented here by numerals on flashcards) are likened to being ‘strung out’ along a 

line, then the numbers closer to the starting point are, in a sense, behind those coming 

later: such a metaphor could account for learners giving (from the teacher’s 

perspective) incorrect answers. 

To describe four as ‘coming in front’ of five suggests a different embodiment – 

perhaps a staircase metaphor of ‘steps’ going up from one to ten, in order of height, the 

lowest step to the front (such a model can be created using one to ten number rods, 

although we have not seen it used by our teachers). The teacher’s talk and gestures 

suggests a positioning within the metaphor, like an ordered set of Russian nesting dolls 

– shortest in front and others lined up behind in height order. Four would thus be in 
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front of five. If she (the teacher) were ‘occupying’ the position in height order, of, say, 

five, then six would be behind her, consistent with gesturing over her shoulder. 

Whatever the case, the metaphor here has a more ‘static’ aspect than in the other 

episode – R’s gesturing indexes a stationery positional metaphor rather than a 

momentary position on a trajectory. In contrast to the way that teacher M took up 

position in the room so that her perspective corresponded to that of the learners, R’s 

orientation was such that what was ‘in front’ or ‘behind’ her occupied a different space 

relative to that of the learners. 

R’s response to learners’ incorrect answers was to use a rhetorical question to point out 

that they were wrong (from her frame of reference) – ‘Isn’t the number 4 coming in 

front?’ While some learners then produce the ‘correct’ response, any learning 

provoked is likely to based in association – ‘behind’ associated with producing the next 

number name in the counting sequence, rather that being explicitly connected to some 

grounding metaphor. 

DISCUSSION 

We make no suggestion here that either teacher was working deliberately with any 

metaphors, but in keeping with Lakoff and Nunes’ theoretical position, the internal 

consistency of language, gestures and positions strongly suggests a metaphorical 

origin to their cognition.  

Teacher M unambiguously modelled a moving trajectory, embodying a metaphor of 

numbers along a path and her actions, gestures and talk are coherent and consistent, 

together with alignment between her spatial perspective and that of the learners. Doing 

so maximised the chances of learners engaging in ‘simulated action’ whereby 

witnessing actions and imaging actually doing the actions activates appropriate brain 

areas (Alibali & Nathan, 2012, original emphasis). 

In teacher R’s case the consistent treatment of ‘coming in front’ or ‘behind’ across the 

examples suggests a different metaphor. Putting things in order of height is a possible 

grounding metaphor here in that the actions of such ordering (without measuring) 

require little direct instruction. However, both the more implicit nature of this 

metaphor in R’s episode and the lack of coordination between her position and that of 

the learners makes it likely that the learners would find difficultly in engaging with this 

as a grounding metaphor.  

CONCLUSION 

We commenced with two assertions. First, that teachers, as mathematical knowers, 

will themselves have an embodied understanding and thus will, intuitively, draw on 

this in their teaching. In both cases here we are argue that the teachers’ talk and actions 

exhibit evidence of being grounded in bodily metaphors, lending support, albeit 

limited, for the claims to mathematical cognition being embodied. 
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Second was the assertion that for embodied metaphors to be helpful, working with 

them must take the learners’ embodiments into consideration. We see here one teacher 

successfully doing this and another acting more directly from only her position and 

perspective and thus limiting the potential grounding for the learners. 

The theoretical position of teaching and learning number as grounded in embodied 

metaphors is validated by such examples and, moreover, provides a useful framework 

for analysis. Given the increased coherence and consistency that we are seeing in 

lessons, this inferring of metaphors provides us with a useful next step in working with 

teachers to elaborate, broaden and extend metaphors within their pedagogic repertoire 

for teaching number sense.  
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The aim of the paper is to provide a process model to evaluate mathematical problem 

solving by analogy, in order to better determine at which point and under what 

conditions a learner is prompted to use analogies. The model is a theoretical construct. 

Qualitative results of an empirical study are used to underline and illustrate core 

aspects of the model. 

INTRODUCTION 

The ability to recognize and use analogies (Gick & Holyoak, 1983) is a key aspect of 

human cognition. If two situations are analogous, which means that there are the same 

relations between corresponding elements, knowledge transfer from the known 

situation (source) can help tackling the new situation (target). Thereby, analogical 

thinking can be used to assist us in understanding certain characteristics, relationships 

and mechanisms of unknown situations, or to construct plausible hypotheses. It can 

also play an important role in problem solving “when the solution to one problem 

suggests a solution to a similar one” (Holyoak & Thagard, 1989, p. 318).  

Analogical reasoning is of particular importance in mathematics as the science of 

patterns, structures, and structure types: “Noticing higher order similarity relationships 

between such instances of structural similarity is at the core of complex mathematical 

thinking” (Richland et al., 2004, p. 38.). A closer look at the history of mathematics 

confirms that analogical reasoning has long played an important heuristic role in this 

field (Reed, 1985; Zimmermann, 2003). 

Solving mathematical problems by analogy is a multi-step process involving 

higher-order cognitive skills, the first of which requires the identification of a source 

problem that can be retrieved from memory. A learner’s ability to reason analogically 

is therefore very much dependent on their existing knowledge base (English, 2004). It 

also involves the mapping between the elements and relational structure of the source 

problem or known situation (source) and the new one (target). This requires the ability 

to change representations and therefore to abstract from concrete surface 

characteristics of the situations worked on (Novick, 1988). Finally, the modus operandi 

which is considered as appropriate has to transfer onto the new situation and therefore 

often adjust to its concrete requirements (Novick & Holyoak, 1991). 

Although a number of studies have been conducted on using analogies during problem 

solving (e. g. on analogical transfer), not a great deal of research has been conducted in 
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mathematics education examining analogizing from a qualitative perspective. Rarely 

have mathematical problem-solving processes been examined from the point at which 

analogical reasoning occurs in learners and the conditions that can either facilitate, 

hinder or prevent this process. This paper has been written with the intent to broaden 

discussion in this area. 

The aim of the paper is to provide a process model to evaluate mathematical problem 

solving by analogy, in order to better determine at which point and under what 

conditions a learner is prompted to use analogies. The model is a theoretical construct. 

Qualitative results of an empirical study are used to underline and illustrate core 

aspects of the model. 

PROBLEM SOLVING AS COGNITIVE MODELING 

There is an extensive amount of research literature on mathematical problem solving 

and modeling, and more recently, on approaches that attempt to combine both in order 

to describe complex mathematical activities (e. g. Förster, 2000). This approach, 

derived and justified from the perspective of cognitive psychology and mathematics 

education, has been most recently taken also by Zawojeski and Lesh (2003). They 

argue that when students struggle with mathematical problem solving, this cannot 

always be attributed to a lack of heuristic tools and strategies in Pólya’s sense alone. 

Rather, it is also due to the currently insufficient interpretation or modelling of the 

given situation. In 1998 Lesh accordingly defined the rather ambiguous term 

“problem” as follows: “the most important criteria that distinguishes ‘non- routine 

problems’ from ‘exercises’ is that the students must refine / transform / extend initially 

inadequate (but dynamically evolving) conceptual models in order to create 

‘successful’ problem interpretations” (Zawojewski & Lesh, 2003, p. 318). The issue of 

“understanding the situation” is, of course, also addressed in classic problem solving 

models and heurisms a la Pólya can also be used to achieve an appropriate situation 

model. Moreover, the combination of elements of problem solving and modeling 

cycles to describe mathematical activity appear to be particularly fruitful when the 

construction and use of analogies in problem solving is to be analyzed, because 

analogizing bases upon mental models of mathematical situations. 

EMPIRICAL BASIS 

In order to examine the construction and use of analogies in mathematical problem 

solving, we conducted semi-structured clinical interviews (e.g. Beck & Maier, 1993) 

with 86 primary school pupils. 39 pupils came from regular primary classes of grade 3 

to 6, the other 47 pupils participated in fostering projects for mathematically gifted 

students at university. Every pupil consecutively worked on two problems which were 

analogous to each other (party intermitted by a disturbing non-analogous exercise), and 

he was asked to describe what he is doing as far as possible (thinking aloud). 

Also if the students failed to show appropriate signs of analogical thinking during the 

problem solving process, they were afterwards prompted by the interviewer to 
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compare the problems and asked to describe any similarities they found (initiated 

review). 

By now, we used altogether 12 different problems in our study. The most problem 

pairs tackled by the pupils were not only structurally analogous but also include the 

same numbers (see also P1 and P2 in Figure 1). This should make it possible to use the 

analogy for transferring also the results from one problem to the other. For more details 

of the whole study see Aßmus and Förster (2013a). 

For explaining and empirically underpinning the process model presented in Figure 2 

we only use two of these problems (cf. Figure 1). The problem combination P1+P2 was 

tackled by 12 fourth-graders. To ensure that the sample group was as heterogenic as 

possible, we had asked teachers from different schools to select an above average, 

average, below average, and if possible a mathematically gifted pupil from each of 

their classes to take part in the interviews. 

P1 

 

 

 

 

Paul makes groups of counters on the table. Each new group contains more counters 

than the last group in a certain way. How many counters do you think he will put in 

the 20
th

 group? 

P2 

Anna starts to read a book. She reads two pages on the first day. She continues to 

read the book, reading 2 pages more than the day before each day. How many pages 

will she have read after 20 days in total? 

Figure 1: Analogical problems (from an expert’s view) used in the study. 

Both problems were used in varying sequences to ensure that both the source and target 

points of the analogies to the real problems were empirically accessible.  

MATHEMATICAL PROBLEM SOLVING AND CONSTRUCTION OF 

ANALOGIES 

A Process Model 

The process model in Figure 2 demonstrates possibilities for analogizing during 

mathematical problem solving. It attempts to combine the classical models of Pólya 

(1945) or Mason, Burton and Stacey (1982) to cognitive-modeling approaches while 

focusing simultaneously on the use of analogies in dealing with challenging 

mathematical situations. 

The model demonstrates possible points in which analogies can be used. A distinction 

is made between how the situation is dealt with by the learners; whether or not the 

situation can be defined as the source problem, meaning that the ideas, approach or 

results of which can be transferred to another situation (outgoing analogy), or whether 
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or not the situation can be defined as a target problem, meaning that a given learner’s 

prior experience with a similar situation can be used (targeting analogy). The 

“reviewing” phase is marked by a dashed box, because in our setting it was, if 

necessary, initiated by the interviewer to stimulate analogizing processes. 

 

 

 

 

 

 

 

 

 

 

Figure 2: Process model of problem solving focusing possible uses of analogies. 

The model also attempts to demonstrate the conditions necessary to facilitate 

analogizing. They to a large part justify the high cognitive demands of analogizing as a 

heuristic strategy: The pupil is thus required to understand the problem first and 

develop an appropriate cognitive model of the situation at hand. As long as the 

following steps only involve situative characteristics and elements, at most 

pseudo-analogies can be constructed, the level of which is constrained to the 

situation’s surface – such as the same numbers. If the learner is however able to 

construct mathematical structures that fit the situation, i.e. a mathematical model, it 

also becomes possible to construct and use structural analogies. However, similar 

surface characteristics, approaches or (partial) results can also present triggers of 

structural analogies. This is the case particularly in the “Answering” and (initiated) 

“Reviewing” phases. 

Where a learner indeed uses a (targeting) analogy, he may not pass though all phases 

shown in Figure 2, but other loops and setbacks are possible. In this sense they can be 

understood as descriptive modules which specifically take shape according to the 

individual learner’s case not only in terms of their type but also in terms of their 

sequence.  

Supportive and exemplifying examples 

One the one hand, we are able to show empirical evidence for all possibilities of 

analogizing in the model depicted in Figure 2. On the other hand, it seems possible to 

classify all empirically found instances of constructing and using analogies according 

2 

Targetting 

analogy 

Outgoing 

analogy 

1 

3 

Situation 

Understanding of 

questions, building 

a mental model 

Situation-bound 

working 

Structure-based 

working 

Answering Reviewing 

4 
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to this model. For the sake of brevity, we can only present few cases whose 

classification is also visualized by the numbers in Figure 2. 

This first example shows, as referred to in the introduction, the “normal case” of 

analogizing during problem solving. While working on a problem (P2) analogies to a 

known problem (source problem, P1) are constructed and then used for solving the 

target problem P2 (targeting analogy). 

1 Jenny (10y5m) completes P1 successfully. Upon completion, she reads the instructions 

for P2 and writes down her answer (420) within 20 seconds. 

J: “The same as that one.” [Jenny points to 

the answer sheet for P1.] 

I: “Why?” 

J: “20 rows there, it’s 20 days here, and she 

always reads 2 pages more, which is why 

the answer is 420 pages.” 

I: … “How did you work that out?” 

J: “…because she reads two pages more 

than the day before and the 20.” 

After Jenny had read the instructions for P2, 

she connect the corresponding elements of 

the two situations (“mapping”: 20 rows --> 

20 days; always two counters more --> 

always two pages more), thereby transferring 

the results from P1. 

Figure 3: Targeting analogy during building a mental model. 

The following example shows that a purely situation-bound working may lead to a 

false answer. Without using any mathematical structures there is no basis for 

analogizing. 

2 Ian (10y5m) makes a sketch for P1. 

 

Ian manages to transfer the predetermined 

fourth figure, and succeeds to enlarge it 

correctly across two lines. He then lets the 

figure become wider and wider somehow, by 

increasing size, numbers of or distances 

between counters. Geometric or arithmetic 

patterns play no role. 

 

Figure 4: Situation-bound working. 

Even a wrong approach can lead to the construction and use of analogies if it is based 

on a revised mental model and corresponding structural-based working. 

 



Assmus, Förster, Fritzlar 

2 - 78 PME 2014 

3 Marc (10y2m) works on P1 successfully. To achieve his result, he adds up in parts the 

even numbers from 2 to 40. While working on P2 he expresses, that 40 pages would be 

read on the 20
th

 day. 

Thereafter he guesses a total number of 80 pages. He hesitates while explaining his 

answer. So the interviewer explains the problem. 

I: “The question is how much she reads on 

all these days, taken together.” 

M. writes down in lines 20 + 18 + 16. He 

leans back and mumbles “count down from 

40”. 

M: “It’s kind of just the same like this task 

[points at P1].”  

I: “What is the same?”  

M: “Well, I have to calculate, down from 

40.”  

I: “What do you have to calculate down?”  

M: “I calculate 40 (…) plus 38 plus 36 plus 

34”  

I: “Okay, und what is the result?”  

M: “420.” 

Marc at first doesn’t understand the question 

completely. After clarifying the problem he 

begins to work and writes down some of the 

even numbers. During structural working he 

recognizes the one-to-one-correspondence 

between the summands of P1 and P2 and 

transfers the result of P1 onto P2. 

Figure 5: Targeting analogy during structural-based working. 

The final example shows that an analogy can be achieved in the phase of reviewing, 

even if the source and the target problem were tackled in different ways and with 

wrong results. 

4 Michael works on P2 first. He tries to simplify his summation and checks his results by 

building patterns and subtotals, but doesn’t succeed. Due to some minor calculation 

errors he finally achieves 400 as a result. Subsequently he deals with P1 and describes 

several explicit and recursive connections. In order to determine the total number of 

counters of the 20
th

 group efficiently, he has the following idea: “Within the 20
th

 group 

one line always adds up to 40 with another. That is to say that all lines except of the 20
th 

can be completed to 40 by another, 2 to 38, 4 to 36 and so on.” Michael supposes to get 

19 pairs in this way. Finally he gets his result by calculating:  19  40 + 20. 

After the computation the interviewer places the 

worksheets P1 and P2 in front of Michael and  

initiates the reviewing process: 

I: “Do the two problems have something in 

common?” 

Michael thinks for a few seconds. 

M: “Somehow it’s nearly the same problem. 

Because, here she reads a book and … , and here 

it’s, each group increases by two counters. So 

only one of the results can be correct. Because 

both is up to 20. Mmmh, it’s difficult. I think I 

better check this result [points at P2] … there 

[points at P1] I may be wrong, too,” 

Recognizing the analogy, Michael 

controls his results in the source 

problem (here P2). After achieving 

the third (now correct) result, he 

transfers this result to his current 

target problem (P1). Of course, the 

question, if and how far he would 

review his problem solving process 

self-contained or independently, 

remains unanswered. 
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While recalculating, Michael discovers his 

computation errors and finally gets the correct 

result.   

M: “I think, this should be the result of both [points 

at 420] … Because, I think, it’s the same 

problem, just expressed differently. Because 

here it’s also [points at P1], each time, it 

increases by two, just the same like here [points 

at P2].” 

Figure 6: Outgoing analogy in the phase of reviewing. 

WHAT’S ALL ABOUT THIS MODEL? 

The process model specified in this paper seems to be suitable for analyzing the 

construction and use of analogies during problem solving in many respects. On the one 

hand it can be used as an analysis tool for all problems investigated in this study. 

Differences regarding points of analogizing in problem-solving processes become 

comprehensible and describable. Moreover, based on the model phases, conditions that 

can facilitate or hinder the process of analogizing during mathematical problem 

solving can be carved out. Such conditions are in some extent already published 

(Aßmus & Förster, 2013b), but further research is required. This knowledge about 

constructing and using analogies would constitute an important basis for evaluating 

pupils abilities in problem solving and analogizing. 

On the other hand the model enables us to classify and compare other studies on using 

analogies more precisely. This includes the arrangement of the studies as well as an 

assessment of their results. Studies can be systematically compared by determining the 

specific model phase investigated and by the perspective from which the construction 

and use of analogies is viewed. 
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This study gives insights into how Logo-like microworlds can affect cognitive 

development related to mathematics education of students with math learning 

difficulties. In particular, we analyse the case of a 15-year-old student with dyslexia 

and severe dyscalculia. Among the various cognitive aspects involved, here we delve 

into the development of his perspective-taking ability, seen in terms of becoming aware 

of and juggling two different allocentric frames of reference. 

INTRODUCTION AND THEORETICAL BACKGROUND 

The ability of perspective-taking (Piaget & Inhelder, 1967; Clements 1999), or being 

able to embrace different frames of reference based on one’s self or on external points 

of reference, is fundamental both in everyday life and in instruction. The importance of 

such ability is declared in the Italian National Curriculum Indications (MIUR, 2012) 

relative to mathematical learning about “Space and Figures”. These state that by the 

end of third grade a student should be able to “…follow simple paths described 

verbally or graphically, describe a path that he is following, and give instructions to 

someone so that they follow a given path.” (MIUR, 2012, p.50, translated by the 

authors). Developing the perspective-taking ability may not be straightforward: it 

involves a transition from “perceptual space” to “representational space” (Piaget & 

Inhelder, 1967), as well as “connecting different viewpoints” (Clements, 1999, p.3).  

While children with a typical development can be assumed to have acquired such 

ability by the end of primary school, in some children with mathematical learning 

disabilities (MLD) – including developmental dyscalculia (e.g., Mazzocco & Räsänen, 

2013) or more in general mathematical difficulties (as discussed in Karagiannakis et 

al., in press) – the development of perspective-taking, among other abilities, may be 

delayed and/or deficient. Although students with MLD may present different 

mathematical profiles, frequently characterized by the presence of multiple deficits 

including those of a visual-spatial nature (Andersson & Östergren, 2012; 

Karagiannakis et al., in press), some remedial interventions that involve microworlds, 

such as Logo, have been successfully carried out (e.g., Ratcliff & Anderson, 2011). 

Our study is part of a larger project investigating qualitative effects of different kinds 

of remedial interventions for students with MLD. In particular, in this paper, we 

analyse a student with MLD’s cognitive processes involved in juggling different 

frames of reference, while working in Mak-Trace, a Logo-like microworld.  
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LOGO-LIKE MICROWORLDS AND STUDENTS WITH MLD 

As described in the extensive literature on the topic, the idea of microworld involves 

considering particular computer software as tools providing informal learning 

environments that have specific knowledge domains embedded (Hoyles et al., 2002). 

Logo was the first microworld to be developed and to become popular (Papert, 1980). 

The early plea to study effects of Logo learning on cognitive skills is still a topic of 

research today (Ratcliff & Anderson, 2011), especially since the original Logo 

language has been simplified in various ways and adopted to program real or virtual 

robots used at different school levels (e.g., Highfield & Mulligan, 2008). 

The potential of Logo-like microworlds for fostering learning in students with MLD is 

documented in the literature. In particular, Vasu and Tyler found that Logo may foster 

the development of spatial abilities and of critical thinking skills (Vasu & Tyler, 1997), 

and various other researchers have reported several potential benefits of using Logo 

with students who have learning difficulties (Atkinson, 1984; Maddux, 1984; 

Michayluk & Saklofske, 1988; Miller, 2009; Russell, 1986), especially using a more 

structured, mediated approach (Ratcliff & Anderson, 2011). 

The Microworld Mak-Trace 

Mak-Trace (Giorgi & Baccaglini-Frank, 2011) is a free application for the iPad and the 

iPhone in which a character (by default a snail) can be programmed to move and draw 

on a grid. The character can only be programmed to go forwards (F) or backwards (B) 

of the distance of one side of the grid-square at a time, or to turn 90° clockwise (R, 

standing for “turn right” in the snail’s perspective) or counterclockwise (analogously 

L, standing for “turn left”). Therefore, the frame of reference for giving directions is 

relative to the character, not to a North-South-East-West frame relative to the grid. For 

example, holding the iPad “right side up” if the character’s head is pointing 

downwards – that is the snail is oppositely oriented with respect to the programmer – F 

(the icon with the arrow pointing upwards relative to the grid) will make it move in a 

vertical line that the programmer will perceive as “descending”.  

 

Figure 1: Screenshot of Mak-Trace, where the character is executing a sequence. 
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Mak-Trace can be seen as a simplified version of Logo; it was designed by one of the 

authors with the aim of creating an environment accessible to young children, or to 

students with learning difficulties or disabilities, by trying to offer a more intuitive 

iconic programming language, with the potential to foster mental planning, 

visualization and perspective-taking abilities. This aim led to some characterizing 

design choices. A main difference between Mak-Trace and Logo is the fact that the 

commands are icons that can be dragged and dropped to build a sequence. Another 

difference is that Mak-Trace gives no feedback in terms of movements of the character 

until the student touches “GO”. At this point the character executes the whole list of 

commands in the constructed sequence. Moreover, to make a variation in the 

constructed sequence, the student has to go back to the “programming mode”: 

automatically the character goes back to its original position and all trace marks are 

cleaned off the screen. 

EGOCENTRIC AND ALLOCENTRIC REFERENCE FRAMES 

When we represent the location of objects in the environment we can use different 

frames of reference (Carlson-Radvansky & Irwin, 1994). It is largely accepted that two 

main frames are the egocentric and the allocentric ones. In the former, the 

representation of objects is referred to the self and to the observer's body; in the latter, 

spatial relations are represented independently of the self. Grush (2000) refined such 

distinction, identifying four different uses of the term “allocentric”: (A) egocentric 

space with a non-ego object reference point (decentred egocentric); (B) object-centred 

reference frames; (C) virtual points of view (i.e., maps); (D) “nemocentric” maps. We 

found this distinction to be quite relevant to our study. In particular, we will take into 

consideration the first two allocentric frames (A and B in Grush’s distinction), because 

they apply to programming in Mak-Trace. Let’s describe the reference frames with an 

example. Let’s say Giovanni and Lucia are in a room, in front of our body looking at 

us, and Giovanni’s left hand is holding Lucia’s right hand. In our egocentric frame, we 

can say that Lucia is in front of us. Using an allocentric A-type frame we might say that 

Lucia is at the right of Giovanni. So, while the left-right axis is referred to our body, we 

are using Giovanni as the reference to locate Lucia. In the allocentric B-type frame, we 

might say that Lucia is to Giovanni’s left. In this case, we represent the space as 

Giovanni might represent it according to his egocentric frame of reference, so “left” is 

referred to Giovanni’s point of view. In other words, the frame’s origin is centred on 

Giovanni and its axes are Giovanni-fixed. 

In Mak-Trace the perspective-taking ability consists in embracing the character’s 

moving frame of reference and this requires to coordinate two frames: the decentred 

egocentric (type A) frame, the character-centred frame (type B). Instead, using an 

egocentric frame turns out not to be effective, because the iPad usually sits in front of 

the programmer and terms like “left” and “right” cannot be meaningfully used. In this 

paper we will analyse processes of juggling of type A and type B frames. 
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A CASE STUDY: STUDENT WITH MLD JUGGLING FRAMES 

The subject in this study, named here Filippo, had been diagnosed with various MLD 

including dyscalculia and severe dyslexia. From the accounts of his special education 

teacher (one of the authors), he also was not able to read maps or to give directions 

(however he did not have difficulty recognizing or naming his left and right hands), he 

had a short attention span and little – if any – interest in the activities proposed during 

math class. We planned and carried out a 5-week intervention (globally, 10 hours 

outside his regular classroom) using Mak-Trace. The tasks he was assigned, that we 

analyse here, were the following: 1) program the snail to draw a given path; 2) program 

the snail to draw a square; 3) complete the mazes. Each activity was audio and 

video-taped, and analyzed according to the frame above. 

Task 1: Program the snail to draw a given path 

Filippo initially thinks that the commands F, B, R, L make the snail go forwards, 

backwards, right, and left, where these directions are in the decentred egocentric (A) 

frame: the forwards-backwards and right-left axes are Filippo-fixed, while the centre 

of the reference frame is the snail. Therefore Filippo is not able to construct a sequence 

of commands to make the snail draw a given path. It takes him about 10 minutes, 

dragging command icons more or less randomly and watching the snail in a confused 

state, before realizing something is wrong: 

Filippo: it is a bit hard. It’s never what it… […] I am not understanding anything 

[…] wait…I didn’t tell him to go right and he went right. […] These two [R 

and L] are inverted […] I am not understanding anything […] if this arrow 

[L] makes it turn right, this one [R] makes it turn left.  

Teacher:  why does an arrow pointing to the left make it go to the right? 

Filippo:  Ask the person who designed the game! 

For over half an hour Filippo tries to understand how each command could be 

associated to a snail’s movement (translation) on the grid and does not seem to be 

aware of any reference frames other than the egocentric decentred one that he keeps 

working in. Clearly, when he realizes that the natural correspondence (R  translation 

to the East on the grid) does not work (after a long time) he tries to set other 

correspondences between command icons and movements, but he seems to be 

overwhelmed and unable to come up with a meaningful correspondence. Filippo 

comes to an important realization when the teacher helps him analyse the sequence of 

commands with respect to the trace mark left after the snail executed it: 

Filippo:  it went backwards, not upwards […] 

Teacher:  so what do the little arrows refer to? 

Filippo:  it depends on how the snail is oriented. 

We see this as the decisive moment which poses the foundations for the conception of 

a type B allocentric frame of reference. We note that to embrace a type B frame it is 

necessary to consider the snail as the reference point and the snail-fixed axes. Here 
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Filippo is still only considering his egocentric frame: the snail’s rotation can only be 

perceived from such a frame of reference. However, he states that the type of 

movement determined by the commands depends on the snail, and in particular on its 

orientation. Although a fundamental step in terms of awareness has been made, Filippo 

still has trouble embracing the snail’s perspective, so when the teacher asks for further 

explanations on the effects of a command, he appears confused: 

Teacher:  right for whom? 

Filippo:  for me, [mutters something], no, for the snail, for both… I don’t know! I 

don’t understand… 

Filippo refuses to talk any more and uses trial and error to write a sequence of 

commands (FFRFLFLFRFFLFF) that represents a given path made up of horizontal 

and vertical adjacent segments. To do this he seems to be embracing the snail’s 

perspective. However along this path the snail is never oppositely oriented, which is 

the situation that creates the greatest difficulties for Filippo.  

Task 2: Program the snail to draw a square 

The first time Filippo tries to program a sequence to make the snail draw a square 

starting with the snail pointing upwards, he programs: FFFFLFFFFL [brief pause, he 

says: “Yes”] B [brief pause] BBBR [long pause] FFFF (Figure 2a). Even though he has 

hesitations, Filippo is able to program the sequence for the first two sides of the square. 

He seems to be able to embrace a snail-fixed frame (type B), as shown by the two uses 

of the command L to make the snail turn, and by the use of the command F to make the 

snail move along a horizontal segment. From here on, Filippo manifests difficulties: he 

seems to be programming the third side of the square in a decentred egocentric frame 

(type A), as shown by his (incorrect) use of the commands B and R; while the fourth 

side, horizontal in Filippo’s frame, is correct again. It is interesting that he uses 

opposite commands for the first and third sides (F and B, respectively), while for the 

second and fourth he uses the same command (F). This strengthens our hypothesis that 

the two pairs of opposite sides were programmed using different frames of reference. 

In summary, Filippo seems to be mixing the two types of allocentric frames in the same 

situation, using the snail-fixed frame when it is oriented the same way his frame is or 

when it is rotated by 90°, and the decentred egocentric frame when his frame and the 

snail’s are oppositely oriented.  

The second time he tries to program the sequence he composes: FFFFLFFFFL 

[hesitates, inserts L, erases it, and with the index of his right hand makes the gesture of 

a counter clockwise turn] FFFF [he says: “I have to always keep the” and does another 

counter clockwise turn gesture with his right hand] RFFFF (Figure 2b). 

So Filippo has now corrected the third side but makes a mistake again on the rotation 

when the snail is oppositely oriented. He re-writes the sequence: FFFFLFFFF [he 

makes the gesture of a counter clockwise turn with his right hand] LFFFF…[he rotates 

the iPad so that his frame coincides with the snail’s, observing the screen he rotates his 

right hand counter clockwise]. Now he completes the last turn and side. 
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Filippo:  Done, I found it […] no, I got…lost […] when it is turned around…it goes 

opposite [clockwise rotation gesture with the right hand] so…if I want it to 

go here [horizontal gesture from left to right with the left hand] … oh, I 

don’t know, I’ll try this [RFFFF]… no wait, because this otherwise is like 

before [he substitutes R with L]. 

 

 

a) 

 

 

 

b) 

 

 

 

 

c) 

 

 

Figure 2: The first (a), second (b) and third (c) traced paths in task 2. 

Now the sequence is correct (Figure 2c). We note that rotating the iPad is a gesture that 

reveals how Filippo is now aware that he should consider the snail’s frame of 

reference, and that this frame is oppositely oriented with respect to his (at the moment 

of the rotation). This is also testified by the hand gestures, opposite with respect to the 

previous ones, but even with the rotated iPad he keeps on making mistakes. The way he 

turns out to solve the task is by remembering the previous sequence he had 

programmed (second try) and choosing the opposite turn arrow, proceeding by trial 

and error to successfully compensate his spatial difficulties. 

Task 3: Complete the mazes 

Filippo is asked to program the snail to get it through a maze. He appears to be 

convinced of being able to accomplish the task and begins to build a sequence. As in 

task 2, he stops and hesitates when he needs to program the snail to turn when it is 

oppositely oriented. Filippo grabs a pencil and swivels it around pointing its tip 

towards himself and making a small rotation in the direction he wants the snail to go: 

Filippo:  I am doing the snail upside down because otherwise I was getting too stuck. 

Whenever the snail is oriented like himself or it is horizontally oriented, Filippo 

programs more than one segment at a time, but when the frame of reference of the snail 

is opposite to his (it happens 3 times) he acts as follows. The first time, he uses the 

word “straight” instead of “forward” to describe the “forward icon”. When he has to 

choose a turn command at the end of the vertical segment he stops and uses the pencil 

again, as he did the first time. Then he picks up the iPad and rotates it by 180°, thus 

making the snail’s frame coincide with his own, and then he adds R to his sequence. 

This was the correct choice, but he tests it right away to be sure. The second time, he 

programs the snail correctly when it has to turn, and the third time he also succeeds in 

doing this, but he uses the swivelling of the pencil, again. After he successfully 

concludes the task, Filippo describes how he was able to succeed: 

Teacher:  When you had to turn, how did you understand when to go left and right? 

[…] 
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Filippo:  I turned the iPad. 

Teacher:  But weren’t you using the pencil, too? Didn’t you turn it? 

Filippo:  Yes […]. You have to imagine [being] the snail. 

So Filippo has surely become aware of a new perspective that initially he didn’t seem 

to perceive at all. However, to embrace this type-B perspective, it seems like Filippo is 

aware that he needs to use some strategy to compensate for his cognitive difficulties. 

CONCLUDING REMARKS 

The study shows the enhancement of the ability to coordinate different frames of 

reference in a student with MLD working in a Logo-like microworld. Such 

enhancement occurred thanks to the specific tasks proposed, the interventions of the 

teacher (e.g., the use of expressions like “the snail turns”, “right for whom?”, “refer 

to…”) and the functionalities of Mak-Trace (e.g., the commands are icons that can be 

spontaneously interpreted in the egocentric frame, but that refer to the snail-fixed 

frame; the fact that immediate feedback of a programmed sequence is not given, etc.), 

which required continuous juggling between two reference frames. Although this 

juggling was not spontaneous for the student, due to his disabilities, there was a 

positive development of his perspective-taking ability. In particular, we observed a 

transition from not being able to perceive the snail’s perspective, and trying to find a 

way of making sense of the command icons, to recognizing this perspective and trying 

to embrace it, after a period when the student’s confusion seemed to depend on his 

simultaneous use of the two incompatible frames. Some difficulties persisted but they 

were partially overcome through different compensatory strategies: trial and error 

(since there are two choices for the turns), trying to define a rule without embracing the 

snail’s perspective (when the snail is upside down everything is opposite), changing 

his own perspective (by rotating the iPad or swivelling a pencil pretending it was the 

snail), and resorting to gestures that bridge one reference frame to the other. In the end 

the student is aware that he can change frames of reference by mentally trying to “be 

the snail”. Last but not least, similarly to what has been described for Logo, Mak-Trace 

appeared to help the student to “remain absorbed in a task for a period of time; … 

tolerate a period of confusion (with appropriate support);… use errors as a source of 

information about what to try next” (Russell, 1986, p. 103).  
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PRIMARY SCHOOL TEACHERS LEARN MODELING: HOW 

DEEP SHOULD THEIR MATHEMATICS KNOWLEDGE BE? 

Marita Barabash, Raisa Guberman, Daphna Mandler 
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We taught a group of experienced in-service primary school mathematics teachers the 

notion of mathematical model, in order to foster the interdisciplinary mathematics 

teaching in primary school. In particular, we developed an exercise in which they were 

supposed to construct a mathematical model on the basis of primary school 

mathematics. We found out that the formal mathematical knowledge needed to perform 

the exercise was not sufficient to successfully cope with it. The main factor that 

influences the ability of the teachers to cope with this type of activity is the depth of 

their mathematical knowledge which we identify with a person’s mathematical insight. 

THEORETICAL BACKGROUND 

The Israeli primary school curriculum explicitly necessitates the linkage between 

mathematical curriculum and two other components: other disciplines studied 

simultaneously, and everyday life experiences. This declaration is realized in several 

paragraphs of the curriculum, such as data organization and analysis and integrative 

problems. Nevertheless, the mathematics teaching in Israeli primary schools is usually 

confined to purely mathematical (mostly arithmetic) contents, with no intentional 

connections made to the world surrounding the pupils (Arcavi & Friedlander, 2007). 

We regard this to be an essential drawback and seek ways to cope with it.   

Numerous studies indicate the insufficient matching between the mathematical 

knowledge and skills the schoolchildren are expected to acquire at school, and what 

they need to be able to do with this knowledge outside the school (English, 2009; 

Gainsburg, 2006; Pollak, 1979; Zawojewzki & McCarthy, 2007). Hence, the 

mathematical education specialists face the challenge of finding the ways to cope with 

authentic and related to them interdisciplinary problems, sometimes rather 

complicated ones. One of the ways to do so is to embed mathematical model 

construction in mathematics lessons (English, 2009; Gainsburg, 2008; Kaiser & 

Schwarz, 2006). In order to embed the interdisciplinary teaching into the mathematics 

class, several components are needed, such as handbooks, time allocation in the 

mathematics lessons, and the teachers’ competence in the issue. This competence is 

critical for implementation of interdisciplinary teaching at school. Doerr (2007) claims 

that teachers refrain from dealing with interdisciplinary problems because their 

knowledge in mathematical modeling is not sufficient. Hence, it is one of the key 

research issues – to determine what teachers’ knowledge is needed in order to 

implement modeling at school (Garcia & Ruiz-Higueras, 2011).  
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In the present research we focus on the process of building-up the teachers’ knowledge 

of the concept of mathematical model which is pivotal for the interdisciplinary 

approach (Ng, 2010). In particular, we are interested in the connection between this 

process and the depth of a teacher’s knowledge in other issues of the primary school 

mathematics curriculum.  

Mathematical model is a mathematical object – a graph, a sequence, a diagram, an 

equation etc., reflecting to a certain extent an outer-mathematical phenomenon. The 

model construction is a kind of a loop-like process which can be schematically 

represented in the following way:  

 

Figure 1: A schematic representation of modeling process 

In order for teachers to be able to teach this (as well as any other) approach at school, 

they must be competent to cope with it at an appropriate level. Speaking of 

mathematical modeling, we agree with Maab and Gurlitt (2011) who claim that 

teachers need “modeling competency": the ability to carry out modeling processes 

independently”. Following Cherniak (2007), the empirical research basis in 

interdisciplinary teaching on which it would be possible to build up practical 

approaches and curricula, is still lacking, especially in what concerns the teachers' 

education in these topics. Our research presented here is a part of a bigger research 

project aimed at the interdisciplinary teaching by expert mathematics teachers in 

primary school as a part of their professional development.  

RESEARCH FRAMEWORK  

In this research we follow the process of acquiring the concept of mathematical model 

by primary school teachers during a one-semester course in mathematical modeling as 

a part of their M.Ed. program. The notion of a mathematical model was equally new 

for the audience; nobody has been previously familiar with it. 

Our research sought the answer to the following questions: 

 Is deep mathematical knowledge of primary school mathematics a necessary 

basis for the understanding of the concept of mathematical model?  

 Is the knowledge of a formal corpus of primary school mathematics a 

sufficient basis for such understanding?  
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We studied performance of 14 M.Ed. students who are active and experienced primary 

school mathematics teachers. In what follows we call them “the teachers”. 

Tools and methods 

More-or-less in the middle of the course on mathematical modeling the students 

received an exercise in which they were asked to propose a model for evaluating the 

paper usage at primary school. The exercise was assessed in two different ways; we 

looked for possible links between the outcomes of these analyses.  

Firstly, we analyzed it by the five parameters included in the assignment formulation. 

The exercise and the assessment parameters appear in Appendix 1.  Each of the 

parameters was assessed using four-level grading, from the lowest (1) to the highest (4) 

grade. Table 1 represents the assessment criteria. The abridged notations are explained 

in Appendix 1. 

 DC BA MR MA EM 

1  Non-adequate; 

data not used in 

the model 

Not 

formulated 

Non-structured 

tables  

Not 

presented 

No evaluation   

2 Meticulous 

sheet-by-sheet 

data collection 

on paper usage 

Not clearly 

formulated or 

not relevant 

for the model. 

Structured 

tables alone.  

 

Inadequate 

list; tools 

not used in 

the model. 

Evaluation in 

terms of the 

paper usage 

outcome. 

3 A justified   

sampling 

coherent with 

the model 

assumptions 

Plausibly 

formulated 

assumptions 

but not related 

to the data 

collection. 

Tables and 

diagrams of a 

single type 

(rod 

diagrams). 

The list of 

tools is 

adequate 

but not 

complete  

Evaluation 

partly refers to 

the paper usage 

outcome 

4  A sampling 

method aimed at 

the specified 

model and its 

purposes. 

Coherent, 

clear and 

justified 

assumptions 

Adequate 

variety of 

tables and 

diagrams. 

A complete 

and 

adequate 

list of tools. 

Effective 

evaluation; 

clear and 

motivated 

amendments. 

Table 1: Assessment criteria for the exercise.  

Secondly, we assessed it from the viewpoint of the depth of teachers’ understanding of 

the mathematical corpus of knowledge. Formally speaking, all the teachers master the 

mathematical apparatus needed for the exercise, which does not exceed the 6th grade 

level requirements: data representation, arithmetic of multi-digit numbers, zero in 

arithmetic operations etc. Should this formal corpus be sufficient, we might expect the 

more-or-less homogenous results all over the group. What we are interested to appraise 

is how the depth of the teachers’ understanding of this corpus showed itself in the 
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exercise performance; for this we use the notion of mathematical insight. The concise 

necessary description of the insight parameters appears in Appendix 2. 

FINDINGS  

Table 2 represents the assessment of the teachers’ performance by assignment 

requirements and by insight components. The teachers are represented in the first 

column by their numbers.  The assessment was validated by three experts 

. Assignment requirements Insight components 

   Nr. DC BA MR MA EM IA S ML  

1.  1 1 2 1 1 1 3 1  

2.  3 4 4 4 4 3 4 4  

3.  4 2 3 2 1 2 2 2  

4.  4 4 4 4 4 4 4 4  

5.  2 3 2 2 1 2 3 2  

6.  4 4 3 4 4 4 4 4  

7.  2 3 3 3 3 2 4 3  

8.  2 2 1 1 1 1 2 2  

9.  4 4 4 4 4 4 4 4  

10.  2 3 2 2 3 2 2 2  

11.  4 3 3 4 4 4 3 3  

12.  3 2 1 3 1 1 2 3  

13.  4 4 2 4 3 4 3 4  

14.  4 4 4 4 3 4 4 4  

Table 2: The results of the assessment of the teachers’ performance based on the 

assignment requirements and on the parameters of the mathematical insight. 

As one may observe, the results of the group are far from homogenous. In addition, the 

rows of the Table indicate that the students who performed well according to the 

assignment requirements also demonstrated higher insight, and vice versa. Having 

observed that, we decided to "zoom" on the performances of some of the students in 

order to elucidate the differences. Table 3 enables comparison between the 

performances in two cases: one of a distinctly low-assessed teacher (Nr.1); one of a 

distinctly highly-assessed (Nr. 4). 
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 Nr.1 Nr.4 

DC “…I computed the average paper usage 

per pupil during the year…”. It is unclear 

how the averaging was performed; the 

data were not used further in the model. 

Based on the school working style using 

mainly copying: “I asked several 

teachers how often they hand out copied 

sheets to their pupils, and evaluated the 

total.” 

BA Mutually incompatible assumptions: 

“during the academic year a pupil uses 

about 4 pages a day” (which has nothing 

to do with the estimate); “A pupil uses in 

the average at least 500 pages during an 

academic year” (215 days long). 

All the classes are of the same size; the 

teachers of the same grade work 

similarly; only writing paper is 

included; the paper usage for each 

discipline is similar; most paper usage 

follows from copying. 

MR Plots a rod diagram for the monthly paper 

usage for each grade; then plots pie 

diagrams for the monthly paper usage; 

Does not plot pie or other diagram for the 

relative paper usage analysis. 

A structured table in which the input 

data are presented in rounded numbers; 

rod diagrams; pie diagrams 

representing relative usage by the six 

grades; comparative rod diagrams 

MA A list of tools most of which were not 

used or used in a wrong way.  

A full list of tools and notions used in 

the model, such as “ratio”, “estimate”, 

“negligible”.  

EM “It was difficult to account for all the 

variables in this problem: the number of 

pages in a notebook, of copy sheets, etc.”  

Relates the diagrams to the real school 

life, e.g. finds real explanations for 

occasional increases in paper usage;  

IA The teacher clearly did not grasp the idea 

of mathematical model; she tries in the 

earnest to gain as precise and extensive 

information as possible on paper usage. 

The newly learned concept of 

mathematical model is well understood; 

this can be observed from all the 

components of the exercise. 

S The teacher’s skills are relatively high; 

e.g., she organizes the data in tables and 

plots diagrams using the Excel tool; but 

the skills usage is purely instrumental.   

The teacher’s skills are well developed 

and appropriately used; all 

computations and diagram are well 

motivated. 

ML Mathematically meaningless usage of 

such terms as “average”, “estimation”; 

the reasoning comprises logically 

disconnected statements; uses phrases 

like “approximately 543 pupils”, … “in 

the average at least”. 

All the terms are properly used; the 

reasoning in the work is coherent and 

consistent;  

Table 3 
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CONCLUSIONS  

One of the objectives of this research is to explore whether formal mathematical corpus 

of knowledge is sufficient for the successful acquiring of the concept of mathematical 

model. From the preliminary results it can be seen that teachers who succeeded in the 

exercise demonstrated also higher levels of mathematical insight in this issue. Hence, 

our preliminary conclusion is that in order to construct and use a mathematical model 

the teachers should have deeper understanding of the mathematical knowledge they 

possess. This conclusion is very important: if our goal as educators is developing our 

students’ ability to work with mathematical models, we must find ways to deepen their 

understanding of the formal corpus of mathematical knowledge they possess.   

Appendix 1: the exercise outline 

In order to build the model, the students were instructed to perform the following steps 

(the abridged notation in the parenthesis is used in the text): 

Data collection (DC) – suggest a method of obtaining the information on the paper 

usage at school needed, in your opinion, to provide a plausible model for evaluation of 

the school paper usage, such as students’ writing habits, teachers’ practices, sheets 

copying policy, etc.  

On the basis of their data collection, the students were expected to propose the method 

for the evaluation of the paper usage at school during the calendric year.  

Formulate the basic assumptions used in the model construction (BA) – e.g., the paper 

usage in all the classes of the same grade is more or less similar; there are time periods 

during the calendric year when the paper usage essentially differs from average, for 

example, during the vacations when it is close to zero. The assumptions of the model 

are naturally expected to be related to the data collection method proposed by the same 

student. 

Mathematical representations (MR) – use the mathematical representations at the 

primary school level appropriate, in your opinion, for the model, e.g. structured tables; 

diagrams of various types, etc. 

Correct identification of mathematical apparatus (MA) – identify the mathematical 

tools from the primary school curriculum relevant for the assignment, such as working 

with big numbers (tens of thousands to millions); zero in multiplication and in 

addition; estimation methods; ratio and proportion; multiplication of multi-digit 

numbers etc. 

Evaluate the model you have constructed (EM) – having constructed your model and 

obtained the overall results of the paper usage, indicate to what extent it adequately 

represents the real school situation; which of your assumptions seem to need 

re-adjustment; is the model really helpful in estimation of paper usage? Etc.   
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Appendix 2: the mathematical insight 

We present here the components of mathematical insight in a form relevant for the 

present contents:   

The implementation ability (IA), by which we mean the ability of a person to apply 

the recently acquired piece of mathematical knowledge, provided this piece is in his or 

her mathematical ZPD (Vygotsky, 1978). The implementation is expected to occur in 

the "neighborhood" of the learned issue, obviously "the farther the better".  

In the present setting, the recently acquired mathematical knowledge is the concept of 

a mathematical model.  

Skills (S); by which we mean both the variety of mathematical skills at a person's 

disposal, and his or her autonomy, flexibility, appropriateness and inventiveness in 

using them. 

Extension / generalization ability (EG) by which we mean the ability to extend the 

acquired knowledge and / or to generalize it. 

The mathematical language (ML) which includes the ability of a student of take in 

new terminology and use it appropriately, the competence in using the mathematical 

notation, the ability to adequately reason mathematically, etc. 

We found it next to impossible to plausibly estimate the EG parameter on the basis of 

the exercise; hence, we did not include it in the general outline of the results. 
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A NEW APPROACH TO MEASURING PRE-SERVICE TEACHERS’ 

ATTITUDES TOWARDS MATHEMATICS  

Patrick Barmby, David Bolden 

Durham University, UK 

 

Research (for example Ball, 1988; Philippou & Christou, 1998) have linked teachers’ 

attitudes with classroom practice in teaching mathematics. Previous studies have 

identified and examined the relationships between different components of teachers’ 

attitudes (Nisbet, 1991). However, a particular criticism of these studies is the lack of 

content validity of the measures used. In the present study, in line with the conference 

theme for PME 38, we developed an innovative approach to examining the attitudes of 

pre-service elementary teachers. The study utilised a mixed methods approach, firstly 

eliciting qualitative statements from teachers, then using these statements in 

Likert-scale questionnaire items. We argue that this provides a more valid assessment 

of attitudes, and a method that can be applied across differing contexts for teachers. 

FOCUS OF THE STUDY 

Research has highlighted the importance of teachers’ attitudes to mathematics. Aiken 

(1970) stated that teachers’ attitudes were particularly important for students’ attitudes 

towards the subject. Ernest (1989) also emphasised the importance of teachers’ 

attitudes as being important for student achievement. Elsewhere, Ball (1988), 

Philippou & Christou (1998) and Wilkins (2008) have linked teachers’ attitudes with 

classroom practice in teaching mathematics. In the UK context, school inspection 

evidence shows that teachers’ lack of subject knowledge and confidence in 

mathematics contributes to low standards of mathematics attainment of pupils 

(Rowland et al., 2000). Despite this importance, researchers have also stated that many 

pre-service teachers come into the profession with negative feelings towards the 

subject (Ball, 1988; Nisbet, 1991; Philippou & Christou, 1998). It is therefore 

important that we use valid measures of pre-service teachers’ attitudes to identify any 

concerns. In this study, we developed an innovative approach to examining and 

measuring pre-service elementary teachers’ attitudes towards mathematics which we 

describe in this report. 

THEORETICAL FRAMEWORK 

Oppenheim (1992) defined ‘attitude’ as a “state of readiness, a tendency to respond in a 

certain manner when confronted with certain stimuli” (p.174). More specifically, there 

has been general agreement in the literature that attitudes consist of cognitive, affective 

and behavioural components (Bagozzi & Burnkrant, 1979; Ajzen, 2001; Crano & 

Prislin, 2006). According to McGuire (1969), the cognitive component “refers to how 

the attitude object is perceived, its conceptual connotations – it is the “stereotype the 

person has of the attitude object”” (p. 155). The affective component “measures the 
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degree of emotional attraction towards an attitude object” (Bagozzi & Burnkrant, 

1979, p. 915). There are then the “person’s gross behavioural tendencies regarding the 

object” (McGuire, 1969, p. 156). We used this ‘tripartite’ view of attitude as the 

starting point for this study. 

PRE-SERVICE TEACHERS’ ATTITUDES TOWARDS MATHEMATICS 

Studies have identified and examined the relationships between different components 

of teachers’ attitudes’ towards mathematics (Nisbet, 1991). Schofield (1981) measured 

two aspects of teacher attitude, namely attitude towards mathematics and attitude 

towards teaching mathematics. Likewise, Ernest (1989) highlighted these two aspects, 

identifying within attitude towards mathematics the components of teachers’ liking, 

enjoyment, interest, self-concept and valuing of the subject. Others studies on teachers’ 

attitudes have tried to measure these different components. Nisbet (1991) developed 

attitude measures to teaching mathematics, consisting of the four separate dimensions 

of anxiety, confidence and enjoyment, desire for recognition, and pressure to conform 

in teaching mathematics. Relich, Way and Martin (1994) criticised Nisbet’s 

instruments, and emphasised the inclusion of teachers’ self-concept in the subject, 

alongside anxiety, enjoyment, and belief in the usefulness or value of mathematics. 

Similarly, Wilkins (2008) used a measure looking at enjoyment, importance and the 

teaching of the subject, as well as feelings of success within mathematics. Ludlow and 

Bell (1996) developed an instrument based on existing items on self-concept, teaching 

of maths and doing or performing mathematics. Finally, more recently, Evans (2011) 

used an existing questionnaire developed by Tapia (1996, cited in Evans, 2011, p.228) 

including confidence, value, enjoyment and motivation. It is seen that there are 

components that frequently occur, such as enjoyment, self-concept, confidence, 

usefulness and teaching of mathematics. 

The above studies used measures of attitudes, mostly based on Likert-scale responses 

to items related to particular components of attitude, to achieve reliable instruments 

required for larger scale studies of attitudes of pre-service teachers. However, a 

criticism that can be levelled at all these studies is the lack of content validity of the 

measures used. The question raised by Oppenheim (1992) is whether “the items or 

questions are a well-balanced sample of the content domain to be measures” (p.162). 

Although there is generally good theoretical agreement regarding the important 

components of pre-service teachers’ attitudes, these are still theoretical assumptions, 

and the differences between the above studies illustrate the possible problems involved 

in identifying the ‘valid’ components. A solution to the problem of construct validity is 

to derive attitude questionnaire items from students’ responses to more open-ended 

items (Oppenheim, 1992). Therefore, the present study adopted an innovative 

approach to identifying different components to pre-service teachers’ attitudes to 

mathematics, incorporating both free responses to open-ended items and Likert-scale 

measures of attitudes. 
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METHODOLOGY 

Methodology and methods 

Leading on from the literature, the aim of the study was to develop an approach to 

identifying components of attitudes for a particular group of pre-service elementary 

teachers, and in turn develop valid, reliable measures for these components, and to then 

examine the relationships between these components (in line with Nisbet, 1991). The 

specific research questions to be answered were: 

 Using both qualitative and quantitative approaches, what different 

components of attitudes towards mathematics emerge from the analyses for a 

particular group of pre-service elementary teachers? 

 Using the resulting quantitative measures of attitudes, what relationships exist 

between measures of these components of attitude? 

In balancing the requirements of identifying both the valid components of attitudes 

with the requirements of developing reliable measures, a critical realist 

methodological perspective was taken. This perspective balanced the positivist 

approach of measuring attitudes whilst “taking note of the perspectives of participants” 

(Robson, 2002, p. 30). Within this perspective, the study used a mixed methods 

approach, “combining qualitative and quantitative approaches within different phases 

of the research process” (Tashakkori & Teddlie, 1998, p. 19). In the first phase of the 

study, a questionnaire was given to pre-service elementary teachers which asked them 

to give a short written response to three statements: (a) What I perceive/think of with 

maths; (b) How I feel about maths; and (c) How I behave towards maths. The 

statements were designed to elicit open responses regarding teachers’ cognitive, 

affective and behavioural components of attitude and no other guidance was given. 

The resulting statements were then analysed and coded to categorise the statements. In 

doing so, the analysis was guided by Tesch’s (1990) (cited in Creswell, 1994, pp. 

154-155) systematic steps to analysing qualitative data. At this stage, the statements 

from the three areas of attitudes were coded separately. In the second stage of the 

study, from the twelve most frequently occurring categories, six statements from each 

category were randomly chosen (if repetition of content occurred within statements, 

the second statement was discarded and another statement randomly chosen). The 

resulting statements were then used in a 72-item Likert-scale attitude questionnaire, 

with the items randomly ordered. Slight modifications of wording within statements 

were made for clarification if deemed necessary. A response from five possible options 

to each item was asked for: strongly agree; agree; neither agree nor disagree; disagree; 

strongly disagree. Having compiled the questionnaire, the pre-service teachers were 

asked to complete this. The obtained results were coded (5 = ‘strongly agree to 1 = 

‘strongly disagree’), with negative items reverse coded. These quantitative results were 

analysed in SPSS using exploratory factor analysis to confirm the dimensions of 

attitude, and reliability analyses were carried out on the resulting groups of items to 
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confirm the quality of the measures. Linear regression analysis was also subsequently 

carried on the resulting measures of attitude.   

Sample 

The sample of pre-service teachers involved in this study was comprised of students 

studying on a one-year Postgraduate Certificate in Education (PGCE) course at 

Durham University in the UK. The course qualifies students to become elementary 

teachers. All these pre-service teachers had already obtained an undergraduate degree, 

although different teachers had studied very different disciplines. In terms of their 

mathematical qualifications, these ranged from teachers with a minimum of GCSE 

qualifications in mathematics from examinations at the end of compulsory education in 

the UK, to teachers with top grades in Advanced-level mathematics from examinations 

prior to commencing university studies. In the first phase of the study, 78 students 

completed the open-responses questionnaire. For the second phase of the study, 90 

students completed the Likert-scale questionnaire. This difference in numbers was due 

to the initial questionnaire being given at a pre-course training day to which some 

students were unable to attend. 

RESULTS 

Qualitative results 

Beginning with the qualitative statements obtained from the pre-service teachers, the 

statements were categorised into the following groups (Table 1). From the cognitive, 

affective and behaviour statements, the pre-service teachers could view mathematics 

positively (i.e. enjoyable, important, confidently, committed) or negatively (difficult, 

avoiding). Clearly, there were some overlaps between the categories identified for 

different types of statements, but for the purposes of further analysis, these categories 

were kept separate for the next stage of the study. 

From cognitive statements From affective statements From behaviour statements 

Maths as difficult (42%)* Enjoyable/fun (35%)* Behave positively (36%)* 

Maths as important (29%)* Challenging (29%)* Committed to maths (35%)* 

Maths as enjoyable (27%)* Confidence or self-concept (28%)* Behave negatively (29%)* 

Involving number (14%) Very negative (24%)* Specifically avoid (27%)* 

As problem solving (12%) Useful (15%) Doing maths (19%)* 

As right or wrong (10%) Prepared to work on (10%) Do mental maths (9%) 

Other (9%) Teaching of maths (6%) Other (4%) 

 Other (4%)  

Table 1: Categories of statements emerging from the analysis of qualitative statements 
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Quantitative results 

Based on the above categories, the twelve most commonly identified categories 

(indicated with * in Table 1) were used to compile the Likert-scale attitude 

questionnaire. The choice of twelve categories were based on gaining a balance 

between covering as many categories as possible, but not having too many so that the 

questionnaire became unwieldy. Twelve categories with six items for each category 

resulted in a 72-item questionnaire which was viewed as reasonable in terms of length. 

Four subsequent dimensions were identified in the factor analysis, with items grouped 

as positive attitudes, negative attitudes, commitment to maths and 

usefulness/importance of the subject (these dimensions tended to be mixed in terms of 

items related to cognitive, affective and behavioral components). Subsequently, 

reliability analysis was also carried out on each of these group of items identified, and 

the Cronbach α values calculated (Table 2). Very high values of Cronbach α were 

obtained for three of the dimensions, with all the measures having reliability values 

greater than the benchmark of 0.7. 

Dimension identified Number of 

items 

Exemplar items Cronbach α of 

resulting measure 

Negative attitude 23 I feel a lack of confidence in maths; I 

am  nervous and anxious about maths 

0.97 

Positive attitude 16 I am positive towards and about 

maths; I like maths 

0.96 

Commitment to maths 9 I try hard in maths; I am keen and 

willing to learn maths 

0.85 

Usefulness/importance of 

maths 

6 Maths is a very useful tool; Maths is 

useful in everyday function. 

0.76 

Table 2: Dimensions of attitudes emerging from the quantitative data 

The above quantitative analysis therefore refined the dimensions of attitude identified 

in the qualitative stage of the study, and in turn led to the development of reliable and 

valid quantitative measures for these dimensions. These measures could then be used 

further to examining the relationships between the different dimensions of attitudes. 

For example, linear regression analysis was used to find out which other dimensions 

were significant predictors of larger values on the positive attitude measure, this being 

deemed to be a desired outcome for pre-service teachers. We found that the negative 

attitude measure and the commitment measure were both found to be significant 

correlated to the positive attitude measure. Plotting the position of each of the 

pre-service teachers on the positive and negative measures of attitude (Figure 1), we 

found unsurprisingly that there was a strong relationship; however, we also found a 

triangular relationship which showed that having a high score on the negative attitude 

measure (and since negative items were reversed, this means not agreeing with 



Barmby, Bolden 

2 - 102 PME 2014 

negative statements) was a sufficient, but not necessary condition for a high score on 

the positive attitude measure. 

 

Figure 1: Plot of the positive and negative attitude measures 

In fact, from the linear regression results, they showed that a commitment to 

mathematics also contributed to a positive attitude to the subject. We further illustrate 

this qualitatively by choosing one of the pre-service teachers who had quite a high 

score on the positive attitude measure, despite scoring very low on the negative attitude 

measure (shown in Figure 1 with the arrow). Her qualitative statements included: “A 

subject that does not come naturally to me. When I was at school I was not inspired by 

maths ... With maths I feel the least confident out of the core subjects ... Since deciding 

I wanted to be a teacher I have a very positive attitude towards learning maths. I 

am/will do everything I can to improve my subject knowledge.” What we highlight 

here is that due to the approach to identifying and measuring dimensions of attitudes 

where the dimensions emerge from the analysis, we did not exclude important 

dimensions such as the commitment to mathematics which in turn were related to other 

important, desirable dimensions of attitude. 

DISCUSSION 

The methodological approach taken in the study identified a number of components of 

attitude held by the pre-service elementary teachers involved. An advantage of looking 

first at the qualitative statements from teachers was that we could identify 

straightforwardly which were the more significant components of attitude (Table 1). 

Choosing the twelve most frequently occurring categories identified through the 

analysis, these significant components involved difficulty of mathematics, importance, 

enjoyment, challenge, confidence or self-concept, positive and negative views, 

commitment to the subject and attitude towards doing or avoiding mathematics. There 

is a great deal of agreement between these identified categories and the literature, for 

example with Ernest’s (1989) components of teachers’ liking, enjoyment, interest, 

self-concept and valuing of the subject. Having identified these categories 

qualitatively, an added advantage of the current approach was that quantitatively and 

statistically, through exploratory factor analysis, we could further validate these 
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categories. In fact, from the exploratory factor analysis (Table 2), the analysis refined 

these dimensions to more general positive and negative components of attitudes 

towards mathematics, as well as the importance of the subject and a commitment to 

mathematics. Relating these components to those identified in previous studies, the 

component which we termed commitment relates to the component of ‘motivation’ 

examined by Evans (2011). 

Having obtained valid, reliable measures of attitudes of the pre-service teachers, in 

examining the potential relationships between the different components, although 

there was an unsurprising inverse relationship between positive and negative attitudes 

to mathematics, the triangular distribution in Figure 1 emphasised the importance of 

the commitment component of attitude. Indeed, an extension to this study will be to 

identify pre-service teachers who score highly on this commitment measure, and to 

examine further what factors support this commitment, particularly for teachers who 

may additionally have quite negative attitudes to mathematics. 

One component of attitude that did not emerge from the current study, in disagreement 

to the previous research, was pre-service teachers’ attitude towards teaching 

mathematics. A possible explanation for this is that the teachers in the study were at the 

very beginning of their training, and therefore had not yet been in schools to teach 

mathematics as part of their course. Therefore, teaching the subject may not have been 

a significant component of attitude for the teachers at that particular stage of their 

careers. In fact, this issue highlights a further advantage of the method used to examine 

attitudes of teachers. Because of the focus on content validity (Oppenheim, 1992) and 

the use of qualitative statements to draw out the relevant components of attitude, the 

particular context of the teachers was taken into account. This means that this approach 

to examining attitudes can be transferred between quite different contexts, for example 

teachers at different stages of their careers or in different countries, without assuming 

the same components of attitude. In addition, the flexibility of the approach allows for 

an examination of specific aspects of attitude. For example, the study could be 

extended to specifically examine pre-service teachers’ attitudes to teaching 

mathematics by changing the focus of the initial open statements. Or, we could focus 

on areas within the subject such as attitudes towards mental calculations or attitudes 

towards problem solving, two aspects that emerged to a degree from the qualitative 

statements of teachers. We therefore propose that the approach used in this study can 

be a powerful method for examining teachers’ attitudes towards mathematics (or 

indeed for other groups or for other topics).  
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In this paper we report on five Grade 6 students’ responses to a proportional 

reasoning task. We conducted pair interviews within a longitudinal study focused on 

extending a hypothetical learning trajectory for length measurement. Results suggest 

that there exists a link between children’s level of conceptual and procedural 

knowledge for length measurement and their ways of using the double number line 

representation when solving problems involving proportional reasoning. 

INTRODUCTION 

Researchers have recommended the use of double number lines in the teaching of 

various content domains (e.g., Kuchemann, Hodgen, & Brown, 2011; Orrill & Brown, 

2012; Van den Heuvel-Panhuizen, 2003). In the United States, the Common Core State 

Standards (National Governors Association Center for Best Practices, & Council of 

Chief State School Officers, 2010) specifically recommends using double number 

lines in the teaching and learning of ratio and proportional reasoning.  

Van den Heuvel-Panhuizen (2003) explored the didactical use of a form of a double 

number line, the bar model. In her work she found that this form of a double number 

line “can function on different levels of understanding, and that it can keep pace with 

the long-term learning process that students have to pass through” (p. 30). Kuchemann, 

Hodgen, and Brown (2011) argued that an understanding of the double number line 

model is important for helping students make a shift in understanding multiplication as 

scaling. They also noted that, much of the work relating to the double number line 

model has been focused on its use as a support for teaching. 

In their work, Orrill and Brown (2012) identified conceptual foundations, coordinating 

units and partitioning, as critical pieces of knowledge for using the double number line 

representation to support proportional reasoning. Aside from this work, little is known 

about what concepts and processes are needed to develop fluency with the double 

number line model. The purpose of this report is to address this gap in the literature. 

RESEARCH QUESTION 

How does children’s knowledge of measurement relate to their ability to use double 

number lines when solving problems involving proportional reasoning? 
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THEORETICAL FRAMEWORK 

The purpose of this study was to explore children’s knowledge of length and how it 

relates to their use of double number lines while solving proportional reasoning 

problems. Thus, we needed a theoretical tool that allowed us to describe and 

differentiate children’s knowledge. A hypothetical learning trajectory (LT) for length 

measurement served this purpose. An LT has three parts: (a) an instructional goal, (b) a 

likely path for learning, and (c) the instructional tasks that support children’s growth 

through those levels (Clements et al., accepted under review). 

LTs are a central feature of hierarchic interactionalism (HI), a theory of cognitive 

development that integrates empiricism, (neo)nativism, and interactionalism 

(Clements et al., accepted under review). LTs originate from HI, which postulates that 

children progress through domain-specific levels in ways that can be characterized by 

specific mental objects and actions (i.e., both concept and process) that build 

hierarchically on previous levels (Clements et al., accepted under review). 

The following length LT levels (Clements et al., accepted under review) are relevant to 

the present study. 

Length Unit Relater and Repeater (LURR): Children at this level measure by repeating, or 

iterating, a unit, and understand the relationship between the size and number of units. 

Consistent length Measurer (CLM): Children at this level see length as a ratio comparison 

between a unit and an object. They use equal-length units, understand the zero point on the 

ruler, and can partition units to make use of units and subunits. 

Conceptual Ruler Measurer (CR): Children develop schemes for mentally iterating, 

partitioning, and unitizing in tandem with a coordinating space and number scheme. 

Integrated Conceptual Path Measurer (ICPM): Children incorporate multiple units and 

collections of units and operate on sub- and super-ordinate units. They have the ability to 

compensate within a single scale; however, they do not coordinate a series of changes in a 

systematic way across multiple scales to formulate and justify a valid argument. 

Coordinated, Integrated Abstract Measurer with Derived Units (CIAM): At this level, 

children coordinate multiplicative and additive reasoning in fluent ways and engage in 

proportional reasoning about repeated or coordinated cases. In addition, they are able to 

reflect on derived units as an attribute. 

METHODOLOGY 

The design of the present study was informed by previous work for extending LTs for 

measurement (Clements et al., accepted under review; Kara, 2013). This organizing 

methodological structure includes a) posing tasks that reveal children’s thinking about 

a concept outside the LT, b) presenting the tasks to children in the same and adjacent 

LT levels, c) differentiating children’s responses, and d) comparing strategies of 

children within and across levels to inform extensions to the existing LT. 

We focused on five sixth grade children from a public school in the USA. Data were 

collected over a two-month period as part of a longitudinal teaching experiment (Steffe 
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& Thompson, 2000). We collected data midway through a four-week unit focused on 

ratios and proportional reasoning. In the two class periods preceding the data 

collection, instruction focused on transitioning from using tables of values to double 

number lines. The following illustrates the teacher’s instructional sequence of 

transitioning from a table of values (Figure 1) to a double number line (Figure 2) and 

zooming in to find a target value on a double number line (Figure 3). 

   

Figure 1: Table 

Representation 

Figure 2: Transition to 

Double Number Line 

Figure 3: Zooming in 

to Find a Target Value 

The data sources for this report included three 30-minute semi-structured pair 

interviews and one written assessment. We coded the assessments by LT levels and 

generated predictions based on these codes. The interviews were videotaped and 

transcribed. We compared children’s responses from the interviews to the predictions 

to map double number line strategies into the LT.  

RESULTS AND DISCUSSION 

Predictions Based on the Written Assessment 

Based on the written assessment, we identified students at the levels LURR and CLM. 

On these initial assessment items, two students (Chris and Martha) exhibited LURR 

level thinking, and three students (Mia, Karen, and Carrie) showed they were operating 

at least at the CLM level of the length LT. During the set of precursory interviews, 

Carrie often made use of LURR level strategies; therefore, the research team 

determined that she was predominately operating at the LURR level. Similar 

interactions with Chris, Martha, Mia, and Karen provided further evidence that their 

level placements based on their initial assessments were accurate. 

In our prior work, we saw LURR and CLM level thinking predominantly in Grades 2 

and 3 (Clements et al., accepted under review). We hypothesize that the Grade 6 

students in the present study exhibited LURR and CLM level thinking because the 

tasks required students to integrate number knowledge and measurement knowledge 

with ratio reasoning. We think this introduced a level of complexity to the task that 

might have prompted students to revert back to lower level strategies (Siegler, 1986). 

Different LT levels are characterized by specific mental objects and actions (Clements 

et al., accepted under review); therefore, our research team predicted that students at 

adjacent levels would use double number lines in different ways. According to the 

length LT (Clements et al., accepted under review) students at the LURR level measure 

by repeating, or iterating, a unit; therefore, we expected students at this level to rely on 
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an iterative strategy. Students that are at least the CLM level see a measurement as a 

ratio between a unit and a length to measure, and can partition units to make use of 

units and subunits. Hence, we expected to see students who are at least at the CLM 

level correctly attend to units along one scale, and apply a partitioning strategy. 

Furthermore, we looked for evidence that they could coordinate units along two scales 

simultaneously as evidence of concepts and processes of higher LT levels (ICPM or 

CIAM). 

At the beginning of the interview, each student was given the following problem 

printed on a worksheet: 

While shopping, Kyla found a dress that she would really like, but it costs $52.25 more 

than she has. Kyla charges $5.50 an hour for babysitting. She wants to figure out how 

many hours she must babysit to earn $52.25 to buy the dress. Use a double number line to 

support your answer.  

(http://commoncore.org/maps/images/math_documents/G6-M1-Student_Materials_(Eure

ka_Version).pdf) 

The following sections present pairs of students’ responses to this task. 

LURR Level Pair 

Carrie and Martha initially created a table of values, ranging from 1 to 5 for hours and 

$5.50 to $27.50 for dollars earned (see Figure 4). This suggests that both Carrie and 

Martha could correctly apply the unit rate of $5.50 per 1 hour to create a table by 

iteration of units. 

Carrie then asked, “Where are we going to?” They settled on a target value of $26.00 as 

Carrie explained “she wants to buy a dress that’s fifty-two dollars and twenty-five 

cents, so we figured half of fifty-two is twenty-six dollars and so we’d have to find 

someplace in between twenty-two dollars and twenty-seven is twenty-six and then 

when we find our answer, then we’ll just double our answer because that’s half of 

fifty-two.” Carrie and Martha then both drew a double number line, labeling one line as 

hours and the other as dollars earned. At this point in their solution process, Carrie and 

Martha were attending to units along only one scale, dollars earned. 

When asked what they would do next, Martha explained that they usually make 

markings in between the tick marks. Carrie said, “Since no numbers are between four 

and five, we can’t put any markings up here (pointing to the hours line).” Martha then 

said, “so, we’ll do this one” (pointing to the dollars line) and told Carrie that they 

needed to find a number that “goes equally” in the interval between $22.00 and $27.50. 

Because of Carrie and Martha’s discussion of both number lines, the interviewer 

suspected a transition in their thinking from attending to units along only one scale to 

coordinating units along two scales simultaneously. Therefore, the interviewer asked 

how many hours Kyla would need to work to earn the total amount needed for the 

dress, so the students returned to their tables and extended them as shown in Figure 4. 

http://commoncore.org/maps/images/math_documents/G6-M1-Student_Materials_(Eureka_Version).pdf)
http://commoncore.org/maps/images/math_documents/G6-M1-Student_Materials_(Eureka_Version).pdf)
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Figure 4: Carrie’s Table of Values 

The interviewer then asked about the location of $52.25. Carrie explained it was 

between $55.00 and $49.50. She extended her double number line and created two tick 

marks on the hours line, and labeled them 9 and 10. Next, Carrie made corresponding 

tick marks on the dollars line, and labeled them $49.50 and $55.00. Carrie said she 

would have to make tick marks between these two values. Next, Carrie and Martha 

applied an iterative strategy. They tried counting by various dollar amounts ($1.00, 

$1.50, $1.25, $0.50, and finally $0.75). Each time they rejected the value because they 

could not reach their target value and the $55.00 tick mark. Due to time constraints, the 

interview ended before Martha and Carrie reached a solution. 

LURR and CLM Level Pair 

Chris and Karen began solving the problem by creating a table. Using this 

representation, they were able to correctly apply the unit rate of $5.50 per 1 hour to 

create a table. When Karen had extended her table beyond 5 hours, she was asked 

whether she needed to go by one hour or if she could put a 10 in the next box. She 

explained that she could go from 1 to 5 hours and then double the value for the dollars 

earned for working 5 hours to get the value for 10 hours. She then subtracted $5.50 to 

determine the dollar amount that would correspond to 9 hours. 

Next, Karen and Chris created a double number line representation to zoom in on a 

target value (see Figures 5 and 6). Karen then applied a partitioning strategy to this 

region of the double number line as she drew a tick mark between her tick marks 

labeled as 9 and 10 on the hours line and connected it to a tick mark on the dollars line. 

This suggests that, as Karen applied this partitioning strategy, she was able to 

coordinate units along two scales simultaneously. 

Karen then said, “If she worked for 9 hours and 30 minutes, how much will she get?” 

She labeled the tick mark on the hours line as 9 hours and 30 minutes and recalled that 

each interval on the dollars line represented $5.50. With computational help from the 

interviewer, she divided $5.50 by 2 to get $2.75. Next, she asked the interviewer how 

she could find out the value of the tick mark on the dollars line that corresponded to the 

tick mark labeled as 9 hours and 30 minutes on the hours line. The interviewer told her 

it meant that she needed to go $2.75 more than the dollar amount that corresponded to 

9 hours, and she added $2.75 to the $49.50 and got $52.25, which she realized was her 

target value. 

  

Figure 5: Karen’s Partitioning Strategy Figure 6: Chris’ Partitioning Strategy 
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Chris followed Karen’s partitioning strategy. However, he did not immediately 

recognize that he had reached the target value, and he continued partitioning the two 

regions to the left and right of the tick mark labeled as 9 hours and 30 minutes on the 

hours number line. This suggests that Chris, who had been placed at the LURR level 

was not able to maintain the coordination of units along two scales simultaneously 

when applying the partitioning strategy. 

CLM Pair 

As Mia initially engaged in the task, she drew a double number line and created tick 

marks on the dollars line with intervals of $5.50 and tick marks on the hours line with 

intervals of 1 hour. However, she did not maintain even spacing as she drew tick marks 

along both number lines. This became problematic for her, when she applied the zoom 

in strategy. She drew a second zoomed in number line, with tick marks labeled as 

$49.50 and $55.00 on the dollars line. At this point, Mia paused. To prompt her to think 

about labeling the corresponding tick marks on the hours line, the interviewer asked, 

“What matches on the bottom of your other number line?” Mia returned to her original 

number line and labeled more of the tick marks on the dollars line. She then said, “I got 

a 7” (pointing to the tick mark on the hours line corresponded to the tick mark labeled 

as $49.50 on the dollars line). Therefore, Mia showed that she could attend to units 

along one scale. 

To help her shift to thinking about coordinating units along two scales simultaneously, 

the interviewer suggested that Mia draw segments connecting each labeled tick mark 

on the dollars line to a labeled tick mark on the hours line on her original double 

number line. The interviewer again asked how many hours corresponded to the value 

of $49.50. Mia then indicated on her zoomed in number line that the $49.50 tick mark 

corresponds 9 hours, and the $55.00 tick mark corresponds 10 hours. Next, Mia set out 

to “find in between of $49.50 and $55.00.” 

The interviewer then suggested that she show where her target value of $52.25 would 

be, but Mia said, “I don’t know.” When asked how much more $55.00 was than $49.50 

Mia said, “Five and a half.” Next, the interviewer suggested they break this piece of the 

number line into pieces. Mia initially suggested that they create five pieces. Mia’s 

partner then drew in five tick marks (and later corrected to four) between the tick marks 

labeled as nine and 10 hours. Mia and her partner labeled the tick marks as nine and 

one fifth to nine and four fifths. They assigned a value of one fifth of an hour to each 

interval they created on the hours line; however, they did not apply a partitioning into 

fifths on the dollars number line. Instead, they reverted back to an iterative strategy, 

trying to pick a unit that would allow them to span from $49.50 to $55.00 In other 

words, Mia and her partner could track units (1/5 of an hour) along one scale, but they 

did not coordinate units along two scales simultaneously. We are not sure if this is 

because dividing $5.50 is difficult or because they were unable to coordinate. 

Mia’s partner suggested splitting the interval in half. At first, Mia said she could not 

split the interval in half because there were five “things.” However, when the 
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interviewer asked how much was in the interval from $49.50 to $55.00, Mia said “five 

and a half.” When the interviewer again asked if she could split it in half, Mia said 

“yeah,” stating it would be $2.75. Mia explained that the $2.75 represents the halfway 

point between $49.50 and $55.00. Mia added $2.75 to $49.50 to get $52.25. The 

interviewer then asked how many hours it would be, and Mia correctly said nine and a 

half hours. Mia was able to coordinate units along two scales simultaneously with 

support from the interviewer and only when operating on halves. 

CONCLUSIONS AND IMPLICATIONS 

Findings suggest a link between length LT level and children’s use of double number 

lines when solving proportional reasoning tasks. The LURR pair, Carrie and Martha, 

predominantly relied on an iterative strategy, which is consistent with our prediction. 

That is, they applied a unit rate by iteration of units to the table representation, and an 

iterative strategy, of counting by various dollar amounts, to the double line. They also 

exhibited a lack of understanding of the density of the number line when they noted 

that there were no numbers between four and five. We conjecture that this is why they 

did not partition the double number line, which is a CLM level strategy. 

The CLM pair, which included Mia, was able to attend to units along one scale and 

apply a partitioning strategy. However, they could not coordinate units along two 

scales simultaneously without the interviewer’s expert scaffolding. Chris, who was 

part of the LURR and CLM pair, followed along with his CLM-level partner’s 

(Karen’s) partitioning strategy. However, his willingness to continue partitioning the 

hours line, without checking to see that he had reached the target value on the dollar 

line, suggests that he was unable to coordinate units along two scales simultaneously. 

Mia and Chris’ strategies were consistent with our prediction for students at the CLM 

level of the length LT. 

Although not initially placed at the CIAM level, Karen exhibited concepts and 

processes consistent with this level as she engaged with the double number line 

representation. For example, she applied a partitioning strategy while maintaining the 

coordination of units along two scales simultaneously without prompting or support 

from the interviewer. We take this as evidence that Karen may be operating higher than 

the CLM level of the length LT. In particular, we think Karen’s simultaneous 

coordination of units along two scales exemplifies proportional reasoning about 

repeated or coordinated cases, which is consistent with the CIAM level of the length 

LT. Although we did not see her exhibit a reflection on a derived unit as an attribute, 

we conjecture that the task did not require this reflection. 

Parallel to prior research, this study established the importance of an understanding 

partitioning and coordinating units (Orrill & Brown, 2012) for understanding the 

double number line representation. However, in the present study we established a link 

between the levels of an LT for length measurement and students’ ability to use the 

double number line representation when solving proportional reasoning tasks. In 

particular, our prediction that students at the LURR level would rely on iterative 
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strategies, and children at the CLM level would partition and correctly attend to units 

along one scale, but not yet coordinate units along two scales simultaneously were 

correct. Future research is needed to explore ways to support children at LURR and 

CLM levels in developing these concepts and processes. 
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VARIABLE PARTS: A NEW PERSPECTIVE ON PROPORTIONAL 

RELATIONSHIPS AND LINEAR FUNCTIONS 
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We present a mathematical analysis that distinguishes two quantitative perspectives 

on ratios and proportional relationships: Multiple Batches and Variable Parts. We 

argue that (a) existing research on proportional relationships has addressed Multiple 

Batches but has largely overlooked Variable Parts, (b) Multiple Batches makes the 

co-variation aspect of proportional relationships more explicit, while Variable Parts 

makes the fixed multiplicative relationship between two quantities more explicit, (c) 

the distinction between Multiple Batches and Variable Parts is orthogonal to the 

within-measure-space versus between-measure-space ratio distinction, and (d) 

Variable Parts affords promising new approaches for addressing linear relationships. 

PAST RESEARCH ON PROPORTIONAL RELATIONSHIPS  

Ratios and proportional relationships are critical mathematics in elementary and 

secondary grades (e.g., Kilpatrick, Swafford, & Findell, 2001; National Council of 

Teachers of Mathematics, 1989, 2000). Although traditional instruction has 

emphasized applying rote procedures like cross multiplication to solve missing-value 

and comparison problems, a robust understanding of proportional relationships 

involves (a) attending to co-variation between two quantities and (b) forming 

multiplicative relationships between those quantities. Despite a significant body of 

empirical and theoretical research on proportional relationships, understanding how to 

support students’ and teachers’ understandings of both aspects of proportional 

relationships remains a significant challenge for the field.  

Empirical research has documented numerous difficulties that students, and sometimes 

teachers, experience with proportional relationships. One line of research has analyzed 

factors that influence the difficulty of proportion problems for students—including 

whether students are familiar with problem contexts (e.g., Tourniaire, 1986), whether 

quantities are discrete or continuous (e.g., Behr, Lesh, Post, & Silver, 1983), and 

whether ratios are integral, nonintegral, or unit ratios (e.g., Hart, 1981, 1988; Karplus, 

Pulos, & Stage, 1983; Noelting, 1980a, 1980b). A second line of research has 

examined students’ and teachers’ capacities to distinguish missing-value problems that 

describe proportional relationships from ones that do not (e.g., Cramer, Post, & 

Currier, 1993; Fisher, 1988; Freudenthal, 1983; Van Dooren, De Bock, Vleugels, & 

Verschaffel, 2010.) A third line of research has examined difficulties that students and 

teachers have conceiving of a ratio as a measure of a physical attribute, such as 

steepness or speed (Simon & Blume, 1994; Thompson & Thompson, 1994). A fourth 

line of research has examined strategies that students use to solve problems about 
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proportions successfully, often before any substantial instruction in these topics. These 

include forming progressively elaborate unit structures (e.g., Lamon 1993a, 1994; 

Lobato & Ellis, 2010) and double counting strategies (e.g., Hart 1981, 1988; Lamon, 

1993b).  

Theoretical research has identified various ways to think about multiplicative 

relationships in terms of quantities (see Greer, 1992, for a review). There is widespread 

agreement among mathematics education researchers that ratios and proportional 

relationships are part of the multiplicative conceptual field—a web of interrelated ideas 

that includes multiplication and division, fractions, linear functions, and more 

(Vergnaud, 1983, 1988). Furthermore, much of the theoretical work on proportional 

relationships has been informed by Vergnaud’s (1983) identification of isomorphism 

of measures as one of three fundamental multiplicative structures. Isomorphism of 

measures covers direct proportions between two measure spaces, and Vergnaud 

distinguished forming multiplicative relationships within measure spaces from 

forming such relationships between measure spaces (e.g., Freudenthal, 1973; Lamon, 

2007; Noelting, 1980b). 

We present an analysis that contributes to the theory of proportional relationships, 

identifying an overlooked perspective that promises new avenues for reasoning about 

proportional relationships and foundations for understanding slope and rate of change, 

among other subsequent topics.  

THE TWO PERSPECTIVES ON PROPORTIONAL RELATIONSHIPS 

Beckmann and Izsák (2013) identified two distinct, complementary perspectives on 

how quantities vary together in a proportional relationship. The two perspectives 

follow from consistently distinguishing the multiplier, M, from the multiplicand, N, in 

the equation M N = P (M denotes number of groups, N denotes the number of units in 

each/whole group, and P denotes the number of units in M groups). 

Figure 1 uses Punch Problem 1 to illustrate the two perspectives, which conceptualize 

and depict covariation and fixed multiplicative relationships in complementary ways. 

Multiple Batches has been widely studied among children—for instance, Lamon, 

(1993b) and Lobato and Ellis (2010) have referred to it as composed unit reasoning. In 

this perspective (Figure 1a), a mixture of 3 cups peach juice and 2 cups grape juice is 

fixed as 1 batch. One varies the number of batches to produce different amounts in the 

same ratio, which corresponds to operating on M. Vertical alignment on the double 

number line indicates amounts in the same 3-to-2 ratio. Covariation is made visually 

explicit as movement of that vertical alignment up and down the double number line, 

but the fixed multiplicative relationship between the quantities—the amount of peach 

juice is always 3/2 times the amount of grape juice—remains implicit. Variable Parts 

has been largely overlooked in past research and teaching on proportional 

relationships. In this perspective (Figure 1b), one fixes numbers of parts of peach juice 

(3) and grape juice (2), and all parts are the same size. One varies the size of the parts to 

produce different amounts in the same ratio (throughout, any one part remains equal to 
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all the other parts), which corresponds to operating on N. The numbers of parts show 

explicitly that the amount of peach juice is always 3/2 times the amount of grape juice, 

but variation within parts remains implicit.  

Figure 1: (a) The multiple batches perspective. (b) The variable parts perspective. 

The two perspectives on proportional relationships are orthogonal to the 

within-measure-space versus between-measure-space ratio distinction mentioned 

previously (Vergnaud, 1983): One can use each perspective to relate quantities within 

measure spaces or between measure spaces. To illustrate within-measure-space 

reasoning from the two perspectives, consider the following problem that continues to 

use the punch scenario. You made a mixture of 3 cups peach juice and 2 cups grape 

juice. Now you want to make a mixture in the same ratio using 1/4 as much peach juice. 

How much grape juice should you use? Using Multiple Batches, one might view the 

1/4 as operating on 1 batch and therefore reason that 1/4  should operate on the cups of 

peach and grape juice (1/4 batch3 cups of peach juice in each batch; 1/4 batch2 cups 

grape juice in each batch). In this case, multiplying by 1/4 changes the number of 

batches (M). Using Variable Parts, one might start with 1 cup of juice in each of the 5 

parts and view 1/4 as operating on the size of each part. Here, one needs 3 parts peach 

juice1/4 cup in each part and 2 parts grape juice1/4 cup in each part. In this case, 

multiplying by 1/4 changes the size of all 5 parts (N). Beckmann and Izsák (2013) 

explain how both Multiple Batches and Variable Parts can support 

between-measure-space reasoning.  

Research on proportional relationships has emphasized Multiple Batches, which 

facilitates within-measure-space reasoning using a variety of strategies, including a 

“building up” strategy and iterating and partitioning a composed unit (e.g., Kaput & 

West, 1994; Lamon, 1994, 2007; Lobato & Ellis, 2010; Vergnaud, 1988). Although 

Lobato and Ellis showed how iterating and partitioning a composed unit can be used to 

derive a fixed multiplicative relationship between measure spaces, Kaput and West 

noted that some multiplicative relationships are not well handled by iterating and 

partitioning within measure spaces:  

A major question not addressed in this chapter is how to deal with multiplicative change 

situations that are not well modeled [sic] by build-up patterns, change situations that are 

not inherently replicative. These include the geometric similarity problems handled poorly 

by our students. The larger, rescaled figure is not the join of several smaller ones. Rather, 
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each of the infinitely subdivisible parts of the smaller figure “grows” by the same amount 

to produce the larger as discussed by Confrey (this volume). This form of multiplicative 

growth likely has different primitive conceptual roots and is likely to require a different 

curriculum strand and different types of concrete representations. (p. 284)  

We hypothesize that Variable Parts and strip diagrams can provide the needed 

complementary perspective on multiplicative relationships. In particular, in the next 

section, we argue that adding Variable Parts to the study of proportional relationships 

may provide a more robust foundation for the study of linear functions than Multiple 

Batches alone. Thus, Variable Parts deserves consideration in research on cognition 

around proportional relationships. 

TWO PERSPECTIVES AS A FOUNDATION FOR LINEAR FUNCTIONS 

An important theme in the extensive literature on students’ and, to a lesser extent, 

teachers’ understandings of algebra is the role of prior experience with arithmetic, 

including with rational numbers, in supporting and constraining reasoning about linear 

relationships (e.g., Carraher & Schliemann, 2007; Hackenberg, 2010, 2013; Kieran, 

1992). For instance, Kieran (p. 394) argued one source of difficulty is that using 

algebraic notation to model problem situations requires students to modify their 

interpretations of symbols like the equal sign and to use arithmetic operations that 

invert operations they have learned to use almost automatically, while Hackenberg has 

argued that experience reasoning with fractions in terms of quantities provides a 

critical foundation for interpreting equations that relate quantities. We focus on the 

persistent challenge of forming fixed multiplicative relationships between quantities, 

including slope.  

Confusion about meanings of slope, rate of change, and steepness have been found 

among students using either reform or more traditional curricula (Lobato, Ellis, & 

Munoz, 2003; Teuscher, Reys, Evitts, & Heinz, 2010), as well as among future 

teachers (e.g., Simon & Blume, 1994). As one example, Lobato et al. (2003) reported 

on U.S. high school students’ understandings of slope after instruction using a reform 

curriculum that emphasized slope as a rate of change between covarying quantities in 

multiple real-world settings and that used multiple representations. The researchers’ 

reported examples of students’ persistent difficulties understanding slope as a 

multiplicative relationship between changes in values of x and y, even when students 

reasoned about partitioning and iterating Multiple Batches. Such results raise as a 

question whether other perspectives on covarying quantities might better support 

appropriate multiplicative conceptualizations of slope (or constants of 

proportionality). Next, we return to the Punch Problem 1 (Figure 1) and examine how 

Multiple Batches and Variable Parts can support such conceptualizations.  

In a Multiple Batches approach to slope, one thinks of having 3 cups peach juice for 

every 2 cups grape juice. The value 3/2 specifies the number of cups of peach juice 

needed for every 1 cup of grape juice (a unit rate) (Figure 2a). This view foregrounds 

slope as the coordinated variation within the grape juice and peach juice measure 
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spaces: For every new cup of grape juice, the amount of peach juice increases by 3/2 

cups. This perspective evokes repeatedly moving to the right 1 unit and up 3/2 units, 

but the general multiplicative relationship, y = (3/2) x, is less evident. In a Variable 

Parts approach to slope, the value 3/2 is a direct multiplicative comparison between the 

numbers of parts of grape and peach juice: The number of parts peach juice is 3/2 the 

number of parts grape juice (Figure 2b). Put another way, the value 3/2 is the factor that 

multiplies the number of parts of grape juice to produce the number of parts of peach 

juice, regardless of amounts. Figure 2b shows how strip diagrams can be coordinated 

with Cartesian graphs to support such an interpretation of slope. This view foregrounds 

slope as a multiplicative relationship: The y-coordinate is 3/2 of the x-coordinate, so y 

= (3/2) x. 

Figure 2: Two perspectives on slope. (a) Multiple batches. (b) Variable parts. 

CONCLUSION AND DISCUSSION 

An important question for future empirical research is whether introducing Variable 

Parts as a complementary perspective to Multiple Batches might help both students 

and teachers develop both key features of proportional relationships between two 

quantities and help them apply what they learn about proportional relationships to 

subsequent, central topics, such as slope. Our presentation of the two perspectives on 

ratios and proportional relationships suggests that adding a Variable Parts perspective 

may benefit students and teachers.  

One benefit is that Variable Parts may support forming direct multiplicative 

comparisons of two quantities. Past research has shown that children and adults can 

have difficulty making such comparisons when using Multiple Batches (e.g., 

Vergnaud, 1980; Schliemann & Nunes, 1990).  

A second benefit is that Variable Parts may support understanding not just slope and 

rate of change as multiplicative relationships but also equations that relate variables. 
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Numerous studies have demonstrated students’ difficulties forming equations (e.g., 

Clement, 1982; Koedinger & Nathan, 2004). The process of deriving equations from 

strip diagrams by relating quantities may highlight a relational rather than 

computational interpretation of the equal sign (e.g., Kieran 1992) and support 

generating linear equations. Investigating this possibility would be consistent with 

Kieran’s (2007) recommendation for additional research on how students could be 

assisted to make connections between verbal problem solving activity and generating 

equations (p. 729).  

Finally, an important question for future research is how students and teachers might 

develop understandings of the two perspectives. It might be that Multiple Batches 

better supports initial coordination of two varying quantities but that Variable Parts 

better supports subsequent applications, such as applications to linear functions. 

Furthermore, it might that students and teachers understandings of the two perspectives 

could support one another: Seeing covariation explicitly in Multiple Batches might 

support seeing covariation in Variable Parts and seeing multiplicative comparisons 

explicitly in Variable Parts might support seeing such comparisons in Multiple 

Batches. Thus, in combination, the two perspectives on proportional relationships are 

promising for supporting students’ understandings of a central mathematical domain. 

Therefore, the two perspectives deserve further investigation.  
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Jiafang Pan, Sarah Reinhold, Kristina Reiss 

TUM School of Education, Technische Universität München, Germany 

 

To support university students’ understanding of mathematical proofs, pictures 

accompanying text are frequently used in textbooks as well as in lectures. However, it 

is unclear if such pictures influence the individual’s reading behaviour. By recording 

the eye movements of eight mathematicians, we investigated whether and how adults 

with high expertise in mathematics pay attention to additional pictures when reading a 

written mathematical proof. We found that all participants paid attention to the 

pictures. As expected, in two out of three items, the text was fixated upon significantly 

longer than the picture. The data suggest that the participants tried to integrate 

information from text and picture by alternating between these representations. 

THEORETICAL FRAMEWORK 

The transition from secondary school to university mathematics and the first semesters 

of studies in mathematics are considered challenging for many students. Mathematics 

at the university level makes use of axioms, definitions and theorems that are not easy 

to understand for novices. In particular, mathematical proof is a central obstacle for 

students of mathematics. In order to improve students’ understanding, pictorial 

information might be a useful supplement to the written text. Accordingly, the present 

study focuses on the role of pictures in reading mathematical proofs. 

Mathematical proof 

Mathematics is a science of proof (Hilbert, Renkl, Kessler, & Reiss, 2008). The 

deductive structure of (university) mathematics demands dealing with mathematical 

proofs. In a mathematics lecture, the lecturer typically writes a sequence of definitions, 

theorems and proofs on a blackboard. Similarly, textbooks typically provide such a 

definition-theorem-proof structure as well. Accordingly, reading and comprehending 

proofs is a central activity of studying mathematics (Mejia-Ramos & Inglis, 2009). 

Dealing with mathematics in this way at the university level differs greatly from the 

secondary school level, where mathematics is typically presented in a much more 

concrete and for the most part non-deductive way. For this reason, many students 

struggle especially with the working with proofs. 

In spite of its high relevance for university mathematics, there is only little research on 

how individuals read proofs (Mejia-Ramos & Inglis, 2009). Inglis and Alcock (2012) 

asked first-year undergraduate students and academic mathematicians to evaluate 

mathematical proofs on a computer screen while their eye movements were recorded. 

The results revealed that the students spent proportionately more time on the formulas 
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(compared with the non-formula parts of the proof) than did the mathematicians. 

Furthermore, the mathematicians shifted their attention back and forth between the 

lines of the proof more often than the students, suggesting that the mathematicians 

spent more effort on searching for between-line warrants than the students. 

While the study by Inglis and Alcock (2012) investigated how experts and learners 

read proofs to evaluate the proof, there is almost no existing research on how 

individuals read proofs to comprehend them (Mejia-Ramos & Inglis, 2009). Reading 

proofs for comprehension plays the dominant role in early university studies, and is 

thus the topic of our study. As a first step, we involved adults with high expertise in 

mathematics in the current study. In a next step we plan to examine the behaviour of 

novices (that is students at the beginning of their studies) and to compare the findings 

of these two groups. This way we want to determine ideal reading strategies to adapt 

our teaching to student needs.  

The combination of text and pictures 

In university lectures as well as in textbooks, written mathematical proofs are 

frequently accompanied by pictures to visualize the main information provided in the 

text with the intention of facilitating the learning process. Cognitive psychological 

theories on multimedia learning (e.g. Mayer, 2001; Schnotz, 2005) support this idea 

and there is empirical evidence that students generally learn better from a combination 

of text and pictures than from text alone (for a review see e.g. Levie & Lentz, 1982). 

The combination of text and pictures seems to be particularly beneficial if the 

representations are semantically related to each other or presented closely together 

(Schnotz, 2005). However, there is also evidence that this effect occurs only under 

specific conditions. For instance, according to Schnotz (2005) pictures can be not 

beneficial when they visualize the text in a task-inappropriate way, as the form of 

visualization influences the structure of the mental model which is built from the 

picture. 

Yet, in the field of mathematics, there is little empirically based research about the 

effect of the combination of text and pictures. In a recent study by Dewolf, Van 

Dooren, Hermens, and Verschaffel (2013), pictures had seemingly no effect at all on 

higher-education students’ behaviour when solving mathematical word problems. The 

authors showed the students word problems on a computer screen and recorded their 

eye movements. In the experimental group, the text of every task was accompanied 

with a picture. The students’ answers to the word problems did not differ between the 

groups with or without the pictures. One possible reason for that was that the students 

barely looked at the pictures. Only around 1% of all fixations were on the area where 

the illustrations were presented. In view of these results, it is no matter of course that 

individuals pay any attention to the pictures presented as part of a proof. 
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RESEARCH QUESTIONS AND HYPOTHESES 

The aim of our study was to find out whether and how experts look at a picture given 

with a mathematical proof while reading the proof to comprehend it. Following the 

findings of Schnotz (2005) mentioned above, we used pictures which visualize part of 

the information given in the text and complete the text without providing any other 

information than given in the text, so that the text and the picture are semantically 

related to each other. Such pictures have been referred to as “representational pictures” 

(Elia & Philippou, 2004). 

Measuring individuals’ reading behaviour is a methodological challenge. One way is 

to show the items to participants and to ask them afterwards if they looked at the 

picture (retrospective reporting). Another way is to ask the participants to think aloud 

while working on the items (concurrent reporting). A drawback of both methods is, 

however, that they are highly subjective and do not reliably assess the actual 

behaviour. 

A more objective way to examine reading behaviour is eye tracking. Eye tracking is a 

technique with which the eye movements of a person, consisting of fixations and 

saccades, can be made visible. A fixation is the status when the eyes remain still (for 

example on a word during reading). A saccade is the very fast movement between two 

fixations where no information is perceived. The underlying idea of analysing eye 

movement data is that people are mainly processing the information they are looking at 

(Just & Carpenter, 1980). Although this assumption may not hold true in general, it is 

arguably reasonable to use eye fixations as a proxy for information processing during 

reading. 

The specific research questions and hypotheses of this study were: 1) Do academic 

mathematicians look at the representational picture provided along with a written proof 

at all? 2) If so, how long do they fixate the picture compared to the text? We assumed 

that the participants would indeed look at the picture (hypothesis 1), because this 

would help them understand the information provided in the text (see Schnotz, 2005). 

We further expected that the participants would fixate the text longer than the picture 

(hypothesis 2), because although the picture would help them understand the text, it 

was not essential to understand it and it did not reflect the whole content of the text. 3) 

Furthermore, we were interested if the participants look at the text and the picture in a 

specific sequence. We assumed that the participants would alternate between text and 

picture (hypothesis 3), in order to integrate information from the text and the picture. 

This behaviour was shown by experts in a study by Inglis and Alcock (2012). Here, the 

experts tried to integrate the information given in consecutive lines. 

METHODOLOGY 

The participants were six staff members of a German university who had an academic 

degree in mathematics and two university students majoring in mathematics. The mean 

age of these eight participants (five female) was 26 years (SD = 3.9). 
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The participants sat in front of a computer screen, which was connected to a binocular 

remote contact free eye tracking device (SensoMotoric Instruments) with a sampling 

rate of 500 Hz. The eye tracking device was placed underneath the screen. The 

participants were asked to avoid head and body movements as far as possible, so that 

their eye movements could be recorded reliably. First, calibration was performed 

through fixations of nine small dots on the screen. After that, the participants were 

instructed that they should try to comprehend the information provided by the items 

shown on the screen, so that they would be able to answer subsequent questions on the 

content. They were also informed that there was a time limit of five minutes per item, 

but that they could proceed earlier by pressing the space bar. In fact, on average the 

participants spent only 2.5 min on each item. 

Then the experiment started and the participants saw the first out of three items. After 

reading the item, they had to answer two multiple-choice-questions related to the 

content of the given item by clicking on the correct answer on the screen. The same 

procedure occurred for the second and third item. 

The three items were chosen from German mathematical textbooks that are commonly 

used for undergraduates. Thus, the items represented highly valid learning materials 

for students. Every item consisted of a theorem, its proof and a representational picture 

(see figure 1). The picture was arranged between the text and visualized the written 

proof without presenting any other information than the text. The contents were 

selected so that the participants were expected to understand them easily, but did at the 

same time not include mathematical knowledge that is typically learned by heart. 

 

Figure 1: Sample item containing a theorem (shaded paragraph) and its proof, 

including a representational picture. 

RESULTS 

Data from one participant had to be excluded from the analysis due to low calibration 

quality. To analyse the eye movements, we defined three areas of interest (AOIs) for 
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each item. These were fitted around the text above the picture, the picture itself and the 

text below the picture. As we were only interested in the proof part of the items, the 

gazes on the theorem itself were not considered. In the following, the values for the text 

above and below the picture are summarized as values for “text”. 

As can be seen from table 1, the fixation times for the pictures were always larger than 

zero, which is in line with hypothesis 1 and indicates that the participants paid attention 

to the picture. 

To compare fixation times on text and picture, we decided to divide the fixation times 

(in ms) for the AOI “text” and the AOI “picture” by the size (in pixel; px) of the 

respective AOI to account for the different areas of the AOIs (AOI sizes: textitem_1 = 

190498 px, pictureitem_1 = 78001 px; textitem_2 = 158096 px, pictureitem_2 = 66674 px; 

textitem_3 = 204824 px, pictureitem_3 = 68214 px). Table 1 displays the fixation times per 

pixel for each participant and the two AOIs of each item. 

  Item_1  Item_2  Item_3 

Participa

nts 

 Text 

ms | ms/px 

Picture 

ms | ms/px 

 Text 

ms | ms/px 

Picture 

ms | ms/px 

 Text 

ms | ms/px 

Picture 

ms | ms/px 

P01  120133 | .63 86807 | 1.11  86144 | .54 30660 | .46  141536 | .69 15518 | .23 

P02  83385 | .44 49659 | .64  42013 | .27 9786 | .15  55931 | .27 5363 | .08 

P03  58428 | .31 48133 | .62  26885 | .17 11104 | .17  43197 | .21 15824 | .23 

P04  71020 | .37 16888 | .22  62035 | .39 21261 | .32  67596 | .33 20402 | .30 

P06  53572 | .28 28619 | .37  38102 | .24 16449 | .25  63172 | .31 9110 | .13 

P07  64469 | .34 23324 | .30  46359 | .29 10862 | .16  71429 | .35 8502 | .12 

P08  19869 | .10 60 | .00  14148 | .09 701 | .01  79554 | .39 7797 | .11 

M (SD)  67268 

(30520) |  

.35 (.16) 

36213 

(28246) | 

.46 (.36) 

 45098 

(23528) | 

.29 (.15) 

14403 

(9557) | 

.22 (.14) 

 74631 

(31700) | 

.36 (.15) 

11788 

(5471) | 

.17 (.08) 

Table 1: Fixation times in ms and ms/px for each participant and the two AOIs of each 

item. Note: M = mean, SD = standard deviation. 

We conducted a paired t-test for each item to compare the fixation times of text and 

picture. There was no significant difference between the fixation times of text and 

picture in item 1, t(6)item_1 = -1.26, p = .25. For item 2 and item 3 there were significant 

differences, t(6)item_2 = 3.49, p = .013, t(6)item_3 = 3.17, p = .019. In both cases, the text 

was fixated upon longer than the picture. Even if there were comparatively large 

inter-individual differences in the fixation times, this tendency is found within almost 

all participants and items (see Table 1). This result supports hypothesis 2 for items 2 

and 3, but not for item 1. 

To illustrate the fixation times, Figure 2 shows the heat map for fixation times of item 

2. From blue to green via yellow to red a heat map shows the least and most fixated 
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areas. As can be seen from this figure, participants looked at the text as well as at the 

picture, but focused longer on the text than on the picture. 

 

Figure 2: Heat map for fixation times of item 2. 

To answer the question if participants looked at the text and picture in a specific order, 

we analysed the sequence charts which show the order and the duration of fixations of 

both AOIs for each participant. Figure 3 exemplarily shows the sequence chart for item 

2. The gaps result for example from the gaze to the theorem or to regions of the page 

where no AOIs were defined or from the loss of the eye contact. 

 
Figure 3: Sequence chart for item 2; 

fixations of text are coloured green, fixations of the picture red. 

The sequence chart for item 2 shows that every participant switched back and forth 

between the text and the picture frequently. The only exception was participant P08 

who merely had short glances at the picture at the end. The sequence charts of item 1 
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and item 3 looked similar. All in all we can state that the participants alternated 

between the text and the picture in each item, which supports hypothesis 3. 

DISCUSSION 

The aim of our study was to find out whether and how academic mathematicians look 

at a representational picture given with a mathematical proof while reading the proof in 

order to understand it. We recorded eye movements of eight participants with high 

expertise in mathematics and analysed fixation times on text and picture, as well as the 

sequence charts. 

We found that all participants paid attention at the pictorial information. This is not in 

line with the study by Dewolf et al. (2013), who found that students barely looked at 

pictures presented with word problems, no matter if these pictures were 

representational or only decorative. One reason for that might be that the picture in our 

study was positioned in the middle of the text so that it was unlikely to overlook it. 

However, as the participants switched back and forth between the text and the picture 

during reading the proof, it is not likely that they looked at the picture just because of 

its position. 

As expected, in two out of three items the relative fixation times for the text were 

significantly longer than for the picture. As the picture visualized the written proof 

without presenting any other information than the text, looking at the picture was not 

essential for understanding the proof. Furthermore, most of the participants were 

academic mathematicians who were certainly familiar with proofs in general and with 

the presented topics (chosen from undergraduates’ textbooks) in particular. This could 

explain why shorter fixations at the picture might have been enough to comprehend the 

proof. For the first item, there was no difference in the fixation times of text and 

picture. One reason for this unexpected result could be that only after working on the 

first item, the participants learned that the subsequent questions would not explicitly 

refer to the picture, so that they payed less attention to the picture in the following two 

items. 

Furthermore we could show that the participants alternated between the text and the 

picture during reading the proof, which suggests that they tried to integrate the 

information given in the text and in the picture. This is plausible as the text and the 

picture were semantically related. It might also be an indicator of mathematical 

expertise (see Inglis & Alcock, 2012). An interesting question for a follow-up study 

will be to see if individuals who are not familiar with reading proofs, such as first-year 

students of mathematics, show the same fixation pattern. 

We used eye movements as a relatively new method to assess mathematical tasks. We 

could show that this method is feasible to analyse whether and how participants look at 

a picture while reading a proof in order to understand it. Based on eye movement data, 

we could draw reliable conclusions, which would not have been possible through 

verbal reports (retrospective or concurrent). 
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A limitation of the study is the small number of participants, which restricts the 

generalizability of our findings. Certainly, further studies with a larger sample size are 

necessary to replicate the present results. Moreover, we aim to examine the reading 

behaviour of novices (that is students in their first year at university) and compare 

these data to our present findings, to trace students’ problems. On the long run, these 

studies could help developing learning materials tailored to student needs when 

learning university mathematics. 
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MATHEMATICS 
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The research-project Co²CA investigates the influence of teacher-trainings on 

in-service teachers’ expertise. Within a teacher-training-study 27 in-service teachers 

have been trained in selected ideas about teaching, having an exemplary focus on 

central aspects of formative assessment in competency-oriented mathematics. At the 

end of the teacher-trainings the teachers’ pedagogical content knowledge as crucial 

aspect of teachers’ expertise has been evaluated by using tests being sensitive to the 

teacher-trainings. Results of this evaluation point out: Within teacher-trainings 

pedagogical content knowledge can be conveyed to in-service teachers successfully. 

INTRODUCTION 

As part of fundamental debates about effective teaching in general and successful 

competency-oriented teaching of mathematics in detail the importance of 

(mathematics) teachers’ expertise for students’ learning has been pointed out by 

several studies within the last decade (Ball, Hill & Bass, 2005; Baumert et al., 2010). 

Next to open questions about how to train pre-service teachers to build up expertise it’s 

furthermore not clear by now how in-service teachers can best be supported building 

up their expertise. Therefore the interdisciplinary research-project Co²CA
1
 

investigates the influence of teacher-trainings on teachers’ expertise, focusing on 

selected ideas of teachers’ pedagogical content knowledge about assessing and 

reporting students’ performances if dealing with modelling tasks. Within this article, 

(1) an overview about theoretical and empirical discussions about the role of teachers’ 

knowledge as part of teachers’ expertise is given. Furthermore (2) some central ideas 

about mathematical modelling as part of competency-oriented mathematics as well as 

(3) empirical findings on assessing and reporting students’ performances are pointed 

out. Based on these considerations (4) a teacher-training-study as part of the 

research-project Co²CA is presented: research-question, design and test-instruments 

are illustrated as well as results pointing out the effectiveness of teacher-trainings for 

building up in-service teachers’ expertise. 

                                           
1
 Conditions and Consequences of Classroom Assessment. Research project supported by the 

German Research Society (DFG); principal researchers: E. Klieme, K. Rakoczy (both Frankfurt), W. 

Blum (Kassel), D. Leiss (Lueneburg). 
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TEACHERS’ KNOWLEDGE AS CORE DIMENSION FOR THE QUALITY 

OF TEACHING AND STUDENTS’ LEARNING 

Nearly the whole 20
th
 century researchers have tried to explain students’ learning by 

investigating the teacher’s role for the quality of teaching – once by describing the 

teachers’ personality, once by analysing learning processes and products in classroom, 

once by assessing teachers’ expertise. Especially since the work of Shulman (1986) the 

idea of harking back to teachers’ content knowledge (CK), teachers’ pedagogical 

content knowledge (PCK) and teachers’ general pedagogical knowledge (PK) as 

central aspects of teachers’ expertise to explain the quality of teaching and of students’ 

learning is a crucial one. These “three core dimensions of teacher knowledge” 

(Baumert et al., 2010, p. 135) help to understand the teachers’ role in the classroom. By 

assessing, describing and analysing teachers’ CK, PCK and PK, several studies resort 

to these dimensions of teachers’ expertise – and with a special focus on mathematics 

teachers the COACTIV-project (Baumert et al., 2010), the Michigan Group (Ball, Hill 

& Bass, 2005) and the TEDS-project (Döhrmann, Kaiser & Blömeke, 2012) point out 

the importance of CK, PCK and PK for the quality of teaching and for students’ 

learning. And having especially a closer look at teachers’ pedagogical content 

knowledge, Baumert (2010) stresses: 

PCK – the area of knowledge relating specifically to the main activity of teachers, 

namely, communicating subject matter to students – makes the greatest contribution 

to explaining student progress. This knowledge cannot be picked up incidentally, 

but as our finding on different teacher-training programs show, it can be acquired in 

structured learning environments. One of the next great challenges for teacher 

research will be to determine how this knowledge can best be conveyed to both 

preservice and inservice teachers. (Baumert et al., 2010, p. 168) 

MATHEMATICAL MODELLING AS ONE ASPECT OF COMPETENCY- 

ORIENTED MATHEMATICS 

Based on general ideas about competency-oriented mathematics (Niss, 2003) several 

countries implemented national standards for the teaching and learning of 

competency-oriented mathematics within the last years (see besides others: NCTM, 

2000). One of the main ideas of these standards is to not only telling teachers any 

longer which mathematical content should be taught and learnt at school but to 

describe which mathematical competencies students should possess at the end of a 

course. Besides other competencies (e. g. problem solving, reasoning, communicating 

– see Blomhoj & Jensen, 2007), mathematical modelling is one of these competencies 

students should acquire if dealing with mathematical topics at school. The main idea of 

being able to do mathematical modelling is: One should not only be able to solve pure 

mathematical problems but to work on (complex) real world problems which can be 

solved by using mathematics. In detail, the competence of mathematical modelling 

includes (see also Blum, 2011; Maaß, 2010):  
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 Being able to understand, structure and simplify a complex real world 

problem and being able to transfer the reduced real world problem into a so 

called mathematical problem which can be worked on mathematically. 

 Being able to work on the mathematical problem mathematically, to interpret 

and validate the mathematical result by transferring it back to reality and 

finally being able to give an answer to the initial, proper real world problem. 

ASSESSING AND REPORTING STUDENTS’ PERFORMANCES WITHOUT 

GIVING MARKS – THE IDEA OF FORMATIVE ASSESSMENT   

Next to fundamental discussions about competency-oriented mathematics the question 

of how to assess and report students’ performances to support students’ learning as 

good as possible is a central question of improving the quality of teaching in general 

and the quality of teaching mathematics in detail. While in school students’ 

performances are quite often assessed only once at the end of a course and the students 

is given a mark summarizing their performances which “does not normally have 

immediate impact in learning” (Sadler, 1989, p. 120), theoretical and empirical studies 

hint at the importance of a more formative assessment at school (Baker, 2007; Black & 

William, 2009; Hattie, 2008; Shepard, 2000): Students’ performances should be 

assessed in short intervals and more than once during learning processes, diagnoses of 

students’ performances should immediately be used to support students’ learning. As a 

central element of such a formative assessment, feedback should be given to the 

students whenever assessing performances which mainly answers three questions: 

Where am I going? How am I going? and Where to next?” (Hattie & Timperley, 2007, 

p. 88). Furthermore meta-analyses point out the following ideas of how feedback “with 

which a learner can confirm, add to, overwrite, tune, or restructure information in 

memory” (Butler & Wine, 1995, p. 275) as part of formative assessment should look 

like to support students’ progress as good as possible: 

 Kluger & DeNisi (1996) stress that feedback should first of all be close to the 

tasks students are working on: “effects on performance are augmented by (a) 

cues that direct attention to task-motivation processes and (b) cues that direct 

attention to task-learning processes” (Kluger & DeNisi, 1996, p. 268). 

 Deci, Koestner & Ryan (1999) emphasize that feedback should inform 

students concerning their learning processes without any kind of pressure. 

Furthermore the information provided to the students should not only tell the 

student whether he is right or wrong but offering additional information about 

how to improve (see also Bangert-Drowns, Kulik, Kulik & Morgan, 1991; 

Pittman, Davey, Alafat, Wetherill & Kramer, 1980). 

A TEACHER-TRAINING-STUDY FOR IN-SERVICE TEACHERS 

Based on theoretical and empirical discussions (1) about the importance of teachers’ 

expertise for the quality of teaching and for students’ learning, (2) about 

competency-oriented mathematics in general and mathematical modelling in detail and 
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(3) about the importance of feedback as central element of formative assessing and 

reporting students’ learning, within a teacher-training-study the research-project 

Co²CA aims at answering the following research-questions: 

Research-question I  

Is it possible to develop tests on teachers’ expertise being sensitive to the topics of a 

teacher-training? Or more specifically: Is it possible to develop tests on teachers’ 

pedagogical content knowledge concerning formative assessment if dealing with 

modelling tasks in competency-oriented mathematics which can be used to evaluate a 

teacher-training reliably?  

Research-question II:  

Is it possible to support teachers building up their expertise if attending in 

teacher-trainings? Or more specifically: Is it possible to foster teachers’ pedagogical 

content knowledge concerning formative assessment if dealing with modelling tasks in 

competency-oriented mathematics if teachers are trained in these topics? 

Design and content of the teacher-training-study 

For being able to answer the main research-questions stated above, the following 

teacher-training-study as one part of the research-program of Co²CA looks like as 

follows (see also figure 1): Overall 27 mathematics teachers participate in 

teacher-trainings taking place from September 2013 to December 2013. Before 

starting the trainings every single teacher is assigned to one out of two experimental 

groups (EG A and EG B). Over a period of 10 weeks there are three-day 

teacher-trainings twice for these two experimental groups, once at the beginning of the 

teacher-training-study, once at the end of the teacher-training-study. 

 

Figure 1: Design of the teacher-training-study 

The contents of the teacher-trainings differ between the two experimental groups: 

Teachers of EG A are trained in central ideas of formative assessment if dealing with 

modelling tasks in competency-oriented teaching of mathematics, teachers of EG B are 

trained in selected aspects of competency-oriented mathematics in general (see table 1 

for details). Next to taking part in the teacher-trainings itself the participating teachers 

have to implement central ideas of the teacher-trainings within their teaching 

mathematics at school, that is to assess and report students’ modelling performances 
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regularly (EG A) respectively to make use of problem-solving-tasks and 

modelling-tasks (EG B) if teaching mathematics. 

 

EG A EG B 

(1) Formative assessment and feedback as 

central element of formative assessment: 

A general psychological and pedagogical 

point of view. 

(1) Mathematical problem solving as a 

central element of competency- oriented 

mathematics: General didactical ideas and 

task-analyses.  

(2) Mathematical modelling as a central 

element of competency- oriented 

mathematics: Analysing students’ solution 

processes and giving feedback to the 

students. 

(2) Mathematical modelling as a central 

element of competency- oriented 

mathematics: General didactical ideas and 

task-analyses. 

(3) Implementing formative assessment in 

teaching mathematical modelling. 

(3) Implementing mathematical problem 

solving and mathematical modelling in 

every-day teaching. 

Table 1: Contents of the teacher-training-study 

Test-instruments to evaluate the teacher-training-study 

For being able to evaluate the teacher-training-study and to evaluate the effectiveness 

of the trainings, the following test-instruments are used within the study to compare the 

teachers’ pedagogical content knowledge of the two experimental groups:  

 Firstly a pretest on teachers’ mathematical pedagogical content knowledge is 

used at the beginning of the training to control for teachers’ PCK. This test is 

taken from the COACTIV-project (see e. g. Krauss et al., 2008) and asks for 

general didactical ideas if teaching mathematics.  

 Secondly there is a newly developed posttest on teachers’ PCK which is used 

to compare the teachers’ expertise between the two experimental groups at the 

end of the teacher-training-study and which is sensitive to the contents of the 

teacher-trainings in EG A. In detail this PCK-posttest consists of overall 10 

items dealing with (1) ideas about mathematical modelling processes in 

general as well as with (2) ideas about how to analyse students’ solution 

processes to modelling tasks. Furthermore it is asked (3) for how to give 

feedback to students working on modelling tasks and (4) for concepts of how 

to implement formative assessment in teaching mathematical modelling (an 

example of an item of this PCK-posttest is given in figure 2). 
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Figure 2: An example of a PCK-posttest-item 

Results of the teacher-training-study 

By January 2014, the PCK-posttest has been coded completely (whereas data of the 

PCK-pretest still has to be analysed): For every single item, teachers’ are given – 

depending on the item – up to 3 score-points, by theory a minimum of 0 score-points 

and a maximum of 21 score-points is possible. Based on this coding the following 

answers to the research questions stated above can be given (see also table 2):  

 Research Question I: The PCK-posttest is reliable with Cronbach’s alpha = 

0.68 regarding the whole sample of 27 teachers within EG A and EG B. 

 Research Question II: Having a closer look at the teachers’ performances to 

the PCK-posttest, it can be seen that teachers of EG A outperform their 

counterparts of EG B. In detail, teachers of EG A do not only score a higher 

empirical maximum but do also have a significantly higher mean-score in the 

PCK-posttest (t(25) = 4.90; p < .001). The effect-size of this difference is a 

medium one, that is Cohen’s d for independent samples with a differing 

sample size is d = 0.7. 

PCK-posttest: 10 items; alpha = 0.68 (N = 27) 

 

 N m SD emp. min. emp. max.   

EG 1 10 15.10 1.91 12 18 
p < .001 d = 0.7 

EG 2 17 9.65 3.18 2 14 

Table 2: Results of the PCK-posttest 
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SUMMARY AND OUTLOOK 

Teachers’ expertise has been pointed out to be central for the quality of teaching. 

However it is still an open question how to support teachers building up their expertise. 

Within the research project Co²CA a test on teachers’ expertise has successfully been 

developed which is not only sensitive to the content of teacher-trainings but which can 

furthermore reliably be used to evaluate teachers’ expertise at the end of trainings. 

Results using this instrument illustrate that teachers’ expertise is significantly higher if 

they are specifically trained within the topics being tested comparing to teachers not 

being trained. So it is not only general knowledge about competency-oriented 

mathematics which is needed to answer the posttest-items (EG B) but special 

knowledge about formative assessment if dealing with modelling tasks (EG A). Within 

the next steps the PCK-pretest has to be analysed to control for teachers’ general 

didactical knowledge. Furthermore results presented here have to be discussed within 

the broader context of the research-program of Co²CA to investigate the influence of 

teacher-trainings on teachers’ expertise in depth.  

References 

Baker, E. L. (2007). The end(s) of testing. Educational Researcher, 36, 309-317. 

Ball, D. L., Hill, H. C., & Bass, H. (2005). Knowing mathematics for teaching: Who knows 

mathematics well enough to teach third grade, and how can we decide? American 

Educator, 29(1), 14-17, 20-22, 43-46. 

Bangert-Drowns, R. L., Kulik, C. C., Kulik, J. A., & Morgan, M. (1991). The instructional 

effect of feedback in test-like events. Review of Educational Research, 61, 213-238. 

Baumert, J., Kunter, M., Blum, W., Brunner, M., Voss, T., Jordan, A.,…Tsai, Y.-M. (2010). 

Teachers' mathematical knowledge, cognitive activation in the classroom, and student 

progress. American Educational Research Journal, 47(1), 133-180.  

Black, P., & Wiliam, D. (2009). Developing the theory of formative assessment. Educational 

Assessment, Evaluation and Accountability, 21(1), 5-31. 

Blomhoj, M., & Jensen, T. H. (2007). What’s all the fuss about competencies? Experiences 

with using a competence perspective on mathematics education to develop the teaching of 

mathematical modelling. In W. Blum, P. L. Galbraith, H. W. Henn, & M. Niss (Eds.), 

Modelling and applications in mathematics education: The 14
th

 ICMI study (pp. 45-56). 

New York: Springer. 

Blum, W. (2011). Can modelling be taught and learnt? Some answers from empirical 

research. In G. Kaiser, W. Blum, R. Borromeo Ferri, & G. Stillman (Eds.), Trends in 

teaching and learning mathematical modelling (pp. 15-30). Dordrecht: Springer. 

Butler, D. L., & Winne, P. H. (1995). Feedback and self-regulated learning: A theoretical 

synthesis. Review of Educational Research, 65(3), 245-281. 

Deci, E. L., Koestner, R., & Ryan, R. M. (1999). A meta-analytic review of experiments 

examining the effects of extrinsic rewards on intrinsic motivation. Psychological Bulletin, 

125(6), 627-668. 



Besser, Leiss 

2 - 136 PME 2014 

Döhrmann, M., Kaiser, G., & Blömeke, S. (2012). The conceptualisation of mathematics 

competencies in the international teacher education study TEDS-M. ZDM–The 

International Journal on Mathematics Education, 44, 325-340. 

Hattie, J., & Timperley, H. (2007). The power of feedback. Review of Educational Research, 

77(1), 81-112. 

Hattie, J. (2008). Visible learning: a synthesis of over 800 meta-analyses relating to 

achievement. London: Routledge. 

Kluger, A. N., & DeNisi, A. (1996). The effects of feedback interventions on performance: A 

historical review, a meta-analysis, and a preliminary feedback intervention theory. 

Psychological Bulletin, 119(2), 254-284. 

Krauss, S., Brunner, M., Kunter, M., Baumert, J., Blum, W., Neubrand, M., & Jordan, A. 

(2008). Pedagogical content knowledge and content knowledge of secondary mathematics 

teachers. Journal of Educational Psychology, 100(3), 716-725. 

Maaß, K. (2010). Classification scheme for modelling tasks. Journal für 

Mathematik-Didaktik, 31, 285-311. 

National Council of Teachers of Mathematics. (2000). Principles and standards for school 

mathematics. Reston: NCTM. 

Niss, M. (2003). Mathematical competencies and the learning of mathematics: The Danish 

KOM project. In A. Gagatsis & S. Papastavridis (Eds.), Mediterranean Conference on 

Mathematical Education (pp. 115-124). Athens: 3
rd

 Hellenic Mathematical Society and 

Cyprus Mathematical Society. 

Pittman, T. S., Davey, M. E., Alafat, K. A., Wetherill, K. V., & Kramer, N. (1980). 

Informational versus controlling verbal rewards. Personality and Social Psychology 

Bulletin, 6, 228-233. 

Sadler, D. R. (1989). Formative assessment and the design of instructional systems. 

Instructional Science, 18, 119-144. 

Shepard, L. A. (2000). The role of assessment in a learning culture. Educational Researcher, 

29, 4-14. 

Shulman, L. S. (1986). Those who understand: Knowledge growth in teaching. Educational 

Researcher, 15, 4-14. 



2014. In Nicol, C., Liljedahl, P., Oesterle, S., & Allan, D. (Eds.) Proceedings of the Joint Meeting 2 - 137 

of PME 38 and PME-NA 36,Vol. 2, pp. 137-144. Vancouver, Canada: PME. 

THE BELIEFS OF PRE-SERVICE PRIMARY AND SECONDARY 

MATHEMATICS TEACHERS, IN-SERVICE MATHEMATICS 

TEACHERS, AND MATHEMATICS TEACHER EDUCATORS 

Kim Beswick, Rosemary Callingham 

University of Tasmania 

 

This paper presents a comparison of the responses to nine beliefs items and one 

confidence item of samples of Australian mathematics teachers, pre-service primary 

teachers, pre-service secondary mathematics teachers, and mathematics teacher 

educators. Significant differences were found between each pair of groups. The 

implications of these for the effectiveness of mathematics teacher education and 

professional learning for mathematics teachers are discussed. 

TEACHER BELIEFS 

Teachers’ beliefs influence practice in subtle but powerful ways (Bray, 2011). Beliefs 

about the nature of mathematics, mathematics teaching and mathematics learning have 

been considered most relevant to practice and have been the focus of much research in 

the area. In relation to the nature of mathematics, Ernest (1989) identified three 

philosophies comprising systems of beliefs. The first, an Instrumentalist view, regards 

mathematics as a set of useful skills for practical purposes. The second, the Platonist 

view, sees the discipline as a structured body of pre-existent knowledge. According to 

the third view, Problem-Solving, mathematics is a creative human activity and product.  

Ernest and others have considered beliefs about mathematics teaching and learning 

that follow from these views of the discipline. Van Zoest, Jones and Thornton (1994), 

for example, conceptualised three views of mathematics teaching. These were 

Content-focused with an emphasis on performance, Content-focused with an emphasis 

on understanding, and Learner-focused. Beswick (2005) used a modification of 

Ernest’s work to identify three views of mathematics learning that align with each of 

his philosophies. These were, Skill mastery, passive reception of knowledge; Active 

construction of understanding; and Autonomous exploration of own interests.  

There has been a trend towards incorporating teachers’ beliefs research into studies of 

teacher knowledge because of the practical difficulty of distinguishing them and/or 

theoretical arguments about their equivalence (e.g., Kuntze, 2012). This paper arose 

from a study of teacher knowledge, conceptualised to include their beliefs. It focuses 

on broad beliefs about the nature of mathematics, and mathematics teaching and 

learning and draws upon seminal work of Ernest (1989) and others, on conceptualising 

mathematics teachers’ beliefs, to allow data on mathematics teacher educators’ 

(MTEs) beliefs to be considered in the context of established understandings about 

pre-service teachers (PSTs) and in-service teachers’ (MTs) beliefs, and for 

comparisons among various groups to be made. The research question that guided the 
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study was: What differences are there between the beliefs of primary and secondary 

PSTs, MTs and MTEs? 

Pre-service teachers’ beliefs 

PSTs commence their university study with beliefs based on their own experiences of 

learning mathematics at school (Van Es & Conroy, 2009). PSTs’ beliefs about 

mathematics have been characterised as fixed and hence aligned with Ernest’s 

Instrumentalist or Platonist views. Similarly, Philipp, et al., (2007) reported that many 

PSTs see mathematics as a collection of rules and procedures. This is problematic for 

MTEs conducting teacher education programs underpinned by constructivist views of 

learning, and student-centred teaching that emphasises conceptual understanding. 

Beswick and Goos (2012) reported that primary PSTs responded positively to beliefs 

items reflecting a student-centred approach to teaching but that their responses to items 

about the nature of mathematics were more ambiguous suggesting that the nature of the 

discipline may have received too little attention in their teacher education programs.  

Many studies have reported favourably on the effectiveness of teacher education 

programs in influencing PSTs’ beliefs to be more compatible with student-centred 

teaching but almost always accompanied by caution about depth and longevity of 

observed changes (e.g., Conner, Edenfield, Gleason, & Ersoz, 2011). Studies of 

primary PSTs appear more common than those involving secondary PSTs but the 

research that has been conducted with the secondary group has contributed important 

insights to conceptualisations of the belief structures of secondary MTs and their 

development (e.g., Cooney & Shealy, 1997). Implicit in this is an assumption of 

consistency between the beliefs of secondary PSTs and MTs. 

In one of few comparative studies of the attitudes and beliefs of primary and secondary 

PSTs, Kalder and Lesik (2011) found that primary PSTs who had not chosen to 

specialise in mathematics teaching were more likely than secondary PSTs to have 

negative attitudes to and beliefs about mathematics. 

In-service mathematics teachers’ beliefs 

Studies of MTs’ beliefs have been in the context of professional learning (PL) 

initiatives aimed at influencing them in similar ways as described in relation to PSTs 

(e.g., Kuntze, 2012); describing and categorising them (Kalder & Lesik, 2011), or 

exploring their connection with practice (e.g., Beswick, 2005). Archer (1999) 

interviewed 17 primary teachers and 10 secondary MTs in order to compare their 

beliefs. She found that primary teachers were more inclined than secondary MTs to see 

mathematics as linked to everyday life and to other areas of the curriculum. In contrast, 

secondary teachers tended to see it as a self-contained, orderly and logical. It seems 

that primary teachers are inclined to hold Instrumental views of mathematics (Ernest, 

1989) whereas secondary MTs are more likely to have a Platonist view. 
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Mathematics educators’ beliefs 

The beliefs of MTEs have received little attention, however, Callingham, Beswick, 

Clark, Kissane, Serow, & Thornton (2012) reported on the knowledge (including 

beliefs) of MTE members of the Mathematics Education Research Group of 

Australasia (MERGA) using the same instrument as used with primary and secondary 

PSTs. They reported that the MTEs found the beliefs items more difficult to endorse 

than did PSTs. There were no differences for different employment types (continuing, 

fixed term, and casual) or length of tertiary teaching experience other than for those 

with more than 16 years of experience who were less inclined to endorse the items.  

Differences among the beliefs of various groups 

Ashman and McBain (2011) investigated the beliefs about mathematics teacher 

education of primary MTs and PSTs. They found a tendency among both groups to 

value classroom experience over university study, but that both groups shifted to a 

more balanced view of the relative value of learning in the two contexts following a 

semester long intervention that involved substantial interaction between MTs and 

PSTs as well as liaison with MTEs.  

The effectiveness of MTEs’ work with PSTs, and with MTs in the context of PL, 

depends upon their capacity to influence. If there are important differences between the 

ways in which MTEs and PSTs or MTs view mathematics and its teaching and 

learning, and these are neither acknowledged nor addressed, MTEs’ ability to 

influence may be compromised. Differing beliefs of experienced MTs and/or MTEs 

and newly graduated MTs may contribute to both the importance that PSTs place on 

learning during practicums (Korthagen, 2010) and to the fact that many beginning 

teachers perpetuate the teaching that they experienced in school (Ball, 1990). Differing 

beliefs may also contribute to the perceived theory-practice gap that has concerned 

researchers, teacher educators, and teachers (Korthargen, Loughran, & Russell, 2006). 

Studies, such as that reported here, that examine the nature and extent of belief 

differences between PSTs, MTs, and MTEs are thus important and timely. 

THE STUDY 

The PST data reported and discussed in this paper were part of a larger Australian 

study of the knowledge required to teach mathematics. Aspects of the study related to 

primary PSTs and the use of the survey with MTEs have been reported elsewhere (e.g., 

Beswick & Goos, 2012; Callingham et al., 2012). This paper focuses on the responses 

to beliefs items for these cohorts and for MTs and secondary mathematics PSTs. 

Instrument and procedure 

Data about participants’ beliefs were collected as part of an online survey that also 

included questions designed to examine their mathematical content and pedagogical 

content knowledge. Due to constraints on the overall length of the survey the beliefs 

items were limited to the nine Likert type items listed in Figure 1. They required 

responses on 5-point scales from Strongly Disagree to Strongly Agree. The three items 
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concerning each of beliefs about the nature of mathematics (Items 1, 4 and 7), 

mathematics teaching (Items 2, 5 and 8), and mathematics learning (Items, 3, 6 and 9), 

were modified from existing sources (e.g., Van Zoest et al., 1994). A tenth item asked 

respondents to rate on a similar scale their confidence to teach the mathematics at the 

level they were or would be qualified to teach. 

 
Figure 1: The nine beliefs items 

The survey was made available to PSTs at seven Australian universities, to MTs 

through the website of the Australian Association of Mathematics Teachers (AAMT), 

and to MTEs through the MERGA website. Respondents accessed the survey via an 

anonymous link. An analysis of variance using SPSS, was used to examine differences 

in mean responses among the groups to the beliefs and confidence items.  

Participants 

Participants comprised 294 primary PSTs and 86 secondary mathematics PSTs. Most 

(81.6%) of the primary PSTs had not studied mathematics or statistics beyond 

secondary school. Of these 58.3% (47.6% of the whole PST sample) had studied a 

Year 12 mathematics subject that could contribute to university entrance, and 18.3% 

(15% of whole sample) reported Year 10 as the highest level of mathematics studied. A 

similar percentage (13.6%) had studied some university mathematics or statistics. 

Nearly half (48.2%) of the secondary PSTs had studied mathematics or statistics as 

part of a bachelor degree and a further 5.8% reported postgraduate study of these 

subjects. Some of the secondary PSTs (12.9%) had studied no mathematics beyond 

Year 10 or had studied a Year 12 subject that did not count for university entrance. 

The 57 MTEs and 65 MTs were drawn from every Australian state and territory. Most 

of the MTEs (77.2%) had post-graduate qualifications but 29.8% had not studied 

tertiary level mathematics. Almost half had been working in universities for 5 years or 

less and 38.4% had taught in schools for at least 15 years. Of the MTs, 35% reported 

having postgraduate degrees and 51.2% were more than 50 years old. Three quarters 

(75.4%) had studied mathematics or statistics at tertiary level. Almost two thirds 

(63.5%) taught secondary school mathematics. This profile is consistent with the MTs 

having been recruited through the AAMT website and hence likely to members of that 

association and to consider themselves to be specialist MTs. 
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RESULTS  

Differences were found for all beliefs items except Items 6 and 9, and for the 

confidence item. For Item 1 MTs, MTEs and secondary PSTs all agreed more strongly 

than primary PSTs, F(3, 470) = 37.767, p = .000 in each case. For Item 2, MTs and 

MTEs agreed more strongly than Primary PSTs, F(3, 470) = 4.468, p < .05. In relation 

to Item 3 both groups of PSTs agreed more strongly than each of MTs and MTEs, F(3, 

469) = 13.152, p < .01 in each case. The only difference for Item 4 was between MTs 

and MTEs with the former group agreeing more strongly, F(3, 468) = 3.340, p = .015. 

For Item 5, MTEs agreed less strongly than all other groups, F(3, 463) = 12.201, p = 

.000 in each case. Both groups of PSTs agreed more strongly with Item 7 than did 

MTEs, F(3, 461) = 6.806, p = .000 in each case. For Item 8 both MTs and MTEs agreed 

more strongly than Primary PSTs, F(3, 462) = 6.772, p = .001 for primary PSTS and p 

= .024 for secondary PSTs. MTs and MTEs were more confident than each of the PST 

groups, F(3, 459) = 29.622, p < .01 in each case. 

There were significant differences between MTEs and primary PSTs for Items 1, 2, 3, 

5, 7, and 8 with MTEs more likely to view mathematics as a “beautiful and creative 

human endeavour”, and to agree that periods of confusion and uncertainty, and 

justifying mathematical thinking are important to mathematics learning. PSTs were 

more likely than MTEs to believe that students learn by practicing procedures, that 

procedures guarantee right answers, and that acknowledging multiple ways of thinking 

mathematically could confuse students.  

MTs and primary PSTs responded significantly differently to Items 1, 2, 3, and 8, with 

MTs, more likely than primary PSTs to view mathematics as a “beautiful and creative 

human endeavour”, and to agree that periods of confusion and uncertainty, and 

justifying mathematical thinking, are important to mathematics learning. Primary 

PSTs were more likely to believe that acknowledging multiple ways of thinking 

mathematically could be confusing.  

Significant differences between MTEs and secondary PSTs were found for Items 3, 5, 

and 7, with secondary PSTs more likely to believe that students learn by practicing 

procedures, that these procedures guarantee right answers, and that acknowledging 

multiple ways of thinking mathematically could confuse students. 

MTEs and MTs differed for Items 4 and 5, with MTs more likely to believe 

mathematical ideas are pre-existing and that students learn by practising procedures. 

The only significant difference between the PST groups was in relation to Item 1, with 

secondary PSTs more likely to see mathematics as a “beautiful and creative human 

endeavour”. MTEs and MTs were more confident than both PST groups. 

DISCUSSION 

Primary PSTs were less likely than other groups to agree that “Mathematics is a 

beautiful and creative human endeavour” (Item 1), and less likely than both MTs and 

MTEs to agree that “Periods of uncertainty and confusion are important for 
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mathematics learning” (Item 2) and that “Justifying mathematical thinking is an 

important part of learning mathematics” (Item 8). Both of these results are consistent 

with the well-documented unease that this group have with the discipline (Kalder & 

Lesik, 2011). Many regard mathematics with fear and dislike and many of their own 

experiences of uncertainty and confusion in learning mathematics may not have 

resulted in eventual understanding. Similarly, they may not have had positive 

experiences of having to justify their mathematical thinking. 

Both groups of PSTs were more likely than MTs or MTEs to agree that 

“Acknowledging multiple ways of mathematical thinking may confuse children” (Item 

3), and more likely than MTEs to agree that “the procedures and methods used in 

mathematics guarantee right answers” (Item 7). Acknowledging multiple ways of 

mathematical thinking is broadly consistent with progressive views of mathematics 

teaching as described by Beswick (2005) and so this result suggests that the PSTs had 

views less aligned with reform teaching than did MTEs and MTs. The results for this 

item are, however, difficult to interpret because some may have agreed because they 

regarded confusion as a negative experience to be avoided whereas others may have 

agreed but regarded confusion as a necessary to achieving greater understanding. Item 

7 is consistent with an Instrumentalist view of mathematics (Ernest, 1989). The results 

for this item are thus consistent with the stronger Problem solving view of the 

discipline of MTs and MTEs than primary PSTs evident from the data for Item 1. 

MTEs were less likely than all other groups to agree that “Students learn by practicing 

procedures and methods for performing mathematical tasks” (Item 5). This statement 

is broadly consistent with a Skill mastery, passive reception of knowledge view of 

mathematics teaching (Beswick, 2005) and contrary to an emphasis on teaching for 

understanding that is prevalent in mathematics education literature. It is also consistent 

with the apparent counteractive effect of the practicum on the changes in beliefs that 

MTEs strive to instil in PSTs (e.g., Conner et al., 2011). Given that the MTs in this 

study were well qualified, largely experienced, and engaged with their profession, this 

result should not be dismissed lightly. It could be that distance from the reality of 

mathematics classrooms causes MTEs to adopt less nuanced rhetoric in regard to this 

and possibly other pedagogical issues.  

MTs were more likely than MTEs to agree that, “Mathematical ideas exist 

independently of human ability to discover them”. This item expresses a broadly 

Platonist view of the discipline (Ernest, 1989) and so the result is consistent with that 

for Item 1. The greater confidence of MTs and MTEs than PSTs is consistent with their 

relative experience. 

Consideration of Items 1, 4 and 7 together suggests that the MTEs tended to hold views 

of the nature of mathematics most closely aligned with a Problem Solving view of the 

discipline, MTs were more likely to be Platonists, and PSTs, particularly primary 

PSTs, more inclined to hold Instrumentalist views. In relation to mathematics learning 

as reflected in Items 2, 5, and 8, a similar ordering of perspectives is evident. For 

mathematics teaching there was, however, a difference between the groups only for 
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Item 3. That result is consistent with MTs and MTEs having more learner-focussed 

views of mathematics teaching than PSTs but given the interpretative difficulties 

associated with Item 3 and the absence of differences for other teaching related items it 

is not clear that beliefs about teaching fit the same pattern. Rather, the teaching 

practices endorsed by the four groups are little different in spite of differences in their 

beliefs about the nature of mathematics and how it is learned. This accords with 

evidence that beliefs about mathematics and its teaching and learning manifest in 

practice in subtle ways (Bray, 2011) and that some MTs confound the discipline with 

the mathematics of the school curriculum (Beswick, 2012). 

CONCLUSION 

This study represents an initial attempt to compare the beliefs of MTs, MTEs and 

primary and secondary PSTs. Beliefs of MTEs are particularly under-researched. The 

extent to which MTEs appear to hold different beliefs from either MTs or PSTs points 

to a need for further exploration of the bases of these differences. It could be that 

MTEs, a relatively small community in Australia, are susceptible to adopting accepted 

rhetoric without appropriate critique. Although few, the differences between MTEs 

and experienced, professionally engaged MTs are relevant considerations in PL work 

with teachers; to what extent might MTEs be perceived as, or actually be, out of touch 

with classroom realties? The even greater differences between MTEs and the PSTs, 

especially Primary PSTs, with whom they work have implicitly been acknowledged 

but these data should prompt reflection on the extent to which MTEs are able to 

communicate with PSTs credibly. The beliefs measure used in this study was 

necessarily crude and so there is scope for far more detailed studies of the issues raised.  
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TURNING DISINTEREST INTO INTEREST IN CLASS: 

AN INTERVENTION STUDY  

Angelika Bikner-Ahsbahs 

Universität Bremen, Germany 

 

This paper presents an intervention study in three 11
th
 grade classes on calculus with 

the aim to overcome the students’ amotivation by boosting their situational interest. 

This was successfully done by teachers implementing interest-dense situations. Data 

analyses further revealed two different principles of how the teachers transferred the 

theory on interest-dense situations into practice when arranging the epistemic 

processes, and two directions of dissemination that the teachers undertook 

additionally. 

INTRODUCTION 

Though the contribution of interest to performance in mathematics is not so clear 

(OECD 2004), implementing learning mathematics with interest in school is relevant 

for at least two reasons: (1) learning mathematics with interest prevents students 

becoming amotivated, hence, overcoming a significant obstacle to learning 

mathematics, and (2) interest can be regarded as the driving force for learning 

mathematics in self-determined and in-depth ways, since “interest and enjoyment of 

particular subjects […] affects both the degree and continuity of engagement in 

learning and the depth of understanding reached” (OECD 2004, p. 117). But what are 

the didactic tools that teachers can use to plan and implement math lessons that support 

learning mathematics with interest? This question will be answered by presenting a 

qualitative intervention study as a case study on how a group of teachers solved 

motivational problems in their 11
th
 grade classes by the use of the theory of 

interest-dense situations (briefly expressed as IDS) (Bikner-Ahsbahs & Halverscheid, 

2014). Since IDS has not yet proven its applicability as a teaching tool, this 

intervention study had two aims: to solve the practical problem of increasing learning 

with interest in math classes and, through that, to prove the applicability of IDS in 

practice. 

THEORETICAL BACKGROUND 

Interest in mathematics is a relationship between a person and mathematics (Krapp, 

2002) that can appear in two forms. (1) Situational interest is triggered by situational 

conditions, and may vanish if these conditions dry down. (2) Personal interest is a long 

lasting kind of interest that, independent of situational conditions, students bring with 

them into the class. Mitchell (1993) has worked out a concept of situational interest 

that later Hidi and Renninger (2006) have identified as a step towards the development 

of personal interest. Personal interest in mathematics is shown by epistemic actions 

leading to increased knowledge, being accompanied by positive emotions and placing 
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high value on mathematics (cf. Krapp, 2002). Situational interest (Mitchell, 1993) is 

triggered by the situational conditions. It is relatively easy to catch situational interest 

in class, but difficult to hold it. Interest can be held if students experience themselves as 

being involved in the mathematical activity which is meaningful to them (Mitchell, 

1993). Research on Self-Determination Theory (Deci, 1998) has shown that the 

experience of three basic psychological needs of competence, autonomy and social 

relatedness support interest development. Thus, fostering learning with interest in class 

means arranging lessons that support fulfilling these needs. But what do these 

arrangements look like? Psychological research on interest does not answer this 

question. 

IDS (Bikner-Ahsbahs & Halverscheid, 2014) is a theory of learning mathematics that 

results from a paradigm shift, merging the concepts of situational and personal interest 

and turning them into the social-situational concept of interest-dense situations. An 

interest-dense situation is shaped by social interactions in class. It may appear within 

an epistemic process of solving a mathematical problem exhibiting three features: The 

students are deeply involved in the mathematical activity (involvement), they construct 

mathematical meanings in an in-depth way leading to deepened insight (positive 

dynamic of the epistemic process), and they value highly the mathematics at hand 

(value attribution). Research on interest-dense situations has disclosed how these 

situations may be arranged (Bikner-Ahsbahs & Halverscheid, 2014; Bikner-Ahsbahs, 

2004a; 2004b; Stefan, 2009). Some of these conditions are now briefly described:  

 Involvement: The teacher follows the students’ line of thought, the students 

are focused on their own train of thought. 

 Dynamic of the epistemic process: The epistemic process comprises three 

epistemic actions: gathering and connecting mathematical meanings may - if 

adequately arranged - lead to structure-seeing; for example, this may happen 

if students first collect examples or ideas (gathering), then relate them to each 

other (connecting), and finally search for patterns of these relationships 

(structure-seeing) where a structure is regarded as an entity made of the 

relations among pieces of knowledge. In every interest-dense situation the 

epistemic process leads to structure-seeing, i.e. perceiving a new structure or a 

familiar structure in a new context.  

 Value attribution: The teacher’s and the students’ behaviours are based on a 

didactic contract: the students act as authors producing valuable mathematical 

ideas, and the teacher acknowledges the students’ authorship and fosters such 

processes, for example assists in finding suitable words, naming 

mathematical products concerning the original author such “Emma’s rule”.   

Stefan (2009) has researched interest-dense situations concerning how grade 2 students 

investigate a dice of 1 million cubes. She has identified specific kinds of participation 

patterns indicating forms of situational interest, such as being interested in theoretical 

considerations, or being interested in accurately working with dice to build a dice of 1 

million.  
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METHODOLOGICAL CONSIDERATIONS 

Applicability, hence, the relevance of IDS, is proven by an intervention study in the 

math classes of the SINUS-Set teachers in Nordrhein-Westfalen (Germany), who 

wanted to solve motivational problems in their 11
th
 grade calculus courses. The study 

was conducted to answer the following questions: a) Do the intervention lessons 

exhibit interest-dense situations (as described above)? b) How did the teachers 

organize and conduct the arrangement in class to implement interest-dense situations 

(i.e. concerning the three features: involvement, dynamic of the epistemic process, 

value attribution)? c) Did the teachers solve their motivation problem? What kind of 

indicators can be found? d) Was the experience with IDS disseminated? If yes, how? 

For that, the teachers first were trained in the use of IDS. That was done by a workshop 

dealing with transcripts of typical interest-dense situations, their specific kinds of 

social interaction, teacher behaviour and student involvement, the specific epistemic 

processes and different ways of arranging the epistemic process by means of the 

epistemic actions model. Moreover, examples of value attribution were presented and 

discussed (Bikner-Ahsbahs & Halverscheid, 2014). Finally, some mathematical tasks 

were presented that have the potential to promote a progressive dynamic of epistemic 

processes. In addition, the SINUS-Set was provided with a summary of the theory of 

interest-dense situations with some practical advice, such as “interest in the students’ 

learning supports students’ interest in learning”. 

The intervention study comprised three steps: 

Preparation: The SINUS-Set commonly planned two lessons for implementing IDS in 

their 11
th

 grade classes. Two cycles of teacher-planning and researcher-revision were 

conducted before the teachers implemented the lessons: introduction of the definite 

integral and finding sufficient conditions on extreme and inflection points. 

a) Introducing the integral concept by application situations: 

Velocity-time diagram of a tram. 

 

1) Find information from the graph 

and exchange them [in the group]. 

2) How far does the tram 

approximately drive between 435 sec 

and 520 sec and between 665 sec and 

765 sec? Explain.  

3) Prepare a poster presentation with 

your results. Every member of the 

group must be able to explain them. 

Figure 1: Task example of introducing an integral. 

The teachers prepared similar tasks (cf. Figure 1) of seven different application 

situations which all had the same idea in common: Through converting the area under 

velocity 

 

veloc

ity 

 Time in seconds 

 

 Time in 

seconds 
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the graph within an interval into a rectangle, a quantity can be estimated which later is 

called definite integral.  

b) Particular points of functions: The teachers prepared the same tasks for seven 

different functions f (Figure 2), hence, for seven groups of students. Their planning 

encompassed three phases: Phase 1: Gathering information with the help of graphical 

representations to create conjectures and some first connections (Figure 2, (1), (2)). 

Phase 2: connecting mathematical meanings by comparing and contrasting the findings 

of the groups of students to revise hypotheses (Figure 2, (3)). Phase 3: structure-seeing 

towards general features of the particular points based on the hypotheses gained. 

 

 

Task:  

(1) Transfer these graphs onto your poster.  

Use the same colours as the ones in the pictures.  

 

(2) Find correlations among the three graphs.  

Be aware of the particular points. Formulate these 

correlations in brief sentences as hypotheses. Find 

logical substantiations for your hypotheses. 

 

(3) Check your hypotheses by looking at the posters of 

the other groups. Change and make your sentences 

more precise if necessary.  

 

(4) Write those sentences that after your revisions 

seem right and valuable on DIN A4 paper sheets, so 

that it is well readable by the others.   

Figure 2: Example of the tasks about particular points of function graphs. 

Legend: f (red), f’ (blue), f’’ (green) 

Implementation and data collection: Two teachers implemented the same lesson on 

particular points (nulls, extreme and inflection points) of functions (Figure 2) in their 

calculus ground level courses, and one teacher implemented the lesson of introducing 

the concept of integral (Figure 1). In order to answer the questions a), b), c), the three 

lessons were videotaped recording the group work and the whole class situation. To 

answer the questions c), d), a written interview with the communicator of the 

SINUS-Set took place. 

Analyses of the video data: First, the video was reorganized by episodes that were rated 

according to the features of interest-dense situations. Second, data analyses were 

carried out observing and interpreting the video episodes several times ac-cording to 
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the tools of IDS. Each time, the researcher decided whether and then reconstructed 

how the episode shows deep student involvement, positive dynamic of the epistemic 

process and value attribution. Third, the epistemic process was analysed according to 

the epistemic actions model to obtain phase diagrams (Bikner-Ahsbahs, 2004b; Figure 

5). Finally, the communicator of the SINUS-Set was interviewed to validate whether 

the intervention had boosted interest and how the experiences were disseminated.  

DATA ANALYSES AND SOME RESULTS 

I will now reduce the description of the analyses to the lessons on the particular points 

of the function graphs and their first and second derivative. The two lessons were 

arranged in the same way: In groups of four, the students gathered mathematical 

meanings on their tasks, connected them in order to prepare initial substantiated 

conjectures and poster presentations thereof (Figure 2. (1), (2)), second revised and 

improved them (Figure 2, (3)) and third, a class discussion led to structure-seeing. 

Involvement: Through the whole process, the students followed their own way of 

thinking. Within the group work they gathered ideas concerning the given particular 

points, shared them among the four students and created conjectures about the features 

of these points. When they compared their group results with those of the other groups 

written on posters, they systematically contrasted, checked, and revised their 

hypotheses: The students went to the board, showed their group mates their 

observations, and improved their findings. After that, the teachers asked the students to 

present and substantiate their final hypotheses and to hang the paper sheets with their 

hypotheses on the blackboard. The student audience critically checked and discussed 

the validity of hypotheses, valuing them as generally valid, sometimes valid, invalid, or 

just in one case valid. The teachers’ behaviour was steered by the situation, in that they 

organized the discussion and visualized results on the blackboard but did not intervene.  

Dynamic of the epistemic process (Figure 5): During the group work (phase1), initially 

gathering actions took place leading to building conjectures (connecting). The teachers 

assisted the groups in organizing and expressing their conjectures. Phase 2 was a 

connecting phase: The conjectures were checked by comparing them with results 

shown on the other groups’ posters (Figure 3). During this phase the teachers did not 

intervene and left space for revisions. Each conjecture was finally written on a paper 

sheet. Phase 3 was that of structure-seeing: The students presented and justified their 

conjectures to the whole class. The other students checked them. While grouping, the 

conjectures were hung on the blackboard, though not all the groups found substantial 

propositions. Figure 3 represents one substantial proposition (4a), a valid but irrelevant 

one (4b) and a special one (4c). Through a process of collectively reasoning and 

rearranging the hypotheses, a process of structure-seeing was organized resulting in 

sufficient conditions for inflection and extreme points of differentiable functions (4a). 
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3a  3b 3c 

Figure 3: Poster presentations of three working groups (WP, Wendepunkt (inflection 

point), TP, Tiefpunkt (minimum point), Ns, Nullstelle (null)) 

“the maximum point of f(x) is 

above the null point of f’(x)” 

4a 

“all graphs have an 

intersection point with 

the y axis” 

“nulls are at the same time 

the inflection points” 

4b          4c 

Figure 4: Conjectures: 4a: generally valid, 4b: valid, but irrelevant, 

4c: only sometimes valid 

 
Figure 5: Phase diagram of the epistemic process expressed by pictographs (cf. 

Bikner-Ahsbahs 2004a; 2004b). Phase1: gathering-connecting, phase 2: connecting, 

phase 3: gathering-connecting, then structure-seeing 

Value attribution (Figure 5): According to value attribution, the two teachers behaved 

differently towards the creation of valuable ideas. One of them started the lesson 

showing confidence in the students’ capacity to solve the task: “I am curious about the 

up-and-coming lesson” she said. Her lesson took place in the late afternoon and lasted 

longer than usual. The students maintained their interest although the bell already had 

rung. In the end the teacher apologized and thanked them for their engagement. The 

students reacted by applauding and rapping on the table, hence, they highly valued 

learning mathematics this way. The other teacher acknowledged the students’ 

engagement in a different way. He clarified the status of all the conjectures by 

arranging them according to the degree of validity; this way he valued every 

hypothesis by giving space for it and keeping it on the blackboard. In addition, he 

acknowledged authorship of valuable ideas. For instance, he asked a student to put his 

justified conjecture in the right place on the blackboard and finished the sentence by 

saying: “since you are the discoverer”. Figure 5 represents the phase diagram of the 

epistemic processes including value attribution. 
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Answers to the three questions 

All the three lessons show interest-dense situations. The teachers linked the features of 

IDS to the topic of their lessons in a substantial way. In the derivative lesson, the core 

principle was finding hypotheses and working on them to obtain propositions. This was 

done by preparing, revising and collectively checking the validity of conjectures as a 

three-step-design by means of taking gathering, collecting and structure-seeing as 

planning tools. The arrangement of the integral lesson was built around the core idea of 

a definite integral according to the principle of framing it by different application 

problems in similar ways: the estimation of a quantity by calculating an area under the 

graph of a function. This way, structure-seeing was arranged on two occasions: first, 

during the group work within each single application context, and second through 

seeing the same structure underlying other application contexts. (See also 

Bikner-Ahsbahs & Halverscheid, 2014).  

The third question was answered by the interview with the teacher group’s 

communicator. Main points are expressed by the answer to the subsequent questions: 

Did the concept of interest-dense situations help to solve motivational problems? 

How? Did you and your colleagues integrate this kind of teaching into other lessons, 

too? How?  

In all courses in which we tried out our teaching scenarios, all, really all the students 

be-came actively and very intensively involved in the mathematical activities according to 

their capacity. We had not expected this. For some students – especially the weak ones – 

the experience of discovering mathematics themselves within an atmosphere free from fear 

was an initial ignition. They took this positive experience as motivation with them into the 

subsequent lessons. In some schools, the developed teaching scenarios have been 

implemented as a permanent feature of the respective lesson series, slightly adapting them 

to the specific students, whereby they are thus repeated every year. (Own translation) 

This answer indicates the teachers’ surprise that they were able to turn amotivation in 

class into situational interest being held over time. Dissemination of the teachers’ 

experience does not only take place within the teachers’ schools, but also by in-service 

teacher training workshops that one of the teacher is offering: As he wrote:  

[...] That on the base of the concept of interest-dense situation it is possible to develop 

instruction scenarios leading to an active and markedly motivating lesson for the students 

independent of the mathematical content and its application, that was a helpful information 

for the participants of the workshops. Thus, during these workshops such scenarios were 

developed for further mathematical topics. (Own translation) 

CONCLUSIONS 

This implementation study has resulted in the new insight that amotivation in a class 

can successfully turn into learning mathematics with interest by tools extracted  from 

IDS, and that teachers can successfully work with these tools to plan and implement 

interest supporting lessons. The teachers even have developed suitable transferable 

principles for the two types of structures to be seen: a concept and a proposition. Since 
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applicability of a theory is an important criterion of the theory’s relevance, this 

implementation study has shown the theory of interest-dense situation is of relevance 

for practice. However, although the teachers have already practiced some 

dissemination of IDS and Stefan has applied IDS at primary level (2009), it is not yet 

clear whether this theory also offers fruitful tools for other school levels or other 

countries. Larger implementation studies are needed to investigate to what extent the 

theory of interest-dense situation can be disseminated in practice. 
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This paper refers to the concept of semiotic and theoretic control describing resources 

to conduct decisions in epistemic processes. We consider an argumentation process 

from a complex problem-solving activity involving different conceptual frames related 

to parabolas. Using a micro-analytical interpretative lens, we will show that, in order 

to carry out the argumentation activity, semiotic and theoretic control within 

conceptual frames (local control) needs to be co-ordinated with control across 

different conceptual frames (global control). 

INTRODUCTION AND THEORETIC BACKGROUND 

In the context of argumentation and proof activities, Arzarello & Sabena (2011) show 

how students’ processes are managed and guided according to intertwined modalities 

of control, namely semiotic and theoretic control. As introduced by Schoenfeld (1985), 

control in problem solving activities deals with “global decisions regarding the 

selection and implementation of resources and strategies” (p. 15). It entails actions 

such as: planning, monitoring, assessment, decision-making, and conscious 

meta-cognitive acts. Arzarello & Sabena (2011) speak of semiotic control “when the 

decisions concern mainly the selection and implementation of semiotic resources” (p. 

191), and of theoretic control  

when the decisions concern mainly the selection and implementation of a more or less 

explicit theory or parts of it […]. For example, a semiotic control is necessary to choose a 

suitable semiotic representation for solving a task (e.g. an algebraic formula vs a Cartesian 

graph), while a theoretic control intervenes when a subject decides to use a theorem of 

Calculus or of Euclidean Geometry for supporting an argument. (ibid.)  

Although these kinds of control seem relevant for epistemic processes, little is known 

about how they play together and how they relate to the respective content area.  

In this paper we will consider the dialectic between semiotic and theoretic control to 

give account for students’ progresses and standstills during a complex problem-solving 

activity in geometry context, in which the elaboration of an argument is required. Our 

analysis will be based on the model of epistemic actions (Bikner-Ahsbahs & 

Halverscheid, 2014), and on the notion of conceptual frame developed by Arzarello, 

Bazzini and Chiappini (1995). The former provides a tool to focus on epistemic 

processes in groups of students working together, the latter allows specifying semiotic 

and theoretic control by mathematical content.  
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The epistemic actions model (Bikner-Ahsbahs & Halverscheid, 2014) comprises three 

collective actions: gathering, connecting and structure-seeing. In order to solve a 

mathematical problem, students may gather mathematical meanings, i.e. collecting 

similar pieces of knowledge (such as ideas, examples or counter examples). Through 

connecting actions students may link some of these collected mathematics meanings, 

for instance by checking whether a number of collected coordinates fulfil a specific 

equation. Gathering and connecting actions disclose an amount of mathematical 

meanings that shape the base for structure-seeing. Structure-seeing is an epistemic 

action of perceiving (1) a new entity of relationships built by gathering and connecting 

actions, condensing a possible infinite number of examples, or (2) a familiar structure 

in an unfamiliar/new context.  

Students’ epistemic processes in mathematical activities are usually organized around 

specific conceptual frames, which are related to their knowledge and expectations. For 

example, the coordinates of a point of a function graph can be framed as a pair of 

numbers, but also as lengths in the coordinate system. Arzarello, Bazzini, and 

Chiappini (1995) introduced the conceptual frame in algebraic context, as “an 

organized set of notions (i.e. mathematical objects, their properties, typical algorithms 

to use with them, usual arguing strategies in such a field of knowledge, etc.), which 

suggests them [the students] how to reason, manipulate formulas, anticipate results” (p. 

122). The term frame is taken from artificial intelligence studies (Minsky, 1975), 

where it indicates a knowledge structure that contains fixed structural information. In 

mathematics education, the idea of conceptual frame can be related to the notion of 

cadre (setting) discussed in Douady (1986), for its strong mathematical dimension. It 

is also akin to framing by Krummheuer (1992), i.e. a stabilized and conventionalized 

way of seeing things based on previous experiences (Krummheuer, 1992).  

In the outlined background, our research seeks to answer the following question: What 

role does semiotic and theoretic control play in the students’ epistemic pro-cesses 

when developing an argumentation? How is it related to different conceptual frames? 

METHODOLOGICAL AND METHODICAL CONSIDERATIONS 

We investigate this research problem by observing couples of grade 10 students 

solving the “parabola task”. These students are indicated as high achieving by their 

teachers. The task, adapted from Gilboa, Dreyfus & Kidron (2011), has been designed 

to investigate epistemic processes with micro lenses of analysis (Krause & 

Bikner-Ahsbahs, 2012).
1
  

Students are firstly given a paper sheet to construct a curve by a folding process (Figure 

1a): (1) Take any point C on the bottom edge of the given sheet of paper. (2) Bend the 

sheet such that the chosen point touches the given point M. (3) Through point C, draw 

                                           
1
 Data is taken from the project “Effective knowledge construction in interest-dense situations” 

promoted by the German-Israeli-Foundation, grant 946-357.4/2006. 
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the line perpendicular to the bottom edge. (4) Mark the point of intersection with the 

folding line. Keep on doing that until you recognize a curve. 

  
(1a) (1b) 

Figure 1: Folded sheet and GeoGebra worksheet of the parabola task. 

The marked points indicate a parabola and the folds represent the tangents touching the 

curve at the corresponding marked intersection points, as well as reflecting axes.  

The folding process is translated then into the dynamic geometry software GeoGebra 

(Figure 1b), with g representing the edge of the paper sheet, and B the given point 

(which was M in paper folding). By dragging P (which corresponds to C in fig 1a), a 

curve is traced. The distance 2e between B and the fixed line g can be varied by a scroll 

bar. The task consists now of three steps: (a) identifying the curve as a parabola, (b) 

justifying this conjecture (c) providing a definition for the parabola as a locus of points 

(in analogy with a given definition of a circle). During the whole session, an 

interviewer is sitting at the students’ desk: his role concerns organising the process of 

working on the task and assisting when the students get stuck. 

In our view, the parabola task is especially apt to our research question, since it 

includes complex problem-solving and argumentation activities, fostering the 

articulation of a variety of conceptual frames (arithmetic, algebra, geometry, etc.). 

The data collection is organized in order to grasp all the kinds of signs that the students 

are using (language and gestures, inscriptions, dynamic signs of GeoGebra, etc.). For 

each couple of students, three video cameras allow us to synchronically observe the 

gestures, the faces, the computer screen, and the writing processes. Out of this record, a 

detailed transcript of the language exchanges is obtained, keeping record of verbal and 

non-verbal modes of expression (Table 1). This allows conducting analyses of social 

interaction respecting two levels of meaning, the locutionary and the non-locutionary 

level. Referring to Austin (1975), the former entails what is explicitly expressed, the 

latter concerns implicit ways of meaning making, for instance through pauses, voice 

intonation and non-linguistic signs such as gestures.  

DATA ANALYSIS 

In this paper we consider the epistemic processes of two German students, Rosa and 

Lisa, who are facing the second part of the parabola task. Rosa and Lisa have done the 

folding process, clarified how this process has been translated into the dynamic 
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geometry worksheet, and just conjectured that the curve might be a parabola. Now they 

are asked to justify their conjecture: How can you convince somebody that it is actually 

this curve? Use everything you found so far.  

There are several ways to conduct such a justification. The students’ knowledge on 

parabolas is reduced to parabolas as graphs of quadratic equations; thus, a justification 

of the conjecture must draw on this knowledge. Considering the German curriculum, 

we expected that the students used the Pythagoras Theorem with subsequent algebraic 

manipulations. In this argumentation process, it is necessary to consider the geometric 

conditions and translate them into an algebraic equation: it requires both semiotic and 

theoretic control encompassing graphical and algebraic frames as well as theoretic 

knowledge thereof.  

We consider the transcript (and video) starting from line 618. In order to prove that the 

function is a parabola, Rosa and Lisa look for some quadratic equation representing it. 

The interviewer shows them how to vary e with the scroll bar and how to make the 

coordinates of the point A visible (Figure 1b). The students use the scroll bar several 

times to create curves, systematically gathering specific coordinates x and y for e=1 

and e=2 and writing them down in a structured way (Figure 2a, top-left part). 

    

(2a) (2b) 

Figure 2: Students’ written sheets. 

The top part of Figure 2a shows that the girls have structured the writing process, 

systematically deciding to begin the gathering process with e=1, followed by e=2. 

Experiencing that e=3 is not provided by the scroll bar, they decide to add some 

coordinates for e=0.5. This phase of gathering signs (lines 618-665) is led by semiotic 

control of the arithmetic signs, intertwined with theoretic control within a conceptual 

frame considering parabolas as quadratic (functional) relationships between numbers. 

From line 666 to 753, the students leave the computer aside and look at the inscriptions 

gained. The process of interpreting the number pairs is now conducted by the aim of 

gaining a function equation with squares of x. The following transcript shows the last 

steps of this process: 

740 R: (laughs) Yeah (briefly looks up at I, L writes "=f(x)" after "2(x/4)^2") 

(4sec) 
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741 R: That means (first points at the brackets in "2(x/4)^2", then at the brackets in 

"(x/2)^2") this here ,so this two can […] 

744 /L: yes, yes- (slides the note sheet to 

herself, writes "1" in front of the 

equation for e=1) times one. (laughs) 

745 /R: yes that is ,no that is (points at the just 

written "1") e times'  

746 L: Yeah yeah. but here (points at the "1" in 

the equation for e=1) times one' (points 

at the "2" in the equation for e=2) there 

times two.  

747 /R: that means if we say that more general 

now that would be- 

748 /L: (writes at the bottom of the note sheet 

"e·") e times 

749 /R: (synchronic) times, x divided by, two e'  

750 /L: (synchronic) (writes "(x/(2e))") two e'  

751 R: Square 

752 /L: (nearly synchronic) (writes "2" as an 

exponent next to the bracket and then 

"=f(x)") square. 

I: interviewer 

L: Lisa 

R: Rosa  

EXACT: with a loud voice  

Exact: emphasized  

e-x-a-c-t: prolonged  

exact.: dropping the voice  

exact´: raising the voice  

,exact: with a new onset  

(.),(..)...: 1, 2 ... sec pause  

(....): more than 3sec pause  

(gets up): nonverbal activity  

/S: interrupts the previous  

speaker 

[…] some lines are missing  

Table 1: Transcription key 
 

753 R: Thus we would have our' (R looks up at I, L as well, but only briefly) (...), 

our (lays her hand on the note sheet, briefly looking at it, then looks at I 

again) square. (R looks at the note sheet, L sits leant back and looks 

towards the note sheet) (5sec). 

By comparing the structure of the arithmetic terms and keeping the square of x as an 

invariant according to the idea of quadratic functions, Rosa and Lisa gain the equation: 
2

x
2 f (x)

4

 
 

 
 (line 741, Figure 2a). By comparing the terms for e=1 (744-753, arrow in 

Figure 2a), they obtain the next equation: 
2

x
1 f (x)

2

 
  
 

. Comparing both equations they 

finally get:
 

2
x

e f (x)
2e

 
  
 

 (Figure 2a, bottom). In this first phase, the students select and 

implement theoretic knowledge about arithmetic structures and quadratic functions, 

which finally are generalized. Indeed, the final equation can be transformed into 
2x

(y )f (x)
4e

  , the correct equation the students will reveal in the end. To carry out this 

process, the students turn from the numeric to the algebraic system of representation. 

They start from a gathering process led by semiotic control over the 

arithmetic-algebraic representation, and then turn into a process of generalisation 

through connecting actions that lead to structure-seeing. Here, semiotic control 
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intertwines with theoretic control based on arithmetic, algebra, and quadratic functions 

knowledge.  

However, the students have created the equation of the parabola without questioning 

general validity. A pause of 5 seconds (line 753) appears to the interviewer as an 

indication that they need some help in this direction: 

754 I: Okay. (..) ,is that universally valid now? 

755 R: No that is a conjecture (..) ,which we found with- (points at the notes in the 

upper part of the note sheet, fig. 2a) (.) eight points or so- (.) 

756 I: Y-e-s- ,so with these two examples (points at the two lists for e=1 and e=2, 

fig. 2a) you have- 

757 /R:  yes 

758 /L: (synchronic) yes 

759 /I: seen that now already right’ (takes a deep breath) ,the problem now is that- 

(..) well- (points at the screen) ,here alone you have just seen e equals three- 

,so you would have to try out all. 

760 R: mhm’ 

761 I: It’s about general- convincing now 

762 R: (looks at the note sheets) Yes. (looks at the screen) (…) 

763 I: How can you do that (both students look at the note sheet) (9sec), you have 

now just read out (points at the screen), the coordinates right' 

764 R: Mhm' (nods) 

765 /L: Mhm- (I touches some of the sheets on the table) (...) 

766 I: My proposal would be now that you take another look, at one of these 

diagrams' (puts the printed sheet to the top) (..), and now (points at A in fig. 

2b, slightly shaking his finger), assume- generally here ,that this- (.) point. 

A' has the coordinates x y. 

767  R: Yes' (.) 

768 I: (takes back his hand) And then proceed from there  

  L writes "(x|y)" next to "A" on the printed sheet, then after a short break 

marks the y-coordinate of A on the y-axis and labels it "y", then labels P "x" 

(23sec). 

The interviewer’s intervention shifts the focus on the general validity of the obtained 

formula, beyond the specific considered three cases of e=1; 2; 0,5 (lines 754-759). On 

the non-locutionary level, he invites the students to justify their conjecture, i.e. to build 

an argument proving that their formula is generally valid (“it’s about 

general-convincing”, line 761). Under this prompt, the students express awareness 

about the status of their equation (755: “that is an conjecture”), but they are stuck in the 

arithmetic-algebraic frame. From voice intonation, pauses and broken language, a 
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certain reluctance is observable. The interviewer reacts by pointing (both verbally and 

with gesture) to the coordinates of A on the diagram of the work sheet (Figure 2b), and 

asks explicitly for a change of view (“take another look”, line 766). With his 

speech-gesture intervention, the interviewer is also supporting the students at a 

semiotic level. In order to shift to a geometric frame he shows that this “other look” 

must consider the coordinates x and y of the points. Following the interviewer’s 

suggestion, Lisa and Rosa include the coordinates in their considerations while 

manipulating the graphs on the computer screen. However looking at the value and 

size of the coordinates, their investigations are still kept in the arithmetic frame (e.g. 

“the larger e gets the larger y too”, line 811): the students are still framing the parabola 

as a structure of arithmetic relationships. Thus, the interviewer plays the role of a 

teacher to initiate a change of frame and draws an auxiliary line from A perpendicular 

to the y-axis (fig. 2b) (naming the intersection point Y): 

835 I: I’ll do in red then, there’s not so much of that in there yet’ (4 sec) so I now 

draw (draw the red line in fig. 2b), another- line- here. (..) (slides the print 

to the students again) ,and now- you can- (circles with his finger around the 

new triangle AYB) take a look at this triangle here ,and look what of that is 

known to you (6 sec) (R, pointing at the right angle AYB, says: The angle) 

The interviewer first acts at a semiotic level, adding a new line to the figure, and then 

prompts the students to use their theoretic knowledge (“look what of that is known to 

you”, 834). In this way, he is bringing into the scene a new conceptual frame, the 

geometric one, and is inviting the students to work in it. Once entered into the new 

frame, the students suitably connect geometric features with algebraic terms revealing 

y-e and x for two sides of the triangle AYB. By that, they show a semiotic control on 

connecting geometric with algebraic signs. In line 857 Rosa sees a structure in the 

diagram and suggests applying the Pythagoras Theorem on triangle AYB. As a 

consequence, they get the equation 2 2 2x (y e) (y e)    . Finally they transform it into 

y =
x2

4e
 and identify its equality to 

2
x

f (x) e
2e

 
  

 
. 

CONCLUSION 

The analysis of Lisa and Rosa’s epistemic processes in the case study shows that 

gathering and connecting actions are supported by the intertwining of semiotic and 

theoretic control within a given conceptual frame. The students in fact are successful 

in gathering and connecting signs first within the arithmetic frame (parabolas as 

quadratic relationships between numbers, lines 618-665), then within an algebraic 

frame leading to an equation as a generalization of the arithmetic structures gained 

(lines 666-753), and finally within a geometric-analytic frame (836 onwards).  

However, although the students seem to act according to well-developed semiotic and 

theoretic control within each conceptual frame (we may call it local control), they get 

stuck. Acting as a teacher, the interviewer exploits a synergy between different 

semiotic resources (written signs, speech and gestures: in particular, lines 766, 835), 
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and supports the students in considering a new frame (geometric), which enriches the 

previous one (algebraic). With this “new look” at the problem, the students become 

able to see a new structure (Pythagoras Theorem) and to quickly complete the task, 

exploiting again their semiotic and theoretic control within the new enriched frame.  

The interviewer’s intervention was not expected by the research plan, but it helped us 

to seize the importance of theoretic and semiotic control at a global level, 

encompassing different conceptual frames on the same situation. Our analysis suggests 

that in order to carry out complex problem-solving or argumentation processes, 

semiotic/theoretic control within each single conceptual frame (local control) needs to 

be grounded in a higher order kind of control, which allows flexibly looking for other 

conceptual frames, and suitably connecting them (global control).  

The next step in our research will consist in validating our results for a wider range of 

contexts, and in studying what didactical interventions in the mathematics classroom 

can develop students’ semiotic and theoretic control at a global level. 
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LEARNING WITH FACEBOOK: PREPARING FOR THE 

MATHEMATICS BAGRUT - A CASE STUDY 

Yaniv Biton, Sara Hershkovitz, Maureen Hoch 

Center for Educational Technology, Tel Aviv, Israel 

 

To help students prepare for the resit exam of the mathematics Bagrut (Israeli 

matriculation) of 2013, the Center for Educational Technology established a virtual 

review session using Facebook, for four days before the exam. 614 students and 16 

teachers participated. We examined three central questions, each about using 

Facebook to prepare for the mathematics Bagrut: What opportunities for learning 

were created? What are the students' opinions? What are the teachers' opinions? 

Analysis of the posts on Facebook revealed five types of situations with potential for 

learning. Answers to on-line questionnaires show that both students and teachers hold 

positive opinions towards the solution for learning provided by Facebook. We 

recommend researching the opportunities for learning afforded by the social networks. 

INTRODUCTION 

Online social networking sites like Facebook have developed in recent years and have 

become the most popular meeting places for youth and adults (Boyd, 2010). Many 

studies have investigated the potential of using these networks to promote learning 

(e.g. Forkosh-Baruch & Hershkovitz, 2013; Neman, Lev, & Amit, 2013). In some of 

these study teacher-student interactions the student has the status of the teacher's friend 

(Madge et al., 2009) and hierarchies are formed as a result of this friendship status 

(Steinfield, Elison & Lampe, 2008). Asterhan et al. (2013) discuss whether and how 

teachers may use Facebook for innovative, collaborative forms of online learning that 

extend beyond the traditional classroom, and whether this is at all recommendable or 

feasible.  

Recently many researchers have studied the Facebook option of creating a group where 

teacher and students belong but do not need to be "friends". Students perceived 

learning in this environment as very intensive and collaborative in nature (Meshar-Tal, 

Kurtz, & Pitwerse, 2012). In the learning of mathematics social network sites have 

been found to invite student collaboration and encourage learning (Baya'a & Daher, 

2013). 

In this present research the learners were members of a group on Facebook opened 

specially for preparation for the mathematics Bagrut (Israeli matriculation) exam. We 

investigated what opportunities for learning were created as a result of the interactions 

that formed within the group and examined the viewpoints of students and teachers 

who took part in the study group. We present the results of a pilot study, in preparation 

for a wider research on this subject. 
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OUTLINE OF THE RESEARCH  

Eight groups – four in Hebrew and four in Arabic – were opened on Facebook for four 

days, twelve hours a day, before the resit of the mathematics Bagrut exam. Teachers 

were on call to respond to students (three shifts of four hours). The Hebrew speakers' 

group comprised 513 students, and the Arabic group 101 students. The groups were 

divided according to the questionnaires in the Bagrut exams at intermediate and 

advanced levels. The teachers were trained in online teaching, in the principles of a 

forum, and in the Facebook tools, and were given technical instructions on how to 

provide responses in the forum.  

During the activity the students raised questions in whatever subject they wish. The 

questions were uploaded to the forum as photographs or as details of book, page, and 

exercise number (the teachers were provided with all the relevant textbooks). On 

receipt of a question the teacher sent a reply, "I will upload an answer soon" and after 

several minutes (on average 10 minutes) he uploaded a response to the forum in a 

similar manner: as a photo of the page on which he wrote the solution, or hints on how 

to reach it. At the end of the study session online questionnaires were sent to the 

students and teachers who took part in the forums. 105 students and 15 teachers 

completed the questionnaires.  

RESEARCH METHODS AND TOOLS 

We used a mixed methods research model (Johnston & Onwuegbuzie, 2004) which 

combines qualitative and quantitative data analysis. The research tools were two online 

questionnaires, one for students and one for teachers, comprising open and closed 

questions. The open questions for the student included those on his background, which 

exam paper he was taking, how he heard about the study group, and his suggestions for 

what he would like to preserve in the study group and what he would like to improve. 

The open questions for the teacher included those on his seniority, his online teaching 

experience and the classes he usually teaches. Teachers were also asked to write down 

their feelings about teaching through Facebook, to describe interactions they 

remember favourably, etc. The closed questions in both questionnaires comprised 

statements on a Likert scale from 1 (disagree) to 4 (strongly agree). These statements 

included issues such as the use of technology, peer learning, motivation to continue 

learning/teaching in a similar manner in the future, interactions with students, etc.  

The participants answered the questionnaire at the end of the Facebook review session. 

The answers to the open questions were analysed by three mathematics education 

experts to improve validity reliability by triangulation (Denzin & Lincoln, 2000). The 

analysis was carried out in four stages: first the answers were collected; in the second 

stage all the answers were divided into short sentences; subsequently each sentence 

was classified according to general subject matter; and finally the sentences in the 

same subject matter group were collected together and arranged according to 

categories. After much discussion 100% agreement was achieved between the judges 

about the categorisation of the data.  
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In order to learn what opportunities for learning were created as a result of revising for 

the Bagrut exam in mathematics through the medium of Facebook an analysis was 

made of the content appearing in Facebook throughout the review session. First we 

mapped the participators in the interactions: teacher-student as opposed to 

student-student. In the second stage we analysed all the interactions and learning 

opportunities that arose.  

FINDINGS 

Figures 1 shows the number of students in each group according to the levels of the 

exam papers (804 and 805 - intermediate, 806 and 807 - advanced) and the number of 

questions or discussions raised (the posts). Figure 2 presents a map of the opportunities 

for learning observed throughout the review session.  

 
Figure 1: Number of participants and number of posts in each study group. 

 

Figure 2: Learning opportunities on Facebook resulting from teacher-student 

interactions and student-student interactions. 

We now provide a short description of each opportunity and some episodes from the 

forum. 

Evaluating peers' solutions 

During the review session students asked for help in pinpointing the mistakes they had 

apparently made in their solution, intending that the teacher would evaluate their work 

and find the mistake. We observed that during the time that passed between a student 
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uploading his solution and receiving a reply from the teacher (perceived as the source 

of authority in the forum) other students responded and tried by themselves to pinpoint 

the source of their peer's error.  The students' attempts created a cognitive appeal to the 

correctness or incorrectness of the evaluation and thus started a chain of responses until 

a final response was given by the teacher. Similarly we noticed that throughout the 

review session students had considerable success in taking the teacher's role by 

attempting to provide explanations through the forum. This finding is strengthened by 

the students' answers to the questionnaire at the end of the review session. 72% 

(N=104) stated that they learned from responses given by other students. Figure 3 

presents a solution uploaded by a student (Shiran) and is followed by an excerpt from 

the forum where another student (Achinoam) evaluates the solution before a reply is 

received from the teacher. 

 

 

Triangles APB, ACQ, BCR are 

similar isosceles triangles whose 

bases are the sides of triangle 

ABC. 

Prove: ∡ACB = ∡QCR 

Figure 3: Geometric problem and student's solution uploaded on the forum. 

Achinoam: I think you made a mistake with the angle QAC. Shouldn't it be 90 minus 

half alpha? 

Shiran: Yes you're right. And that changes them all to 90 minus half alpha… So it's 

the same proof, I simply need to change the alpha to half alpha… right?  

Achinoam: Yes, got it, great, thanks  But I think that generally you can't say that 

AC=AB is given. Right? Shouldn't it be 90 minus half alpha? 

Shiran: I meant br=rc  

Shiran: I've got too many mistakes  

Achinoam: Aaah. Now it all makes sense! It's really not so bad. It's a mini mistake!  

Exposure to peers' questions  

Throughout the review session students were exposed to questions raised by other 

students and tried to answer these questions themselves. This finding is based on the 
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number of observers of each post in the forum, on the students' reports in the 

questionnaire, and on the responses of the students in the forum itself. Exposure to 

peers' questions expanded the available pool of exercises and presented the additional 

challenge of dealing with questions that were difficult for their peers to solve. This 

finding is supported by the students' questionnaires where 78% reported that they 

learned from questions raised by other students. 

Critical reading of teachers' solutions 

The most significant learning opportunities that occurred during the review session 

were the chance to read, to analyse, and to understand the teachers' solutions on the 

forum. On some of the posts, after reading the teachers' solution the student returned to 

his own solution to compare the two methods. In this excerpt we can see the 

comparison one student made after receiving the teacher's answer to his question. At 

the end of this post an error was found in the book, thanks to the student's 

"stubbornness".   

Thanks. But somehow in the answers they put 3/4 instead of 3 root 3 divided by 2. And 

according to the volume of the prism that you found I got the correct t but the maximum 

volume is different. Maybe they made a mistake? I'd like you to solve the rest because I 

didn't get the same answer … 

Coping with scaffolding not crutches 

In not a few cases the teacher's response was advice for continuing the solution and the 

student had to deal with the problem on his own. 87% of the students claimed that the 

teachers' tips helped them learn. In this excerpt we see a hint given by the teacher and 

the student's satisfied response that it helped him to solve the problem.   

Teacher: I recommend you to try to finish this by yourself. If not, let me know and I'll 

post the solution. Tip: the lateral area is the sum of the areas of the 

rectangular faces without the bases. 

Student: Thank you very much for the help. I got it right!  

Asking questions 

Throughout the review session, in addition to the problems the students posted as 

photos or text, they asked concrete questions on particular parts of a solution, and 

expressed doubts that arose during a solution. In contrast to questions asked face to 

face, here asking questions requires another skill – the ability to formulate the question 

in writing, with suitable emphasis for the teacher who is supposed to answer.  

The following excerpt show a student's questions after a solution has been posted by 

the teacher. It includes a search for explanation/proof, indicating critical reading of the 

solution. 

It's not clear to me why you can deduce from the sketch of the graph alone that there are no 

maximum or minimum points? Who says there isn't one before the asymptote? And how 

can you tell without a table if the function is increasing or decreasing from the asymptote? 

Thanks!! 
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Instructional interactions on the social network 

The answers to the questionnaires were analyzed as described in the section on 

research methods. In Table 1 we show examples of students' and teachers' remarks in 

each of the categories: motivation for continued learning, peer learning, technology 

utilisation, and supportive learning climate. 

Categories Student questionnaire Teacher questionnaire 

Motivation 

for 

continued 

learning 

I'm glad I got the chance of the 

Facebook forum. It gave me the 

option with exercises that I 

couldn't solve, not to give up like 

I usually do, but to get the 

solutions from a teacher – that 

really helped me. 

I really liked the fact that the 

students asked relevant 

questions, related to the 

answers, and didn't give up until 

they understood. 

Peer learning 

The forum was a very good idea. 

We could learn from other 

students' questions and answers. 

A student posted a question 

after a lesson, and I noticed that 

students started to help each 

other in the forum, and 

succeeded in solving some parts 

of it. 

Technology 

utilisation 

I would recommend improving 

the method of posting pictures on 

Facebook. 

The idea of photographing the 

problem or the solution and 

posting is brilliant and effective 

in making best use of the time 

and for presenting the solution. 

Supportive 

learning 

climate 

I would be very happy to get this 

kind of help throughout the year. 

It is all over and above what a 

student can expect for success. 

Thank you so much for all the 

help. 

The students' appreciation was 

heart-warming. 

Table 1: Students' and teachers' remarks about the integration of Facebook in preparing 

for the Bagrut exam in mathematics. 

As can be seen in the table, students' and teachers' responses were mainly positive, and 

in general the participants' responses indicate great satisfaction with the use of 

Facebook in preparing for the exam. 75% of the students (N=105) stated that it was 

easy for them to ask questions and receive replies through Facebook, 79% stated that 

they would like to use Facebook in this way also for learning other subjects, and 87% 

stated that they would like to continue learning in a similar manner throughout the 

year. 93% of the teachers (N = 15) stated that the environment encourages meaningful 

learning and that the project justifies the investment of resources. There was 100% 
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agreement among the teachers on willingness to continue in a similar manner next 

year. 93% stated that they would be interested in opening similar learning 

environments for their own students during the year.  

A little criticism on the use of technology was heard from both students and teachers, 

relating to the uploading of pictures that were sometimes not clear, thus making it 

difficult to understand and respond to the problem. In addition, teachers in charge of 

forums where there was a lot of activity indicated the need for extra staff to help 

manage the responses where necessary.  

DISCUSSION AND CONCLUSION 

The findings in this research indicate students' great satisfaction with the opportunity 

given them to study for the mathematics Bagrut exam through the medium of 

Facebook. The Facebook forum encouraged different interactions between teachers 

and students and among the students themselves. These interactions provided the 

learners with learning opportunities which included: asking questions, peer learning, 

different methods of problem solving, and critical reading of solutions. They were 

motivated to deal with questions their peers found difficult, and were exposed 

questions from different textbooks and to solution methods of different teachers. These 

learning opportunities carry extra value and are important in the learning process 

leading up to the Bagrut exam and in general.  Individual study without interactions 

with peers or with a teacher is unlikely to afford any of these opportunities. 

The findings relating to the students' positive opinions of learning in a Facebook 

environment strengthen findings of earlier studies about learning on social networks 

(Meshar-Tal, Kurtz, & Pitwerse, 2012). The teachers also expressed great satisfaction 

with the Facebook environment for learning and declared their intention to adopt a 

similar environment preparing for Bagrut exams in the following years and for 

teaching during the school year.  

This research was an initial testing of teacher-student and student-student interactions 

on Facebook in a four-day review session in preparation for the Bagrut mathematics 

exam. The results encourage continuation and further research into these and other 

related aspects, on wider groups of teachers and students, and for longer time periods. 

A wide based research in the subject would be likely to lead to peer learning also 

among the teachers themselves  –  on how to characterize students' questions leading 

up to the exam, and in general. In addition, we recommend that continued research on 

these issues could provide educational policy makers with an understanding of the 

value of investing in similar projects in the future. 
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LEARNING NEGATIVE INTEGER CONCEPTS: BENEFITS OF 

PLAYING LINEAR BOARD GAMES 

Laura Bofferding, Andrew Hoffman 

Purdue University 

 

Linear board games have shown great promise as tools to teach whole number 

concepts (Ramani & Siegler, 2008), but little is known about their utility for supporting 

negative integer concepts. This study sought to extend the use of linear board games to 

teach integer concepts. Forty-eight first graders (ages 6-7) counted along an integer 

board game with negative numbers or did control activities with integers. Students 

who played the board game made significant gains on several measures related to 

identifying and ordering integers. Findings suggest that even young children can 

benefit from games with negative integers, and we provide implications for instruction. 

Young children are often exposed to negative numbers in contexts, such as negative 

temperatures, negative points in golf or video games, or when selecting floors below 

zero in elevators in some countries, before they are formally introduced in school. An 

understanding of negative numbers can help students better understand that zero is not 

the smallest number, a conception they have difficulty overcoming (Bofferding, 2014). 

Further, having experiences counting backward through zero can help them understand 

that expressions such as 3-5 are meaningful (Bofferding, 2011), making it unnecessary 

to teach the misleading rule that you cannot subtract a larger number from a smaller 

one. However, there is little data on how children’s informal experiences with negative 

numbers might influence how they make sense of these numbers. This study provides 

initial data on the benefits that playing linear board games can have on first graders’ 

(6-7 years-old) understanding of negative numbers. 

THEORETICAL FRAMEWORK 

According to Case’s (1996) Central Conceptual Structures for Number Theory, by the 

age of about 6, children have coordinated their understanding of number concepts 

involving symbols, number order, number values, and the relations among them. 

Therefore, they can say the counting sequence, know that numbers further in the 

counting sequence correspond to larger values, and know that the larger values 

correspond to larger sets of objects, all of which can be represented with numerals. 

Further, they understand that saying the next number in the sequence corresponds to 

getting 1 more (or adding 1) and that saying the previous number in the sequence 

corresponds to getting 1 less (or subtracting 1). Researchers describe this 

understanding as using a mental number line. These concepts form students’ initial 

mental models of number that they must change to accommodate new numbers like 

negative integers (Vosniadou, Vamvakoussi, & Skopeliti, 2008).   
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In order to extend their mental number line to include negative integers, they must 

extend the number sequence to the left of zero (or less than zero), with numerals 

symmetric to the positive ones, but marked with negative signs. They also must extend 

the idea that numbers further to the left on their mental number lines correspond to 

smaller values, e.g., -5 is less than -3.  The purpose of this research is to determine the 

extent to which informal experiences with negative integers could help students extend 

their mental number lines in this way.   

RELATED LITERATURE 

Drawing on Case’s (1996) theory, Ramani and Siegler (2008) posited that young 

children could learn whole number concepts if they played linear board games which 

supported the development of concepts important to establishing a mental number line. 

Through a series of experimental studies, they found that pre-schoolers (3 to 5 year- 

olds) who “counted on” from 1 to 10 while playing linear board games made 

significant gains on a variety of number concepts compared to children who did 

numerical, control activities. The children who played the game improved in counting 

to 10, determining which of two numbers is larger, correctly identifying numbers 1-10, 

and estimating the positions of numbers 1-10 on an empty number line (Ramani & 

Siegler, 2008).  

The literature on young student’s understanding of negative integers is fairly sparse but 

suggests that they are capable of learning about them if given purposeful experiences 

with them. Before learning about negative numbers, first graders order negative 

integers next to their positive counterparts (Peled, Mukhopadhyay, & Resnick, 1989) 

or treat them as numbers that have been taken away and order them before or after zero 

(Bofferding, 2014; Schwarz, Kohn, & Resnick, 1993). Similarly, they treat negative 

numbers as positive and consider -5 > 0 and -5 > -3 (Bofferding, 2014; Peled et al., 

1989). However, after instruction on the order and value of negative integers and 

working with these concepts through a series of card games utilizing number line 

contexts, first graders at the end of the school year (7 and 8 year-olds) improved 

significantly on such tasks compared to students who had not received this instruction 

(Bofferding, 2014).  Further, students who know the order of the negative numbers can 

begin to reason about integer addition and subtraction problems and successfully solve 

some of these problems (Bofferding, 2010; Bishop, Lamb, Philipp, Whitacre, & 

Schappelle, 2013). Because integer concepts rely on the same order and value relations 

underlying the whole number mental number line, it is likely that the board game 

experiences that help students develop their whole number mental number line could 

also help students develop an integer mental number line. 

RESEARCH AIMS 

The primary aim of this research is to test whether students who play linear, numerical 

board games develop a deeper understanding of negative integer concepts than peers 

who participate in integer-related control activities. We hypothesized that the board 
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game group would make significant gains on negative integer tasks compared to 

students in the control group because the board game provides students with the 

opportunity to experience an extension of the positive number line into negatives. 

METHODS 

Setting and Participants 

The study was conducted at an elementary school located in a low-income area where 

approximately half of the students were Hispanic and a third spoke a language other 

than English at home. The study was conducted during the first three months of the 

school year. Across six classrooms, students were randomly selected for participation 

until we had a sample size of 50 (26 female; 24 male).   

General Design 

To test our hypothesis, we employed an experimental design involving a pre-test, 

random assignment to control or treatment group, intervention, and post-test.  The 

design extended the methods and measures used by Siegler and Ramani (2009) to 

include negative integers. For the intervention, each participant worked with a 

researcher for three, 15-minute sessions.  However, two children in the treatment group 

withdrew from the school before the post-test measure was given, resulting in data for 

23 children who played the integer board game and 25 children who did the control 

activities. A professor and graduate research assistant collected data in corners of the 

classrooms, replacing a portion of the students’ whole-class mathematics instruction.  

Most participants worked with both researchers during the course of the study. 

Pre-test and Post-test Measures 

The pre-test and post-test were identical so that we could measure gains in the 

participants’ mathematical knowledge. We conducted both tests as individual 

interviews with the students, and we did not provide specific feedback on their 

performance, just general encouragement.   

The first section of the tests involved students counting forward to ten and backward 

from ten as far as they could go. If they stopped at 0, we asked if they could keep 

counting down any further. The second section involved verbal integer identification 

of the numerals from -10 to 10, presented on isolated pages in random order.  The third 

section concerned integer order. Students were asked questions such as, “What 

number comes two numbers after 7?” They also ordered a set of eleven cards labelled 

-5 to 5 and indicated which were the least and greatest.   

The fourth section on integer values asked students to identify which of two integers 

was closer to 10 (n=10) and further from 10 (n=10). The two numbers were a mix of 

positive integers, negative integers, and zero. For each question, children were shown 

an equilateral triangle with 10 inside the peak and the pair in question equidistance 

away, placed in the left and right corners. Further, each integer was named by the 

researcher. If students were confused on the use of the words “closer” and “further,” 
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the researcher would make a statement such as, “If 10 is the largest, which of these 

[pointing] -9 or 5 is less or further away from 10?”  

The fifth section dealt with operations. Students were first given additive expressions 

involving strictly positive integers, and then negatives were introduced into the 

expressions. Second, the researchers presented expressions with subtraction, initially 

with positive differences, and then negative differences. The section ended with a 

contextualized addition problem and two, two-digit arithmetic problems. 

The final section of the tests involved students placing integers on number lines. 

Students completed a packet involving positive integers followed by one involving 

negative integers. Each page of the packet contained an empty number line 25.5cm 

long with two integers marked.  On the first page of both packets, students were asked 

to put a pen mark where 0 would go, given the locations of -5 and 5. For the positive 

packet, the remaining pages contained empty number lines marked with 0 and 10.  The 

placement of zero in the middle, i.e., leaving space for the negative numbers to the left, 

was an important feature.  Students were asked to make a mark where a given integer 

should go a total of 18 times (1 through 9 in random order, twice). The researchers 

gave instructions such as, “If here is 0 [point to the middle] and here is 10 [point to the 

right], then make a mark anywhere on this line [motions to whole 25.5 cm line] where 

6 should go.” The negative number packet worked similarly only with -10 marked on 

the left and 0 marked in the middle.  Students were told to place the negative integers -1 

through -9 on the respective pages (see Figure 1 for examples).   

   

Figure 1: Three number line tasks: mark where zero goes (left), where positive integers 

1 to 9 go (middle), and where negative integers -1 to -9 go (right). 

Control Group 

For their three sessions, the control group students cycled through three types of 

activities with the researcher. The first activity involved counting a collection of 1-10 

poker chips and counting backward as far as they could.  They did not receive feedback 

on correctness.   

For the second activity, students put six integer cards in order from least to greatest.  

The researchers rotated between three sets of cards; for example, one set they ordered 

included the following integers: 6, -9, -4, 0, 3, and -1. After the students ordered the set, 

they were asked to point to the least and the greatest. Students were not given any 

feedback on the ordering or the identification of the cards.   

The last activity in the cycle was a game of memory where the goal was to match 

integers. Students were given corrective feedback if they attempted to collect an 

incorrect match but were not told the names of the numbers. Both the positive and 

negative versions of integers appeared, so if students tried to match n and –n, the 

researcher would interject that the cards did not look exactly the same.   
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Treatment Group (Game) 

During each 15-minute intervention session, the treatment group played a board game 

against the researcher using a board labelled with the integers -10 to 10 (see Figure 2). 

Figure 2: An illustration of the linear, numbered game board. 

Players started by placing their tokens at zero, and the first player drew a card from a 

card deck.  In the first version, all but one of the cards was labelled with a 1, 2, or 3. 

The remaining card contained the text, “All players go back to -10.” When this card 

was drawn, the student had to count backward while moving their tokens back to -10. 

The researcher always stacked the deck so that this card would come up in the first few 

turns of the game, assuring players would proceed from -10 to 10 in each round. 

If players drew a 1, 2, or 3, they moved their tokens that number of spaces and named 

the numbers on the spaces they passed through. For example, if a player on -4 drew a 

“2”, then she would move her token to -3 and say “negative three”, then move her piece 

to -2 and say “negative two.” The game ended when a player crossed 10. 

During the third session, the card sending players back to -10 was removed and a new 

stack of cards was introduced. Cards in the new stack were labelled either -2 or -4. 

Players began the game by drawing from this stack and counting backwards as they 

moved to -10. Once a player reached -10, on her next turn she would begin drawing 

with the deck containing positive numbers. From this point, play continued as normal, 

with the game ending once a player crossed over 10. 

The researchers gave enough feedback to ensure legal turns by the students. 

Sometimes this involved correcting the name of the integer that they landed on, other 

times it involved correcting the number of spaces the game piece was moved. The 

game would not proceed until the student had said the correct number names aloud.  

Students played an average of 4 games in 15 minutes. 

ANALYSIS 

The focus of the analysis and results will be primarily on the negative integer items.  

For the counting backward to -10 task, students were given 1 point per correct number 

named below zero until their first error. Therefore, a student who counted “-1, -2, -4,” 

would receive a score of 2 out of a possible score of 10. Similarly, on the negative 

integer identification task, students received a point per negative integer identified (for 

a possible total of 10). On the integer values task, students received a point per correct 

problem (for a possible total of 20).  Finally, for the number line tasks, we calculated 

students’ percent absolute error (with small numbers being better), comparing where 

they marked a number on the empty number line to its proper location.  
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RESULTS 

Based on our preliminary analyses, students in the treatment group made larger gains 

across item types even after playing the board game for only 45 minutes (see Table 1). 

 Pre-test Post-test Gain 

Item Type Control Game Control Game Control Game 

Counting to -10 .36 .43 1.32 4.35 .96 3.91 

Negative Integer 

Identification 
1.08 1.61 3.00 9.22 1.92 7.61 

Number Values 7.32 6.70 7.5 9.30 .18 2.61 

Number Line 

Percent Abs. Error 
41.60 49.81 50.24 39.61 8.64 -10.20 

Table 1: Average scores on the pre-test and post-test and average gain for the Control 

group (n=25) and Treatment or Game group (n=23) across item types. 

We examined the multivariate effects of condition (game treatment versus control) 

across the four tasks using a MANOVA on the average gain scores for the four item 

types. There was a significant effect of condition on the average gains for all items, 

F(4, 43)=5.821, p=.001, partial eta squared= .351. The game group significantly 

improved across all measures.  Separate univariate ANOVAs on the outcome variables 

revealed significant treatment effects on identifying negative integers, F(1,46)=17.059, 

p=.000 and counting to -10, F(1,46)=6.540, p=.014, with smaller effects on identifying 

integer values closer to or further from 10, F(1,46)=4.521, p=.039, and in their percent 

absolute error when marking numbers on a number line, F(1,46)=4.097, p=.049. 

Counting back to -10 

Other than either stopping at 0 or counting back all the way to -10, one student stopped 

counting at -3 and another student named negative numbers in random order. 

Identifying negative numbers 

Generally, students in the control group ignored the negative signs and called negative 

integers by positive integer names. A few students made up new names for the 

numbers, e.g., “infinity one” for -1 or “equals three” for -3. Only one student in the 

game (treatment) group was unable to identify any of the negative integers. 

Integer Values closer to/further from 10 

The smaller gains that students made on these items reflect the difficulty that some of 

them had in overcoming their desire to treat negative numbers as equivalent to positive 

numbers in value. Students in the control group learned that -5 could not be matched to 

5 in the matching game, but they had no reason to think that the values were different.  

When choosing whether -7 or -10 would be further from 10, one student in the control 

grouped explained that -7 is further because -10 is the same as 10. More nuanced, when 
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choosing whether -8 or -5 would be closer to 10, a student in the game group said -8, 

but then justified it by clarifying that -8 is closer to -10. Therefore, she may have 

interpreted -10 as something different than 10 but with equivalent values. This is true 

in some sense as both numbers are equal distances away from 0.  

Placement of numbers on an empty number line 

Across both groups, students displayed a strong tendency to mark 1 toward the left 

edge of the number line, even when 0 was marked in the middle of the line. They 

explained that 0 always starts at the beginning of the line and then 1 would come after 

that.  Most students continued to use this logic even after being reminded that zero was 

already marked for them on the page. By the post-test, on average, students in the game 

group made significant progress placing integers closer to their actual locations; 

however, several continued to place positive numbers to the left of zero on some trials. 

CONCLUSIONS AND IMPLICATIONS 

As demonstrated by the large gain in the game group, once students knew that the 

negative sign was an important feature for designating a new number, students were 

quick to learn the negative integer names. Further, a significant number of students in 

the game group successfully counted back to -10, suggesting that saying the backward 

number sequence as part of regular instruction can help students extend the whole 

number sequence to the negative integers. Interestingly, some of these students did not 

count backward to -10 even though they could do this while playing the board game. 

Students are generally expected to stop counting once they reach zero, so continuing 

into the negatives may not have seemed an appropriate response to our prompting. 

Stopping at zero could also contribute to students’ resistance in subtracting a larger 

number from a smaller one.   

Although the integer value result was significant, even students who could count 

backward to -10 had difficulty determining which of two integers was closer to 10. 

This is striking because students in the game group often commented about how they 

did not want to be in the negatives because their goal was to get to positive ten. These 

results provide further evidence that students rely on the absolute value meaning of 

integers, using zero as a reference point, and that this reasoning trumps their inclination 

to consider numbers further to the right on the number line as larger. Students need 

explicit experiences to help them negotiate the differences between absolute value and 

ordered value; including language into the game about integer values could provide 

needed scaffolding. Finally, the number line results suggest that teachers should talk 

about and use number lines that do not always start at zero to help students from 

overgeneralizing ideas about zero. Students already had strong conceptions about zero 

at the beginning of first grade, suggesting targeted instruction about zero and its 

placement relative to all integers could be beneficial before this point. 
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REVISITING TRANSFER OF LEARNING IN MATHEMATICS: 
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Debates on transfer of learning in mathematics are not new. Claims of situatedness of 

learning within tasks and non-transferability of knowledge between tasks are widely 

contested. Direct Application (DA) of learning is a common paradigm for 

characterising transfer which led to many instances of transfer failure (Bransford & 

Schwartz, 2001). The alternative framework presented here shows that some of the 

transfer failures in mathematics can be considered as partial transfer by broadening 

the DA paradigm which can scaffold classroom pedagogy by drawing upon everyday 

mathematics. Claims are supported by data drawn from an economically active low 

income settlement where sample middle graders are engaged in house-hold based 

micro-enterprise, possess diverse opportunities for gaining mathematical knowledge. 

THE CONTEXT 

Debates on situated perspective and transfer of learning in mathematics are not new. 

There have been several arguments in favour of and against learning transfer. 

Beginning with the pioneering work of Lave (1991), Lave and Wenger (1991) and 

Greeno, Smith and Moore (1992) situated learning in the domain of mathematics 

education broadly claimed that learning is situated within tasks at hand and that 

knowledge is non-transferable between different tasks. But, Anderson, Reder and 

Simon (1996) contested by arguing that such claims are “sometimes inaccurate and 

exaggerated”, and the “implications drawn are mistaken” (p. 5, 6). Anderson et al.'s 

contention (ibid) was further challenged by Greeno's (1997) objections of the 

generality and presuppositions about the levels of analysis that Anderson et al. had 

adopted. Greeno argued that the counterclaims of Anderson et al. addressed different 

questions by focusing on “knowledge and contexts of performance” and not the 

“activities and situations in which activities occurred and learned” (p. 6) and therefore 

they answered wrong questions. Earlier debates on transfer of learning indicate a 

growing feeling within cognition researchers about too many instances of transfer 

failure and lack of evidence that can challenge Thorndike's assertion that transfer is 

rare and occurs only between two similar situations (Bransford & Schwartz, 2001). 

Transfer literature is thus based on claims and counterclaims that looked at different 

notions of transfer devoid of unanimity over any concrete outcome. Most debates came 

within the paradigm of “direct application” (DA) of learning to new problem situations 

often following “sequestered problem solving” (SPS) method (Bransford & Schwartz, 

2001). In this paper, it is argued that sticking to the rigid boundaries of DA paradigm 

could be one reason for many instances of transfer failure and that we need a broader 

perspective to incorporate the doer's goal structure while using algorithms and learning 
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the underlying principles in order to look at the transfer phenomenon holistically. The 

broader perspective on transfer can then help us address educators' concern for 

ensuring effective learning among students and increase their ability to carry forward 

such learning. DA and SPS characterisations detect transfers with a “yes-no”, or 

“either-or” result and fail to indicate occurrences of partial transfer which can actually 

prepare ground for future learning. Transfer in everyday settings seldom leads to black 

and white conclusions. In this paper, an alternative framework is employed to revisit 

the transfer problem and reject the previously held characterisation of transfer as only 

direct application (DA) and also Lave's claim of non-transferability of knowledge. 

Extending and partially revisiting Bransford and Schwartz' notions of transfer, the 

alternative framework (Algorithm Goal Structure) addresses the transfer problem by 

considering comprehension and use of arithmetical algorithms as the central goal 

followed by learning to apply or relate to the underlying principles implicitly or 

explicitly.  

Drawing from data collected through interviews and discussions with working middle 

graders from an economically active urban low income settlement, it is observed that 

children's work-contexts are diverse and consequently, the extent and type of 

mathematical knowledge that students acquire outside school can be expected to show 

diversity. Such diverse engagement with contexts help children develop effective 

context specific problem solving ability that could be used for effective mathematics 

learning in the classrooms (Bose & Subramaniam, 2013). In this paper, transfer of 

learning is explored among the sample middle graders while they solve mathematical 

problems reflecting everyday contextual situations in the school set up as well as in the 

situations that emerge in the work contexts. It is claimed that the occurrence of partial 

transfer works as scaffolds for better learning of different components of the 

algorithms and principles, unlike Bransford and Schwartz's relatively vague and 

indefinite notion of “preparation for future learning” (p. 69). 

TRANSFER OF LEARNING (IN MATHEMATICS) 

Different paradigms looked at transfer of learning and common among them was the 

direct application (DA) paradigm based on the notion of “initial learning followed by 

problem solving”. Bransford and Schwartz (2001) however moved from direct 

application of knowledge to the “perspective of preparation for future learning”. This 

notion is in opposition to those that Lave, Anderson et al. or Greeno had adopted. 

Table 1 below highlights the transfer notions that prominent researchers adopted. 

Claims for both successes and failures in achieving learning transfer came up due to 

inconsistencies prevalent in the way transfer was defined. It is pertinent therefore for 

the educational researchers to revisit the definition and make generalisable claims that 

can be used for drawing larger pedagogic pointers for effective mathematics learning. 

Lave and Wenger (1991) looked at learning in the processes of co-participation as a 

situated activity, focusing on skill acquisition through engagement in tasks and 

claimed that situated perspective demonstrated that skills (or action) grounded in tasks 
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often did not “generalise to school situations”. In contrast, Anderson et al. argued that 

closer analyses of the tasks were required to make tenable claims of non-transferability 

of learning (1996, p. 6) and demonstrated situations where learning transfer occurred 

across contexts by showing transfer of mathematical competence from classroom 

situations to laboratory situations. 

Thorndike's definition Whether people can apply their knowledge to new a problem or 

situation (1901, as cited in Bransford & Schwartz, 2001) 

Lave's definition Transferring one's knowledge and skills from one problem-solving 

situation to another (1988) 

Anderson et al.'s & 

Greeno's definition  

Not explicitly defined, used prevalent notion of direct application 

Bransford & Schwartz's 

definition 

Moved from Direct application of knowledge (DA) to Preparation 

for future learning (PFL) (2001) 

Table 1: Definition of transfer used by prominent researchers 

Everyday mathematics vs School mathematics 

“Everyday mathematics” is considered here as a form of mathematics used in 

out-of-school settings while engaging in contextually embedded practices. Everyday 

and school mathematics describe two forms of activities based on the same 

mathematical principles but on different cultural practices (Nunes et al., 1993). While 

the former offers freedom of using alternate techniques than those learnt at school, the 

latter is more of symbol based often detached from meaningful contexts. Distinction 

between everyday and school math can be summed up by contrasting their basic 

features (group-work, division of labour vs individual, independent work; tool 

manipulation vs pure mentation), goals (situation specific competencies vs generalised 

learning), difference in procedures (orality vs written, use of multiple units, 

contextualised reasoning vs use of symbols and formal reasoning), difference in 

mechanisms of knowledge acquisition (sharing, communication vs textbook based 

knowledge), and metacognitive awareness (meaningfulness, continuous monitoring vs 

algorithm-use, lack of meaningfulness, relevance) (Nunes et al., 1993; Lave and 

Wenger, 1991; Resnick, 1987; Saxe, 1988). We make use of the everyday mathematics 

framework to locate the transfers of learning as they emerge in the classroom practices 

or in the everyday settings, in routine work-contexts, or during economic transactions. 

THEORETICAL FRAMEWORK: ALTERNATIVE VIEW OF TRANSFER 

The whole debate depends upon what counts as transfer. In the alternative framework 

of Algorithm Goal Structure (AGS), “direct application” is used as the first filter and 

Bransford and Schwartz' definition of “preparation for future learning” as the second 

filter. The first filter considers definition of transfer on the following criterion: 

 



Bose 

2 - 180 PME 2014 

 Have students learned the algorithms? 

 If they have learned the algorithms, whether they can apply the underlying 

principles implicitly or explicitly? 

In the second filter, it is checked whether students are able to transfer elements from 

their everyday or school knowledge in terms of some components of the underlying 

principles or the algorithms. In the present analysis, Bransford and Schwartz' notion of 

“preparation for future learning” is restricted to the possibility of learning the 

algorithms and elements of everyday knowledge that contribute to the components. 

SAMPLE & METHODS 

The sample for the larger ethnographic study done over two years was drawn from 

grade 6 of the municipality-run English and Urdu medium schools located in a low 

income settlement in Mumbai. This area has a vibrant economy in the form of 

house-hold based micro enterprise, which provide employment to the dense population 

living there. A total of 31 students were chosen randomly (every third student from the 

attendance register) to form the sample. Data was collected in three separate parts: the 

first part was semi-structured interviews of all 31 students to understand their 

family-background, socio-economic conditions, parental occupation, productive work 

done at home/elsewhere and student's involvement in them. The second part was 

interviews based on a structured questionnaire to understand students' basic 

arithmetical knowledge while the third part focused on students' knowledge about their 

work-contexts. All the interviews were audio recorded with prior permission from the 

respondents, the school authorities and also from the parents. The present data source 

is the second part of the interviews (arithmetical knowledge). 

Location of the study  

The large low-income settlement is located in central Mumbai where practically every 

house-hold is involved in income-generating work in which children take part from a 

young age. Being an old and established settlement, this low-income area attracts 

skilled and unskilled workers from all parts of India who come to the financial hub 

Mumbai in search of livelihood. The settlement is multi religious (Muslim majority) 

and multilingual (different language groups: Hindi/Urdu, Gujarati, Marathi, Tamil, 

Telugu). Common house-hold occupations include embroidery, zari (needle work with 

sequins), garment stitching, making plastic bags, leather goods (bags, wallets, purses, 

shoes), recycling work, etc. The goods produced here are sold not only in Mumbai but 

even exported, mainly to the Middle East countries. 

INSIGHTS FROM THE FIELD 

Transfer from everyday setting to school setting: Contextual problem-solving 

Students' strategies while solving contextual problems presented in the school setting 

involved use of halving methods and convenient groupings that are commonly 

encountered in everyday setting. For example, while solving a school-type proportion 
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problem of finding the price of 25 burfi when 20 burfi cost 42 rupees, some students 

found the prices of 10 and 5 burfi by halving 42 and 21, “bees ka bayalees, dus ka ikkis 

aur paanch ka gyarah” [forty two for twenty, twenty one for ten and eleven for five]. 

However, not many students could do this way and opted for “unitary” method of 

finding the price of one burfi first and then that of 25, but eventually got stuck in the 

middle. Some students arrived at 53 as the answer and justified that sellers often do not 

return small change of Re 0.50. Most students (barring a few who used unitary method) 

could not figure out how to proceed and struggled to choose an arithmetical operation 

for solving the problem. Under the first filter of DA, transfer does not occur in the 

sense of using formal algorithm (unitary method) as a generalised technique. But, 

using the second filter, we notice that some students were able to use their everyday 

contexts and reality perspective in using halving technique that allowed them to find 

the price of the “difference” in the number of burfis. From pedagogic viewpoint, this is 

a scaffold for teaching the generalised requirement of finding the price of one burfi. 

Under AGS, it fits as a case of transfer through second filter. 

In another problem (finding the number of days 16 kerosene oil cans can last if one can 

lasts for 7 days), most students used their everyday mathematical knowledge. For 

example, one student while computing orally, grouped 15 days for 2 cans and arrived 

at 4 months for 16 cans (considering 30 days per month) and then compensated the 

extra counts of 1 day per 2 cans, by subtracting 8 days and arrived at 112 days. Under 

the DA filter, one can claim that transfer is not happening if the algorithmic goal was to 

use formal multiplication. But, upon relaxing this goal, it fits as a case of transfer since 

the student could draw upon her everyday mathematical knowledge to solve the 

problem. Interestingly, only one student used the multiplication table of 16 while some 

students used the tables of 10 and 6 and added the partial products. 

Many students found the formal algorithm for division difficult to use and they often 

use convenient strategies. For example, one student actually divided 315 by 5 

presented symbolically on the paper and obtained 13 as the answer. He soon realised 

the error that the actual result cannot be that less. Subsequently, he aborted the formal 

division and did mental computation. Under DA filter this example does not show 

transfer but under the second filter, student's use of everyday experience emerges in 

realising the error and learning of repeated distribution as the underlying principle. 

Use of fractions 

Binary fractions like aadha (half), paav (quarter), aadha-paav (half-quarter, i.e., 

one-eighth) etc. are part of the everyday discourse that most students were exposed to 

and comfortable in using. The common contexts where binary fractions are used and 

which students regularly come across, are while buying provisions, vegetables, milk, 

etc. Non-routine fractions remain difficult for most students to comprehend and 

remains poorly developed, whereas binary fractions are easy for them to visualise and 

concrete visuals of whole numbers are easy to come by. Beyond these imagining and 

correlating divisions with numbers become difficult. The transfer of learning in case of 

binary fractions are only partial which fails at the DA filter since transfer does not 
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reach formalism but students are able to transfer some components of their everyday 

knowledge (fraction knowledge) which can scaffold learning of non-routine fractions. 

Classroom activities
1
 

During a classroom activity of shirt measurement which aimed at drawing upon 

students’ everyday mathematical knowledge for informing classroom teaching, almost 

all the students preferred using inch tape (a popular measurement mode) for taking 

measurements although textbooks deal only with the international standard units. Most 

students however, did not know the relations between old British units (inch, foot) and 

standard international units (centimetre, metre). Students commonly used other 

indigenous measuring units like bitta (arm length) and futta (template used in tailoring 

work) during classroom discussions. AGS framework does not consider this example 

as transfer under DA since students could not convert two systems of units, but this 

example qualifies for partial transfer under the second filter on account of bringing in 

elements of everyday knowledge which can scaffold further learning. 

Transfer from school setting to everyday setting: Problem-solving 

In the work-contexts 

Work-contexts of some students require doing quick calculations and use of 

approximation and estimation skills. Garment recycling work, for example, involves 

many children and requires weight measurement of the collected cloth pieces of 

varying size, colour and texture. The collected pieces are then sold off and the price is 

negotiated which requires children to make quick decisions and calculations. Children 

use convenient strategies and develop situation specific competencies, some of them 

reported use of multiplication tables that they learned at school. One student said that 

he does the multiplication “up in the air” by visualising the whole operation. He 

claimed that he does multiplication to cross-check the money he received. 

Everyday shopping 

School taught formal algorithms are often part of the daily routine, for example, at 

general stationary stores, sellers use paper and pen to arrive at the total cost. Oral 

computations are preferred while dealing with small amount of goods. Some students 

claimed that they cross-check the calculations on a paper using the school learned 

algorithms. Such examples indicate direct application of school taught methods and 

show transfer of learning to a different context. Number approximations during 

computations however qualify the second filter and shows partial transfer of learning. 

Transfer failure 

There are occasions where learning transfer did not seem to occur. It could be due to 

poor mathematical learning and lack of preparedness to handle complex calculations. 

                                           
1
 The classroom activities are drawn from the vacation camp classes for the grades 6 and 7 students of 

the Urdu school that the researcher and his colleagues conducted. The activities do not reflect actual 

classroom teaching. 
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For example, when the researcher discussed with a student whether she was satisfied 

with the Rakhi making (decorative wrist-bands) wage, she answered in affirmation. 

Upon asking she could only tell the market price of one dozen Rakhi – at least Rs 60 

(one rakhi is sold for Rs 5). She was unable to find the price at which one gross (twelve 

dozen) of rakhi is sold – Rs 720 for making of which she only earns Rs 15 or less. She 

could not calculate the amount she earns for making a single rakhi – which is about 10 

paise (one-tenth of a rupee). She could neither use the school taught multiplication 

algorithm nor any other computation strategy. There was no reflection of the use of any 

form of mathematical knowledge – school or everyday. Transfer of learning from 

either context was not visible. One can also argue here that poor learning of school 

mathematics impedes workers like her from checking the fairness of a deal or the wage 

and entitlements that are distributed among the workers. 

DISCUSSION & IMPLICATIONS 

Interactions with students showed instances where transfer of learning occurred and 

where it did not occur. Transfer or non-transfer both emerged as instances of 

computation strategies and such instances are often connected with knowledge and 

skill acquisition that are valorised in the community. Economic, social and cultural 

practices of the households often influence children's learning of strategies to meet 

different needs, like optimal use of limited resources, management of house-hold 

chores, routine purchase of provisions, and so on. Gaining such traits are seen as 

essential in the community. Arguably therefore, low socio-economic conditions affect 

diverse skill acquisition and induce transfer achievement or partial transfer as seen 

among the sample students. Diverse work-contexts and everyday settings create 

affordances that support mathematics learning and they are important sites of learning 

transfer between school and everyday mathematics. From pedagogic viewpoint such 

potentially rich contexts offer strong foundation for effective mathematical learning. 

The examples discussed above showed how rigid boundaries of DA would term many 

of them as transfer failures whereas many of these examples carried elements of 

everyday mathematical knowledge and some components of the underlying principles. 

Transfer failure often occurs not just due to the lack of exposure to everyday contexts 

but also on account of less conceptual mathematical reasoning and cognitive 

preparedness. Encumbrance of using formal algorithms is another possible reason. 

However, transfer failure occurring due to partly applying algorithms can scaffold 

learning of the underlying principles and achieve the algorithm goal, i.e., complete 

understanding of the procedure and the rationale. Thus, partial transfer emerging from 

the use of small components of the underlying principles has strong pedagogic 

relevance for better learning. From a pedagogic viewpoint these are pointers that can 

help the educators connect everyday mathematics with school mathematics. Hence, it 

was rather essential to look for possible instances of partial transfer and that required 

broadening of the DA filter. The proposed “Algorithm Goal Structure” (AGS) model 

looks at the instances that are potentially strong to work as scaffolds for effective 

learning. AGS matches with the growing consensus and with several educational 



Bose 

2 - 184 PME 2014 

policy documents on bringing children's experience and prior knowledge to the 

classrooms and treating them as good starting points for building new knowledge. The 

arguments and claims made here are however evolving and calls for deeper exploration 

of their systemic and pedagogic underpinnings. 
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MODELLING APPROACH ON STUDENTS’ MATHEMATICAL 

MODELLING COMPETENCIES  
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The paper deals with the question of the practicability and the effectiveness of different 

approaches to foster students’ mathematical modelling competencies. Within the 

modelling project ERMO (Acquirement of modelling competencies) a holistic and an 

atomistic approach of mathematical modelling were compared in order to find out 

which approach is more effective in fostering the students’ modelling competencies. 

The results of modelling tests with three measurement points show that both 

approaches foster students’ modelling competencies, but both approaches have 

strengths and weaknesses. The data indicates that the holistic approach is more 

effectively for students with weaker performance in mathematics. 

INTRODUCTION 

For several years, there was an intense national and international didactic discussion 

and research in mathematical modelling (see Blum et al., 2007; Kaiser et al., 2011; 

Stillman et al., 2013). Furthermore, the development of students’ mathematical 

modelling competencies is a central goal of German mathematics lessons, since the 

competency of mathematical modelling has been described as one of the central 

competencies in German educational standards in mathematics. Projects to foster 

students’ mathematical modelling competencies can each be assigned to one of two 

approaches: either a holistic or an atomistic approach (Blomhøj & Jensen, 2003). The 

main goal of the presented study is a comparison of the effectiveness of these two 

approaches in terms of the development of modelling competencies of students.  

In the first part of the paper the theoretical framework will be documented. Then, the 

design of the modelling project will be presented as well as the methods of data 

collection and evaluation. Finally, selected results of the study will be described. 

THEORETICAL FRAMEWORK 

In recent years, mathematical modelling was an internationally highly discussed topic 

of didactics of mathematics. From the discussion resulted various perspectives of 

mathematical modelling that include different representation of the modelling process 

as a cycle as well as goals and modelling competencies. An overview is given for 

instance in Kaiser and Sriraman (2006). 

However, the various definitions have in common that mathematical modelling is 

described as a process of solving real world problems by using mathematical methods 

(Niss, Blum, & Galbraith, 2007). In addition, an ideal-typical process of mathematical 
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modelling is usually illustrated in the form of a cycle (Kaiser, Blomhøj, & Sriraman 

2006), while in reality such processes are characterized by frequent switching between 

the various stages of modelling cycles (Borromeo Ferri, 2011; Martinez & Brizuela, 

2009). Corresponding to the different perspectives of mathematical modelling there 

are various modelling cycles, which are either more useful for application in 

mathematics lessons or in science (Borromeo Ferri, & Kaiser, 2008). The project 

ERMO refers to a didactical modelling cycle developed amongst others by Kaiser and 

Stender (2013; see Figure 1). 

Mathematiscal
model

Mathematical
result

Real world
model

Real
situation

Real world 
meaning of result

Mathematical
work

mathematise

understand
simplify

interpret

valitdate

validate

Modelling Cycle

©Arbeitsgruppe Mathematikdidaktik, Universität Hamburg

 

Figure 1: Modelling cycle (Kaiser & Stender, 2013) 

The specific definition of modelling competencies depends on the particular 

underlying concept of mathematical modelling (Zöttl, Ufer, & Reiss, 2010). Widely 

accepted is that modelling competencies include abilities and a willingness to solve 

real-world problems by using mathematical modelling (Maaß, 2006; Blomhøj & 

Jensen, 2003). The concept of mathematical modelling competencies contains 

different components, namely sub-competencies of mathematical modelling, 

metacognitive modelling competencies, competencies of structuring given problems 

appropriately and goal-oriented, competencies of argumentation and documentation 

and competencies of realising the possibilities of mathematics as well as positively 

valuing these (see for example Maaß, 2006).  

The sub-competencies are based on the underlying modelling cycle and include the 

abilities needed to perform the different steps of the cycle. Based on the modelling 

cycle from Kaiser and Stender (2013) different sub-competencies of mathematical 

modelling are distinguishable which can be assigned to three sub-processes of 

mathematical modelling (referring to Zöttl, Ufer, & Reiss, 2010): 

 Simplifying / Mathematising (including all competencies needed for the 

transition between real world and mathematics) 

 Working mathematically within the mathematical model 

 Interpreting / Validating (including all competencies needed for the transition 

between mathematics and real world) 

The sub-competencies of mathematical modelling are seen a necessary part of the 

modelling competencies, as they enable the modeller to perform the different steps of 



Brand 

PME 2014 2 - 187 

the modelling process adequately. However, the presence of the sub-competencies 

does not automatically include the existence of the overall modelling competence 

(Zöttl, Ufer, & Reiss, 2010). According to Maaß (2006) or Stillman (2011) the 

metacognitive competencies play a significant role for the modelling competencies. A 

non-existent or low meta-knowledge about the modelling process as a result may lead 

to considerable problems while working on modelling tasks, for example at the 

transitions between the different phases of the modelling process. 

According to the survey by Blomhøj and Jensen (2003) projects to foster mathematical 

modelling competencies can mainly be assigned either to a holistic or an atomistic 

approach. The holistic approach is based on the assumption that the fostering of 

modelling competencies will be the most effectively by tackling whole modelling 

tasks. The complexity and difficulty of the modelling tasks should correspond to the 

competencies of the students. The atomistic approach is based on the assumption that 

particularly at the beginning of the work with modelling problems the tackling of 

whole modelling tasks would be too time-consuming and not be effectively referring to 

the fostering of sub-competencies of mathematical modelling. Propagated is separated 

fostering of the sub-competencies by tackling only sub-processes of a whole modelling 

process (Blomhøj & Jensen, 2003).  

DESIGN OF THE STUDY 

The central goal of the project ERMO (Erwerb von Modellierungskompetenzen: 

Acquirement of modelling competencies)
1
 was to foster the students’ modelling 

competencies. Furthermore, the design of the single modelling activities was oriented 

towards the promotion of the students’ ability to reflect about their own working 

processes and results.  

The modelling project was carried out in 2012 in Hamburg (Germany) and started with 

a teacher training course conducted in cooperation with Dr. Katrin Vorhölter in 

February 2012. The participating classes integrated six 90 minutes modelling 

activities, including the tackling of different authentic modelling problems in 

co-operative, self-directed learning environments, as well as a modelling test in a pre-, 

post- and follow-up-design into their mathematics lessons (for an overview see Figure 

2). The classes were divided into two groups: The modelling activities of group A were 

assigned to the holistic approach, while the modelling activities of group B were 

assigned to the atomistic approach. The students of the holistic group dealt with 

complete modelling tasks with an increasing complexity, the students of the atomistic 

group dealt with sub-processes of mathematical modelling separately, especially the 

transitions real world → mathematics and mathematics → real word. The tasks of the 

atomistic group contained active parts, i.e. tasks that require for example to develop 

own real and mathematical models, as well as passive parts, i.e. given models or 

                                           
1
 The project benefited from experiences of the Hamburg working group on mathematics education 

with carrying out and evaluating modelling projects (see for example Kaiser, 2007). 
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solution that were to assess and validate. As hypothesis it was formulated  that 

modelling activities of the holistic approach is more effectively concerning the 

fostering of the overall modelling competency while the atomistic approach might be 

more effectively regarding the sub-processes of mathematical modelling (Simplifying / 

Mathematising, Working mathematically and Interpreting / Validating). 

 

Figure 2: Design of the study 

Altogether, N=377 students from 15 classes of 9
th

 grade of four secondary higher-track 

schools and two comprehensive schools took part in the project, while only 204 

students of 13 classes participated in all three measurement points (MP), 132 students 

of the holistic group and 72 students of the atomistic group (see Table 1). The 

presented results are based on this panel. 

 MP 1 MP 2 MP 3 Panel 

Holistic approach 168 164 169 132 

Atomistic approach 159 152 97 72 

Total 327 316 266 204 

Table 1: Sample – number of participating students 

The modelling test was designed in a pre-, post- and follow-up-design and conducted 

to evaluate the students’ progress of their modelling competencies. The design of the 

modelling test refers to work by Haines, Crouch and Davis (2001) and Zöttl, Ufer and 

Reiss (2011) and others, who developed items that tested different sub-dimensions of 

the modelling competencies. Because of this structure, it is possible to measure 

different dimensions of students’ modelling competency independently from potential 

weaknesses in single phases of the modelling process. The developed modelling test 

covered the three sub-processes of mathematical modelling (Simplifying / 

Mathematising, Working mathematically and Interpreting / Validating) as well as an 

overall modelling competency including the competence of carrying out a whole 

modelling process and matching different parts of a solution of a modelling task to the 

right phases of the modelling cycle. Per measurement point, the number of used items 

per dimension of the modelling competency varied between 15 and 24. 

The data were scaled by using methods of multidimensional item response theory and 

with an approach of so-called virtual persons for all items of the three measurement 
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points (Rost, 2004). The various dimensions of the modelling competency are 

considered as being the latent variables that can be estimated as a multivariate function 

of the items solved. The scaling was carried out with Conquest (Wu et al., 2007). In a 

first step, different psychometrical models of the structure of the modelling 

competency were scaled, a one-dimensional model as well as a four-dimensional 

between-item model and two multidimensional within-item models. To select the best 

model for the data, the psychometrical measures Akaike Information Criterion (AIC), 

Bayes Information Criterion (BIC) and Consistent AIC (CAIC) were used (Rost, 

2004). After the model selection, weighted likelihood estimates (WLE) were estimated 

as individual ability parameters and converted to an average value of M=50 and a 

standard deviation of SD=10. To analyse the progress of the modelling competencies 

within the two groups, amongst other evaluations, the average test performances of the 

students were tested for significance that were corrected by the Bonferroni method. In 

addition, the effect sizes of the performance differences were calculated. 

RESULTS 

The comparison of the four 

psychometrical models points to the 

four-dimensional between-item model 

(see Figure 3). Considering the 

psychometrical measures AIC, BIC and 

CAIC, which are the lowest for this 

model, the four-dimensional 

between-item model describes the 

collected data the best compared to the 

others (Rost, 2004). In addition, the 

reliabilities of the four dimensions are 

acceptable and vary between 0.767 

and 0.821. 

Regarding the development of the four dimensions of modelling competencies the data 

show for all groups of students highly significant increases between the first and the 

second as well as between the first and the third measurement points (see Table 2). In 

the first dimension simplifying / mathematising there is a higher effect size in increase 

of the holistic group between the pre- and the post-test (0.88) compared to the atomistic 

group (0.72). Between the pre- and the follow-up-test the atomistic group shows a 

larger effect size (0.68) than the holistic group (0.59). The effect sizes in the dimension 

of working mathematically are larger in the atomistic group between measurement 

point one and measurement point two (0.57 versus 0.47) as well as between 

measurement point one and measurement point three (0.46 compared to 0.32). The 

effect sizes in increase in the dimension of interpreting / validating are higher in the 

holistic group between the pre- and the post-test (0.77 compared to 0.69) as well as 

between the post- and the follow-up-test (0.65 instead of 0.57). In the fourth 

dimension, the overall modelling competency, there are larger effect sizes in increase 

Figure 3: Four-dimensional 

between-item model 
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in the holistic group as well (0.90 versus 0.68 between the first two and 0.61 instead of 

0.35 between the first and the third measurement point. 

 

Mean MP 1 

(SD) 

Mean MP 2 

(SD) 

Mean MP 3 

(SD) 

MP1→MP2  

(Cohen‘s d)  

MP1→MP3  

(Cohen‘s d)  

MP2→MP3  

(Cohen‘s d)  

Simplifying / mathematising  

Holistic 

group 

48.26 

(11.29) 

57.60 

(9.87) 

54.90 

(11.14) 

+9.33*** 

(0.88) 

+6.64*** 

(0.59) 

-2.69* 

(-0.26) 

Atomistic 

group  

51.21 

(7.80) 

57.62 

(9.84) 

57.08 

(9.39) 

+6.41*** 

(0.72) 

+5.87*** 

(0.68) 

-0.54 

(-0.06) 

Working mathematically 

Holistic 

group 

49.94 

(10.18) 

54.92 

(10.83) 

53.10 

(9.29) 

+4.98*** 

(0.47) 

+3.16*** 

(0.32) 

-1.82* 

(-0.18) 

Atomistic 

group  

48.85 

(9.16) 

54.76 

(11.35) 

53.81 

(12.33) 

+5.91*** 

(0.57) 

+4.95*** 

(0.46) 

-0.96 

(-0.08) 

Interpreting / validating 

Holistic 

group 

47.93 

(9.42) 

55.83 

(11.07) 

54.38 

(10.50) 

+7.90*** 

(0.77) 

+6.45*** 

(0.65) 

-1.45 

(-0.13) 

Atomistic 

group  

50.55 

(8.86) 

56.73 

(8.95) 

55.79 

(9.59) 

+6.19*** 

(0.69) 

+5.24*** 

(0.57) 

-0.95 

(-0.10) 

Overall modelling competency 

Holistic 

group 

49.78 

(9.34) 

58.08 

(9.20) 

55.55 

(9.62) 

+8.30*** 

(0.90) 

+5.78*** 

(0.61) 

-2.53** 

(-0.27) 

Atomistic 

group  

50.75 

(9.74) 

57.28 

(9.46) 

54.21 

(9.81) 

+6.52*** 

(0.68) 

+3.46* 

(0.35) 

-3.07* 

(-0.32) 

***p<0.000, **p<0.01, *p<0.05 

Table 2: Means and performance increases of the different dimensions of the 

modelling competency 

To receive detailed information about the differences in the performance increase 

between different groups of students, two-way ANOVAs with repeated measures were 

used. The results of the two-way ANOVAs show that there can be seen only significant 

effects of the modelling approach (in favour of the holistic approach) in the dimension 

simplifying / mathematising and the overall modelling competency and only between 

the first two measurement points. Differentiated between the two school types, the 
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two-way ANOVAs reveal that there is no significant effect of the modelling approach 

for the students of the secondary higher-track schools while there were significant 

effects of the modelling approach for all dimensions of the modelling competencies (in 

favour of the holistic approach) for the students of the two comprehensive schools.  

DISCUSSION OF THE RESULTS 

The results of the study are on the one hand related to the structure of modelling 

competencies and on the other hand on the development of the modelling 

competencies of the students. 

The results of the model comparison confirm the possibility to distinguish different 

facets of modelling competencies. The multidimensionality of the construct modelling 

competencies was also shown by Zöttl, Ufer, and Reiss (2010), while in their study the 

overall modelling competency was not seen as separated from the sub-processes of 

mathematical modelling as it could be shown in this study. This fact may be explicable 

by various aspects, mainly a different definition of the dimension of overall modelling 

competency including meta-cognitive aspects (see above). 

The evaluation of the modelling tests shows that the effectiveness of the two 

approaches towards fostering students’ modelling competencies has to be considered 

in a differentiated way. On the one hand the data showed that, despite the limitations of 

the reliability of the results particularly in field studies, in the project ERMO both the 

holistic and atomistic approach fostered the development of the different dimensions 

of the students’ modelling competencies under real teaching conditions successfully. 

On the other hand, differences between different groups of students and between the 

four dimensions of modelling competencies became apparent. A general superiority of 

one approach could not be stated. The results indicate that the approach for 

high-performance students plays a minor role, since no effect of the approach was 

found for the dimensions of modelling competencies for students of higher track 

schools (so-called Gymnasien). In contrary, especially for relatively less powerful or 

for heterogeneous classes the holistic approach seems to be superior to the atomistic 

approach, because for the students of the comprehensive schools (the so-called 

Stadtteilschulen) there higher performance increases were found in the holistic group. 
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We report on a long-term study which was executed in a German secondary school 

with 128 eights graders (ages 14 to 15) in four different classes. Two of these classes 

served as control groups. The mathematics lessons of the other two classes (treatment 

groups) were frequently enriched by distinguished phases in which structured 

argumentation and the use of heuristics was trained. The study aimed at investigating 

the development of the argumentation competence of the students over that period. For 

this report, the products of four different geometry tasks of 15 students from one of the 

treatment groups and 15 from one of the control groups respectively were evaluated. 

INTRODUCTION 

Both “reasoning and proof” and “problem solving” are important parts of mathematics 

curricula all around the world (e.g., NCTM 2000). Though both deal with aspects of 

producing mathematical argumentation, mathematics educators tend to 

compartmentalize those two domains (Mamona-Downs & Downs 2013). Problem 

solving is being perceived as focusing on progressing work, whereas the proof 

tradition highlights evaluating the soundness of the product of reasoning (cf. ibid.).  

We report on a 1.5-year study covering two experimental and two control classes 

emphasizing reasoning and proof as well as problem solving. In this paper, we confine 

ourselves to the “reasoning and proof” part of this study with a focus on the 

methodology of rating the students’ products. Additionally, we present initial results 

by highlighting quantitative (scores) as well as qualitative (ways of reasoning) 

analyses of the students’ products at the beginning and at the end of the study. 

THEORETICAL BACKGROUND 

Reasoning and proof is a significant aspect of mathematics and therefore also 

important for mathematics at school. It is, however, very difficult for students of all 

grades up to university level to generate or even read proofs on their own. Reid and 

Knipping (2010, p. 68 ff.) summarize several studies regarding the construction of 

proofs, which all agree on the fact that most students cannot write a correct proof. 

There is a need for good teaching concepts regarding reasoning and proof as well as for 

studies that accompany related teaching experiments. An important part of such studies 

are methods to measure the argumentational competencies of the participating 

students. These methods need to be able to account for the (partially) complex 

structures of proofs, to appropriately compare different approaches and levels of 

elaboration of proofs, and consequently to show progress in the generation of proofs.  
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Many researchers studying reasoning and proof use the Toulmin (1958) model which 

has been developed to reconstruct arguments in different fields (cf. Knipping 2008). 

According to Toulmin, the basic structure of rational arguments can be described as 

consisting of the pair of datum and conclusion. As this step might be challenged, a 

warrant can be added to justify it. Toulmin adds additional elements to his model (like 

qualifiers that can restrict the conclusion or backing for warrants) as do other 

researchers that use it. For example, Ubuz et al. (2012) add elements to describe 

statements and actions of teachers in classroom situations (like guide-redirecting) and 

specifications of existing elements (like deductive warrant and reference warrant).  

However, the Toulmin model has its limitations. For example, it “is not adequate for 

more complex argumentation structures [in classrooms]” (Ubuz et al. 2012, p. 168) and 

it “de-emphasises the times” (Knipping 2008, p. 439) and thus is not able to outline the 

development of argumentations. Most notably, the Toulmin model is not designed to 

analyze written argumentations such as students’ solutions of proof tasks. Analyses of 

students’ solutions with this model would mostly contain of data and conclusions, 

missing rebuttals of dialogue partners and according backings. 

As an alternative method to reconstruct argumentation steps and streams in written 

work of students, we propose in this article an adapted version of the multigraph 

representation by König (1992). He uses different graphical elements to denote 

elements like “starting quantities”, “solution state” and “intermediate states” as well as 

logical derivations between states and heuristics elements that might help proceeding 

from one state to another (see the Methodology part for an example of such a graph).  

König had designed his method which he refers to as a “solution plan” to compare 

written solutions of proof tasks – be it different solutions of the same task or solutions 

of different tasks. The standardized way of depicting an argumentation allows for a 

mostly objective analysis of students’ work in different states of elaboration. 

Our research intention is to adapt the solution plan sensu König to our study and to 

apply it onto the written argumentations (the products) of students that worked on 

mathematical problems and proof tasks. A secondary research question deals with 

detecting differences between and improvements of the argumentative competence of 

the students that underwent our training compared to those from the control group. 

DESIGN OF THE STUDY 

The HeuRekAP
1
 study was launched at the beginning of the 2011/2012 school term 

(August 2011) in a German secondary school and lasted for one and a half years (until 

the end of January 2013, see Figure 1). It covered the whole eighth grade consisting of 

four parallel classes. Altogether there were 128 students initially aged 14 to 15. Two of 

these classes were continuously taught by the first author (treatment groups T1 and T2), 

                                           
1

Heuristisch Rekonstruiertes Arbeiten und Problemlösen means Heuristically Reconstructed 

Working and Problem Solving, for details of the concept of Heuristical Reconstruction see Gawlick 

(2013). 
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the two others served as control groups (C1, C2). Treatment group T1 and control group 

C1 were both mathematical profile classes, which implies an additional mathematics 

lesson per week in grades seven and nine. 

 

Figure 1: Overview of the study and the ascertainments relevant for this paper 

For this paper, 15 students from each of the profile classes (T1 and C1) have been 

chosen by two criteria: (a) The selected students from both classes were supposed to be 

comparable with each other referring to their initial performance (parallelized 

samples). This was measured by the average school marks in Mathematics and German 

over the past four years before the study started. (b) The selected students should have 

had an above average motivation to participate in the ascertainments of the study. 

Therefore a survey on motivation was conducted at the beginning of the study. 

The mathematics lessons of treatment of group T1 included distinguished phases in 

which structured argumentation and proving as well as the use of heuristics were 

trained. The students were involved into the whole process of proving according to 

Boero (1999) and learned to write down their proofs in the Two-Column-Format (cf. 

Herbst 2002). Amongst the heuristics they became familiar with are the use of 

auxiliary elements, principles like analogy and strategies like working backwards. See 

Brockmann-Behnsen (2013) for an example of a typical educational unit. 

At regular intervals, sets of reasoning problems have been given to the students. 

Relevant for this paper are two items of the pretest, which was handed out before the 

treatment started, and three items of the posttest. The problems Rhombus 1, given in 

the pretest, and Rhombus 2, given in posttest are similar, Angle was given to the 

students both in the pretest and the posttest. With these pairs of problems the 

development of the quality of argumentation can be examined. Additionally, K10 was 

given to the students at the end of the study – with no matching pretest item because it 

is more complex than the other problems (see Table 1 for the problems). 
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Rhombus 1 (Pretest) 

A rhombus is divided into 

two triangles by its 

diagonal. 

Demonstrate that these two 

triangles are congruent.  

Write down all your 

considerations and argu-

ments step by step.  

Rhombus 2 (Posttest) 

A rhombus is defined as 

a quadrilateral with four 

sides of equal length. 

 

Given: A rhombus with opposite interior angles α 

and β. 

Prove: = 

Source: Griesel et. al. 2006, p. 27 f. Source: Beuthan 2008
3
, p. 53 

Angle (Pretest/ 

Posttest) 

 

 

 

 

Determine the value of angle α.  

Write down all your considerations. 

K10 

AB is the diameter of a semicircle k, C is an 

arbitrary point on the semicircle (other than A or 

B) and M is the center of the circle inscribed into 

ABC. Determine the value of AMB 

Source: Lergenmüller et. al. 2006, p. 64 Source: TIMSS III
2
 

Table 1: The four tasks selected for the analyses in this paper 

METHODOLOGY 

The research questions stated in this paper demand an instrument which is suitable to 

analyze and categorize the quality of argumentation in the students’ products. These 

products often differ strongly in their form and structure. The spectrum ranges from 

disjointedly noted statements – partly written in mathematical symbols – over prosaic 

texts up to highly structured Two-Column-notations. 

Therefore in a first step it is necessary to transform this variety of forms into one 

standardized format to facilitate comparability of the products. Orientated multigraph 

representations sensu König (1992, p. 25) serve as a basis for this standardized format. 

The vertices of these multigraphs comprise of the given magnitudes framed by circles, 

operators like Thales Theorem (TT) or the Angle Sum Theorem (AST) framed by 

rhombuses, intermediate aims surrounded by a mixture of rectangles and circles and 

the target magnitude enclosed into a rectangle. 

                                           
2
 In contrast to the TIMSS III format in this study no solution alternatives were given to the students.  



Brockmann-Behnsen, Rott  

PME 2014 2 - 197 

 

Figure 2: T1-04-K10 original notations and standardized representation 

The orientated multigraph representation depicts a survey of a complete solution of the 

given problem and highlights all the details reached by the student and their relation to 

each other. Figure 2 gives an example of such a representation. Shown are the original 

notations of student T1-04 who worked on problem K10. The notations have been 

parsed into units that correspond to intermediate aims, identified operators or phrases 

that indicate connections between them. Beneath the original notations the appendant 

multigraph representation can be seen. The units of the original notations have been 

registered within this standard solution. 

In a second step the quality of the students’ argumentations were graded into six 

categories (Cat. 0 to Cat. 5) based upon the multigraph representation (see Table 2). 

The notations of student T1-04-K10 as stated in Figure 2 consist of some intermediate 

aims and a logical connection between the operator Thales Theorem (TT) with its 

conclusion |γ| = 90°. The required premises for the application of that operator are not 

stated. Therefore these notations were categories into Cat. 2 (Molecules). 

 



Brockmann-Behnsen, Rott 

2 - 198 PME 2014 

Cat. 

0 

No access: No detail of the students’ notations is relevant for the 

solution. 
Blank 

Cat. 

1 

Atoms: At least one detail of the students’ notations (operator, 

intermediate aim etc.) is relevant for the solution.  

Cat. 

2 

Molecules: At least two details of the students’ notations are logically 

connected with each other.  

Cat. 

3 

Deductive Cells: At least one correct and complete elementary 

deduction that is relevant for the solution can be found. This is called a 

Deductive Cell. It includes the notation of the premises required for the 

application of an operator, the operator itself and the correct conclusion 

derived by the application of that operator on the stated premises. 
 

Cat. 

4 

Deductive Torso: At least two deductions relevant for the solution are 

logically connected with each other. Either one of the connected 

deductions or the connection itself is correct and complete (existence of 

at least one Deductive Cell).  
 

Cat. 

5 

Deductive Body: A complete solution without any logically deficits is 

being given. 

Complete solution 

graph 

Table 2: Categories for grading the students’ products 

RESULTS 

For all tasks presented in this paper as well as additional ones within this study, the 

coding of students’ written argumentations by representing it with an oriented 

multigraph and grading it into one of the six categories (Cat. 0 to Cat. 5) proved to be 

highly objective and reliable. Interrater correlations for 5 randomly selected students’ 

products per task have been calculated. The percentage of agreement scores for 

researchers who have coded the products individually range between 65% and 100% 

with the median interrater correlation being 83%.  

The coding of the students’ products into categories via the multigraph representations 

allows us to compare their argumentative performances. For this report, we examined a 

parallelized sample of 15 students each from the treatment group T1 and the control 

group C1. Because of the fact that the category coding yields only ordinal data and 

because of the small sample size, in the following we use non-parametric statistical 

methods like interquartile ranges and chi-square-tests instead of parametric methods 

like standard deviation and t-tests. 

Comparing the two groups shows that they scored equally at both pretest items as it 

was expected because of the parallelization with regard to previous achievement. The 

three posttest items, however, show a significant difference in favor of the treatment 

group (see Table 3). This was proven by chi-square-test (χ2 = 19,72, p < 0,0001). 
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 Rhombus 1  Rhombus 2  Angle (pre) Angle (post) K10 

T1: median (interquartile range) 2 (1) 4 (1) 2 (3) 4 (0.5) 2 (0.5) 

C1: median (interquartile range) 2 (1) 1 ( 2) 2 (2) 2 (2) 1 (1) 

Table 3: The mean results of the students for each task 

This result can be supported by an analysis of the individual development of the 

students between the two matching pairs of pre-posttest items (Rhombus 1/2 and 

Angle pre/post). From the tasks of the pretest to the tasks of the posttest only 5 out of 

30 products of the treatment group had no change or even a decline in their categories, 

whereas 21 products ascended by two or more categories. In the control group, 18 out 

of 30 products had no change or even a decline in category from the pretest tasks to the 

posttest tasks and only 5 products increased by two or more categories. 

We like to illustrate the development of the students argumentative competence 

exemplarily by the elaborations of student T1-15 working on the Angle Problem in the 

pretest (A) and in the posttest (B). In the pretest the student merely states the correct 

result with the argument: “Denn: (Because:) 36°+21°=57°”. No mathematical 

connections between the given and the demanded angles are being drawn. In the 

posttest the solution is structured by a Two-Column-System and heuristic elements 

such as auxiliary lines and notations can be found. 

 

 

(A) (B) 

DISCUSSION 

We introduced a study to foster the argumentative competencies of eighth graders. To 

examine such competencies and possible advancements, we developed a method based 

upon multigraph representations that enabled us to categorize and thereby compare 

written products of students working on mathematical problems and proof tasks. We 

challenged the objectivity of this method by measuring its interrater reliability and 

gained very satisfactory results. 

With the help of this method, we were able to grade the students’ argumentations 

before and after the 1.5-year period of our study. In accordance with the literature, 

most of the students scored quite bad results in proof tasks previous to the study. The 

control group (with no special training in heuristics and argumentational strategies) 
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showed equally poor results at the posttest. The treatment group, on the other hand, 

reached significantly better results after the training. Ongoing research has to further 

demonstrate the effectiveness of the teaching method elaborated in this study. 
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STUDENT STRATEGIES IN ENACTING AFFORDANCES 

Jill P. Brown 

Australian Catholic University (Melbourne) 

 

This paper reports an instrumental case study of the strategies employed by Year 11 

students engaged in solving a functions population task. The task was implemented as 

part of a study of students studying functions in a Technology-Rich Teaching and 

Learning Environment (TRTLE). Student strategies related to the perception and 

enactment of affordances of the TRTLE that would be useful during task solution. The 

number and nature of strategies used and the combinations of affordances perceived 

and enacted were diverse. This was true even when students had the same function 

related intention, for example, find a model to represent data. 

THEORETICAL FRAMEWORK AND RELATED LITERATURE 

A Technology-Rich Teaching and Learning Environment (TRTLE) is a classroom 

environment where both teachers and students have access to, and teachers’ 

professional development support for, a range of electronic technologies. To qualify as 

‘rich’ the environment includes unrestricted access to electronic technologies that 

enable mathematical explorations. See Brown (2005) for further details.  

The term affordance, prominent in educational literature, has a proliferation of 

different uses and meanings. In the research reported, following Gibson (1979) who 

invented the term, “affordances of a TRTLE…are the offerings of the environment for 

facilitating and impeding teaching and learning. Affordance bearers are those specific 

objects within the environment that enable an affordance to be enacted” (Brown, 2006, 

p. 241). Being opportunities, affordances need to be perceived and acted upon if the 

opportunity is to be taken up. In this study affordances were described in the same 

linguistic form used by Gibson (e.g., Communicate-ability, Represent-ability). Gibson 

saw affordances as a precondition for activity defining allowable actions between the 

object and actor; however, the existence of an affordance does not necessarily imply 

that activity will occur. The language form ‘-ability’ is intended to convey this 

potentiality. Affordance bearers, a term coined by Scarantino (2003), can be described 

in general terms or more particularly as specific features of the particular technology 

being used as is the case here (e.g., ZOOM). 

The number of studies focussing on function appears to have declined over the last two 

decades. Those that are reported tend not to involve real world contexts, situations 

where students are required to determine what function to use, nor often consider 

student actions in a normal classroom environment. For example, Kouropatov and 

Dreyfus (2012) in a study of advanced-level mathematics student volunteers learning 

integral calculus report on the accumulation function concept as core to developing “a 

flexible proceptual understanding of the integral and integration” (p. 11). An 



Brown 

2 - 202 PME 2014 

interesting study is reported by le Roux and Adler (2012) with a group of four 

“first-year undergraduate students solving a function problem” (p. 51). Although this 

function task is situated in the real world (chemical reaction) the function type 

(quadratic) is specified. Analysis focuses on “the interplay between students’ ways of 

talking about and looking operationally and structurally at the quadratic function” (p. 

57). Watson and Harel (2013) follow up Harel’s earlier analysis of the weak treatment 

in US textbooks of functions to investigate the impact of teacher mathematical 

knowledge on their teaching. With respect to TRTLE’s, Brown (2007) reported on 

Year 9 students’ early conceptions of function whilst Minh (2012) reported on Year 11 

and 12 students in a French technology-rich geometrical and symbolic environment 

learning about functions through modelling geometric dependent situations. Minh 

found “joint development of knowledge about the artefact’s capabilities together with 

mathematical knowledge about functions during the instrumental genesis” (p. 217) 

takes time. 

METHODOLOGY 

An instrumental approach to collective case study (Stake, 1995, pp. 3-4) was used in 

this study. The research question that is the focus of this paper is: In a TRTLE, where 

myriad affordances are present and would be useful, what strategies do students 

employ in solving real world functions tasks? The strategies relate to the perception 

and enactment of affordances that would be useful during task solving. Affordances 

that would be particularly useful in determining and subsequently using models for the 

task included: Data Display-ability, Function View-ability, Represent-ability, and 

Check-ability. These affordances are briefly illustrated from the lesson sequence on 

functions prior to task implementation; the focus then becomes the strategies employed 

during task solving. 

The data reported
1
 here involved students in two Year 11 classes of 16-17 years olds 

solving a function task, The Platypus Task (see Figure 1), as part of a larger study 

(Brown, 2006, 2013). Platypus are found in the Yarra River close to the school where 

the study took place. Teachers and students had access to both TI-graphing calculators 

and laptops with a selection of mathematical software. The initial units of analysis 

were TRTLE’s: P11 - 17 students taught by Peter and J11 – 20 students taught by 

James (all names are pseudonyms). 

The task was implemented during term 2, after the classes had completed course work 

related to the area of study of functions (including linear, quadratic, and cubic 

functions and relations). The task was introduced by the researcher and students 

worked on the task independently with little interaction with other students or the 

teacher. Data sources included task scripts, a post task record sheet - seeking to 

ascertain information that may not have been recorded (i.e., consideration of multiple 

                                           
1
 Data were collected in RITEMATHS, an ARC funded Linkage Project – LP0453701 at The 

University of Melbourne. 
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function types, checking), and audio and video recording of at least one student pair in 

each class. In addition, key recordings were made (using a Key Recorder App that 

recorded user button presses). Sixteen students were interviewed post-task. 

The platypus is an endangered species that may become extinct unless action is taken to save it. An 

annual survey held in a nearby national park showed an alarming decrease in the number of platypus 

over the years 1993-1998. The Save the Platypus Project commenced in 1999. Two sets of data 

representing the platypus population, before and after the intervention project, were provided.  

Part A: Use any method you feel is appropriate to determine a model to represent platypus numbers 

over time (a) before and (b) after the beginning of the project.  

Part B: Analysis included: did the intervention improve the situation, what was the predicted 

population a decade later, when would the population return to the initial value, and if successful 

when will the population return to the 1993 level? 

Figure 1: Details of The Platypus Task. 

Analysis of the data followed a grounded theory approach (Strauss & Corbin, 1998). 

After data collection, audio recordings were transcribed. These transcripts and video 

and key screen recordings were re-read, re-listened to and re-watched to immerse the 

researcher in the data. Screen shots were used to re-create student actions. Open and 

axial coding followed. The former identified categories such as affordance perceived, 

affordance enacted, and action promoting uptake of an affordance (Brown, 2013). 

Axial coding (Strauss & Corbin, 1998, p. 127) focused on discovering relationships 

amongst categories by answering questions such as: Who used the technology, how, 

for what purpose, and what was the consequence of use? Thus sets of combinations of 

affordance enacted, strategies employed, and affordance bearers used emerged. 

AFFORDANCES ILLUSTRATED 

Given the varied use of the term affordances in the literature, an understanding of the 

author’s use of this term is critical. This section illustrates what the term meant in 

practice in this study. Classroom situations (e.g., attempting tasks, discourse, and other 

interactions) often involved perceiving and enacting multiple affordances, as was the 

case here.  

One affordance identified in all TRTLE’s in the study was Communicate-ability. The 

affordance Communicate-ability is defined as Affordances of a TRTLE involving 

support of/for communication between humans through electronic technologies. Each 

affordance can be manifest in a variety of ways, for different purposes within the broad 

purpose enabled by the particular affordance. Communicate-ability was manifest 

through display of screens, lesson flow, program sharing, and vicarious experiences. 

Lesson flow and vicarious experiences were manifestations of this affordance for 

teaching, always initiated or enacted by the teacher. The others were both teaching and 

learning manifestations initiated by both teacher and students at different points in 

time. Display of screens, for example, involved sharing electronic displays for the 

purposes of communication in TRTLE’s supporting teaching and learning. The display 

to be shared could belong to teacher or student. Sharing displays could be deliberately 

planned or occur spontaneously as the lesson unfolded. Figure 2 presents a short 
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dialogue between two students and a recreation of their graphing calculator screens. 

This occurred when Hugh and Tony were trying to find a function in the form 

y = A(x + B)
2
(x + C), to model curves in a wooden strip. However, Tony did not 

correctly match the repeated factor to the correct root, and hence found an incorrect 

function. 

Tony:  Check it [the function graph] hits the points. 

Hugh:  y = -.0034(x + 4)(x - 12)
2
.  

Hugh:  Mine looks right. [Comparing his plot to the correct 

function, he observes the function graph passing 

though his plot of the data, and having the required 

features.] 

 

Hugh:  [Looks at screen of Tony.] You had a square on the 

wrong line. [Indicating the wrong factor has been 

squared rather than the wrong ‘line’] 

                                                              Lesson 32 Lines 169-175  

Figure 2: Illustration of Communicate-ability. 

Figure 2 shows an example of display of screens where each student shared their 

screen with the other for the purpose of Communicate-ability. The dialogue illustrates 

that both students were expecting the correctly identified function to pass through their 

plot of the data. Following their sharing of Hugh’s screen showing the plot and 

function graph, Hugh was able to identify the source of Tony’s error. Thus screen 

sharing facilitated collaborative work, which enabled informed error correction.  

Multiple affordances were often perceived and enacted in the same instance. Three 

other critical affordances are apparent in Figure 2, for example. These are Data 

Display-ability (affordances of a TRTLE to provide a graphical display of data, i.e., 

plot of numerical data), Function View-ability (affordances of a TRTLE to identify 

type of function to fit given data or identify a specific function) and Check-ability 

(affordances of a TRTLE allowing local or global checking or verification).  

ANALYSIS AND RESULTS 

Analysis of the data identified sets of combinations of affordance enacted, strategies 

employed, and affordance bearers used. A particular affordance could be used in 

employing a range of strategies and/or with a selection of affordance bearers. Equally 

many strategies could be employed using different selections of affordances. A student 

may consciously perceive an affordance first or a strategy first, or this may occur 

simultaneously, however it is generally impossible to determine (see Figure 3).  

 

 

 
Figure 3: Relationship between categories. 

Affordance Bearer(s) Used 

Strategy Employed Affordance Enacted  
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The specification of affordances is based on the critical ones being perceived and 

enacted for the particular strategy. One affordance may be enacted individually or 

concurrently with others. In some cases, enactment of an affordance implies enactment 

of previously perceived affordances. One affordance can be associated with several 

strategies, and vice versa, and in enacting any particular affordance, one usually has a 

choice of affordance bearers. For example, in enacting Data Display-ability several 

strategies were identified. These included: View plot of data to consider appropriate 

function type given shape; View plot of data after function graph has been viewed (i.e., 

in already set up window); View plot of data after function graph has been viewed, set 

up new window; and View plot of data simultaneously with function graph. However, 

a strategy involved both a purpose and the use of particular affordance bearers. For 

example in Viewing a plot of data to consider appropriate function type given shape, 

three different choices of affordance bearers were identified (a) LIST, STAT Plot, 

ZOOM Stat; (b) LIST, STAT Plot, WINDOW; and (c) LIST, STAT Plot, WINDOW + 

ZOOM Out.  

Model Finding 

Students took quite different approaches as they began the task. For example Len (P11) 

began by entering the population data before the intervention project in Lists 1 and 2. 

He found a linear regression model and pasted it into the function window as shown in 

Figure 4 (first 3 screens). Pressing GRAPH, no part of the function graph was visible. 

He edited the Window Settings, clearly informed by the data, and immediately saw the 

function graph (Figure 4, final screens). Hence, Len began the task by first enacting 

Function Identify-ability followed by Function View-ability. His strategy in the former 

was Identify functions using linear regression (using affordance bearers LIST and 

STAT CALC LinReg), and for the latter View the graph of model by editing window 

settings directly (using affordance bearers function window y=, WINDOW, and 

GRAPH). 

 

Figure 4: Evidence of enacting Function Identify-ability and Function View-ability. 

In contrast, Cam (J11) entered all the data provided into Lists 1 and 2. He correctly set 

up the plot, pressed GRAPH and saw the standard viewing window with no part of the 

plot visible. Selecting ZOOM Stat the data were displayed in the viewing window. 

Thus he had begun the task by enacting Data Display-ability as shown in Figure 5. His 

strategy was to View the plot of data to consider appropriate function type given shape 

using affordance bearers LIST, STAT Plot, and ZOOM Stat. 

The number of strategies in each TRTLE for these affordance combinations and the 

total number of times the affordance(s) for each part of the tasks are shown in Table 1. 

Row 1 shows that in P11, in Part A of the task seven affordances were perceived and 
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enacted with eight different combinations. In enacting these, 16 different strategies 

were used. Some students enacted multiple affordance combinations and strategies and 

hence the number of instances, 52, is greater than the number of students (17). In 

addition, models were found for two sets of data. In Part A, students in J11 enacted the 

same affordances although not necessarily the same combinations. Values in the final 

columns for Part B of the task less than 17 and 20, respectively, indicate that not all 

students completed all parts of the task. 

 
Figure 5: Evidence of Cam enacting Data Display-ability. 

Part of 

Task 

Affordance(s) Perceived and Enacted Number of 

strategies 

Number of 

Instances Number No. of Combinations 

P11 J11 P11 J11 P11 J11 P11 J11 

A: Model 

Finding  
7 7 8 9 16 24 52 103 

B: Q1 4 4 3 6 5 9 11 15 

B: Q2 3 4 3 7 8 13 16 17 

B: Q3 3 3 2 2 4 6 10 9 

B: Q4 4 3 2 5 2 6 6 9 

Table 1: Number of affordances enacted and strategies used during task solving. 

As Part A of the task allowed greater diversity of approaches, as evidenced in row 1 of 

Table 1, more detail is provided with respect to affordance combinations and 

strategies. There were 10 combinations of affordances in total, eight in P11 and nine in 

J11. Those combinations of affordances with number of strategies used (s) and 

instances occurring (N) are shown in Table 2, which indicates that some affordances 

were distinguished at a more specific level, that is, Check-ability was specified to be 

either local (shaded cells) or global. For Data Display-ability where the focus was 

multiple plots rather than a single plot and similarly for Function View-ability where 

the focus was multiple function graphs. All three relate to strategies being employed. 

Check-ability (local) was evident when Tabya employed the strategy: Perform a local 

check of function value(s) and compare with corresponding data value(s) using 

affordance bearer CALC Value. Check-ability (global) occurred, in conjunction with 

Data Display-ability and Function View-ability when Cam and others employed the 

strategy: View plot and graph simultaneously to see if the model matched the data 

using affordance bearers, ZOOM Stat and GRAPH. Multiple plots occurred when 

students viewed all the data at the same time. Multiple graphs occurred in two 

situations, either when students considered different function models for one set of 
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data or when they compared a model for the data before intervention and a model for 

the data after intervention. 

Affordance Combination 
s N 

P11 J11 P11 J11 

Data Display-ability 3 5 8 20 

Function Identify-ability 4 6 16 17 

Function View-ability 3 3 16 16 

Check-ability (global) with Data Display-ability and Function 

View-ability 

2 2 8 15 

Degree of Fit-ability with Represent-ability and Function View-ability 0 1 0 12 

Check-ability 1 2 1 8 

Represent-ability with Data Display-ability (multiple plots) 1 2 1 7 

Represent-ability with Function View-ability (multiple graphs) 1 2 1 7 

Degree of Fit-ability with Calculate-ability 1 1 1 1 

Table 2: Additional details for the model finding phase of task solution. 

DISCUSSION AND IMPLICATIONS 

A greater number of affordance combinations were identified in J11 and a greater 

number of strategies used in enacting the various affordance combinations. Whilst this 

is in part a result of a greater number of students in J11, this is not the only reason. 

Students in J11 made more diverse use of function types and had an increased tendency 

to consider multiple function types when identifying models for the data, or a 

combination of these factors.  

Approximately half of the students in P11 compared to most students in J11 (i) enacted 

Data Display-ability, (ii) viewed at least one model graphed simultaneously with a plot 

of the data, enacting Data Display-ability in conjunction with Function View-ability, 

and (iii) did so for at least one model before intervention and one model after 

intervention thus perceiving the usefulness of plotting the data and graphing a model of 

the function together. In addition, in P11, one student found multiple models for both 

sets of data and six did so for only one set (1 before, 5 after). In contrast in J11, eight 

students found multiple models for both sets of data and eight for one set only (7 

before, 1 after). This was a contributing factor in the larger number of affordances 

enacted and strategies employed in this TRTLE. 

Whilst it is interesting to compare students in the two TRTLE’s, this study is using an 

instrumental approach rather than the cases themselves being of primary interest 

(Stake, 1995, p. 171). For teachers and researchers, several implications arise. Firstly, 

the great diversity of approaches taken by students may be an eye opener to teachers of 

senior secondary mathematics students. These approaches relate to both affordances 

perceived and enacted and to strategies employed by students. Secondly, the number of 

students who found only one possible model for a data set that clearly could not be 

perfectly modelled by a polynomial or exponential model was surprising. Thirdly, 
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related to this, was the number of students who failed to either perceive affordances of 

the TRTLE for, or the need to, either compare a function model to data, to compare 

multiple models for the one set of data – to each other and the data – or to compare the 

two sets of data or the models for these. This researcher wonders if these students are 

simply assuming their model must be a perfect fit and hence there is no need to view 

the plot? Further research is needed to consider this. 
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We report on an empirical study grounded in our sustained implementation over ten 

years of a sequence of three-term undergraduate core mathematics courses centred on 

microworlds. The survey study investigates students’ views on 15 competencies 

potentially developed as they, individually or in pairs, create 12 Exploratory Objects, 

i.e., microworld-type environments, on diverse mathematical topics as part of their 

workload. Results suggest that students develop further the competencies as they 

repeat designing, programming, and using microworlds to learn and do mathematics, 

and that original projects in which students start by selecting their own topic, is key to 

the development of these competencies. No gender differences were found. 

INTRODUCTION 

Mathematics microworlds have long been acknowledged as providing a rich 

mathematics learning experience for students (Healy & Kynigos, 2010). There is 

abundant literature, mainly at the research level, on the topic. Most involve a few 

student participants (e.g. Wilensky, 1995) or a class for a one-time project (e.g., 

Jiménez, Gutiérrez, & Sacristán, 2009). There seems to be relatively little sustained 

classroom implementation of microworlds, probably for the reason that “[t]he ideas 

behind the microworld culture have not yet been presented in a form readily acceptable 

not only to school systems, but also to other stakeholders in education” (Healy & 

Kynigos, 2010, p. 68). In this paper we report on an empirical study on competencies 

grounded in our sustained implementation over ten years of a sequence of 

undergraduate core mathematics courses centred on microworld-type activities. 

CONTEXT 

Mathematics Integrated with Computers and Applications (MICA) program is a 

unique core undergraduate mathematics program offered at Brock University since 

2001 (Ralph, 2001). As a central component of the program are the innovative 

first-year MICA I and second-year MICA II courses, two core project-based courses 

for mathematics majors and future mathematics teachers. We can describe these 

courses by their common activity repeated throughout the two courses (at least four 

times/term), though each time in a more complex situation and on a different 

mathematics topic: to design, program, and use an interactive and dynamic 

computer-based tool, called an Exploratory Object (EO), for systematically 

investigating a mathematics concept, theorem, self-stated conjecture or a real-world 

situation (Muller, Buteau, Ralph, & Mgombelo, 2009). These microworld-type 

environments are either assigned to them, i.e. the topic and exploration questions are 
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provided to students through guidelines, or are original projects in which students start 

by selecting their own topic. For example in 2011-12, 471 assigned EOs and 

approximately 98 original EOs were created. Examples of original students’ EOs can 

be found in (MICA, n.d.). 

To date we have conducted diverse studies based on our insightful reflections about 

our MICA students’ experiences. For example, we have examined the students’ 

instrumental genesis of programming technology to create their own EOs for their 

mathematical investigations (Buteau & Muller, 2014). Based on a task analysis 

(Buteau & Muller, 2010), we have recently conducted a literature review aiming at 

contextualizing the EO learning activity. As a result, we describe that students engaged 

in an EO activity “experience, in a context of experimental mathematics, inquiry-based 

learning and mathematics learning through programming and simulation” (Marshall & 

Buteau, forthcoming, [p. 17]). The review included literature about microworlds (in 

the area of ‘learning university mathematics through simulation’). The literature study 

also aimed at theoretically identifying competencies that could be attained through the 

EO learning activity, resulting in a list of 15 competencies (Marshall, Buteau, & 

Muller, forthcoming); see Table 1. 

 Competencies 

a To self-motivate to learn/do mathematics 

b To engage in divergent thinking 

c To research mathematical topics 

d To develop mathematical intuition 

e To understand mathematical models 

f To closely reflect on problems 

g To program mathematics (simulations, mathematical experimentation etc.) 

h To get a feel for inappropriate answers 

i To work with abstraction 

j To visualize mathematics 

k To connect different representations of concepts 

l To interpret mathematical results 

m To communicate one’s mathematical results 

n To engage in the process of mathematics research 

o To learn/do mathematics independently 

Table 1: Theoretically identified competencies developed through the EO activity. 

These competencies were thereby identified in the literature in areas with common 

activity elements to the EO learning activity. Many of these competencies were 

discussed in the context of microworlds (Marshall et al., forthcoming). 
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Aiming now at empirical research about the students’ experiences through the 

repetitive microworld-type activities implemented in our department, we first 

conducted a study to gather preliminary empirical evidence of our theoretical results. 

Our guiding research questions were: what are the students’ views on i) the nature of 

the MICA I & II courses, and ii) the competencies developed in these courses? In the 

following we report on the results found in relation to the second question.  

METHODOLOGY 

To provide some insight into the research questions a student survey was undertaken. 

The voluntary and anonymous on-line survey was run, during laboratory sessions, of 

the MICA I and MICA II courses of the 2012/13 academic year. The questionnaire 

contained three sections. Section 1 focused on the demography of the respondents; 

Section 2 inquired about students’ views on the nature of the MICA courses; and 

Section 3 questioned their views on competencies developed in these courses. 

Questions in the latter two sections were based on our theoretical results (Marshall & 

Buteau, forthcoming; Marshall et al., forthcoming). In the third section students were 

asked questions that focused on: each of the 15 competencies listed in Table 1; two 

competencies related to more traditional mathematics courses, namely y-‘to write 

mathematics proofs’ and z-‘to perform complex calculations by hand’; and an optional 

open-ended question to comment on any of the competencies. The students’ responses 

were recorded on a five point Likert scale, for example, the question related to 

competency a) in Table 1 was, “The activities in the [MICA I (and MICA II)] course[s] 

prompt me to self-motivate to learn and do mathematics” with answer options: 

“[4]-Very much; [3]-Much; [2]-Some; [1]-Not at all; or No opinion”. In this paper, we 

only report on the survey results related to competencies (third section). 

The results from the 17 Likert-scale questions were analysed using simple descriptive 

statistical methods. Mann Whitney non-parametric tests were used to identify 

significant statistical differences between groups of participants. Qualitative data from 

the open-ended question was coded by competencies, followed by a frequency 

analysis. This data was also used to help interpret the statistical results. 

RESULTS AND DISCUSSION 

In total 55 MICA students participated in the study (57% participation rate), with 27 

MICA I and 28 MICA II students. In terms of gender, 24 female and 31 male students 

participated. Of the respondents 38% were mathematics majors, 40% future 

mathematics teachers, and 22% were enrolled in other programs. 

Answers to the survey questions provide students’ estimations of their acquisition 

and/or improvement of competencies potentially developed in the MICA courses 

centred on the EO activity. Although the data is ordinal we decided to calculate and 

plot means (removing the ‘No opinion’ responses) in order to provide a visual 

overview and pointers to possible areas where differences may be found. In the 
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exploratory graphs created we have joined points to offer more visual distinction 

between the results by different groups – the lines joining points have no meaning. 

Overall the means for each 15 competencies from Table 1 ranged from 2.46 to 3.34 

(see Figure 1). It suggests that students view that they’ve developed, to a certain extent, 

these competencies through the repetitive EO activity. The two additional 

competencies (y and z in Figure 1) received the lowest means, i.e., 1.98 and 2.3. In fact, 

this is in line with the learning objectives of the EO activity, and suggests that the 

implementation aligns with the activity expectations, namely, to design, program, and 

use an interactive and dynamic computer based tool to learn and do mathematics. For 

example, a participant commented that through programming mathematics, “[i]t was 

interesting to actually visualize the topics studied of mathematical conjectures and 

projects.” A respondent stressed the self-motivation to learn and do mathematics: “I 

have been very interested in the exploration of real world applications and creating 

[EOs] to test real life examples!!!”  Another participant also commented that,  

[s]ince we code the projects ourselves (mostly) there isn't a nice likes help option to tell us 

what the results are telling us, so it does require really thinking about what the numbers 

actually mean. 

This aligns with Wilensky’s (1995) study involving university mathematics students 

using microworlds: “It was not until [the student] programmed a simulation of the 

problem that she began to resolve the paradox" (p. 272). 

 

Figure 1: Means of students’ views, by gender, on competencies developed through 

EOs (N=55; with scale: 4-very much; 3-much; 2-some; 1-not at all). 

The results by gender in the graph (see Figure 1) seem to be relatively the same. 

Indeed, when Mann Whitney U tests were performed on data for each competency 

categorised by gender, no statistical differences (α=0.05, two tailed) were found for 

any of them. This indicates that students, independent of gender, demonstrate a similar 

awareness that they are acquiring and/or improving the competencies while engaged in 

the EO activities. This could be contrasted with Barkatsas, Kasimatis, and Gialamas 

(2009) study which found gender differences about school mathematics students’ 

achievement and views towards the use of technology in mathematics. 
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A similar comparison was done for responses of MICA I and MICA II students. Figure 

2 visually summarizes the results. It is worth noting that for each competency, the 

mean is greater for MICA II students than the paired mean for MICA I students. 

 

Figure 2: Means of students’ views, by course year, on competencies developed 

through EOs (N=55; with scale: 4-very much; 3-much; 2-some; 1-not at all). 

Mann Whitney U tests were performed on the data for each competency categorised by 

MICA I and MICA II students. Significant differences were found (α=0.05, two tailed) 

for seven of the competencies, namely: c ‘to research mathematical topics’ (p= 0.032); 

e ‘to understand mathematical models’ (p= 0.029); g ‘to (computer) code mathematics’ 

(p=0.003); i ‘to work with mathematical abstraction’ (p=0.012); j ‘to visualize 

mathematical concepts’ (p=0.045); l ‘to interpret mathematical results’ (p=0.021); and 

m ‘to communicate mathematical results’ (p= 0.046).  

The surveys were undertaken close to the end of the academic year, so one would 

expect that students at the end of their second year of a mathematics program would be 

more mature, both mathematically and in their ability to work with a microworld-type 

environment, than their counterparts at the end of their first year. Furthermore students 

completing MICA II would have realised 11 EOs, including two self-directed Objects 

and would be working on their third. On the other hand MICA I students would have 

completed only three EOs and would be engaged in their first major self-directed 

Object. The differences in Figure 2 point to the possibility that the competencies 

theoretically identified need repetition and maturity that requires more than one MICA 

course to become established.  

For the fifteen competencies the views of students in the MICA I and MICA II courses 

were statistically significantly different for seven of them. Because of space limitations 

we will comment on only two of the seven cases. We have selected one case in which 

we anticipated a difference, and another one that was a surprise. MICA I students will 

have experienced by the end of the semester (i.e., after they filled out the survey 

questionnaire) their first independent ‘research of a mathematical topic’. The MICA II 

(two semesters) course has important research components arising from both the 

complex questions generated by the instructor through the EO assignments, that 

require on line research and computer based experimentation, and also from the 
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mathematical conjectures or real world problems chosen by the students to be studied 

in their original final EO projects. It was therefore not surprising to find a significant 

difference between the views of MICA I and MICA II students in regards to the 

‘research of a mathematical topic’ competence.  

However we had not expected much of a difference of views for the competence ‘to 

(computer) code mathematics’. In the MICA I course students learn to code through a 

well-defined sequence of mathematical problems that require an increasing number of 

different programming concepts (Buteau & Muller, forthcoming). It is therefore 

possible that students in MICA I are so focused on acquiring the procedures of 

programming that is new to them that they lose sight of the mathematics. In contrast 

students in the MICA II course are sufficiently familiar with programming that they 

may now become more aware that they are ‘coding mathematics’ in their EOs. 

 

Figure 3: Means of students’ views, by program, on competencies developed through 

EOs (N=55; with scale: 4-very much; 3-much; 2-some; 1-not at all). 

Finally we also compared the responses of the students according to their programs, 

namely the math majors and the future math teachers (Figure 3). We didn’t consider 

students enrolled in other programs. The trends for the responses from the two groups 

are generally similar, with the math majors mostly providing the greatest agreement 

(largest means) on their development of the competencies. The Mann-Whitney tests 

identify significant differences (α=0.05, two tailed) between the two groups for only 

three competencies, namely: e ‘to understand mathematical models’ (p=0.031); f ‘to 

carefully reflect (think over carefully) on mathematical problems’ (p=0.008); and o 

=‘to learn and do mathematics independently’ (p= 0.038).  

Both in MICA I and MICA II courses, there is an over-riding importance placed on the 

original projects. In both these courses future teachers are allowed to substitute the 

original EO projects by Learning Objects, i.e., interactive, dynamic computer-based 

environments designed to “engage a learner through a game or activity and that guide 

him/her in a stepwise development towards an understanding of a mathematical 

concept” (Muller et al., 2009, p. 64). Thus mathematics majors may experience their 

original EO project as a means for themselves ‘to learn and do mathematics 

independently’ (as well as competencies e and f), while the future teacher may 

experience the Learning Object project as a means for themselves to design a 
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well-defined sequence of teacher-defined mathematical activities for someone else to 

learn mathematics. As such, these three competencies (e, f, and o) do not seem to relate 

to the LO activity, and this could explain why future teachers didn’t view developing 

as much these competencies. We stress that the theoretical list of competencies was 

generated on the basis of EOs, and for future teachers the list could be modified to 

include didactic competencies. Overall, this could suggest that original individual EO 

projects in which students start by selecting a topic of their choice, is key to the 

development of these three, or many of the 15, competencies. 

At the end of the survey, participants were invited to comment on some of the 

competencies. Figure 4 shows a summary created using Wordle (Feinberg, n.d.): 

Figure 4: Word cloud of MICA students’ comments on competencies. 

Clearly the participants identified mathematics as the main focus within the 

competencies in the MICA courses, followed by coding, thinking, learning, 

understanding, researching, computer, concepts, and able. When analysing how often 

each competency appears in the comments (see Figure 5), we find that the most often 

selected competency for comments was ‘to program mathematics’, followed by ‘to 

self-motivate to learn/do mathematics’, and ‘to engage in divergent thinking. Whereas 

g is the competency, or skill, likely to be most easily identified in relation to the EO 

MICA courses, the other two (a & b) are deep competencies normally beyond first and 

second-year university mathematics students. 

 

Figure 5: List of competencies selected by students for further comments. 
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FUTURE RESEARCH 

Results of our preliminary empirical study suggest that the 15 theoretically identified 

competencies (Table 1) may be further developed through a process of repetitive 

microworld-type activities. In addition, the original EO projects, where typically 

mathematics students independently carry out an investigation of their choice, may be 

key in developing these competencies. We now aim to conduct a comprehensive 

empirical study to investigate the evolution of these students’ competencies throughout 

their 12 individual EO activities in the three-term MICA core courses.  

Finally, results of the survey study also suggested no gender difference in students’ 

competency development. We postulate this may be linked to the creativity aspect of 

the EO activity (Buteau & Muller, 2014), which could be a topic of further research. 
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SECONDARY TEACHERS’ RELATIVE SIZE SCHEMES1 

Cameron Byerley, Patrick W. Thompson 

Arizona State University 

This paper explores the usefulness of understanding quotients as measures of relative 

size in mathematics. The paper characterizes the types of thinking displayed by high 

school mathematics teachers on two novel tasks designed to reveal teachers’ meanings 

in contexts where making comparisons of relative size is productive.  

INTRODUCTION 

Comparing the relative size of two quantities is an important mental operation that can 

be employed productively to reason about topics that span the grades 2-12 curriculum. 

These topics include measurement, fractions, rates, slope, trigonometry, and 

derivatives. After discussing topics where conceiving of the relative size of two 

quantities is useful, we will describe results from a study designed to reveal meanings 

held by 100 high school teachers in regard to two items where conceptions of relative 

size are useful.   

Comparisons of relative size are critical in conceiving of a quantity’s measure. The 

measure of some quantity tells us how many times as large the quantity is as the unit by 

which it is measured. Second grade students are supposed to measure an object using 

two different sized units and describe how measurements are related to the size of the 

unit chosen (CCSS.Math.Content.2.MD.A.1, 2010). Third grade students are asked to 

understand the quotient 32/8 as telling us that 32 is some number of times as large as 8 

(CCSS.Math.Content.OA.B.6). This meaning for quotient helps students make sense 

of situations where division is used. For example, 25 inches divided by 12 inches per 

foot tells us that 25 inches is 25/12 times as large as the standard measure of one foot.  

Thus 25/12 feet is the same magnitude as 25 inches.  Fourth grade students are asked to 

know the relative sizes of units within one measurement system 

(CCSS.Math.Content.2.MD.A.1) as well as express measurements given in a larger 

unit in terms of a smaller unit (CCSS.Math.Content.4.MD.A.2). Fifth grade students 

are asked to convert among different sized measurement units within a given 

measurement system (CCSS.Math.Content.5.MD.A.1).  

Fractions are a critical part of the Common Core curriculum in grades three through 

five. Thompson and Saldanha (2003) discuss the utility of conceiving of fractions as 

reciprocal relationships of relative size. The fraction p/q tells us how many times as 

large p is as q. Reciprocally, q is q/p times as large as p. Middle school students 

continue to study multiplicative relationships between two covarying quantities. For 

example, a rate can be considered to be a measure of the relative sizes of changes in 
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two quantities. Constant speed measured in miles per hour tells us that the number of 

miles traveled is so many times as large as the number of hours elapsed. Two quantities 

change proportionally if, as each quantity changes, the relative size of the two 

quantities’ changes is constant. If an object is traveling at a constant speed, any change 

in the measure of distance is always the same number of times as large as the 

associated change in the measure of time (Thompson, 1994). 

In algebra, conceiving of slope as a measure of how many times as large a change in y 

is as a change in x is useful in modelling and writing equations of lines. In 

trigonometry, radian measure can be thought of as a measure of how many times as 

large an arc length is as the radius of the given circle. In calculus, the difference 

quotient (f(x+h) – f(x))/h can be understood as comparing the relative size of  

f(x+h) – f(x) and h. We believe this meaning for difference quotient is more useful than 

thinking of “f(x+h) – f(x) out of h” or “go up f(x+h) – f(x) for every time we go over h” 

because these meanings do not work well when h is small. Additionally, because h 

becomes increasingly small and is typically not equal to one, thinking of slope as how 

much y increases for a one-unit change in x is not productive in calculus. This list 

represents only a subset of mathematical topics where considerations of relative size 

are productive.  

THEORETICAL PERSPECTIVE: QUANTITATIVE REASONING AND 

MEANING 

The theoretical perspective guiding the creation and scoring of the items reported 

evolved from the work of Piaget and von Glasersfeld. A project team designs items to 

reveal secondary teacher’s mathematical meanings. The intent of our items is find out 

what meanings teachers have with regard to various mathematical concepts; notice, 

this is not equivalent to classifying teachers into categories according to those who can 

solve a problem and those who cannot. This theoretical perspective, and what we mean 

by “meaning” is addressed in depth in Thompson, et al.(2013). For any mathematical 

idea, there are a variety of potential meanings, some of which are more useful than 

others because of the coherence they provide a teachers’ thinking and instruction. For 

example, the meaning of quotient as a measure of relative size would allow a teacher to 

explain why division is used in the slope formula.  

It is possible to have multiple meanings for one topic, and each meaning can be either 

quantitative or computational. For instance, a computational meaning for quotient held 

by some calculus students is that quotient is the answer that results from performing 

long division (Byerley, Hatfield, & Thompson, 2012). We attempt to determine 

whether a teacher’s meaning is computational or is based on reasoning about the 

quantities in the item.  

Much has been written on student and teacher understandings of the curricular topics 

connected to conceptions of relative size such as fractions, rates of change and 

derivatives (Armstrong & Bezuk, 1995; Bowers & Doerr, 2001; Harel & Behr, 1995; 

Izsák, Jacobson, de Araujo, & Orrill, 2012; Orton, 1983; Steffe & Olive, 2010). See 
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Sowder et al. (1998) for a good overview of the literature related to teachers’ 

understandings of multiplicative structures. In short, there is much evidence that both 

teachers and students struggle with topics that have a comparison of relative size at the 

heart of the idea. 

METHODOLOGY 

The two items discussed in this paper are part of the assessment project Mathematical 

Meanings for Teaching secondary mathematics (MMTsm). Items in the MMTsm were 

developed based on conceptual models of thinking that arose from prior research, our 

teaching or from interviewing teachers and students. For example, prior research on 

quotient (Ball, 1990; Ma, 1999; Simon, 1993) shows that both elementary and 

secondary mathematics teachers have stronger computational meanings than 

quantitative meanings. In items where teachers were asked to create a story problem 

for division by a fraction, most did not demonstrate a meaning for quotient as the 

relative size of two quantities. Coe (2007), Castillo-Garsow (2010) and Johnson (2010) 

found that often secondary students’ and teachers’ meanings for rate of change did not 

entail the idea of relative size of changes.  

Items went through a process with multiple revisions as a result of doing item 

interviews with teachers, showing items to mathematicians and math educators, and 

analysing data from approximately 150 teachers collected in summer 2012. Further 

details of the methodology were described in a methodology paper submitted to PME 

38 (P. W Thompson & Draney, under review). 

RESULTS 

In the results section we will present two items, the rationale behind the items, and the 

teachers’ results on the items. The first item, shown in Figure 1, was created to reveal 

teacher’s meanings for constant speed. 

 
Figure 1: An item on relative rates. 

Based on prior research we hypothesized that some teachers’ meanings for speed were 

“chunky” (Castillo-Garsow, 2010).  For those with a chunky meaning, speed is the 

distance travelled in a 1-unit interval (i.e. chunk) of time as opposed to a measure of 

how many times as large the measure of distance travelled is as the measure of elapsed 
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time. We suspected that teachers with chunky meanings for speed might choose j-s, an 

answer that is only true for the first one-second interval. There is some evidence in the 

written work and interview data to support this hypothesis, an example of which is 

provided in Figure 2. 

 
Figure 2: A teacher's response. 

In teacher responses to other items, interviews, and in the literature, we also noticed 

teachers using the formula d = rt inappropriately and thought that some teachers may 

expect to see a product as part of the answer (Bowers & Doerr, 2001). For example, 

some teachers used the formula d = rt to find the total distance travelled on a trip with 

a non-constant rate of change by simply selecting the rate of change at the end of the 

trip. We have not yet done interviews to see why teachers selected j*s in (b), (d). The 

only difference between response (c) and (e) is that the response (e) uses multiplicative 

language and (c) uses additive language. When scoring the items we do not think of 

teachers’ answer in terms of correct and incorrect, but in terms of how productive those 

meanings are for teaching. In this case we believe (e) is the most productive way to 

think about speed because it generalizes to situations where the change in time is not 

one-unit. Some teachers who substituted values for j and s were able to determine that 

the quotient j/s was important but did not select the phrasing “times as many” and 

instead chose (c). 

The teachers’ responses to “Relative Rates” are shown in Table 1. 

Response Math Majors Math Ed Majors Other Majors Total 
j-s 15 22 10 47 

j*s more 0 0 4 4 

j/s more 4 5 3 12 

j*s times 0 1 5 6 

j/s times 5 10 15 30 

 “no time” 1 0 0 1 

Total 25 38 37 100 

Table 1: High school teacher's responses to "Relative Rates." 

The majority of responses (70%) do not reflect multiplicative comparisons of the 

relative size of distance travelled for any amount of elapsed time. Teachers with 

“Other” degrees (e.g., Art History, Biology or Religion) were more likely to choose the 

highest-level response (40%) than teacher with math (20%) or math education degrees 

(26%), but we did not find this relationship to be statistically significant. 
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We designed the second item, shown in Figure 3, to see whether teachers’ thinking 

about a relative size situation would be constrained by the quantitative relationships or 

would be primarily algorithmic. Although the item is most closely aligned with 

elementary measurement standards, this foundational understanding is important in 

secondary mathematics standards as well. The first quantitative relationship is that 

when the magnitude of the unit is increased, the measure of the container will decrease. 

The second relationship is that if the new unit is 189/50 times as large as the old unit, 

the measure of the container is 50/189 times as large in the new unit. 

 
Figure 3: The second item, "Liters to Gallons." 

We scored responses to Liters to Gallons from 100 high school math teachers using a 

rubric that was negotiated by the project team. Responses that omitted m or did not 

somehow indicate the idea of “number of liters” at level zero (e.g. the teacher only 

wrote 189/50). Uninterpretable responses, responses that cubed part of the expression 

to find volume, and responses of “I don’t know” were also scored at level zero. For 

example, Figure 4 shows a level zero response from a math major who has taught forty 

high school math courses.
2
 

 
Figure 4: Level zero response to liters to gallons. 

This was not the only response that used a cubic term in the answer and some stated 

explicitly that there must be three variables or that something must be cubed in volume 

problems. These responses do not reflect an awareness of how the relative size of the 

two units influences the relative size of the two measures. 

The response in Figure 5 from a teacher with a math education degree who has taught 

seven high school math courses is an additional example of a level zero response. The 

teacher used the letter G to refer to both the magnitude of one gallon in the first line, 

and the number of gallons in the second line. The teacher did not demonstrate 

awareness of the reciprocal relationship between the measure of a quantity and the size 

of the unit measuring it. 

                                           
2
 For example, if a teacher taught one Algebra class, four geometry classes, and one study skills class 

in a school year we would say they taught five math courses that year. 
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Figure 5: Example of level zero response to “Liters to Gallons”. 

The response G = 189/50 m is level one if the teacher never used the same letter to 

represent two different quantities. The teacher in Figure 5 would have been scored at 

level one if the response had not used the letter “G” to represent two different 

quantities.  

Level two responses demonstrate the correct relationship of relative size between the 

volume in gallons and the number of liters, by using the reciprocal 50/189. However 

they are not scored at the highest level because teachers wrote that a volume in gallons 

is a number of liters. If the response in Figure 6 had omitted the word “liters” in the 

final line or wrote that 50/189 had units of gallons per liter, the response would have 

been considered highest level. 

 
Figure 6: Example of a level two response. 

Correct answers with explanations and correct answers without explanations were both 

scored at level three. Sometimes the response was only written symbolically such as 

(50/189)m.  Level three responses may have incorrect work crossed out, but the teacher 

settled on a response of “the number of gallons equals (50/189) times m.” 

Response Math Majors Math Ed Majors Other Majors Total 

Level 0 5 8 12 25 

189/50 m 14 20 14 48 

50/189 m liters 1 1 1 3 

50/189 m gallons 5 9 10 24 

Total 25 38 37 100 

Table 2: Responses and degree type for "Liters to Gallons." 

The majority of responses (63%), regardless of teacher degree, demonstrate that the 

teacher did not consider the quantitative relationships regarding relative size when 

producing their answer. Although Table 2 shows that teachers with Other Majors have 

a higher percentage of highest-level responses (27%) than Math Majors (20%) and 

Math Ed Majors (23%), we found no statistically significant relationship between 

degree type and level of response. 
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The MMTsm had one additional item involving the comparison of two measures. The 

item in Figure 7 included an image of a circle with a highlighted arc. 

 
Figure 7: Additional measurement item named "Nerds and Raps." 

Most teachers answered either 9 or 16, with 50 out of 100 high school teachers giving a 

highest-level response of 16. Out of those 50 teachers who had a highest-level response 

to “Nerds and Raps” only 17 gave a highest-level response to “Liters and Gallons.” We 

hypothesize using the letter “m” to represent an arbitrary number of liters required 

additional meanings for variables or increased the likelihood of using algebraic 

computations without considering quantitative relationships of relative size. However, 

even if the difficulty of Gallons to Liters was primarily caused by the variable “m”, 

Nerds and Raps shows at least 50% of the teachers were not constrained by 

quantitative relationships of relative size-in this case, the smaller the unit, the larger the 

measure. 

After meeting and interviewing a number of teachers who responded to these items, we 

suspect their daily work does not require them to consider quantitative relationships of 

relative size. We believe most teachers are capable of reasoning quantitatively, but 

they have had few occasions to do so.  When we used the Gallons to Liters problem in 

a workshop for teachers who took the MMTsm, they were able to think about it 

quantitatively. We believe MMTsm can be used in professional development to help 

teachers develop more productive meanings. We have conducted one three-day 

professional development using a number of our items that was positively received by 

the teachers, but further research is needed to help teachers build meanings related to 

relative size. 
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USING INTERVIEWS TO EXPLORE TEACHER KNOWLEDGE 

PROFILES IN THE AREA OF PERMUTATIONS 

Mary C. Caddle, Bárbara M. Brizuela 

Tufts University  

 

This paper illustrates consideration of multiple facets of mathematics teacher 

knowledge through interviews, demonstrates how teachers have different knowledge 

profiles, and discusses the implications for professional development. This study 

focuses on interviews with eight teachers, which were analyzed using Ball, Thames, 

and Phelps’ (2008) framework of teacher knowledge, assigning knowledge types to 

statements made during the interview. All teachers exhibited multifaceted knowledge, 

but different profiles emerged. The implication is that teacher profiles should be 

considered in designing professional development. In addition, this analysis supports 

the use of teacher interviews as a tool to consider professional development needs. 

INTRODUCTION 

Since the introduction of the idea of pedagogical content knowledge (PCK; Shulman, 

1986), studies and theoretical papers have attempted to clarify, specify, or measure 

Shulman’s construct. However, as pointed out by Hill, Ball, and Schilling (2008), there 

is still little information about how teachers’ PCK relates to student-level outcomes, or 

even about what constitutes PCK. A detailed view of teachers’ professional knowledge 

may help us to enrich it. 

This paper considers teacher knowledge to be multifaceted, using the framework of 

types of teacher knowledge put forth by Ball, Thames, and Phelps (2008), rather than 

viewing it as unitary. Not all theorized knowledge types have been measured 

independently or shown to be independent constructs (Hill, Ball, & Schilling, 2008). 

Thus, they remain, in part, theoretical distinctions. However, even if a different model 

of teacher knowledge emerges at a later date and is empirically validated, the premise 

of the analysis in this paper still stands as it points to the importance of recognizing 

teacher profiles, rather than defining specific profiles a priori. 

Here, we are assigning knowledge types to teacher statements made during an 

interview. In doing so, two themes emerge: (1) teachers’ knowledge profiles vary as 

seen in an interview setting, and (2) these profiles are useful when considering 

professional development. The study summarizes the results of analyzing eight teacher 

interviews. In the interviews, the teachers were presented with a mathematical problem 

and were asked to solve the problem, and also to reflect upon it, explain their solutions, 

and provide alternative strategies. The mathematical problem asked about how many 

ways there would be to arrange four distinct objects. The mathematical content, a 

permutation of all n of n objects [P(n,n) = n!] and its influence on responses cannot be 
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disregarded; this study does not make claims about what these teachers would do when 

faced with a different type of problem.  

In contrast to written assessments, interviews may provide teachers with more freedom 

in their responses, afford a more detailed look at their thinking, and serve as a more 

practical tool for educational administrators or professional development providers 

seeking to provide targeted development opportunities for teachers.  

Defining Teacher Knowledge Types 

Shulman (1986) introduced PCK in response to research and standards that heavily 

emphasized pedagogical procedures divorced from specific content areas. Rejecting 

this dichotomy, Shulman proposed that teachers needed not content-free pedagogy, nor 

pedagogy-free content, but a particular kind of professional expertise that went 

“beyond knowledge of subject matter per se to the dimension of subject matter 

knowledge for teaching” (p. 9). Inside PCK, Shulman included representations, 

examples, and explanations, as well as common difficulties, common student 

preconceptions, and ways of changing incorrect student conceptions. 

Hill, Ball, and Schilling (2008) give the most comprehensive look at PCK for 

mathematics. They propose that PCK is part of a larger construct, mathematical 

knowledge for teaching (MKT) and separate the universe of MKT into (a) subject 

matter knowledge and (b) pedagogical content knowledge. In this framework, subject 

matter knowledge includes both common content knowledge (CCK) and specialized 

content knowledge (SCK). Common content knowledge (or “‘common’ knowledge of 

content” in Hill et al., 2005, p. 387) includes what we might consider to be pure 

mathematical content; this is the knowledge of mathematics apart from the need to 

teach it. For example, knowing the solution for x in the expression 10
x
 = 1. Specialized 

content knowledge is content knowledge that would be useful only to a teacher; this 

SCK is still mathematical knowledge, not pedagogy. One example is knowing how to 

evaluate three methods for multiplying two digit numbers and determine which of the 

methods are always mathematically valid. This SCK sits next to PCK but does not 

contain it; neither is it contained by it (Hill et al., 2008). It is knowledge that would be 

useful while engaged in teaching, but does not require one to know anything about 

students or about teaching. 

PCK includes knowledge of content and students (KCS) and knowledge of content and 

teaching (KCT). KCS includes “knowledge of how students think about, know, or 

learn this particular content” (Hill et al., 2008, p. 375). KCT “combines knowing about 

teaching and knowing about mathematics” (Ball, Thames, & Phelps, 2008, p. 401), 

that is, knowledge of instructional strategies, choosing examples, and other elements 

that link the mathematics to the practice of classroom teaching. 

Ball et al. (2008) do not limit the types of teacher mathematical knowledge to those 

described above and leave room in their model for future discovery and definition of 

knowledge types, particularly as relates to knowledge of the mathematical horizon and 

knowledge of curriculum. In addition, Ball et al. (2008) and Hill et al. (2008) 
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acknowledge the difficulty and subtlety in these distinctions, even at a theoretical 

level. However, the analysis presented here is restricted to these four relatively 

well-defined knowledge types. To clarify the theory behind these distinctions, Ball et 

al. (2008) describe examples of tasks in which teachers may engage that would be 

manifestations of a particular type of knowledge. Their examples paved the way for the 

analysis carried out in this study. 

Accessing Teacher Knowledge Types through Interviews 

While teacher knowledge types are theoretical distinctions, they have been described 

through tasks and measured through written assessment questions (Hill et al., 2005) 

that attempt to engage respondents in the same types of activities they would be doing 

as teaching professionals. While teachers may shift fluidly between knowledge types 

during teaching, and may hold knowledge in complexes (Sherin, 2002), examining the 

tasks connected to each knowledge type elaborated by Ball et al. (2008) enables us to 

disentangle the knowledge used. 

This paper shifts examination of knowledge types to the interview setting. While Hill 

et al. (2008) describe conducting interviews as follow up to a written assessment to 

confirm that teachers were using specific knowledge types, since the interviews in this 

study will be analyzed statement by statement, the approach, analysis, and results 

presented here are novel. The interviews elicit teacher knowledge of all types, and the 

question is how much teachers use each type, and how different profiles emerge. 

METHOD 

Participants were eight secondary school teachers in a U.S. city or nearby urban rim 

community participating in a summer professional development workshop who 

accepted the invitation to be part of this study, which was independent of the 

workshop. Data were collected through flexible, open-ended individual interviews. 

The teachers were given problems to solve and, after solving each problem, they were 

asked for an explanation of their work and then to show a different way to solve the 

same problem and a different explanation. They were also asked what they believed 

their students would do when working on the same problem. The analysis presented 

here focuses on teacher responses to the first problem presented to the teachers. In this 

problem, teachers were asked how many ways they could arrange four objects. The 

four objects were presented as characters in boxes. In half of the interviews, the 

characters were numbers and in half the characters were letters. However, no teacher 

gave a response specific to either of the two formats, so the answers by all eight 

teachers were analyzed together. 

ANALYSIS 

The eight interviews were fully transcribed and statements in each interview were 

linked to items from the lists of teaching tasks in Ball et al. (2008) for each knowledge 

type. In each teacher statement, particular tasks were carried out, described, or referred 

to. A statement was defined as the full length of what a teacher said without response or 
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interruption from the interviewer. For example, the statement “Yes – after we do a few, 

most of them see the pattern is that you multiply. So after we do the tree diagram, 

typically I go into the fundamental counting principle” included four different tasks: 

Sequence particular content for instruction (KCT); Linking representations to 

underlying ideas and to other representations (SCK); Anticipate what students are 

likely to think (KCS); and Anticipate whether students will find a task easy or hard 

(KCS). Multiple codes were allowed, so more than one knowledge type may have been 

applied to a single statement, as was the case in this example. The eight teachers 

produced a total of 168 statements.  

RESULTS 

In the interviews, all teachers made statements classified under all four knowledge 

types, exhibiting multifaceted mathematical knowledge for teaching. Considering the 

eight teachers together, SCK appeared in 55% of statements (see Table 1). The other 

knowledge types (CCK, KCS, and KCT) appeared in 33% to 35% of statements. 

Knowledge type 

# of statements linked to this 

knowledge type (N = 168) 

% of statements linked to this 

knowledge type 

CCK 59 35% 

SCK 92 55% 

KCS 55 33% 

KCT 58 35% 

Table 1: Relative frequency of statements linked to each knowledge type. 

As shown in Table 2, the dominance of SCK varies across individual teachers. SCK, 

more frequent in the aggregate data, was the most commonly used knowledge type for 

only four of the eight teachers. In addition, none of the teachers mirrored exactly the 

profile of the study population as a whole. 

Name # CCK 

CCK 

% # SCK 

SCK 

% # KCS 

KCS 

% # KCT 

KCT 

% 

HIGHEST 

% 

Jessica 8 of 14 57% 7 of 14 50% 2 of 14 14% 2 of 14 14% CCK 

Anna 7 of 14 50% 6 of 14 43% 4 of 14 29% 5 of 14 36% CCK 

Sarah 8 of 23 35% 16 of 23 70% 4 of 23 17% 9 of 23 39% SCK 

Whitney 8 of 17 47% 9 of 17 53% 4 of 17 24% 3 of 17 18% SCK 

Annie 6 of 20 30% 16 of 20 80% 7 of 20 35% 3 of 20 15% SCK 

Laura 10 of 35 29% 22 of 35 63% 15 of 35 43% 18 of 35 51% SCK 

Betsy 3 of 18 17% 6 of 18 33% 10 of 18 56% 4 of 18 22% KCS 

Shana 9 of 27 33% 10 of 27 37% 9 of 27 33% 14 of 27 52% KCT 

Total 59 of 168 35% 92 of 168 55% 55 of 168 33% 58 of 168 35% SCK 

Table 2: Percentage of use of knowledge types, by teacher. 
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Figure 1: Percentage of statements exhibiting each knowledge type. 

Figure 1 provides an image of the percentages for the total and two of the teachers (the 

data points are connected to easily show all the points corresponding to each teacher). 

Data on eight teachers are not sufficient to generalize profiles; however, a detailed 

description may help us begin to construct ideas about the different profiles that could 

emerge from the teacher knowledge types revealed in interviews. To this goal, two 

cases will be described here, those of Annie and Betsy. Annie was chosen because she 

exhibited SCK more than any other knowledge type, mirroring the aggregate data, and 

because she had the greatest percentage difference between any two knowledge types, 

with SCK used in 80% of statements and KCT used in only 15%. Betsy was chosen 

because her profile is at the opposite extreme: she was the only teacher to exhibit KCS 

more frequently than any other knowledge type, and the only teacher to use KCS more 

frequently than SCK. These two teacher profiles will enable a more detailed discussion 

below about the potential for this type of analysis. 

Annie, whose work is shown in Figure 2, was a teacher with a strong background in 

mathematics. She had been teaching for less than five years, but her teaching had 

always been in secondary school mathematics. When presented with the problem, she 

quickly found the (correct) answer and explained the procedure she had used. She was 

able to also talk about two different methods for finding the solution and discuss which 

one she preferred and why. The use and critique of different representations was a 

major factor in her high percentage of statements exhibiting SCK, as two of the tasks 

linked to SCK are “Recognizing what is involved in using a particular representation,” 

and “Linking representations to underlying ideas and to other representations.” Annie 

referred to one (or both) of these tasks in 8 of the 20 statements she made about this 

interview question, as was the case in this statement:  

We start off with listing them all out, and then do the tree diagram, we can do the tree 

diagram for it, and then we came up with the formula, so they can see how many choices 

do they have. And I eventually show them the slots. Like think of 4 chairs that you have 

and then one person sits here there’s only 3 people left, so you take one out. 
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Figure 2: Work on the interview problem. Left: Annie’s; Right: Betsy's. 

Other than discussion and use of different representations, the other major factor in 

Annie’s high percentage of statements exhibiting SCK referred to the task, “Using 

mathematical notation and language and critiquing its use,” which was identified in 8 

of her 20 statements. All of the instances sprung from discussion of how her students 

would struggle with knowing to multiply, rather than add, the numbers, because of the 

use of the word “and.” She clarified that students would have trouble “just with the 

‘and’ and the ‘or.’ Because doing this stuff [permutations], it means different things.” 

She elaborated cases when this would occur and how her students would react. Note 

that these instances of SCK occurred only because she was engaged in a task associated 

with KCS, namely “anticipate what students are likely to think.” 

Betsy had been teaching for much longer than Annie had, more than 20 years, but she 

had not always been a mathematics teacher. She had started by working with special 

needs students in different subject areas, and then had begun to focus on teaching 

mathematics with the same population of students at the secondary school level. When 

Betsy was given the interview problem, she was able to solve it quickly and correctly, 

as shown in Figure 2, but she was more tentative in her work than Annie was, saying, 

“Okay, this is the factorial. And granted, I don’t do that too much, but what I 

understand is you go 4, 3, 2, 1?” When asked about other methods, Betsy was not able 

to spontaneously think of an alternative, so she did not refer to the same tasks in SCK 

that Annie had, but she had no difficulty describing how her students would react to the 

problem and what they would do with similar problems, referring to the tasks 

“anticipate what students will find confusing” and “anticipate whether students will 

find a task easy or hard.” For example, when talking about what students would do, 

Betsy said, “and the other [kind of problem] that they have trouble with too is 

replacement and without replacement. I mean, some of the kids got it but others just 

really struggled with it.” Note that by “replacement” and “without replacement,” Betsy 

meant whether an item could be used again in a permutation once it had already been 

used once. These terms are common in secondary school classrooms, where they often 

talk about pulling items from a bag and either replacing or not replacing the selected 

item before choosing the next. 
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DISCUSSION 

As mentioned above, the analysis of teachers’ statements reveals that they all 

demonstrated all types of knowledge during the part of the interview analyzed in this 

paper. No teacher had an individual profile that matched the profile of the combined 

data from all eight participants. What can we make of these wide variations? While 

making decisions based on these differences now would be unwise, if we were to apply 

this technique to a larger sample, we might see a set of teacher profiles emerge. In 

connection with classroom data, we could begin to understand what these different 

profiles suggest about the teacher’s work of teaching. 

This is illustrated by the two profiles, Betsy and Annie, described above. We are not 

naming one profile as superior to the other or preferable for helping students to learn. 

However, the differences between these two cases illuminate the breadth of experience 

in mathematics and the variety of perspectives that exist in the teaching force. The 

analysis of different knowledge types highlights and clarifies the differences between 

the profiles, and could ultimately help to provide professional support to the teachers. 

For example, Betsy made relatively few statements showing evidence of SCK. This 

might lead us to infer that for this particular mathematical area (permutations), Betsy 

could benefit from working in professional development activities related to SCK, 

such as working with and connecting a variety of representations. Conversely, Annie 

made few statements that showed evidence of KCT. She might be better supported, 

then, by professional development that focused on the teaching aspect, such as 

choosing examples or deciding how to respond to student contributions. Another 

advantage of examining these teacher profiles is that we begin to see that different 

profiles may complement each other. That is, perhaps Betsy and Annie would be able 

to each take the lead in turn in sharing teaching knowledge with each other in a 

mutually beneficial way.  

This particular interview analysis is different from previous work on distinguishing 

teacher knowledge types. The analysis of individual statements in interviews is based 

upon Ball et al. (2008), but not recommended or endorsed by them. While not as easy 

to code, the interview allows for a more descriptive view of a teacher’s varied 

knowledge. This may help us not only to understand the different teacher profiles, but 

also to begin to see how they complement each other, as in the cases described above. 

In addition, written assessments that can claim to measure a particular type of teacher 

knowledge, like that described by Hill et al. (2005), need to be developed and tested 

extensively. By necessity, they can only cover a finite number of mathematical topics. 

If we want to know more about teacher knowledge about something specific, like the 

permutation question analyzed above, a coded interview allows this targeted 

examination. Interested researchers and those who work on professional development 

could look at teacher knowledge in their particular mathematical domain, even when 

they do not possess the resources that would be required to develop a written 

assessment. 
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It is important to consider that the freedom of an interview may make it more likely 

that teachers will elaborate on the elements that interest them. In doing so, they move 

back and forth quite fluidly between knowledge types. This is supported by the 

findings above that all eight teachers exhibited all four knowledge types. In fact, Sherin 

(2002) suggests that teachers may access “content knowledge complexes” (p. 124), 

where the teachers’ past experience creates a link between the content and the 

pedagogy that results in accessing these types of knowledge together. The way that the 

teachers in this study moved easily between knowledge types lends support to Sherin’s 

theory. However, using the terms put forth by Shulman (1986), she says, “I claim that 

there are larger elements of teacher knowledge that cannot be categorized either as 

subject matter knowledge or as pedagogical content knowledge” (Sherin, 2002, p. 

124-125.) We would suggest instead that it is not that a complex exhibited by a teacher 

can be classified as neither type of knowledge, but rather that it can be classified as 

more than one type of knowledge. The idea of content knowledge complexes gives us a 

view of how different knowledge is called forth by a teacher, but it does not preclude us 

from categorizing teacher statements more specifically. 

While mapping and coding knowledge types may begin as a theoretical exercise, it is 

one with a practical goal. A unitary approach to professional development for teachers 

ignores their varying knowledge profiles. While it may seem obvious that teachers 

differ, we know little about how to determine which tasks they need support with and 

how to provide this support. Careful examination of their profiles through interviews 

about the complex tasks of teaching can only help. 
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This study examined the longitudinal effects of a middle school reform mathematics 

curriculum on students’ open-ended problem solving in high school. Using assessment 

data from a large, longitudinal project, we compared the open-ended problem-solving 

performance and strategy use of high school students who had used the Connected 

Mathematics Program (CMP) in middle school with that of students who had used 

more traditional mathematics curricula. When controlling for sixth-grade state 

mathematics test performance, high school students who had used CMP in middle 

school had significantly higher scores on a multipart open-ended problem. In addition, 

high school students who had used CMP appeared to have greater success 

algebraically abstracting the relationship in the task. 

INTRODUCTION 

Problem solving is an integral focus of the school mathematics curriculum. Studies of 

problem solving in mathematics education have already moved from a focus only on 

the product (i.e., the actual solution) to a focus on the process (i.e., the set of planning 

and executing activities that direct the search for solution). Individual differences in 

solving mathematical problems can sometimes be understood in terms of differences in 

the uses of different strategies. Proficiency in solving mathematical problems is 

dependent on the acquisition, selection, and application of both domain-specific 

strategies and general cognitive strategies (Schoenfeld, 1992; Simon, 1979). Thus, 

competence in using appropriate problem-solving strategies reflects students’ degrees 

of performance proficiency in mathematics. This implies that assessment tasks should 

reveal the various strategies that students employ. In addition, students’ 

problem-solving strategies become more effective over time. In fact, researchers have 

long used the examination of problem-solving strategies to assess and evaluate 

instructional programs and education systems (Cai, 1995; Fennema et al., 1998). 

Therefore, both the examination of the strategies that students apply and the success of 

those applications can provide information regarding the developmental status of 

students’ mathematical thinking and reasoning. 

The purpose of this study is to use problem solving strategies to investigate how the use 

of different types of middle school curricula affects the learning of high school 

mathematics for a large sample of students from ten high schools in an urban school 
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district.  This paper reports findings from a large project, Longitudinal Investigation of 

the Effect of Curriculum on Algebra Learning (LieCal). 

BACKGROUND AND RATIONALE OF THE STUDY 

The LieCal Project began with an investigation of the differential effects of a reform 

middle school mathematics curriculum called the Connected Mathematics Program 

(CMP) and more traditional (called non-CMP) curricula on middle school students’ 

learning of algebra. The CMP and non-CMP curricula are very different. In particular, 

they make use of strikingly different conceptions about algebra – a functional approach 

in the CMP curriculum and a structural approach in the non-CMP curricula.  For 

example, the CMP curriculum defines a variable as a quantity that changes or varies.  

The variable idea is needed to describe relationships in the problem situations that the 

CMP curriculum uses. In contrast, the non-CMP curricula define a variable as a 

symbol (or letter) used to represent a number. Variables are treated predominantly as 

placeholders and are used to represent unknowns in expressions and equations.  By 

introducing the concept of variables in this fashion, the non-CMP curricula support a 

structural approach to algebra.  In the non-CMP curricula, similarly, equation solving 

is introduced symbolically by using the additive and multiplicative properties of 

equality (equality is maintained if the same quantity is added to, subtracted from, 

multiplied by, or divided into both sides of an equation). On the other hand, in the CMP 

curriculum, equation solving is introduced using real-life contexts that are 

incorporated into contextually based justifications of the equation-solving steps.   

In the LieCal Project, we found that on open-ended tasks assessing conceptual 

understanding and problem solving, the growth rate for CMP students over the three 

middle school years was significantly greater than that for non-CMP students (Cai et 

al., 2011).  At the same time, CMP and non-CMP students showed similar growth over 

the three middle school years on the multiple-choice tasks assessing computation and 

equation-solving skills. These findings suggest that the use of the CMP curriculum is 

associated with a significantly greater gain in conceptual understanding and problem 

solving than is associated with the use of the non-CMP curricula. However, those 

relatively greater conceptual gains do not come at the cost of lower basic skills, as 

evidenced by the comparable results attained by CMP and non-CMP students on the 

computation and equation solving tasks. 

The LieCal Project has subsequently followed the students into their high school years.  

All high schools in the district are required to use the same district-adopted 

mathematics curriculum. CMP and non-CMP students were mixed into each class in 

each of ten high schools in the same district. Thus, all of the former CMP and 

non-CMP students used the same curriculum and were taught by the same teachers in 

their high schools. We have been examining whether the superior problem-solving 

abilities gained by the CMP students in middle school result in better performance on a 

delayed assessment of mathematical problem solving in high school.  
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In a previous study, we used problem posing as a measure of middle school curricular 

effect on students' learning in high school (Cai et al., 2013). Using problem posing as a 

measure, we found that in high school, students who had used the CMP curriculum in 

middle school performed equally well or better than students who had used more 

traditional curricula. The findings from this previous study not only showed evidence 

of the strengths one might expect of students who used the CMP curriculum, but also 

demonstrated the usefulness of employing a qualitative rubric to assess different 

characteristics of students’ responses to the posing tasks.  In the same vein, the present 

study uses open-ended problem-solving strategies as a measure to examine 

longitudinal curricular effect on students’ learning. 

METHOD 

Participants 

In the LieCal Project, we followed more than 1,300 students (650 using CMP and 650 

using non-CMP curricula) from a school district in the United States for three years as 

they progressed through grades 6-8.  In the 2008-2009 school year, most of these 1,300 

CMP and non-CMP students from the middle school study entered high schools as 

freshmen. We then followed the students enrolled in the 10 high schools that have the 

largest numbers of the original 1,300 CMP and non-CMP students. 

Assessment Tasks and Analyses 

As part of the LieCal Project, we developed and used 13 open-ended tasks to assess 

students’ learning in high school, specifically the 11th and 12th grades. Students’ 

responses were analyzed in two ways.  The first was to quantitatively score each 

student response using a prior-developed holistic scoring rubric. The second was to 

qualitatively analyze students’ responses with a focus on their solution strategies. In 

this paper, we mainly draw on results from an analysis of solution strategies to a 

pattern problem called the doorbell problem (see Appendix). This five-part task 

assesses students’ ability to find regularities of a pattern and make generalizations. We 

chose to report the results from this task as it is a representative task that assesses 

students’ generalization skills.  

Data Collection and Coding 

As part of the larger longitudinal study, we assessed students in the fall of 11
th
 grade 

(Fall, 2010), spring of 11
th

 grade (Spring 2011), and spring of 12
th
 grade (Spring 2012). 

The data for the analyses of students’ strategies came mainly from the 12th grade 

spring assessment. In a small number of cases, if a student did not participate in the 

Spring 2012 assessment but did participate in the Spring 2011 assessment, we used the 

data from the Spring 2011 assessment. If a student did not participate in either the 

Spring 2012 or Spring 2011 assessments, but had participated in the Fall 2010 

assessment, we used the data from the Fall 2010 assessment. This allowed us to look at 

the students’ most recent attempt at each task.  
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As noted above, students’ responses to the doorbell problem were first scored using a 

holistic scoring rubric that took into account the students’ numerical answers and their 

explanations of their strategies. The responses were then also qualitatively coded for 

the types of strategies used. We coded students’ solution strategies for parts A, B, C, 

and E as an abstract strategy, a concrete strategy, an unidentifiable strategy, or no 

strategy. Students who used an abstract strategy were able to recognize that the number 

of guests entering for each ring was equal to either two times the ring number minus 

one (i.e., y = 2n – 1) or the ring number plus the ring number minus one (i.e., y = n + (n 

– 1)). Students who used a concrete strategy were able to identify that the number of 

guests who enter increases by two for each doorbell ring and then sequentially adding 

two until they reached the desired number of rings, but did not abstract an algebraic 

formula. An unidentified solution strategy was a strategy that did not particularly make 

sense for the problem (e.g., y = [r(100) + 2] – 1). Lastly, a student was said to have used 

no strategy if the student did not show work for his or her answer, or if he or she did not 

attempt to answer the question at all. 

Students’ strategies for part D were coded in one of five ways. First, the student could 

have completely abstracted the algebraic formulas 2n – 1 or n + (n – 1).  Secondly, they 

could have completely abstracted the pattern in a verbal description (e.g. “The number 

of guests who entered on a particular ring of the doorbell equalled two times that ring 

number minus one.”). Third was an incomplete abstraction that only captured a 

recursive relationship, such as, “When the bell rings, two more people come.” Fourth 

was an unidentified strategy, which either represented the strategies for students who 

incorrectly answered the question or had a provided a strategy that did not make sense. 

Finally, a strategy was coded as “no strategy” if no attempt was made to solve the 

problem.  

RESULTS 

Overall Performance on the Doorbell Problem 

We first conducted two ANCOVA analyses based on the quantitative scoring to 

student responses to the doorbell problem. The ANCOVA analyses indicated 

significant curriculum effects under two covariates for the doorbell problem. When 

controlling for overall state math test exam scores for 6th grade, CMP students scored 

significantly higher than non-CMP students on the doorbell problem (t = 2.09, p = 

0.0371). When controlling for scores on the algebra subtest on the overall state math 

test for 6th grade, CMP students still scored significantly higher than non-CMP 

students (t = 2.47, p = 0.0141).  

Performance on Individual Parts of the Doorbell Problem 

Chi-squared tests were performed to look for relationships between curriculum and 

correctness of answers on each part of the doorbell problem. For part A, there was a 

significant relationship between curriculum and correct answers (χ
2
 = 6.5363, p < 

0.040). That is, a significantly larger percentage of the CMP students had correct 
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answers than the non-CMP students. For parts B, C, D, and E, there were no significant 

relationships between curriculum and correct answers. For each of the five parts of the 

problem, Table 1 provides the percentage of students with correct answers in that part. 

Note that Table 1 shows a considerable decreasing trend in the number of students who 

found a correct solution from part A to part E. 

 Doorbell Problem Part 

Curriculum A B C D E 

CMP (n = 321) 80.1 38.6 27.7 18.1 7.5 

Non-CMP (n = 212) 74.5 35.4 27.4 16.0 5.2 

Table 1: Percentages of CMP and non-CMP students who correctly solved each part of 

the Doorbell Problem 

Concrete and Abstract Solution Strategies 

Focusing specifically on the solution strategies of those students who provided correct 

solutions for parts of the Doorbell problem, some differences in strategy use arose 

between the two groups. For part B (see Table 2), 73.4% of CMP students (n=124) and 

60% of non-CMP students (n=75) abstracted the problem to an algebraic formula to 

find the correct solution, whereas 17.7% of CMP students and 24.0% of non-CMP 

students used a concrete strategy. A significantly greater proportion of CMP students 

used the abstract strategy than did the non-CMP students (z = 1.97, p < 0.050), but 

there was no significant difference in proportion between CMP and non-CMP students 

for the concrete strategy. 

For part C (see Table 2), 71.9% of CMP students (n=89) and 67.2% of non-CMP 

students (n=58) abstracted the problem to an algebraic formula, whereas 7.9% of CMP 

students and 19.0% of non-CMP students used concrete strategies to find a correct 

solution. A significantly greater proportion of non-CMP students used the concrete 

strategy than did the CMP students (z = -2.27, p < 0.025), but there was no significant 

difference in proportion between CMP and non-CMP students for the abstract strategy.  

For part A (see Table 2), 67.3% of CMP students (n = 257) and 63.9% of non-CMP 

students (n = 158) used a concrete strategy to find the correct answer, whereas 26.1% 

of CMP students and 27.8% of non-CMP students abstracted the problem to an 

algebraic formula. There were no significant differences in proportion between CMP 

and non-CMP students for each strategy. 

For part D, almost every student who provided a correct solution responded in nearly 

the same way. All of the 34 non-CMP students and 54 out of 58 CMP students who 

correctly answered this part generated an algebraic abstraction and provided a 

mathematical formula. The remaining four CMP students wrote out a verbal 

description of the mathematical formula, which would still require them to have first 

abstracted the relationships before translating those relationships into written form. 
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   Type of strategy 

Problem part n Abstract Concrete Unidentified None 

A       

 CMP 257 26.1 67.3 3.5 3.1 

 Non-CMP 158 27.8 63.9 1.9 6.3 

B       

 CMP 124 73.4 17.7 3.2 5.6 

 Non-CMP 75 60.0 24.0 4.0 12.0 

C       

 CMP 58 71.9 7.9 9.0 11.2 

 Non-CMP 34 67.2 19.0 5.2 8.6 

D       

 CMP 58 100.0 0.0 0.0 0.0 

 Non-CMP 34 100.0 0.0 0.0 0.0 

E       

 CMP 24 62.5 29.2 4.2 4.2 

 Non-CMP 11 45.5 36.4 0.0 18.2 

Table 2: Percentages of CMP and non-CMP students who used each type of strategy to 

correctly answer parts of the doorbell problem 

Part E seemed to be a challenging question for both the CMP and non-CMP students. 

Only 24 CMP students and 11 non-CMP students provided a correct solution to this 

part of the doorbell problem. Given these small sample sizes, although there were 

noticeable group differences in raw percentages of students using algebraic and 

concrete strategies, with a greater proportion of CMP students than of non-CMP 

students using algebraic strategies, these differences were not statistically significant.  

DISCUSSION 

As part of a larger longitudinal study of curricular effect on mathematics learning, the 

results we have presented above provide a useful perspective on the potential 

long-term impacts of reform mathematics curricula on students’ mathematical thinking 

and problem solving. Although we have presented data from only one open-ended 

task, the results suggest that high school students who used the CMP curriculum in 

middle school were more successful than their peers who used more traditional 

middle-school curricula at solving the doorbell problem and explaining their solution 

strategies. This result accords with those obtained when these students were still in 

middle school (Cai, et al., 2011). The result is also consistent with our previous 

findings using problem posing as measure of curricular effect (Cai et al., 2013). Thus, 

it would appear that the CMP students’ problem-solving gains persist well into high 

school.  
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The retention of these gains over longer time intervals also parallels the findings from 

research on the effectiveness of problem-based learning (PBL) in medical education 

(Hmelo-Silver, 2004). In that context, medical students trained using a PBL approach 

performed better than non-PBL students on conceptual understanding and 

problem-solving ability even when assessed at a later time. In a similar fashion, the 

CMP students in the LieCal project experienced problem-based instruction that 

focused on developing students’ conceptual understanding and problem solving 

abilities. 

In addition, our analysis of the strategies used by the students in this study suggests that 

the CMP students who correctly solved the parts of the doorbell problem were 

somewhat more likely to make generalizations. This appears to reflect the emphasis in 

the CMP curriculum on relationships between quantities (i.e., the functional approach). 

The ability to abstract algebraic relationships from real-world situations appears to also 

have persisted in the CMP students. 

Note that for this analysis, we focused on the strategies of students who correctly 

answered one or more parts of the doorbell problem. We did not consider the strategies 

of students who failed to provide correct answers. Additional analyses that will further 

probe the strategies of students who provided incorrect answers are in progress at the 

time of this proposal. Also, we are analysing data from other open-ended problems.  

APPENDIX 

Sally is having a party.   

The first time the doorbell rings, 1 guest enters. 

The second time the doorbell rings, 3 guests enter.  

The third time the doorbell rings, 5 guests enter.   

The fourth time the doorbell rings, 7 guests enter. 

Keep going in the same way. On the next ring a group enters that has 2 more persons 

than the group that entered on the previous ring. 

A. How many guests will enter on the 10
th
 ring? Explain or show how you found 

your answer. 

B. How many guests will enter on the 100
th
 ring? Explain or show how you found 

your answer. 

C. 299 guests entered on one of the rings.  What ring was it? Explain or show how 

you found your answer. 

D. How many guests will enter on the n
th

 ring? Show or explain how you found your 

answer. 

E. If we count all of the guests who entered on the first 100 rings, how many would 

we get in total? Show or explain how you found your answer. 
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ALGEBRA FOR ALL: THE HIDDEN COST 

Tracy Carolan 

University of Wisconsin, Madison 

 

PISA 2012 results indicate that school systems that group students based on ability 

levels tend to have lower performance than those that do not divide students by ability. 

One way some in the United States have sought to increase equity of opportunity is to 

mandate enrollment of students in college-preparatory mathematics, i.e., Algebra 1 in 

eighth or ninth grade. This paper is based on a study conducted on one such curricular 

change. It uses a multiple linear regression model to compare two graduating class 

cohorts—one from before the initiative and one after—on test scores, courses 

completed, grades, and drop-out rates. There were positive gains for select groups of 

males and negative results for most females with the highest losses found for White 

females, especially those qualifying for special education services. 

BACKGROUND 

Countries around the world vary in their approach to mathematics education. Some 

have a highly stratified system, sorting students from an early age, while others delay 

sorting students until their last two years of schooling, if at all. PISA 2012 results 

indicate that countries with systems that group students according to their ability tend 

to have lower performance than those that do not. Across countries, students in schools 

that do not use ability grouping on average outperform students in schools that do. 

Furthermore, ability grouping or “tracking” has a disproportionate impact on students 

of lower socio-economic status (SES), and that impact is greater the earlier the age at 

which students are divided according to ability (OECD, 2013). 

In the United States, ability grouping in mathematics is often firmly established by 

grade eight, around age 13, with results similar to those found in PISA 2012: lower 

levels of mathematical achievement—particularly for students from historically 

marginalized or economically disadvantaged groups. Many scholars in the U.S. have 

called for increased access to college-preparatory mathematics curricula at grade eight 

or nine (age 13 or 14), especially for historically marginalized or disadvantaged 

groups, as a way to increase equity of opportunity (e.g. Pelavin & Kane, 1990; Silva, 

Moses, Rivers, & Johnson, 1990; Smith, 1996; U.S. Department of Education, 1997). 

Initiatives aimed at this grade level are often called Algebra for All initiatives because 

Algebra 1 is the course students generally enroll in at age 13 or 14 if they are to 

complete a college-preparatory mathematics course sequence by age 18. 

This study examines one such initiative in an economically and ethnically diverse 

school district in the Midwestern United States: the Madison (WI) Metropolitan 

School District’s (MMSD) Algebra for Everyone initiative. Analogous to results seen 

internationally, students of color were under-represented in the district’s higher-level 
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mathematics classes and over-represented in basic and vocational mathematics classes, 

thus denying many students of color the opportunity to apply to and attend college due 

to inadequate high school mathematics courses. The MMSD identified institutional 

and systemic racism as a large contributor to this situation and decided to discontinue 

using staff recommendations for students’ mathematics class placements and instead 

place all students in a college-preparatory mathematics track. 

In 2003 non-college-preparatory mathematics classes at the high schools such as 

Pre-Algebra and Consumer Math were discontinued district-wide and all students were 

required to enroll in an Algebra 1 or higher-level mathematics class by grade nine. The 

only students who had an option for enrollment in non-college-preparatory 

mathematics were Special Education students who planned to apply for an exception 

based on their diagnosed disabilities (graduating via Individualized Education Plan 

(IEP)). 

By 2004 the Algebra for Everyone initiative was in full swing and a disturbing new 

trend was appearing in the Algebra 1 classes: higher and higher failure rates were 

observed across all sections and for all teachers. By 2007, failure rates in Algebra 1 had 

skyrocketed to 40% (from an average of just 10% in 2000) with some Algebra 1 classes 

having 65% of students failing. 

Anecdotally, students of color seemed to be more likely to fail than White students, 

Special Education students (those with diagnosed cognitive and/or emotional 

disabilities) seemed to be more likely to fail than those not qualifying for Special 

Education, and the students who struggled the most in Algebra 1 seemed to have very 

low middle-school mathematics achievement. It was extremely disheartening for 

classroom teachers to both literally and figuratively fail so many students. 

When examining results for the school district as a whole, the policy of largely 

eliminating ability grouping in ninth grade seemed to be a success. More students were 

completing a college-preparatory mathematics course sequence than had ever before, 

and yet there was this seemingly contradictory anecdotal evidence that the policy was 

actually lowering achievement for many students. Was it just that these students were 

struggling at first but were able to recover and catch up, or was it that the positive 

effects on some students masked the negative effects on others when outcomes were 

aggregated? This study was conceived in order to explore the effect of eliminating 

ability grouping via the Algebra for Everyone initiative on students in the MMSD and 

whether that effect differed at all depending on a student’s demographic group.  

METHODS 

Data Source 

I used transcript and demographic data from two graduating class cohorts: the last 

cohort in the MMSD whose students were able to enroll in classes below Algebra 1 and 

the cohort entering high school soon after the implementation of the Algebra for 

Everyone initiative. The first cohort (Cohort A) entered ninth grade in 2000 and was 
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the last cohort for whom Pre-Algebra was still an option at all four high schools in the 

district. Cohort B entered high school in 2004, which was the second year in which 

Algebra 1 was the lowest-level math class offered at all four high schools. I chose the 

second year of the Algebra for Everyone initiative to avoid as much as possible any 

effects of the adjustment period on student achievement. 

The raw data I received contained transcript data for grades 8 through 12 for 4,440 

students in the MMSD who were either enrolled in ninth grade in the fall of 2000 or the 

fall of 2004. Students who were not first-time ninth-graders in either 2000 or 2004 

were excluded from the study. After these exclusions, there remained 2,019 students in 

Cohort A and 2,006 students in Cohort B. 

Eighth-Grade (Incoming Ninth-Grade) Achievement 

Using independent-samples T tests to compare the means of Cohort A and Cohort B, I 

discovered that there were not significant differences (p ≤ 0.05) in mean eighth-grade 

achievement between the two groups either overall, or when divided into each of the 

eight main demographic subgroups (Asian males and females, Black males and 

females, Hispanic males and females, White males and females), in terms of the 

number of eighth-grade mathematics credits earned or the eighth-grade mathematics 

grade point average (GPA). 

I also compared scores from the state-wide standardized test given in eighth grade: the 

Wisconsin Knowledge and Concepts Examination (WKCE). Unfortunately, I was 

unable to conclusively compare eighth-grade WKCE scores from Cohort A to Cohort 

B because of changes to the WKCE test which occurred in 2002 (WI DPI, 2003), but 

the change in the MMSD’s 8
th

 grade scores from Cohort A to Cohort B closely 

resembles the changes seen across those years state-wide. When this result is paired 

with the favorable comparison of the measures of 8
th
 grade mathematics GPA and 8th 

grade mathematics credits earned, it gives confidence that students in the two cohorts 

entered high school with essentially the same prior achievement. 

Criteria on Which Cohorts Were Compared 

I then set out to measure whether any of the positive effects desired by proponents of 

Algebra for All initiatives, as well as any possible negative effects, were realized 

during the implementation in the MMSD. I compared the two cohorts on measures of 

student achievement chosen to address specific claims found in the literature (see 

Table 1). 
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Measure(s) of student achievement Notes on how data were recorded 

Level of initial high school 

mathematics class enrollment. 

 

Level of highest mathematics class 

taken in high school for which credit 

was received. 

1 = Special Ed or Pre-Algebra 

(non-college prep mathematics) 

2 = Algebra 1 

3 = Geometry 

4 = Algebra 2 

5 = Algebra 3, Pre-Calc, or AP Stats 

6 = Calc AB or higher. 

GPA in high school mathematics 

classes and overall high school GPA. 

GPA was unweighted and on a 

four-point scale. 

Overall ACT scores and ACT 

mathematics sub-scores. 

If there was more than one score, the 

highest one was used. 

Number of mathematics credits earned 

in high school. 

Programming classes were not 

included in the total. 

Drop-out rate.  

Table 1: Measures of student achievement. 

Statistical Methods and Justification 

I used a standard multiple linear regression model because it allowed me to better 

isolate the effects of the Algebra for Everyone initiative from other known variables, 

such as gender or socio-economic status. For example, if a particular subgroup had an 

increase in drop-out rates from Cohort A to Cohort B, it may be due to the initiative, 

but it could also be due to an increase in the proportion of students in that group with 

low socio-economic status. Multiple linear regression calculates the magnitude of 

change we can expect to see in the dependent variable due to each predictor 

(independent variable) and create a model which quantifies this change. 

Regression models for all variables have coefficients for the following predictors 

where possible: Cohort, Gender, each of the races/ethnicities except for White, Special 

Education status, English Language Learner status, and Socio-Economic status. I 

translated the demographic data into dummy codes of 0 and 1 so as to be able to use 

them as predictors in linear regression models for each measure in Table 1. Because the 

drop-out variable took only values of yes (1) or no (0), I used a binary logistic 

regression model to analyze this change. 

The focus of this study was the coefficient for Cohort, which represents the amount of 

change from Cohort A to Cohort B for a given variable that may be attributed to the 

Algebra for Everyone initiative. 
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This study was conceived primarily out of concern that the Algebra for Everyone 

initiative was having a differing effect on certain demographic subgroups versus 

others. This interest necessitated that the analysis not stop at simply calculating results 

for the MMSD as a whole, males vs. females, or even the eight main demographic 

subgroups. In all, I calculated regression equations for approximately 150 different 

demographic subgroups: for example, one of the subgroups was the group of White 

Female Low-SES Special-Ed students. At first glance, this seems like a great deal of 

unnecessary calculations, but the fine grain size proved to be pivotal in terms of 

attaining useful results. Many variables did not show significant differences for the 

larger demographic group but differences became significant as the group was 

subdivided. 

The fine grain size allowed this study to answer, in a way that would not have been 

possible otherwise, the question of whether the Algebra for Everyone initiative had 

divergent effects on different demographic groups. 

RESULTS 

Positive Results: Increased Achievement for Select Groups of Males 

As hoped, the Algebra for Everyone initiative did increase the mathematics 

achievement in the MMSD of some historically marginalized and/or disadvantaged 

groups, including Asian and White males of low socio-economic status, Black males 

who were not of low socio-economic status and were not receiving Special Education 

services, and Hispanic males who were not classified as English language learners. For 

these groups, the initiative yielded: 

 An increase in the number of credits earned in mathematics classes. 

 An increase in the level of the highest mathematics class. 

 An increase in the mathematics GPA and the overall GPA. 

 Higher college entrance examination scores (measured here by ACT test 

scores) and more students taking college entrance examinations. 

 A decreased or stable drop-out rate. 

These are encouraging results because they show that the theory behind an Algebra for 

All initiative is sound: many more students than previously thought are ready for 

college-preparatory mathematics and when given the opportunity to enroll they will 

rise to meet the challenge. 

Negative Results: Decreased Achievement for Females and Vulnerable Males 

Unfortunately, other demographic groups in the MMSD did not fare as well, suffering 

large losses in academic achievement after implementation. Sadly, these were some of 

the very groups the initiative was designed to empower, including Black male and 

female Special Education students, Black males who were of low-socio-economic 

status, Hispanic females, Hispanic males who were English language learners, White 

females (especially those eligible for Special Education services), and Special 



Carolan 

2 - 246 PME 2014 

Education students of all races and genders. For these groups, the consequences of the 

initiative included: 

 Fewer credits earned in mathematics classes. 

 A reduction in the level of the highest mathematics class. 

 Lower mathematics grade point average (GPA) and lower overall GPA. 

 Lower college entrance examination scores (measured here by ACT test 

scores) scores and fewer students taking the college entrance examination. 

 An increased drop-out rate. 

Any groups of students not named here showed mixed results, with the exception of 

Asian females for whom there was inconclusive evidence of either a positive or 

negative overall effect. 

DISCUSSION 

These results would show that Algebra for Everyone had positive effects on many 

students in the district, opening up the doors to college to many who would not 

otherwise have considered it. However, it did this while closing the doors to a 

traditional high school diploma for many others and leading still others to elect 

minimal mathematics preparation—the opposite of what was intended. 

Teacher Expectations and Student Achievement 

When examining the list of students for whom the Algebra for Everyone initiative met 

its goals, the salient feature is the gender they all have in common: male. These results 

could be an example of what Rosenthal and Jacobsen (1968) termed the “Pygmalion 

effect” in which teacher expectations of student learning become reality. Males are 

traditionally viewed as being better at mathematics and, given that their SES may not 

be readily apparent, for those not receiving Special Education or English Language 

Learner services there would have been no reason for a teacher or their classmates to 

expect them not to do well.  

Correspondingly, the second list contains students from demographic groups society 

has historically deemed more likely to struggle or fail in mathematics classes: females, 

students of color with low socio-economic status, English language learners, and 

students with diagnosed cognitive or emotional difficulties that qualify them for 

Special Education services. In these students’ cases, disliking mathematics or 

struggling to do well in it might be seen as common and/or not unexpected and 

therefore would not be cause for alarm. 

Mathematical Identity 

Ma’s (2003) research on the acceleration of regular students also may apply here. Ma 

found that when regular students are accelerated (defined as students who score at the 

65th percentile or lower, taking Algebra I in seventh or eighth grade), their attitude 

toward mathematics declines more quickly than their peers who were not accelerated 

and their anxiety increases at a higher rate than their regular peers who were not 
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accelerated. Ma was unable to find any student-level or school-level factors that could 

reliably predict this attitude decrease or increase in anxiety level. Using previous 

research on attitudes and how they relate to learning, Ma came to the conclusion that 

the negative effects are due to regular students being overwhelmed by the demands of 

the higher-level class. 

Students who were enrolled in a grade-level class when they would otherwise have 

enrolled in a below-grade-level class may have an experience similar to a regular 

student who was accelerated to an above-grade-level class. Students who had lower 

prior academic achievement may have been more susceptible to feeling discouraged 

and overwhelmed, leading to the increased dropout rates and a loss of the 

lower-achieving students from the group of students taking the ACT. 

Another influence on how students experience mathematics classes is how they 

perceive themselves to perform as compared to their peers. Correll (2001) determined 

that students’ self-assessment of their mathematical ability is done in reference simply 

to others in their daily classes, not in reference to the entire grade-level or student body. 

Prior to Algebra for Everyone, lower-achieving students would have been placed in a 

Pre-Algebra or lower class where they could have excelled relative to others in their 

class. Post Algebra for Everyone, these same students were placed in a more difficult 

Algebra 1 class with students with stronger prior achievement. The lower grades 

achieved in Algebra 1 vs. Pre-Algebra and their lower performance relative to their 

classmates may have affected students’ views of their mathematical abilities 

correspondingly. 

Individual Agency 

A third possible explanation is that the Algebra for Everyone initiative inadvertently 

changed the cost/benefit ratio of pursuing higher mathematics and/or a high school 

diploma. Correll (2001) found that girls who were strong in both English and 

mathematics were less likely to elect to enroll in Calculus (the most advanced 

mathematics course offered at a typical U.S. high school) than girls who were also 

strong in mathematics but not in English. In a sense, many girls who stayed with 

mathematics may have done so not because they loved mathematics but because they 

had no other viable alternatives. 

The groups with the greatest negative effects from the Algebra for Everyone initiative 

could perhaps be those for whom another option besides continuing with mathematics 

was readily available. This may have taken the form of enrolling in more history or 

English classes or, for those students who also struggle in the other disciplines such as 

many of the Special Ed students, it could have meant dropping out. 

Increasing equity of opportunity without harming vulnerable students 

Of course, the theories posited above are simplifications of the complex reality which 

influences students’ choices, but all seem to point to Algebra for Everyone not as the 
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cause of the results we see here, but rather as a trigger for amplification of 

already-existing trends and dynamics.  

It would appear that school systems that seek to eliminate ability grouping may 

unknowingly wield a double-edged sword, and further research is needed to paint a 

clearer picture of the dynamics involved and the optimal solutions. In principle, a 

policy designed to increase equity of opportunity, such as an Algebra for All initiative, 

would function only to place underestimated students in classes that were more 

appropriate, thereby unlocking their heretofore untapped potential. However, this 

study suggests that this result was achieved for only a fraction of students and that the 

success of these students was attained only at the cost of their peers’ achievement. 

This study would suggest that eliminating formal ability grouping is but one factor in 

increasing student achievement. Another important factor in student achievement is 

how students incorporate cultural beliefs about mathematics into their identities, and it 

is one that will be much more challenging for schools to address. 
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STUDENT ACADEMIC SELF-CONCEPT AND PERCEPTION OF 
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In this paper we present findings from a study investigating the relationship between 

all girls’ classes, all boys’ classes and coeducational classes on student mathematics 

self-concept and student perception of classroom environment. Further, we compared 

responses of girls in all girls’ classes to girls in coeducational classes and responses of 

boys in all boys’ classes to boys in coeducational classes. Using the Mathematics 

Attitude Scale and the What is Happening in This Class questionnaire, we found no 

significant differences in student responses on any of the subscales or domains for any 

of the subgroups, except for Math as a Male Domain. Our findings indicate that 

student mathematics self-concept and student perception of the classroom environment 

are similar regardless of whether students are in a single-sex or a coeducational class. 

FOCUS OF THE PAPER 

In U.S. public schools, academic classes consisting of only girl students or only boy 

students became permissible in certain circumstances in October, 2006. Thus, in 

contrast to many other countries, single-sex classes in U.S. public schools are recent 

phenomena. Many schools and districts in the U.S. are implementing single-sex 

classrooms within coeducational schools, rather than separating boys and girls into 

different schools. This provides scholars with an opportunity to investigate the efficacy 

of single-sex classrooms in public schools. The authors are engaged in studies that seek 

to contribute to our understandings of to what extent, in what ways, by what means, 

and for which students, single-sex mathematics and science middle grades classrooms 

influence learning environments, classroom discourse, student academic self-concept, 

and student performance. In this paper, we present findings on student perception of 

classroom environment and student academic self-concept in single-sex and 

coeducational mathematics and science classrooms at the middle level. In particular, 

we focus on the following questions: To what extent and in what ways are student 

academic self-concept and student perception of classroom environment related to 

class type (all girls, all boys, or coeducational)? How do girls in all girls’ mathematics 

classes compare to girls in coeducational (coed) classes in their academic self-concept 

and perception of classroom environment? How do boys in all boys’ mathematics 

classes compare to boys in coed classes in their academic self-concept and perception 

of classroom environment? 
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THEORETICAL FRAME AND RELATED LITERATURE 

Marsh and Yeung (1997) discuss the importance of distinguishing between academic 

and non-academic components of self-concept. They also emphasize that, even within 

a notion of academic self-concept, domain-specific distinctions of academic 

self-concept make sense because, for instance, one’s mathematics self-concept may 

not necessarily be correlated with one’s English self-concept (Marsh & Yeung, 1997). 

Bong and Skaalvik (2003) concur with the utility of domain-specific self-concept 

constructs, as they discuss how “academic self-concept reflects an aggregated 

judgment or overall impression of one’s competence in given academic domains” (p. 

29). For this study, we consider mathematics self-concept to represent one’s 

perspective of one’s competence within the domain of mathematics. Our focus on 

middle school students is driven by our understanding of the middle grades—spanning 

approximately ages 10 to 15—as a critical juncture in the development of students’ 

knowledge and attitudes towards mathematics. Ma & Kishor (1997) identify the 

middle grades as a crucial period in which students shape their attitudes toward 

mathematics. 

While it can be illuminating to understand more about student academic self-concept 

in a variety of classroom settings, it is also meaningful to inquire about student 

perceptions of the learning environment, particularly when those learning 

environments are novel to the typical schooling contexts. The importance of student 

perception of classroom environment has become so clear that an entire field devoted 

to the study of learning environments is now well established. Dorman, Adams, and 

Ferguson (2003) report that several studies spanning three decades have linked the 

quality of the classroom environment to learning outcomes in mathematics. In 

addition, drawing on Fraser’s (1998) study, they note the possibility that classroom 

environment could vary by school type (coeducational, boys’ and girls’ schools). In 

this study, we investigate whether and to what extent student perception of the 

mathematics classroom environment is related to classroom type (coeducational, all 

boys’, and all girls’) within coeducational public middle schools.  

METHODS 

Context of the Study 

A total of 215 students enrolled in one of the three class types (all boys, all girls and 

coeducational classrooms) in two rural middle schools (grades 6-8) from one school 

district in the southeastern region of the United States participated in the study. 

Specifically, 85 participants were enrolled in all-boys classes, 66 in all-girls classes, 

and 64 in coeducational classes (40 boys and 24 girls). Thus, there were a total of 125 

boys and 90 girls participating in the survey. The students completed an electronic 

survey and responded to subscales from two survey instruments – the 

Fenemma-Sherman Mathematics Attitudes Scales and the What Is Happening In this 

Classroom (WIHIC) questionnaire. The former scale addresses the research questions 

related to student mathematics self-concept and the latter scale addresses the research 
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questions related to student perceptions of the classroom learning environment. Both 

instruments are discussed in more detail below. 

Instruments and Analysis 

The Fenemma-Sherman Mathematics Attitudes Scales (MAS) (Fenemma-Sherman, 

1976) have long been used to investigate students’ attitudes and beliefs towards 

mathematics across all levels of schooling. For the purposes of this study, we focus on 

four of the nine domains of the MAS; the Math as a Male Domain Scale, the 

Confidence in Learning Mathematics Scale, the Mathematics Usefulness Scale, and 

the Teacher Scale. The MAS is organized as a 5-point Likert scale from strongly 

disagree to strongly agree. Prior to analysis, we reverse coded negatively-worded items 

from the subscales. For the subscale Mathematics as a Male Domain, we coded items 

so that a high rating reflected rejection of the notion that mathematics is a male 

domain. Thus, a score higher than neutral (higher than 3 on the 5-point scale) 

represents disagreement with the idea that mathematics is a male domain, whereas 

scores lower than neutral represent agreement with the idea that mathematics is a male 

domain. Fennema and Sherman (1976) obtained split-half reliabilities ranging from 

0.87 to 0.93 for these scales.  

The What is Happening in this Classroom (WIHIC) questionnaire was developed by 

Fraser, Fisher, and McRobbie (1996) as an instrument to assess student perceptions of 

their classroom learning environments. By incorporating scales that have been shown 

to be important predictors of learning outcomes, this instrument reflects recent 

cognitive views of learning in mathematics and science (Kim, Fisher, & Fraser, 2000).  

The WIHIC contains seven scales or subsets, each consisting of ten items on a Likert 

scale: (1) Student Cohesiveness, (2) Teacher Support, (3) Involvement, (4) 

Investigation, (5) Task Orientation, (6) Cooperation, and (7) Equity. Fraser (1998) 

notes that it is important to separate variations of a survey that asks about students’ 

perceptions of the classroom environment as a whole from variations of that survey 

that ask about that particular student’s experiences in the classroom; he advocates for 

extricating these perspectives into separate class and personal forms. In this study, we 

use the personal form because we are interested in sub-group analysis (Fraser, 1998). 

Fraser (1998) reports alpha reliabilities of more than .80 for each subscale for the 

WIHIC instrument. 

A non-experimental one-way analysis of variance (ANOVA) of student responses was 

conducted for each research question. For the ANOVA, the dependent variables were 

the student responses to items on each scale. The independent variables were class 

type, more specifically an all-girl, an all-boy, and a coeducational class setting, and 

students’ sex. For ANOVA in which a significant difference (α = .05) among the 

means was concluded, Tukey’s Pairwise Comparison post hoc test was utilized. When 

significant differences were found for subscales, Bonferroni adjustments were made 

for subsequent ANOVA analyses of individual items in that subscale. All statistical 

calculations were performed using the software program JMP Pro 10. 
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RESULTS  

The research questions for this study are: To what extent and in what ways are student 

academic self-concept and student perception of classroom environment related to 

class type (all girls, all boys, or coeducational)? How do girls in all girls’ mathematics 

classes compare to girls in coeducational (coed) classes in their academic self-concept 

and perception of classroom environment? How do boys in all boys’ mathematics 

classes compare to boys in coed classes in their academic self-concept and perception 

of classroom environment? In presenting our findings, we address the research 

questions relating to mathematics self-concept first, followed by our findings 

addressing student perception of classroom environment. 

Findings from the Fenemma-Sherman Mathematics Attitudes Scales 

We began our analysis of mathematics self-concept by investigating student responses 

across the three class types (all girls, all boys, and coed). We found no significant 

differences in the responses of students in all-boys, all-girls and coed classrooms for 

three of the four MAS scales: Mathematics Usefulness, Confidence in Learning 

Mathematics, and Teacher scales. The Mathematics as a Male Domain scale, however, 

indicated significant differences, with all-girls’ and coed classes scoring differently 

from all-boys’ classes. Further analysis indicated that responses from students in all 

girls’ classes differed significantly from responses from students in all boys’ classes on 

four items of the scale. Table 1 shows the results of the analysis of mathematics 

self-concept by classroom type. 

 All Girls All Boys Coed 
p 

Subscales Mean SD Mean SD Mean SD 

Confidence in Learning Math 3.60 0.92 3.63 0.87 3.52 0.86 .7580 

Mathematics Usefulness 3.93 0.71 3.87 0.69 3.74 0.75 .3223 

Teacher Perceptions 3.48 0.68 3.46 0.72 3.51 0.73 .9096 

Math as a Male Domain 4.08
a 

0.52 3.63
b
 0.61 3.85

a
 0.54 <.0001

*
 

When a woman has to solve a 

math problem, she should ask 

a man for help. 

4.13
a 

1.19 3.41
b 

1.18 3.82 1.02 .0012 

Women who enjoy studying 

math are a little strange. 
4.22

a 
1.14 3.58

b 
1.13 3.94 1.05 .0023 

Women certainly are smart 

enough to do well in math. 
4.56

a 
0.76 4.07

b 
0.87 4.33 0.91 .0036 

I would have more faith in the 

answer for a math problem 

solved by a man than a 

woman. 

4.13
a 

1.19 3.41
b 

1.18 3.82 1.02 .0008 

OVERALL 3.76 0.51 3.65 0.56 3.65 0.54 0.3789 

Table 1: MAS by class type 
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Note. * indicates significant difference based on F-test with p < .05. Item means with a 

different letter superscript indicate significant difference based on F-test with p<.0046. 

Our second layer of analysis of mathematics self-concept was to investigate whether 

girls in all girls’ classes responded differently from girls in coed classes, and how 

responses from boys in all boys’ classes compared with those from coed classes. There 

were no statistically significant differences on any of the four subscales for girls in 

single-sex classes and girls in coed classes, and the same situation holds for boys in 

single-sex classes and boys in coed classes (see Tables 2 and 3). There were two 

individual items on which girls in single-sex classes and girls in coed classes differed 

significantly; those items are included in Table 2. Likewise, there was one item on 

which boys in single-sex classes differed significantly from boys in coed classes; this 

item is included in Table 3. 

 Female 

Coed 

Female 

Single-Sex 

 Subscales Mean SD Mean SD p 

Confidence in Learning Math 3.54 0.77 3.62 0.92 0.7186 

Mathematics Usefulness 3.71 0.79 3.93 0.72 0.2270 

 

I will use mathematics in many ways as an 

adult. 
3.50 1.02 4.05 0.93 0.0192 

Teacher Perceptions 3.63 0.58 3.50 0.67 0.3924 

Math as a Male Domain 4.01 0.45 4.12 0.44 0.2960 

 
Studying math is just as good for women as 

for men. 
4.17 0.82 4.53 0.67 0.0346 

OVERALL 3.76 0.49 3.63 0.57 0.0708 

Table 2: MAS Female Coed by Female Single-Sex comparison 

 Male  

Coed 

Male 

Single-Sex  

 Subscales Mean SD Mean SD p 

Confidence in Learning Math 3.52 0.92 3.62 0.88 0.5429 

Mathematics Usefulness 3.76 0.74 3.87 0.69 0.4181 

 
Math is not important for my life. 3.40 1.43 3.89 1.06 0.0340 

Teacher Perceptions 3.43 0.80 3.44 0.73 0.9551 

Math as a Male Domain 3.76 0.57 3.61 0.64 0.2077 

OVERALL 3.61 0.58 3.64 0.57 0.8367 

Table 3: MAS Male Coed by Male Single-Sex comparison 
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Findings from the What Is Happening In this Classroom Questionnaire  

To address our research question regarding student perception of classroom 

environment in single-sex and coed classes, we first compared responses to the WIHIC 

survey across the three class types (all boys, all girls, and coed). We found no 

significant differences across the three class types for any of the subscales or individual 

items on the survey. The results for this analysis at the subscale level are presented in 

Table 4. 

 All Girls All Boys Coeducational 

p Subscales Mean SD Mean SD Mean SD 

Social Cohesiveness 3.05 0.09 3.02 0.08 3.07 0.09 0.9264 

Teacher Support 2.48 0.10 2.55 0.10 2.43 0.10 0.7099 

Involvement 2.55 0.10 2.58 0.10 2.51 0.10 0.8725 

Investigation 2.34 0.11 2.45 0.10 2.32 0.11 0.6322 

Task Orientation 3.14 0.10 2.94 0.09 3.06 0.10 0.3610 

Cooperation 2.96 0.10 2.76 0.09 2.90 0.10 0.3160 

Equity 2.66 0.11 2.79 0.10 2.85 0.11 0.4812 

Table 4: WIHIC by Class Type 

Table 5 shows the results of our analysis of girls’ responses in coed classes and girls’ 

responses in all girls’ classes. None of the subscales indicated significant differences in 

the responses, although two individual items showed significance. Those items are 

included in Table 5. 

 Female 

Coed 

Female 

Single-Sex 

p Subscales Mean SD Mean SD 

Social Cohesiveness 3.01 0.15 3.07 0.09 0.7382 

Teacher Support 2.46 0.17 2.50 0.1 0.8350 

Involvement 2.36 0.17 2.58 0.1 0.2860 

Investigation 2.05 0.17 2.37 0.11 0.1174 

I solve problems by using information 

obtained from my own investigations. 
1.83 0.21 2.42 0.13 0.0218 

Task Orientation 3.16 0.16 3.18 0.1 0.9109 

Cooperation  2.91 0.17 2.99 0.11 0.697 

Equity 3.00 0.19 2.68 0.11 0.1398 

 I get the same amount of help from the 

teacher as do other students. 
3.04 0.21 2.56 0.13 0.0503 

OVERALL 2.71 0.13 2.76 0.08 0.7525 

Table 5: WIHIC Female Coed by Female Single-Sex comparison 
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Similarly, results of our analysis of boys’ responses in coed classes compared to boys’ 

responses in all boys’ classes are presented in Table 6. None of the subscales indicated 

significant differences, although one item showed significant differences. That item is 

included in Table 6. 

 Male 

Coed 

Male 

Single-Sex 

p Subscales Mean SD Mean SD 

Social Cohesiveness 3.11 0.11 3.01 0.08 0.4595 

Teacher Support 2.41 0.13 2.53 0.10 0.4548 

Involvement 2.60 0.12 2.55 0.09 0.7591 

Investigation 2.49 0.13 2.42 0.10 0.6508 

Task Orientation 3.00 0.13 2.92 0.10 0.629 

Cooperation 2.90 0.12 2.73 0.09 0.2624 

 When I work in groups in this class, there is 

teamwork. 
3.05 0.15 2.67 0.11 0.0463 

Equity 2.75 0.14 2.78 0.10 0.8810 

OVERALL 2.75 0.11 2.70 0.08 0.6902 

Table 6: WIHIC Male Coed by Male Single-Sex comparison 

DISCUSSION 

Our findings at the subscale level of the WIHIC survey suggest that class type, whether 

coeducational, all boys, or all girls, did not influence student perception of the 

classroom environment. Student self-concept, assessed through the Mathematics 

Attitude Scales, was not significantly different for the subscales Confidence in 

Learning Math, Mathematics Usefulness, or Teacher Perceptions. The only subscale 

that showed statistically significant differences between single-sex classes was Math 

as a Male Domain. Our findings indicate that, while both boys and girls rejected the 

notion that mathematics is a male domain, girls tended to do so more strongly.  

Our comparisons of girls in coed to girls in single-sex classes and boys in coed to boys 

in single-sex classes indicate that, on the subscale or domain level, single-sex 

education does not significantly influence student mathematics self-concept or student 

perception of the classroom environment. That is to say, we have not found that girls in 

all girls’ classes (or boys in all boys’ classes) have significantly different views of their 

classrooms or themselves as mathematics learners than girls and boys in coeducational 

classes. However, we realize that the presence or absence of a relationship between 

class type, academic self-concept, and student perception of classroom environment is 

not the sole rationale for instituting single-sex education. For this reason, our research 

team continues to investigate classroom discourse, student performance, and student 
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engagement in single-sex and coeducational classrooms in addition to self-concept and 

perception of classroom environment. 
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SHAPING MATHEMATICS CLASSROOM DISCOURSE: 

RELATING PROFESSIONAL DEVELOPMENT AND 

CLASSROOM PRACTICE 

Jillian M. Cavanna 

Michigan State University 

 

Professional development that furthers teachers’ understanding of mathematics 

classroom discourse offers possibilities to improve students’ learning of mathematics. 

It is not clear, however, how teachers relate such professional development 

experiences to their own classroom practice. In this paper, I discuss the features of 

mathematics classroom discourse that were most salient for teachers in relation to 

their classroom practice as they engaged in professional development focused on 

secondary mathematics classroom discourse. 

BACKGROUND 

Providing students with opportunities to engage in mathematical argumentation and 

conceptual explanations improves students’ learning (Chapin, O’Connor, & Anderson, 

2009). Despite documented benefits of students engaging in such rich discourse, most 

mathematics classroom discourse follows a pattern in which students take only brief 

turns in discussion followed by evaluation or feedback from the teacher (Cazden, 

2001). Consequently, there is a need for professional development (PD) that supports 

teachers to become purposeful about engaging students in mathematical explanations, 

argumentation, and justification. Identifying what teachers learn from any PD, 

however, is a complex task. The purpose of this paper is to share findings from an 

investigation into what teachers learned from a particular case of the Mathematics 

Discourse in Secondary Classrooms (MDISC) PD program (Herbel-Eisenmann, 

Steele, & Cirillo, 2013). Specifically, I discuss one aspect of the findings which 

addresses the following question: What features of mathematics classroom discourse 

are most salient for teachers related to their classroom practice as they engage in PD 

focused on secondary mathematics classroom discourse?  

ANALYTICAL FRAMEWORK 

Two bodies of literature informed this study, literature that examines: (a) particular 

features and practices associated with enhancing mathematics classroom discourse for 

students, and (b) influences on teachers’ learning from PD. From this literature, I 

generated an analytic framework for instructional practices and concepts that teachers 

might learn from engaging in PD focused on mathematics classroom discourse. This 

framework is comprised of the following four categories of practices, which have been 

shown to influence students learning of mathematics, including: (a) shaping classroom 
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discourse, (b) shaping classroom social norms, (c) making student thinking visible, and 

(d) promoting mathematics during classroom discussion. Here I briefly describe the 

features of these categories and later I outline how this framework forms the basis of 

analysis for this study and the ways in which the MDISC PD experience addresses 

these categories.  

Shaping Classroom Discourse 

Teachers’ instructional moves can shape classroom discourse patterns in order to 

support the mathematical thinking and learning of their students (Chapin et al., 2009; 

Stein, Engle, Smith & Hughes, 2008; Wood, 1999). Teachers’ may purposefully shift 

classroom discourse for many reasons, including efforts to assess students’ 

understanding, or to help students to more meaningfully engage with each other’s 

reasoning (Cobb et al., 2001; Nathan & Knuth, 2003; Stein et al., 2008; Staples & 

Truxaw, 2010). Teachers’ recognition of the ways in which they shape discourse in 

their classrooms is an important step towards enacting these types of instructional 

practices. 

Shaping Classroom Social Norms 

Students’ participation within the classroom is heavily influenced by the social 

expectations and contexts of that classroom (i.e., Yackel & Cobb, 1996). Based on 

their prior experiences, students in secondary mathematics classrooms may not be 

inclined to openly share their in-progress ideas and solution strategies. The moves 

teachers make to support students to share their solution strategies can establish new 

social norms in the classroom regarding expectations that students should explain their 

reasoning (Forman, Larreamendy-Joerns, Stein, & Brown, 1998; Herbel-Eisenmann & 

Cirillo, 2009; Stein et al., 2008). Similarly, teachers’ efforts in close listening, 

engaging with students’ thinking, and pressing students to engage with each other’s 

reasoning indicate to students that relevant mathematics discourse is valued in their 

classroom. As teachers become more aware of their control over the social norms 

present in their classrooms, they are able to purposefully shape those norms.  

Making Student Thinking Visible 

Classroom discourse can provide a mechanism by which individual student’s thinking 

and reasoning can be made visible to both the teacher and to other students. Therefore, 

classroom discourse can provide a source of data for formative assessment that 

teachers can use to monitor students’ understanding of mathematical concepts. 

Teachers who are learning about mathematics classroom discourse will likely engage 

in practices that help make student thinking visible. These include, (a) making 

students’ reasoning a part of classroom discourse (Stein et al., 2008), (b) sharing ideas 

students generated independently as a part of whole class discussion, and (c) pressing 

students to clarify and justify their reasoning (Cobb et al., 2001; Staples & Truxaw, 

2010). 
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Promoting Mathematics During Discussion 

Teachers can support student learning by foregrounding the mathematics in classroom 

discourse, such that mathematical ideas at the heart of teachers’ lessons remain 

prominent throughout the instruction (Stein et al., 2008). This can be accomplished 

through practices such as (a) revoicing (Forman et al., 1998) or highlighting a 

particular aspect of a student’s contribution in order to connect to more advanced 

mathematical ideas (Herbel-Eisenmann, Steele, & Cirillo, 2013; Nathan & Knuth, 

2003) and (b) focusing on the mathematical content of the discourse through 

purposefully developed symbolic records of students’ contributions (Cobb, et al., 

2001).  

Relating the MDISC Professional Development Goals to the Literature 

The MDISC PD curriculum is a set of practice-based, case-based materials. The 

materials are organized around five constellations of activities anchored by a 

mathematical task and a narrative or video case of a teacher engaging students in work 

on the task. The materials introduce six Teacher Discourse Moves (TDMs) as tools for 

teachers in developing their discourse practices (see Herbel-Eisenmann et al., 2013 for 

more detail). I examined the content of the MDISC PD in light of the aforementioned 

analytic framework. Each activity within the MDISC materials provides multiple 

opportunities for teachers to engage with a number of these ideas. For example, 

Activity 1.5: Examining Whole-Class Discussion as a Context for Communicating 

Mathematics provides teachers the opportunity to examine transcript excerpts of a 

whole-class mathematics discussion to explore (a) the ways in which students 

participate in a whole group context, (b) the ways in which students’ opportunities to 

engage in mathematical practices are influenced by their participation in the classroom 

discourse, and (c) the ways in which classroom discourse can position mathematics. 

Although I use Activity 1.5 as an example, all activities in the materials follow a similar 

pattern of providing teachers with multiple opportunities to engage with practices 

across the analytic framework.  

METHOD 

The setting for this study was a yearlong pilot of the MDISC PD materials with four 

mathematics teachers at a suburban middle school in the Midwest. The group was 

comprised of two seventh grade teachers, referred to here as Stephanie and John, and 

two eighth grade teachers, Nick and Brenda. The teaching experience within the group 

ranged from Stephanie having no prior full-time teaching experience to Brenda and 

John having taught mathematics for over 20 years. None of the participants had 

previously engaged in PD focused on mathematics classroom discourse. They became 

aware of the project through recommendations from their colleagues in the 

mathematics department at the high school in the same school district. All four 

participants also expressed a strong learning disposition and desire to improve their 

practice. Both the facilitator of this pilot and the author worked as developers for the 

MDISC materials.  
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Data Collection and Analysis 

This paper is informed by data collected from the PD study group sessions, 

observations of teachers’ classroom, and individual interviews. The study group met 

approximately once each month for six hours each session, with the exception of the 

second and sixth sessions, which occurred after school and for only two hours each. 

The distribution of the sessions and data collection is represented in Figure 1. 

 
Figure 1: Schedule of study group sessions and data collection 

I attended, videorecorded, and took detailed field notes of all study group sessions. 

Using my field notes from the entire set of study group sessions, I identified any 

segments of conversation during which the primary focus was on the teachers’ own 

classroom practice (marked S1-S5 in Figure 1). I also observed three lessons selected 

by participants, during which I video recorded and took field notes. Additionally, I 

communicated with the teachers prior to each observation to gather data about their 

goals for the lesson, and immediately following each observation I asked teachers to 

reflect on their teaching episode. Subsequently, about one week later, I engaged the 

teachers in a semi-structured follow-up interview. The data used for the analysis 

presented in this paper comes from the semi-structured interviews, not the classroom 

observations (marked Int1-Int3 in Figure 1). Additionally, I collected three written 

reflections from the participants (marked Ref1-Ref2 in Figure 1). The data from these 

reflections were used for triangulation purposes, rather than as a primary source. The 

nature of the interview protocol and related methods will be discussed in more detail in 

the presentation of this paper. 

To analyse the data, I first transcribed all study group session segments, written 

reflections, and teacher interviews and then imported the transcriptions into the 

qualitative analysis software NVIVO. Then, I used a modified grounded theory 

approach (Strauss & Corbin, 1998) to identify the ideas related to mathematics 

classroom discourse most salient to teachers in their discussions of their own 

classroom practice. Using open-coding, I categorized teachers’ statements related to 

their own classroom practice and to classroom discourse. I then re-examined these 

data, specifically looking for statements that included references to the four categories 

of the analytic framework described above. Through this process, I developed the 

coding scheme in Table 1, with code definitions and subcategories refined through a 

constant comparative method. 
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Category Code Definition 

Shaping 

Classroom 

Discourse 

General Moves Related to Discourse. Teacher discusses moves they made 

in order to shape their classroom discourse. 

Specific TDM Terms. Teacher explicitly referenced one of the six TDMs 

terms from the materials: Asking, Creating, Inviting, Probing, Revoicing, 

and Waiting. 

Use of TDMs Without Term. Teacher discussed moves that fit the 

descriptions of the six TDMs described by the PD materials, without 

explicitly referencing the terminology specified in the materials. 

Shaping 

Social Norms 

Teacher Shapes Social Norms. Teacher discussed the ways in which they 

influence, both purposefully and implicitly, the social norms of their 

classroom. 

Attention to Social Norms. Teacher described implicit or explicit social 

norms present in their classroom without acknowledging his/her role in 

shaping those social norms. This code applies to the teachers’ statements 

describing existing norms or those they wish to change. 

Making 

Student 

Thinking 

Visible 

Students’ Non-verbal Evidence. Teacher discussed evidence of students' 

thinking that were non-verbal. This code applies to statements about 

students' written work or gestures 

Inference About Student Thinking. Teacher discussed students' thinking 

without specifically attending to verbal or non-verbal evidence. 

Assessing Via Specific Student Discourse. Teacher referenced assessing 

students' understanding of mathematical concepts via students’ specific 

statements, written or non-verbal. 

Promoting 

Mathematics 

Promoting Mathematics Content During Discussion. Teacher explicitly 

described bringing out mathematical ideas during classroom discussions 

(i.e. functions, equations). 

Table 1: Coding Categories 

I synthesized the similarities I observed across the teachers and across the data sources 

to identify the themes most salient in what the teachers talked about in relation to their 

classroom practice. Although the teachers discussed a wide range of ideas, I selected 

representative examples focused on the features of classroom discourse that appeared 

most consistently across the group and across the data set.  

RESULTS 

Overall, my findings suggest that as the teachers engaged in the MDISC PD, the 

themes that were salient regarding their classroom practice represent elements of all 

four categories of the analytical framework: (a) shaping classroom discourse, (b) 
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shaping social norms, (c) making student thinking visible, and (d) promoting 

mathematics during discussions. The data revealed that the features of mathematics 

classroom discourse that teachers discussed most consistently related their role in 

shaping the discourse in their classrooms. Consequently, this paper specifically 

focuses on the salient themes from the category shaping classroom discourse. 

Shaping Classroom Discourse: Seeing the Need to Move Towards More Open 

Discourse Patterns 

As an early step towards purposefully shaping discourse within their classrooms, the 

teachers acknowledged the ways in which they controlled the discourse within the 

classrooms. The teachers expressed a desire to allow for more natural interactions 

between students, in which students communicated productively with each other about 

mathematics. Building upon the teachers’ understanding of their role in shaping 

discourse, they discussed the impact their interactions had on their students’ discourse. 

Reflecting on the video of the first lesson observation John noted,  

The thing that struck me in the first half…was the amount of very traditional interactions. 

You know, prompt, response, feedback, prompt, response, feedback, – consistently. [The 

students gave] very factual answers. [It was] very [teacher] centered…I don’t know if I’m 

dumbing things down, without realizing it even, by trying to put it in little tiny steps for 

them, because that’s the way that I see things… So, by making it so explicit, does that help 

them? (Int1)  

In this instance, John reflected on whether or not his interactions with students allowed 

them flexibility to share and develop the mathematical concepts. This is characteristic 

of a theme that I observed throughout the data; the teachers worked towards a goal of 

more open discourse patterns. As a part of this effort, teachers described their use of 

questioning practices. Reflecting on the video recording of the second lesson I 

observed, Nick described his concerted efforts to ask more open-ended questions as 

follows: 

When I was asking kids to explain something, I wasn’t asking them yes or no questions. It 

was more open-ended. You know, “What did you get for your solution? And talk us 

through the steps.” And I saw more of that, which I was happy about. But I still saw that it 

was a lot of the teacher-guided questions. (Int2)  

In this statement, Nick both identified his own growth in terms of his efforts to ask 

more open-ended questions and acknowledged that he had further to go before he met 

his goals. As a group, the teachers’ discussion of their classroom practice in both 

interviews and study group sessions demonstrated a combination of (a) an increased 

awareness of the ways in which their teaching moves affected the discourse patterns in 

their classroom and (b) a desire to support more natural student-to-student interactions 

with less central control attributed to the teacher.  

During the third professional development session, teachers were introduced to the 

IRE pattern of discourse (Mehan, 1979). During subsequent study group discussions 

and interviews, all of the teachers noted their tendencies to follow the IRE pattern as 



Cavanna 

PME 2014 2 - 263 

part of their reflection on video recordings of their instruction. John’s quote above 

illustrates this type of reflection. Later, during the fifth study group session, John 

described his efforts to limit his evaluation of students’ responses, he said, “We were 

doing this thing yesterday and I hadn’t been saying nice job, good work, or whatever. 

And a kid gave an answer and I said, “Great answer!” [hesitates] “I meant, another 

great answer!” (S4). John recognized that his “nice job” comments affected how his 

students responded; they waited for him to validate their answers, as is typical in IRE 

patterns. Acknowledging their tendency to fall into the IRE pattern marked a point of 

comparison for the teachers between the discourse they wanted to have in their 

classrooms and the sorts of interactions they were presently experiencing.  

Although the teachers struggled to change the discourse patterns in their classrooms, as 

they developed an understanding of the sorts of interactions they wanted to support 

they began to catch themselves engaging in unproductive discourse patterns, and thus 

began to make changes towards their goals. Specifically, the teachers began making a 

variety of efforts to move the classes towards more open-ended discourse patterns, 

including modifying mathematical tasks and using the specific Teacher Discourse 

Moves suggested by the PD. 

DISCUSSION 

These findings highlight the features of mathematics classroom discourse that were 

most important to the teachers in relation to the classroom practice as they engaged in 

the MDISC PD. Additionally, these findings show the ways in which teachers 

described how they learned from their engagement with the ideas of the professional 

development in the context of their own classrooms. Reflecting on the PD experience 

John said,  

[The MDISC professional development experience] is an opportunity to improve what 

we’re trying to do and to look at yourself in a little different light…You see things and you 

go, ‘Oh no!’ but we have to confront the image we have of ourselves and what’s actually 

going on in our classrooms and what the reality is. (Int3)  

Spurred by his recognition of the contrast between what he encountered in the study 

group sessions and his classroom experiences, John described his desire for change. 

John’s quote highlights a group commitment to continue learning as they worked to 

connect the ideas discussed in the PD to their use of those ideas in the reality of their 

teaching. Throughout the PD, teachers had opportunities to engage with multifaceted 

theoretical ideas related to mathematics classroom discourse. These findings reinforce 

the notion that teachers can and will make sense of information from PD in complex 

and meaningful ways that are connected to their classroom experiences 

(Herbel-Eisenman, Drake, & Cirillo, 2009). If professional developers are thoughtful 

about enacting the recommendations from the field for high-quality PD, rather than 

devoting energy to developing assessments of what teachers learn from PD, these 

findings suggest research should focus on the ways teachers conceptualize and engage 

the professional development content through their discussion of their classroom 
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practice as alternative means to assess the impact of PD. By prioritizing teachers’ 

perspectives and valuing what they find most salient, this study offers possibilities for 

how we can begin to bridge the gap between teachers’ learning from professional 

development and sustained change in classroom practice.  
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Studies on cognition have capitalized on the role of contexts and experience in shaping 

our cognitive competence. In the past few decades, the mathematical education 

research field has begun to pay increased attention to the mathematics practices of 

both adults and children that take place in non-academic settings. As a result, 

theoretical fields such as ethnomathematics, situated cognition, and workplace 

mathematics have gained prominence. In this paper, we use Vergnaud’s theory of 

conceptual fields to highlight the workplace mathematical activities of two groups of 

practitioners-Street vendors in Lebanon, and Bus conductors in India. 

INTRODUCTION 

In the past two decades, researchers have increasingly emphasized the elicitative role 

of cultures in impacting mathematical thinking and problem solving.  For many 

researchers, sociocultural settings not only determine how mathematical knowledge is 

acquired, but also how it is represented, organized and retained (Sanin & Szczerbicki, 

2009). Although there are several contexts in which mathematical ideas develop and 

are discussed, mathematics education has mostly been associated with the institutional 

context (Mukhopadhyay, Powell, & Frankenstien, 2009). The problem is that usually 

in the school setting, mathematical knowledge is presented as a “prized body of 

knowledge” (Millroy, 1992, p. 50), stripped of its rich cultural and historical 

connotations, and far removed from the “ lives and ways of living of the social 

majorities in the world” (Fasheh, 2000, p. 5). We, alongside prominent mathematics 

education researchers, take an exception to this view and argue for countering the 

narrow vision of mathematics that confines it to the school walls.  

Investigations that have focused on studying people’s use of mathematics outside the 

classroom is divided into two main groups; namely, those interested in “everyday 

cognition” where Lave (1988) is a prominent figure; and those interested in 

“ethnomathematics,” where D’Ambrosio (1992) is prominent. Both groups of 

researchers call for a new conceptualization of mathematics that is rooted in 

nonacademic practices. The mathematical ideas that are generated and used outside of 

learning institutions allows people with little or no schooling experience to practice 

crafts and trades, conduct business transactions and make their livings in a variety of 

ways.  

We, the authors, have been immersed in the field of mathematics education for over 

two decades in a wide range of settings and in both western and nonwestern countries: 

from K-12 schools to research universities and graduate schools of education. During 
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this tenure, we have encountered many implicit and explicit questions about 

mathematical competence and its role in defining and shaping the identity of 

individuals in the classroom, the workplace, and the society as whole (Naresh & 

Chahine, 2013). We list some of these questions here: What are the mental processes 

underlying an act of labor or service? What is the nature of the problem solving 

behavior of workers while immersed in everyday work practice? How is experienced 

knowledge represented and employed as part of the daily decision-making manners 

undertaken by workers? Researching in the context of the workplace provided us with 

just the right context for addressing such questions. It also afforded us the opportunity 

to make connections between what are seemingly two disparate worlds — the world of 

mathematics learning and the world of mathematics in the workplace. To further 

pursue this line of inquiry, we devised a study (Chahine & Naresh, in press) to carry 

out a meta-analysis of the problem-solving behavior of two groups of workers - street 

vendors in Beirut, Lebanon and bus conductors in Chennai, India. The research 

reported in this paper is part of this larger project; in particular, we provide a narrative 

of workers’ problem-solving behaviors using Vergnaud’s theory (1988, 2000) of 

conceptual field.  

THEORETICAL BACKGROUND 

We situate our work in the broader theoretical fields of ethnomathematics and situated 

cognition. The foundation of ethnomathematics rests in its “openness to 

acknowledging as mathematical knowledge and mathematical practices elements of 

people’s lives outside the academy” (Mukhopadhyay, Powell, & Frankenstien, 2009, 

p. 75). There is strong evidence in the literature on situated cognition that supports the 

hypothesis that by actively engaging in everyday activities, individuals gradually 

incorporate culturally constructed artefacts into their repertoire of thinking and further 

develop context- specific problem solving competencies (Wenger, 2000). Such 

evidence predictably challenges the conventional definition of what counts as 

mathematics by reinforcing the claim that mathematical activity can be seen as 

interwoven with everyday practice outside the academic formal settings. 

Analytical Framework: Vergnaud’s theory of conceptual field  

Vergnaud’s (1988) theory of conceptual fields is based on the idea that concepts 

always involve three facets: invariants, representations, and situations. Invariants refer 

to the mathematical properties or relations associated with the concept. Vergnaud 

contends that invariants are expressed through representations and that they are not the 

only factor affecting performance, but rather the way in which concepts are formed 

might be important. Also, concepts are always tied to situations which make them 

meaningful. More importantly, Vergnaud (2000) argues that the existence of these 

mathematical concepts does not necessarily mean that people are fully aware that they 

are behaving accordingly, but most often these concepts are only “implicit” in 

theorems or what he calls “Theorems-in-Action”. Vergnaud (1988) has defined 

theorems-in-action as those “... mathematical relationships that are taken into account 
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by students when they choose an operation or a sequence of operations to solve a 

problem” (p.144). Vergnaud’s theory of conceptual fields brings us to the idea that to 

understand how mathematical concepts are acquired it is necessary to analyze the 

situations through which these concepts were made meaningful and useful in the 

context in which they are invoked. Vergnaud’s model provides not only guidelines for 

coding vendors’ and bus conductors’ problem solving behaviors, but also an 

understanding of the underlying properties and relations implicit in these behaviors. 

Pursuing this model, we conducted comparisons along three major dimensions 

(representation systems, heuristics-in-action, and situations) to decode and examine 

the problem solving behaviors of street vendors and bus conductors. In this paper, we 

will provide an overview of data analyzed along the three dimensions; however, we 

will present and discuss data specific to one dimension – heuristics-in-action.  

METHODOLOGY 

The goal of the larger research study (Chahine & Naresh, in press) was to examine 

cognition at work in order to define and describe practical mathematical knowledge 

that emerged in the context of work activities. To this end, we chose a methodological 

approach that was based on an iterative process of data collection, analysis, and 

hypothesis. Our methods comprised qualitative secondary data analysis (of the 

ethnographic case studies – case refers to the groups of bus conductors’ and street 

vendors), narrative inquiry of solution schemes, and focused discussions (researchers 

as participants).  

Ethnographic case studies (ECSs) and related data 

The overall goals of the ECSs were to unravel, analyze, and describe the mathematical 

ideas and decisions employed by the participants to solve work-related mathematical 

tasks. In the street vending context, participants included 10 male vendors randomly 

selected from two market settings in the southern suburbs of Beirut. Vendors in the 

sample varied in years of schooling (three to seven years), in age (10 to 16 years), and 

vending experience (one to eight years). Four of the vendors worked alone while the 

other six helped their fathers or neighbors. Only three were totally responsible for 

purchasing the produce at wholesale market and pricing it for selling. In the bus 

conducting context, five bus conductors selected from two bus depots were included. 

Four male bus conductors and one female bus conductor participated; the bus 

conductors varied in their educational qualifications (two had high school diplomas 

and 3 had Bachelor degrees) and years of experience (9 to 31 years). Data collected 

from the ECSs on street vending and bus conducting included field observations and 

notes, transcriptions of interviews, researchers’ introspection notes, problem solving 

narratives, and work sample artifacts.   

Data Analysis 

Our first approach towards data analysis was to engage in a secondary data analysis 

(Moore, 2006) using data collected from the ECSs. Examining pre-existing data from 
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the two studies enabled data linkage and afforded powerful insights into the 

problem-solving behavior of practitioners. Furthermore, revisiting data related to field 

observations, interviews, and researchers’ notes in two workplace contexts allowed 

transparency within research as we continuously interrogated the quality of qualitative 

data in terms of coding and completeness. Next we engaged in a narrative inquiry 

(Coulter & Smith, 2009) to describe the problem-solving heuristics of the street 

vendors’ and bus conductors’ workplace activities. Developing a coding system for the 

problem solving behavior and narratives of vendors and bus conductors involved 

careful readings of transcriptions taken from practitioners’ written solutions as well as 

interviews, with particular attention to researchers’ comments. The first two stages of 

data analysis required us to engage in focused discussions centered on the secondary 

data collected through the ECSs. These discussions targeted specific mathematical 

frames that were captured as the practitioners are immersed in the context of street 

vending and bus conducting. Such discussions produced nuanced insights that would 

be less accessible without our intensive face-to-face purposeful interactions. As we 

listened to each other verbalizing and recollecting our field experiences, memories, 

ideas, and experiences were stimulated and validated as we discovered a common 

language to describe our recollections and reveal shared understandings or common 

views.  

A qualitative analysis of the problem solving behavior of vendors and bus conductors 

was established by comparing, contrasting, and synthesizing these properties across 

work settings namely, vending and bus conducting , and across cultures i.e. Lebanon 

and India. We conducted three comparisons to decode and examine the problem 

solving behaviors of street vendors and bus conductors. Comparisons are carried out 

along three major dimensions: (a) representation systems; (b) heuristics-in-action; and 

(c) situations. In this section, we present data analyzed along the second dimension -- 

heuristics-in-action.  

RESULTS 

Street Vending and Bus Conducting heuristics-in-action 

Vergnaud (1988) maintains that all “mathematical behaviors” are tied to certain 

mathematical concepts and that the existence of these concepts does not necessarily 

mean that subjects are fully aware that they are behaving accordingly. We call these 

mathematical behaviors as heuristics-in-action and define them as the ways in which 

practitioners utilized the mathematical properties or relationships to resolve a problem 

or complete a task that emerged in their work settings. Two major heuristics-in-action 

were employed by the participants to reach a satisfactory solution, namely building-up 

and multiplicative which in turn led to scalar and functional solutions. These heuristics 

are virtually based on the properties of linear functions, specifically isomorphic and 

functional properties (Vergnaud, 2000). To illustrate, consider the following 

transactions that were extracted from the two contexts: 
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Transaction 1: Context: Street vending: The following exchange occurred between 

the researcher posing as a customer and Masri (pseudonym), a 12- year old vendor: 

Researcher: I will take 6 kilos of lemon, how much do these cost? 

Masri: 1 kilo for 1250 L.L., then if 1 kilo cost 1000 L.L then 6   kilos will cost 6000 

L.L and 6 of 250 LL. Will be 1000... then 7500 L.L 

Transaction 2: Context: Street vending: This time, we approached Masri selling 

onions, 750L.L/ 1 kilo: 

Researcher: I want 3 kilos of onions, how much do I owe you? 

Masri: 2 kilos for 750 L.L plus 750L.L which gives 1500 L.L, and another 1 kilo 

for 750L.L then 2250L.L”. 

Transaction 3: Context: Bus conducting: A passenger approached the conductor 

requesting 4 tickets for destination A and 2 tickets for destination B. 

Passenger: I want 4 tickets (tokens of travel) from to Sayani (exit point) and 2 tickets to 

the Sanitarium (a different exit point)  

Conductor: Unit ticket price to Sayani is 3.75 so 4*4 is 16… take away 4 quarters, so 

the price is 15; unit ticket price to sanitarium is 4.25… so 4*2 is 8 and add 

50 to it to get 8.50. The total fare is 15 +8 is 23 … add another 50 to it. Give 

me 23.50. 

Let us consider the second transaction for analysis. We viewed the problem posed as 

one of multiplication, precisely 750 * 3. However, Masri did not multiply using the 

standard algorithm; rather, he solved the problem mentally through a building-up 

heuristic involving repeated additions which could be formalized as follows: 

 

Each variable, i.e., weight and price, remains independent of the other and parallel 

transformations are carried out on both variables, thereby maintaining their values 

proportional. When selling something at a price X, the vendors were perfectly aware of 

the fact that when there is an increase in the number of kilos (k) , there is a proportional 

increase in the price i.e., as many X’s are increased in the price as kilos are increased in 

the purchase. The solution thus obtained has been termed by Vergnaud (2000) as scalar 

solution. Representing the above solution formally or explicitly: 

Cost(3 k) = Cost(1 k+1 k +1 k) = Cost(1 k) + Cost(1k) + Cost(1 k) = 3 * Cost(1 k). 

If we propose a relation between weight and price, more precisely a mapping f: to 

every weight there corresponds a well-defined price, then the above expression can be 

formalized as  f (1+1+1) = f(1) + f(1) + f(1).  More generally, f(X+Y) =f(X) + f(Y), 

which Vergnaud (1988) describes as the isomorphic property of addition, or more 

specifically, the linear property of function f.  
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The first transaction, on the other hand, represents another heuristic employed by the 

same vendor, namely multiplicative heuristic which can be also formalized as follows: 

 

Here, Masri’s solution method can be conceived in terms of a variable f(X), the price, 

as a function of a variable X, the number of kilos, and hence a relation can be formed 

through multiplying the value of X by a constant, unit price, in order to find the value 

of f(X). The solution obtained is called functional for it relates to two different 

variables, the ratio thus attained is termed “intensive” or “external” ratio (L.L/ kilo). 

Using the preceding argument: 

 

If we assume that the cost of 1 kilo = f (1) = constant a, then the above expression can 

be replaced by f(X) = a * X, which is the constant function coefficient (Vergnaud, 

1988).  

In the third transaction, the bus conductor broke the in-situ problem into three smaller 

problems: Find 3.75 * 4 (b) Find 4.25 * 2 (c) Add the answers from (a) and (b). We 

can combine the derived facts and related discussions from the first and the second 

transactions and propose the following (note that the currency denomination is in 

rupees abbreviated as Rs.): 

 

This expression can be stated as  

g (3.75*4 + 4.25*2) = g (3.75*4) + g (4.25*2) = 3.25 * g (4 )+ 4.25 * g (2 ) or more 

generally as g (aX + bY) = a g (X) + b g (Y). Here, we can conceive the conductor’s 

solution in terms of g (aX + bY), the price, as a function of the variables X and Y, the 

number of tickets two different ticket denominations with unit prices a and b 
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respectively. Thus we form a relation by multiplying the values of X and Y by 

constants a and b. 

DISCUSSION 

In analyzing the practitioners’ problem solving at work, one thing was clear namely, 

the fact that the participants utilized common heuristics-in-action in their 

understanding of simple proportional relationships, a model which Vergnaud terms 

“the isomorphism of measures model of situations”. When using building-up heuristic, 

practitioners maintained the proportionality between the values by carrying parallel 

transformation on the variables without dividing or multiplying values in one variable 

by values in the other variable. It is worth mentioning here that, the rule-of-three, the 

algorithm learned in school to solve simple proportional problems differs from the 

isomorphism schema because it involves the multiplication of values across variables 

instead of parallel transformation on the variables. Hence, practitioners employed 

concepts that challenges the rule-of-three algorithm taught in school today clearly 

preferring the use of multiplicative heuristic due to its strong ties to problem situations, 

which led to functional solutions.  

It seems fair to conclude that street vendors and bus conductors have developed 

mathematical concepts as a result of immersion experiences in everyday situations. 

The work setting represented vendors and bus conductors’ natural habitat and thus 

introduced familiar problems. As a result, practitioners systematically and smoothly 

built up their solutions using intuitive computational strategies and without losing 

track of the strategy, even if many numbers are involved. In other words, the 

practitioners kept the meaning of the problem in mind during problem solving. This 

understanding that the practitioners acquired in the work situation elicited a coherent 

problem solving behavior that was attained through the following steps: (a) translating 

the problem from its real life context into an appropriate mathematical calculation 

problem, (b) performing the mathematical calculations, and (c) translating the result of 

this calculation back into the context of the problem to see whether it made sense. 
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The main purpose of this study was to examine the effects of fifth-grade mathematics 

teachers’ efficacy (MTE) on their students’ mathematics self-efficacy (SMSE) and 

mathematical achievement (SMA) in the classroom. Two instruments (for MTE and 

SMSE) were administered to 62 classes (62 teachers and 1283 fifth-graders) for 

gathering data, associated with SMA scores in school. Corresponding statistical 

analyses were applied to the obtained data. The findings revealed that mathematics 

teachers’ efficacy beliefs were significantly influential to both SMSE and SMA. It also 

showed that MTE ratings could effectively predict SMA. Consequently, suggestions 

derived from findings and discussions were proposed for further improvement of these 

mathematics teachers’ efficacy and, in turn, for enhancing fifth-graders’ mathematics 

self-efficacy and mathematical achievement in the future. 

INTRODUCTION 

Contemporary educational reforms in many countries focus on advancing the quality 

of teaching and learning in every classroom (Goddard, Goddard, & Tschannen-Moran, 

2007, Moolenaar, Sleegers, & Daly, 2012). Grounded on Bandura’s (1977) social 

cognitive theory and his construct of self-efficacy (SE), teacher efficacy (TE) has been 

recognized as “a variable accounting for individual differences in teaching 

effectiveness” (Gibson & Dembo, 1984, p. 569) and has a strong relationship with 

student learning and achievement (Cantrell, Young, & Moore, 2003; Gibson & 

Dembo, 1984; Ross, 1998). Tschannen-Moran, Woolfolk Hoy, and Hoy (1998) 

defined TE as “the teacher’s belief in his or her capability to organize and execute 

courses of action required to successfully accomplish a specific teaching task in a 

particular context” (p. 223).  Actually, from research in 1970s (e.g. Armor et al, 1976), 

“teacher efficacy was first conceptualized as teachers’ general capacity to influence 

student performance” (Allinder, 1995, p. 247). Further, Ross (1998) indicated that 

most researchers treated “teacher efficacy as a type of self-efficacy” (p. 50).  Since 

then, TE has been viewed as “self-efficacy beliefs directed toward a teaching context” 

(Knoblauch & Woolfolk Hoy, 2008, p. 167).  That is, teacher efficacy referred to “their 

belief in their capability to have a positive effect in student learning” (Ashton, 1985, p. 

142).   

The concept of self-efficacy consists of two kinds of expectation, efficacy expectation 

and outcome expectancy. A teacher’s efficacy expectation influences her/his thoughts 

and feelings, her/his selection of instructional activities, the amount of effort s/he 
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spends in teaching, and the degree of her/his persistence while confronting difficulties 

(Bandura, 1981). The outcome expectancy refers to her/his own estimate of the likely 

consequences of teaching performance at the expected level of competence (Bandura, 

1981).  Applying this construct to the subject of mathematics, “Mathematics Teaching 

Efficacy Beliefs Instrument (MTEBI)” was originated by Enochs, Smith, and Huinker 

(2000) in measuring pre-service teachers’ efficacy beliefs. Later, the researcher 

(Chang & Wu, 2004; Chang & Wu, 2009) adapted the MTEBI to assess elementary 

in-service mathematics teachers in Taiwan; that is, “Elementary Mathematics Teacher 

Efficacy Instrument (EMTEI)” was established consequently. EMTEI includes two 

cognitive dimensions: personal mathematics teaching efficacy (PMTE) and 

mathematics teaching outcome expectancy (MTOE). Accordingly, EMTEI is 

employed in this study to obtain targeted mathematics teachers’ efficacy ratings.   

As Bandura (1997) argued, SE, defined as “belief in one’s capabilities to organize and 

execute the courses of action required to produce given attainments” (p. 3), had a great 

influence on one’s task choices, effort, persistence, and achievement. Based on this 

concept, a student’s self-efficacy refers to “belief in her/his capabilities to organize and 

execute the courses of learning”. Thus, students who are self-efficacious in learning are 

likely to pay more efforts, persist longer while facing obstacles, and eventually attain 

better achievement. As to the domain of mathematics, students’ mathematics 

self-efficacy (SMSE) beliefs have a powerful impact on the level of academic 

achievement and performance they may eventually achieve in learning mathematics 

(Chang, 2012; Kitsantas, Cheema, & Ware, 2011; Pajares & Miller, 1994; Pajares & 

Kranzler, 1995); that is, SMSE has been evidenced to predict students’ mathematical 

achievement (SMA).  In this study, “Elementary Students Mathematics Self-Efficacy 

Instrument (ESMSEI) is employed to assess targeted students’ mathematics 

self-efficacy ratings, which was developed and validated by the researchers (Chang, 

2012) based on Bandura’s (1977, 2006) theory and his guidelines. ESMSEI also 

consists two cognitive constructs, “General Self-Efficacy—Related Mathematics 

(GSE-M)” and “Self-Efficacy for Mathematical Learning (SEML)”.   

Since teacher efficacy has a strong impact on student learning and achievement, does 

teacher efficacy beliefs have a direct influence on the development of students’ 

self-efficacy in the classroom? In fact, several studies, domestically and 

internationally, indicated that a teacher’s efficacy belief and her/his students’ 

self-efficacy were significantly correlated (Bandura, 1982; Janet et al., 1995; Shao, 

2005; Liu & Zhou, 2007; Tang & He, 2006). However, little knowledge was attained 

for the domain of mathematics learning, as well as for elementary students. Further, 

empirical evidences revealed that self-efficacy began to decline in grade 7 or earlier 

(Urdan & Midegley, 2003), particularly obvious in mathematics at the transition to 

middle school (Jacobs, et al., 2002). Thus, for fifth and sixth grades, children are 

positioned right at the developmental transition period, in which they confront with 

dramatically psychological, physiological, and social changes. As new challenges 

await them in this fast-growing stage (Schunk & Meece, 2006), to understand the 
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relationship between teacher efficacy and students’ self-efficacy becomes more 

beneficial while learning mathematics.  Consequently, the first intention of this study 

is to assess the effect of a mathematics teacher’s MTE on her/his students’ SMSE, who 

are at the beginning stage of this transitional period (i.e. fifth-graders). 

As verified by the researchers’ previous study (Chang, 2012), a student’s mathematics 

self-efficacy (SMSE) is predictive to her/his mathematics achievement (SMA). In 

addition, teacher efficacy is significantly influential to students’ learning. However, 

less empirical evidence existed in supporting the effect of teacher efficacy on students’ 

achievement, especially for mathematics in Taiwan.  Therefore, besides assessing the 

effects of MTE on SMSE, it is also essential to testifying the effects of MTE on 

students’ mathematics achievement (SMA). Altogether, in this study, it is valuable to 

verify whether the two factors, i.e. MTE and SMSE, are predictive to SMA or not.  

This effort will help us to clarify the relationship among the three factors, which will be 

also useful for further improvement for the quality of teaching and learning in 

mathematics.  

Based on the background and motivation stated above, the three purposes of this study 

are as follows: (a) to investigate the effects of teachers’ MTE on their students’ SMSE; 

(b) to examine the effects of teachers’ MTE on their students’ SMA; and (c) to assess 

the effects of MTE and SMSE on SMA.  Based on foregoing purposes, this study has 

three research hypotheses as follows:  

 H1: MTE has a significant effect on SMSE, and significantly predicts SMSE. 

 H2: MTE has a significant effect on SMA, and significantly predicts SMA. 

 H3: MTE and SMSE significantly predict SMA. 

METHOD 

A total of 62 fifth-grade classes, including a classroom teacher (who taught 

mathematics) and fifth-graders in every targeted classroom, were selected by a 

stratified random sampling method (by school size) in elementary schools in Taiwan.  

Thus, a total of 62 mathematics teachers and 1283 students participated in this study.  

Based on the purposes of this study, data were collected through background sheets 

(for teachers and students), MTEBI (for teachers), and students’ MSEI and 

mathematics achievement in school.   

“Elementary Mathematics Teacher Efficacy Instrument”, adapted from Mathematics 

Teaching Efficacy Beliefs Instrument (MTEBI) for pre-service teachers (Enochs, 

Smith, & Huinker, 2000), were used in this study in order to explore mathematics 

teachers’ efficacy beliefs (Chang & Wu, 2004; Chang & Wu, 2009). The EMTEI 

consists of “Personal Mathematics Teaching Efficacy (PMTE, 13 items)” and 

“Mathematics Teaching Outcome Expectancy (MTOE, 8 items)”, rated on a 5-point 

Likert scale; also, 5 items were written in a positive orientation and 16 items were 

written negatively.  EMTEI has respectable internal consistency of .77, .81, and .71 for 
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the whole scale, PMTE, and MTOE subscales respectively; PMTE and MTOE 

accounted for 20.82% and 15.86% of variance, respectively. (Chang & Wu, 2004).  

In measuring SMSE, Mathematics Self-Efficacy Instrument (MSEI) was developed on 

the basis of Bandura’s (1977, 2006) theory and his guidelines, which includes 

“General Self-Efficacy—Related Mathematics (GSE-M, 24 items)” and 

“Self-Efficacy for Mathematical Learning (SEML, 23 items)”, rated on a 100-point 

scale. MSEI has high internal consistency of .96, .93, and .95 for the total scale, 

GSE-M, and SEML subscales respectively (Chang, 2012). Also, GSE-M and SEML 

accounted for 27.68% and 20.41% of variance, respectively. Both subscales 

significantly correlated, r = .74, p＜ .001. Also, mathematical achievement in school 

was represented in terms of their overall mathematics scores at the fifth-grade level.  

Mathematics scores, named as mathematical achievement T scores (MA-T), were 

collected at the end of the school year and then transformed into T scores for further 

analyses. 

RESULTS 

For teachers, the mean rating of all 62 fifth-grade mathematics teachers on MTE was 

78.95 (SD=7.01), which meant that on average they had nearly 75% confidence in their 

own mathematics teaching capabilities.  Also, for students, the mean rating of all 1283 

fifth-graders on SMSE was 70.19 (SD=7.25), which meant that on average they had 

nearly 70% confidence in their own mathematics learning abilities.   

The effects of fifth-grade teachers’ MTE on SMSE 

In order to examine the effects of MTE on SMSE through ANOVA, all teachers’ MTE 

ratings were divided into three levels, i.e. “high (top 27% of them)”, “middle”, and 

“low (bottom 27% of them) MTE.  Further, regarding the effect of MTE on SMSE, the 

results showed that there were statistically significant differences in fifth-graders’ 

SMSE ratings among the three levels of MTE, F (2, 59) = 5.13, p< .01.  The strength of 

the relationship between MTE and SMSE, as assessed by η
2
, was strong, accounting 

for 14.8% of the variance for MTE. The post hoc comparison based on Scheffé 

concluded that fifth-graders taught/led by the teacher with high MTE (M=73.95) 

scored significantly superior in SMSE than did those taught/led by the teacher with low 

MTE (M=66.93), while the other two comparisons were not significant (i.e. high MTE 

and middle MTE [M=69.80], and middle MTE and low MTE). In addition, 

fifth-graders taught/led by the teacher with medium MTE scored higher in SMSE than 

did those taught/led by the teacher with low MTE. 

To determine whether a mathematics teacher’s efficacy belief could predict her/his 

students’ mathematics self-efficacy, a simple regression analysis of MTE regressing 

on SMSE was conducted. The findings showed that MTE significantly predicted 

SMSE, F (1, 60) = 17.88, p< .001, suggesting that 21.7% of SMSE variance was 

explained by MTE. The standardized regression coefficients indicated that MTE (B = 

.48, t = 4.23, p < .001) had significant effects on SMSE. In brief, these findings 
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indicated that fifth-graders who taught/led by the teacher with higher MTE would 

influence their students’ SMSE.  It means that a fifth-grade mathematics teacher with 

high MTE would be valuable in helping fifth-graders to build up their SMSE in the 

classroom. Accordingly, H1 was supported in this study. 

The effects of fifth-grade teachers’ MTE on SMA 

Regarding the effect of MTE on SMA, the results showed that there were statistically 

significant differences in fifth-graders’ SMSE ratings among the three levels of MTE, 

F (2, 59) = 53.44, p< .001.  The strength of the relationship between MTE and SMA, as 

assessed by η
2
, was quite strong, accounting for 64.4% of the variance for MTE.  The 

post hoc comparison based on Scheffé concluded that fifth-graders taught/led by the 

teacher with high MTE (M=86.84) scored significantly superior in SMA than did those 

taught/led by the teacher with medium (M=81.46) and low MTE (M=71.42).  In 

addition, fifth-graders taught/led by the teacher with medium MTE scored higher in 

SMA than did those taught/led by the teacher with low MTE.  

To determine whether a mathematics teacher’s efficacy belief could predict her/his 

students’ mathematics achievement, a simple regression analysis of MTE regressing 

on SMA was also conducted.  The findings showed that MTE significantly predicted 

SMA, F (1, 60) = 119.02, p< .001, suggesting that 65.9% of SMA variance was 

explained by MTE.  The standardized regression coefficients indicated that MTE (B = 

.82, t = 10.91, p < .001) had significant effects on SMA. In short, these findings 

indicated that fifth-graders who taught/led by the teacher with higher MTE would 

influence their students’ SMA. It indicates that a fifth-grade mathematics teacher with 

high MTE would be valuable in helping fifth-graders to increase their SMA in the 

classroom. Accordingly, H2 was supported in this study. 

The effects of MTE and SMSE on SMA 

To determine whether a mathematics teacher’s efficacy belief and a student’s 

mathematics self-efficacy could, together, predict a student’s mathematics 

achievement, a simultaneous regression analysis of MTE and SMSE regressing on 

SMA was conducted.  The findings showed that MTE and SMSE significantly 

predicted SMA, F (2, 59) = 63.48, p< .001, suggesting that 67.2% of SMA variance 

was explained by both MTE and SMSE. The standardized regression coefficients 

indicated that MTE (B = .74, t = 4.23, p < .001) yielded significant effects on SMA, 

which were greater than non-significant effects of SMSE (B = .15, t = 1.83, p> .05) on 

SMA. In summary, this finding revealed that fifth-graders who taught by a 

mathematics teacher with high MTE tended to have better mathematics achievement, 

with a minor support of her/his own and higher mathematics self-efficacy. Therefore, 

H3 was patricianly supported in this study. 
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DISCUSSION 

MTE significantly influence fifth-graders’ SMSE and SMA 

First of all, the findings of regression analyses, paralleling with the result of ANOVA, 

indicated that MTE significantly predicted fifth-graders’ mathematical achievement 

with 65.9% variance.  This finding of significant effects of a mathematics teacher’s 

efficacy belief on her/his students’ mathematical achievement in school is 

corresponding to the previous studies (Ashton & Webb, 1986; Rosenholtz, 1989); even 

analogous to studies with different subject areas (Bandura, 1982; Denham & Michael, 

1981; Janet et al., 1995). It is notable that MTE had great effects on students’ 

mathematical self-efficacy as well.  Thus, this result apparently indicate that the more 

efficacious a mathematics teacher the better her/his students’ mathematical 

achievement in school. As mentioned previously, as teacher efficacy plays an 

important role on promoting students’ learning achievement and their self-efficacy 

development in the classroom, we as teacher educators must devote extensive efforts to 

establish a positive and collaborative working and in-service learning environment that 

promotes mathematics teacher efficacy. In addition, all 62 mathematics teachers, on 

average, had nearly 75% confidence in their own mathematics teaching capabilities, 

and around 22 of them were even lower than 70%. This low efficacy and inadequate 

readiness in teaching elementary mathematics needs to be carefully acknowledged 

while discussing the future task of teacher professional development.  Since teachers 

with high efficacy tend to put more efforts in preparing and teaching, persist longer 

while facing students’ learning problems, and have more flexible selection of 

instructional activities, these enthusiastic actions combing with positive thoughts and 

adaptive expectations will be definitely beneficial for establishing a preferable learning 

environment, which in turn support students’ mathematical learning.   

Fifth-graders’ SMSE had a effect on their mathematical achievement 

In this study, all 1283 fifth-graders had averagely 70% confidence in their own 

mathematics learning abilities. Since “self-efficacy” was a powerful factor for 

students’ learning performance (Bandura, 1977), which was evident in the researchers’ 

previous study that the higher SMSE the better mathematical achievement (Chang, 

2012), “how to increase or maintain the status of their SMSE became more essential to 

help them be successful in learning mathematics in school both at this transitional 

period and in the future” (Chang, 2012, p. 524). As a result, effectively providing a 

positive learning environment in this fast-growing and transitional stage will help to 

prevent possible declines of their SMSE (Jacobs et al., 2002), which is also helpful for 

promoting their learning achievement.  
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To understand the mathematical concept of function, students must understand certain 

subconcepts, such as domain and range. Many researchers have studied students’ 

understanding of functions, but no study has focused on how students come to 

understand the domain and range for the graphs of functions. In this study, we 

identified four common strategies, two transitional conceptions, and two 

representational challenges evidenced by students. In general, determining the range 

was more difficult than determining the domain for the students.  

HOW STUDENTS COME TO UNDERSTAND MATHEMATICS  

Functions play a key role throughout the mathematics curriculum. The U.S. Common 

Core State Standards for Mathematics (National Governors Association Center for 

Best Practices & Council of Chief State School Office, 2010) states that high school 

students should be able to: a) create functions that model relationships between two 

quantities, b) analyze and employ functions using different representations, and c) 

interpret functions for applications in terms of the context of the situation. However, 

the concept of function is one of the most difficult for students to understand (Tall & 

DeMarois, 1996). To understand the concept of a function, students must understand 

numerous subconcepts, such as input, output, ordered pairs, and correspondence to 

name a few.  

Additional complications can arise when students graph, use graphs to reason about, or 

try to understand graphs of functions. Prevalent evidence suggests that piecewise 

functions cause substantial difficulty for students (Norman, 1993). Graphs play a role 

in how students come to understand and work with functions. Functions and their 

graphs are of interest in an instructional sense because they tend to focus on 

relationships as well as entities. While many have studied students’ conceptions of 

functions (Markovits, Eylon & Bruckheimer, 1983) and how they understand domain 

and range (Arnold, 2004), there has not been a specific focus on how students 

understand the graphical representation of a function’s domain and range.  

Mathematics ideas and relationships can be represented using a variety of multimodal 

resources (e.g., inscriptions, speech, gestures, and artifacts, for more see Moore-Russo 

and Viglietti (2012)). Representations “help to portray, clarify, or extend a 

mathematical idea by focusing on its essential features” (National Council of Teacher 

of Mathematics [NCTM], 2000, p. 206). For example, to express the domain and range 

of a function, students often use interval or inequality notation. The representations 

used often come to impact how students make meaning of the concept at hand. During 
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the meaning making process, individuals often: a) rely on strategies to help develop 

their understanding and b) develop individual conceptions regarding the idea under 

consideration. Chiu, Kessel, Moschkovich, and Muñoz-Nuñez (2001) defined a 

strategy as “a sequence of actions used to achieve a goal, such as accomplishing a 

particular task or solving a particular problem” (p. 219). They defined a conception to 

be “an idea that is stable over time, the result of a constructive process, connected to 

other aspects of a student’s knowledge system, robust when confronted with other 

conceptions, and widespread” (p. 219). Following Smith, diSessa, and Roschelle’s 

(1993) recommendations, Moschkovich (1999) defined a transitional conception as “a 

conception that is the result of sense-making, sometimes productive, and has the 

potential to be refined” (p. 172). To study a particular individual’s meaning-making 

process, it is imperative to consider the transitional conceptions that occur and the 

strategies employed when students are engaged in tasks. In this study, we explore 

students’ transitional conceptions of the domain and range of a graphical 

representation of a function.  

METHODS  

Setting 

For this research, a qualitative, multiple-case study was conducted. The research site 

was a community college adjacent to a large city in eastern region of the United States. 

The lead researcher administered a pre-test to all students enrolled in two precalculus 

classes to determine their performance on graphical tasks that involved the concepts of 

domain and range. Study participants for the study were selected from 

middle-achieving students whose test scores ranged from 51% to 79% on the initial 

instrument, since evidence suggested that these students were developing an 

understanding of domain and range, and were more likely to have transitional 

conceptions than those with very low or very high results on the initial instrument.  

Data Collection 

The data sources for the study were students’ written answers to domain and range 

tasks that involved functions’ graphs on four test sets as well as videos and transcripts 

of subsequent student interviews. Five participants were asked to solve short-answer 

items. Each participant completed items 1-20 first, either in the classroom or 

researcher’s office. Then after completing the test without interruption, the lead 

researcher immediately interviewed the student asking about how the tasks were 

completed. After the first interview, the lead researcher administered a second set of 

tasks, items 21-40, to the participant after a short break. Upon completion a second 

interview was then conducted. In a later setting, the third and fourth interviews were 

administered in a similar format. All interviews were videotaped and transcribed 

within two weeks after the interviews were completed. The four test sets were designed 

with different purposes. The first set, items 1-20, was designed with basic questions 

and figures. The second set, items 21-40, contained more advanced problems whose 

graphs included more turning points, open points and horizontal sections. The third set, 
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items 41-60, included more complicated piecewise function graphs. The fourth set, 

items 61-108, was designed to check the impact of the small graphical differences on 

the domain and range. For example, pairs of tasks might contain one item where all the 

turning points were closed and another related item where the same graph was given 

except all the turning points were open.  

Data Analysis 

The data were examined for emerging categories through a general inductive analysis. 

The research team used theoretical memoing (Glaser, 1998) to record and classify 

observations during the multiple passes through the data. This process was guided by 

the use of rich, thick descriptions of participants’ activities and their responses. As the 

research team combed through the data, they began to cluster similar entries to form 

unifying categories. Upon studying the data, the research team determined it would be 

best to start with a loose structure of three broad classifications (strategies, 

conceptions, and representations) allowing more specific categories to emerge from 

the data under this structure. The research team then used these categories to make 

sense of observed activity (Thomas, 2006). During the constant comparison of data 

across participants as well as across interviews and written responses while 

considering what information might be of greatest benefit to instructors, there was a 

slight refinement of the overall structure to concentrate primarily on students’ common 

strategies, transitional conceptions, and challenges with representations.  

RESULT: STRATEGIES, CONCEPTIONS, AND REPRESENTATIONS 

In this study, we considered two research questions: a) Which strategies and 

transitional conceptions are evident when students consider the domain and range of a 

graphical representation of a function? b) How do students’ use of strategies and their 

understanding of concepts and representations impact their understanding of the 

domain and range of a graphical representation of a function? To address the first 

research question, the research team determined the most prevalent strategies and 

conceptions that students used when engaged in domain and range tasks for a given 

graph. To address the second research question, the research team analysed all data 

sources to see how students were using strategies, concepts, and representations related 

to the domain and range of a function’s graph.   

To determine and denote the domain or range of a graph, students need to be able to use 

appropriate strategies that fit the context and the problem at hand; they need to hold 

particular conceptions to understand and work with certain mathematical concepts; 

and they need to be able to represent their ideas and responses with an appropriate 

representational notation. Consequently, all three are needed to work with the 

domain and range of a function’s graph. Next, we report our findings based on these 

three classifications: common strategies, transitional conceptions and representational 

challenges. We use representative examples, displayed in Figure 1, which are a subset 

of 10 items and 4 participants’ responses to these items. 
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Figure 1: Representative examples (For each item response, an arrow sign “→” 

represents a subsequent attempt during the interview process.) 

Common Strategies 

1. Projecting the graph onto the x-axis (or y-axis) to determine the domain (or range). 

Projecting the graph onto the x-axis strategy is a glancing-and-imagining method. With 

this strategy, students glanced at the graph and projected the graph onto the x-axis 

without any other body motion. They mentally projected the graph onto the x-axis and 

used the imagined horizontal segment or line to determine the domain. Projecting the 

graph onto the y-axis strategy is a strategy similar to projecting the graph onto the 

x-axis strategy. On item 20, see Figure 1-(1), Mary projected the piecewise function 

onto the y-axis. When determining the range she looked at the graph, staring the 

longest at the right side of the graph, where the two linear segments’ ranges of [2, 4) 

and [3, 6] overlapped. She reported that she projected the graph to the y-axis with her 

eyes and merged the two intervals to determine the answer [-1, 1]  [-2, 6].  

2. Pushing the graph to the x-axis (or y-axis) to determine the domain (or range). 

Pushing the graph to the x-axis was an embodied strategy that involved student 

gesturing. To determine the domain of the graph, students used a motion with their 

hands or fingers as if pushing or pressing down the graph to imagine it as a horizontal 

segment (or line) on the x-axis. A slight variation of the pushing gesture, students used 

a clapping gesture to make a noise by actually clapping their hands as they imagined 

the graph physically being pressed to the x-axis. Pushing the graph onto the y-axis 

strategy is a strategy related to the strategy of pushing the graph onto the x-axis, with 
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the only distinction being pushing to the y-axis rather than the x-axis. On item 74, see 

Figure 1-(2), Mary gestured by “pushing” the piecewise function to the y-axis using 

her both hands. 

3. Focusing on the endpoints when tracing the graph from the starting point to the 

ending point. Tracing the graph is a graph-following strategy that involved eye or 

finger movement. When students traced a graph with their eyes or fingers, typically 

they focused on the endpoints then traced the graph from the starting to the ending 

point. While this strategy would yield a correct response for the domain, it would not 

necessarily do so for the range. In some instances, students traced from right to left, 

where the domain was (-, p) or (-, p] for some point p. For example, if a graph was 

bounded by a closed endpoint on the right yet unbounded to the left, often students 

reported they traced the graph from the right point to the left arrowhead because the 

arrowhead’s direction caused their eyes to naturally follow the arrowhead’s path. On 

Item 22, see Figure 1-(3), Kara answered [-2, 4] for the range of this graph. She traced 

the graph from the left boundary point to the right ending point. She initially used the 

y-coordinate values of the both end points, even though they were not the minimum 

and maximum values of the graph.  

4. Not overlapping sections of a graph to determine its range. When a graph is not a 

one-to-one function, there is at least one portion of the graph were the y-coordinate 

values overlap. However, some students did not notice the overlapped portions. For 

example, if an open point exists in the overlapped portion, the open point’s 

y-coordinate value should not be eliminated since the open point can be overlapped 

with another portion of the graph. On item 36, see Figure 1-(4), Mary determined the 

range [4, 2) on her first attempt focusing on the two end points. Upon noticing this in 

the interview she then responded [4, 2)  (2, -) on her second attempt, even though 

the desired answer was (-, 4]. In her second response, she did not include the 

y-coordinate value of 2, even though the point (-1, 2) is on the left part of graph. In 

addition, she started at the top most part of the graph following the arrowheads down 

and then reported the interval in a nonstandard descending order. 

5. Using the closest axis value; using x-coordinate values instead of y-coordinate 

values, and vice versa. When students determine the domain of a graph, they should 

focus on the x-coordinate values of the graph. However, if a graph intersected a y-axis 

or had a vertex on the y-axis, students often focused on the y-coordinate values of the 

point. This phenomenon seems to suggest that the students’ eyes are attracted or drawn 

to the closest number on the y-axis. Similar situations occurred for range when a graph 

had a critical point on the x-axis. On item 10, see Figure 1-(5), Victor used the x value 

of -2 rather than the y value of 0 from the open point (-2, 0) when reporting the range of 

this graph.  

6. Measuring the range from the lowest value to the highest value of a piecewise 

function. Some students used the lowest and highest values to determine the range even 
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though the graph was vertically discontinuous. On item 16, see Figure 1-(6), Louis 

answered [10, 60] for this step function’s range.  

Transitional Conceptions  

7. Belief that a horizontal line or segment of a line has no range. A horizontal line is a 

specific, special case since it has no change in its range. Some students believed that a 

horizontal line or segment had no range at all. Their belief stemmed from the 

conviction that the range should have some length or distance. On item 64, see Figure 

1-(7), Louis’ answer was an empty set “Ø” and his reasoning in the interview was 

“There is no range because it is a flat line.” 

8. Dealing with marked open or closed points as boundaries. Students felt it was 

especially difficult to determine the range of a horizontal segment when it included 

open points on the ends of its graph. They did not seem to recognize that a horizontal 

segment consists of infinitely many closed points.  

Students preferred clearly designated points, either open or closed, when finding the 

range and when the graph was not horizontal. When a graph had an absolute maximum 

where the function was concave down, the point’s y-coordinate value should be the 

range’s maximum. However, some students hesitated to put the vertex’s y-coordinate 

value as the range’s greatest point. The reasoning was that when an absolute maximum 

is a part of curve, there is no clear point but a curve. Instead of using the absolute 

maximum (or minimum) on a curve, students preferred to use the open or closed point 

that was highlighted at the boundary points of intervals.  

On a related note, some students would purposely use open parentheses in their 

responses when turning points where the absolute extrema. On item 12, see Figure 

1-(8), Kara’s original answer was (-, 4) for the range. She hesitated to use the 

maximum vertex, the point (0, 4), specifically mentioning because there was no closed 

point specifically marking a definite point.  

Representational Challenges 

9. Difficulty with the notation in representing the range of horizontal lines. The 

horizontal line is a specific case of a graph since it has only one point for its range. 

Even when students realized that a single point was the range, they did not know how 

this should be represented. In the special case of a single value, using conventional set 

notation, the degenerated interval is represented by braces {  }. Students were at times 

unfamiliar and more often uncomfortable using this notation. On item 38, see Figure 

1-(9), Victor did not include the horizontal part of the graph for the range originally. He 

thought that the horizontal ray’s range did not exist because of an open point. His 

original answer was [-2, 1] (2, ). After he realized that there were many points that 

had the y-coordinate value -3, he added y = -3 to his response. His final answer was  

y= -3  [-2, 1] (2, ).  

10. Representing an interval in descending order. By convention, the interval notation 

is written in ascending order with the smaller number located on the left side of the 
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interval and the greater number located on the right side. However, many students used 

a descending order, especially when the graph decreased or when they traced an 

increasing graph that was bounded on the right. Often they traced from right to left 

following the direction of the arrowhead on the left hand. On item 24, see Figure 

1-(10), Mary determined the range from the maximum point to the arrowhead. Rather 

than writing (-, 6], she wrote (6, -). She then rewrote the answer [6, 1)  (1, -), 

still using the descending order, which related to the transitional conception labelled #8 

above.   

DISCUSSION 

Common Challenges 

All five students had difficulty with the range of horizontal lines. This was related to 

the fact that they thought of graph as flat and without any vertical distance or length. 

They felt it should not have a range. Even when students began to recognize that a 

horizontal segment would have a range of a single point, they were often only 

considering the endpoints of the segment and felt that horizontal segments with open 

endpoints as boundaries would not have a range. Others recognized that the range 

would be a single point but often struggled with how to represent this. The fact that all 

five students had difficulty with this suggests that instructors should take this into 

account in their task selection. 

When a graph extends infinitely and its representation includes arrowheads, students 

impulsively followed the arrowhead direction. When students used this strategy to 

determine the range (especially for the piecewise functions), they frequently created 

overlapping intervals. The instructional implication is that students often view parts of 

graphs that should be considered at the same time as separate entities. Of note was the 

fact that the students who used the “projecting” or “pushing” strategies rather than the 

tracing strategies seemed to treat the piecewise graphs as all belonging to a single 

whole and were less likely to give the overlapping interval responses.  

One of the notable findings was when students used open parentheses when boundaries 

were not endpoints nor where they specifically designated (either open or closed) 

points. Three of five students did not want to use the y-coordinate value of the absolute 

maximum point since the turning point had no closed point. Instead, they favoured 

using only specifically represented closed points serving as boundaries for certain 

sections of the graph, since they were clearly specified. The underlying source of this 

transitional conception relates to the fact that either students did not realize that a line 

consisted of infinitely many closed points or they did not realize that points do not have 

to be represented by either open or closed circles (i.e., segments and other curves 

represent a continuous collection of closed points). This finding suggested that 

students’ challenges related to domain and range may stem from not understanding the 

meaning of curved sections of graphs but may go back to understanding the fact that 

continuous curves represent an infinite set of closed points.  
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More challenges arose when students were determining the range, rather than the 

domain. Since the functional inputs are not repeated but are unique for the domain, 

there are no overlapping sections as can be the case for the range. This was a particular 

challenge for students for graphs of functions that were not one-to-one.  
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USING THEMATIC ANALYSIS TO STUDY CURRICULUM 

ENACTMENTS 

Jeffrey Choppin, Demeke Yeneayhu, Zenon Borys 

University of Rochester 

 

We use thematic analysis to explore how mathematical concepts are developed in four 

enactments of the same task. Thematic analysis emerges from Systemic Functional 

Linguistics and provides a means to explore the development of mathematical ideas in 

the classroom discourse. Thematic analysis was used to explore how themes related to 

the comparison of like quantities were developed in a task designed to introduce 

different types of comparisons and different ways to represent comparisons. The 

thematic analysis showed similarities across the four teachers’ enactments, suggesting 

an influence from the design of the task. There were also differences that pointed to 

teachers’ different emphasis and their own understanding of the thematic pattern. 

CURRICULUM ENACTMENT AS AN OBJECT OF STUDY 

Teachers’ use of curriculum materials has become an active field of study, especially 

since many districts have used innovative curriculum materials to drive instructional 

change (Remillard, 2005).  The view of the teacher’s role has expanded over the last 

two decades in response to new conceptions of teachers as curriculum developers 

(Ben-Peretz, 1990) and to the influx of innovative curriculum materials developed in 

the U.S. The enactment of curriculum materials is not straightforward, as there can be 

considerable variation in the ways teachers enact materials from the same program (cf. 

Remillard & Bryans, 2004; Tarr et al., 2008). To account for this variation, researchers 

have developed a number of perspectives to better understand curriculum enactments. 

These perspectives have focused on the extent to which curriculum content is covered, 

the fidelity with which teachers draw on the materials to design instruction, the kinds 

of instructional practices evident when using particular curriculum materials, and the 

level of cognitive demand of instructional activities (Chval, Wilson, Ziebarth, Heck, & 

Weiss, 2012).  While these perspectives provide nuanced and detailed accounts of 

teachers’ interactions with curriculum materials and, to a lesser extent, the curriculum 

received by students,  they shed little light on how teachers use curriculum materials to 

develop mathematical ideas and on how different design features of curriculum 

materials influence the ways mathematical ideas get developed in curriculum 

enactments. This paper seeks to address that gap.  

In this study, we use thematic analysis to explore how mathematical concepts are 

developed during the enactment of curriculum materials. Thematic analysis has been 

used to characterize discourse in mathematics classrooms (Herbel-Eisenmann & Otten, 

2011) and in science classrooms (Lemke, 1990). Thematic analysis allows a researcher 

to explain the ways that concepts are developed by looking at the underlying semantic 
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relations and the ways they are explicitly or implicitly constructed. Thematic analysis 

emerges from systemic functional linguistics (SFL) (Eggins, 2004; Halliday, 1978; 

Halliday & Martin, 1993), which looks at language as a resource for meaning rather 

than as a system of rules, so that language use is viewed in terms of “learning how to 

mean versus learning how to speak” (Halliday, 1978, p. xx).  

THEMATIC ANALYSIS AS A FRAMEWORK 

Systemic Functional Linguistics 

Systemic functional linguistics looks at language as a meaning making resource rather 

than as a conduit through which thoughts and feelings are expressed (Halliday & 

Martin, 1993). As such, SFL is built on the supposition that language is not only 

situated in context but produces context, and moves away from idealized views of 

language and of speakers (Halliday, 1978).  SFL treats grammar as the realization of 

discourse, as a means of expressing semantic relations that are the heart of meaning 

making, rather than inherently carrying some unambiguous meaning.    

Thematic Analysis 

Analysis of thematic patterns allows researchers to see how ideas and concepts are 

developed in the classroom discourse, where discourse is broadly construed to include 

language, gesture, and other resources for conveying meaning (Herbel-Eisenmann & 

Otten, 2011). Thematic analysis focuses on how relationships between discourse 

objects are expressed, how relationships are made explicit, and how these relationships 

cohere into themes (Lemke, 1990). Lemke states that a thematic pattern is a way of 

picturing the network of relationships among the meanings of key terms in the 

language of a particular subject. Often, students are drawing from one pattern that is 

based on their everyday experiences while teachers are drawing from a pattern that is 

based in the conventions of the discipline they are teaching. In order for students to 

learn disciplinary content, teachers must recognize students’ thematic patterns and 

draw connections to the conventional disciplinary pattern (Lemke, 1990; 

Schleppregrell, 2007). Learning can thus be construed moving from thematic patterns 

based in everyday language use to those found in disciplines. 

Thematic patterns involve the construction of lexical relations and lexical chains. 

Lexical relations (Eggins, 2004), or semantic relations (Lemke, 1990) express 

relationships between various discourse objects. Lexical relationships include 

taxonomic relations such as hierarchy, similarity, or contrast, and nuclear relations, 

such as agent-process-medium and activity sequences (Martin & Rose, 1993). 

Taxonomic relations include the ways terms are similar (synonyms) or contrast 

(antonyms) in addition to hierarchical relations such as hyponyms (member – class 

relationship), co-hyponyms (two members of the same class), meronym (part of a 

whole) and so forth (Lemke, 1990).  Lemke states that semantic relations tend to be 

variants of a relatively small number of basic ones, and which form thematic patterns 

that are highly standardized in each field of science.  
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Lexical chains or strings (Eggins, 2004) or semantic chains (Lemke, 1990) provide 

insights into how thematic patterns are developed. Eggins defines a lexical string as a 

list of “all of the lexical items that occur sequentially in a text that can be related to an 

immediate prior word” (p. 44) either taxonomically or through an expectancy relation 

(word or phrases that we expect to see used in proximity to each other). These strings 

contribute to the cohesion of a text. Eggins (2004) defines cohesion as “how what 

we’re saying hangs together and relates to what was said before and to the context 

around us” (p. 12). Text cohesion builds within a clause via expectancy relations or via 

the ways that clauses are connected by conjunctions.   

METHODS 

Thematic analysis was conducted on transcripts of four teachers’ enactments of the 

same task. The Bolda Cola problem introduces the Comparing and Scaling unit in the 

Connected Mathematics Project (CMP) curriculum (Lappan et al., 2006). The unit 

explores different ways to compare like and unlike quantities, eventually leading into 

unit rate and algebraic representations of unit rate. The Bolda Cola problem asks 

students to explore four claims around a fictional taste test of two brands of cola, Cola 

Nola, and Bolda Cola. The purpose of the problem is to introduce different kinds of 

comparisons (part to part and part to whole) and ways to represent comparisons (e.g., 

fraction, percent), ideas that will be explored for several more tasks over the span of a 

week or more.  

The thematic analysis involved the construction of lexical chains and maps of the 

lexical relations based on the transcripts from each enactment, to focus on similarities 

and differences in those thematic patterns. The transcripts were first parsed into 

Topically Related Sets (TSRs)(Mehan, 1979), which consist of a series of exchanges 

around a single topic, such as discussion around a strategy or a specific question.  

Each TRS was parsed into two separate themes, one related to mathematical concepts 

and the other related to the context of the Bolda Cola problem. This was done by 

creating a column for mathematical terms and language and a column for references to 

the taste test context. A third column was used to track which part of the Bolda Cola 

task was being addressed during the TRS. A column was created to track the 

conjunctions and prepositions to help map the relationships being constructed between 

the lexical items in the mathematics and context columns. Another column was created 

as well to keep track of the verbs being used, in order to consider the ways that 

mathematics was being construed in each class (Herbel-Eisenman & Otten, 2011). For 

each topically related set, we summarized the mathematics and context themes, which 

now became the lexical items used in subsequent parts of the analysis.  

To construct the lexical chains, we used the summaries of the mathematics and 

contextual themes from each TRS and created a new spreadsheet which tracked these 

lexical items across the TRSs, with the mathematical themes and contextual themes 

grouped separately, with a third grouping for the task part being addressed in that 
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particular TRS. This spreadsheet showed how lexical items were used over time, 

whether they appeared in multiple TRSs, and how they mapped on to the task parts.   

The different lexical items and the relationships expressed between each of the items 

from the TRS summaries were then used to create a transcript-based map. Lemke 

(1990) stated that thematic patterns are best expressed in the form of diagrams that can 

show the interconnected semantic relationships among several terms or thematic items. 

These transcript-based maps were adapted from the ‘clean map’ (Herbel-Eisenmann & 

Otten, 2011), which was constructed based on an analysis of the lexical relations 

expressed in the textbook, on discussions with one of the textbook authors, and on our 

own understanding of mathematics. The clean maps were used to identify key concepts 

that were the intended focus of the Bolda Cola task and the Comparing and Scaling unit 

in general.  

A final spreadsheet was created, using the primary concepts in the unit as column titles 

and the TRS number as row title. Then, the lexical items identified in the first 

spreadsheet were placed under the column or columns that represented the concepts 

referenced by the lexical item. We were looking for instances in which a lexical item 

appeared multiple times in one column, which formed a lexical chain for that concept. 

These lexical chains not only exhibit the development of the thematic pattern, but also 

how the mathematical and contextual themes worked in tandem to express the 

underlying mathematical concept. 

We also looked for when one TRS contained multiple concepts, which constituted a 

thematic nexus. Lemke (1990) explains that an important point in the development of a 

thematic pattern is when there is a thematic nexus, which multiple thematic relations 

are brought in contact with each other at one point in time.  

RESULTS 

The results show similarities in the transcript maps that potentially show the role of 

task design in eliciting and developing a thematic pattern related to comparing 

quantities. Conversely, there are subtle differences in the transcript maps and lexical 

chains that demonstrate different. First we discuss the lexical chain tables.   

Lexical Chain Tables 

The lexical chain tables provide an indication of how the lexical items varied across the 

enactment and how they mapped onto the part of the task being addressed. In Figure 1, 

for the teacher named Allen, the first section is the mathematical lexical items (e.g., 

comparing two quantities using a 'for every' statement; dividing the quantities by the 

same number gets a scaled down ratio), the second the contextual items (e.g., For every 

17139 who liked Bolda Cola, 11426 liked Cola Nola; Dividing 17139 and 11426 by 

5713 gives you 3 and 2), and the third section the task part (e.g., Do the four statements 

from the same data?). In figure 1, for the teacher named Allen, as the task part changes, 

one can see a related sequence of mathematical and contextual themes. 
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Figure 1: Lexical chain table of Allen. 

The differences across the lexical chain tables of the four teachers indicate the extent to 

which the teachers focused on particular questions to develop the mathematical or 

contextual themes. Granville, for example, focused much of her discussion on whether 

all four statements came from the same data, during which nearly half of the 

mathematical themes were developed, as seen in Figure 2, while Sadosky focused a 

good portion of her discussion on the question most related to the context (which 

statement would make the best advertisement), which focused relatively more of her 

discussion on developing contextual themes than mathematical themes. 

 

Figure 2: Lexical chain table of Granville. 

Transcript Maps 

The transcript maps showed which lexical items were discussed and how they were 

related in each enactment. Figure 3 shows the transcript map for Allen. The four 

transcript maps had roughly similar sets of lexical items and lexical relationships, 

which speaks to the design of the Bolda Cola problem. However, there were subtle 

differences between the maps that indicate teachers’ intended focus for the task and 

perhaps their own understanding of the thematic pattern. Allen’s map, for example, 

was not as clearly connected as the others and there was more ambiguity in the 

classification and composition of comparisons, particularly the ratio comparisons, as 

can be seen, for example, in the characterizing of most ratios as part to part ratios. 

Sadosky’s map showed a relatively greater emphasis on processes and different ways 

of expressing comparisons but the taxonomic relations were not as coherent as those of 

Pless and Granville. Pless’s map was parsimonious but coherent, showing a clear 

taxonomy of terms. Granville’s map was the most elaborate and well-connected, 

reflecting the greater amount of time spent on the task and the greater explicitness in 

discussing the lexical relations as seen in Figure 4. 
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Figure 3: Transcript map for Allen. 

 

Figure 4: Transcript map for Granville. 
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The final spreadsheets, reflecting lexical strings for the main concepts and any 

occurrences of a thematic nexus, primarily showed the distribution between the 

mathematical themes and contextual themes for developing the thematic pattern. The 

tables showed how couplings of math/context themes occurred relatively frequently 

and how each contributed to the various lexical strings and the overall thematic pattern. 

Figure 5 shows how Pless explicitly describing the lexical relations, which contributed 

to her coherent transcript map. 

Ratios can be 

simplified or scaled 

up

Ratios can be 

written as 

fractions or 

percents

To get the total you 

add the parts

Ratios can be 

simplified or scaled 

up

Ratios can be written as 

fractions or percents

A big number is unlikely 

to be a simplified ratio

A big number means it's 

the actual number of 

people surveyed

One type of ratio compares people who like one brand of coke to the total 

population surveyed.

The bigger numbers means the majority of people preferred  BC

 The quantities can be written in the ratio 

17139 to 14126

There are different types of ratios

BC to NC ratio and BC to total ratios are different

There are part to part and part to whole ratios

BC to NC ratio and BC to total ratios are different

Part to part comparison Part to whole comparison

 

Figure 5: Partial Second Lexical Chain Table for Pless. 

DISCUSSION 

The paper set out to show how mathematical ideas were developed in four separate 

enactments of the same task. A goal was to introduce a perspective on studying 

curriculum enactments that allowed researchers to better understand how teachers’ 

uses of curriculum materials provides opportunities for students to develop 

understanding of mathematical concepts. Thematic analysis allowed for a fine-grained 

and multi-tiered analysis of the development of mathematical ideas across the four 

classrooms. The results also show how thematic patterns related to problem contexts 

can be used to develop mathematical thematic patterns.  

The thematic analysis showed similarities across the four teachers’ enactments, 

suggesting an influence from the design of the task. There were also differences that 
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pointed to teachers’ different emphasis and their own understanding of the thematic 

pattern. Future research needs to look at enactments of tasks from different curriculum 

materials and at how thematic pattern related to comparison of like quantities develops 

over multiple tasks from the same instructional sequence.  
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TEACHERS’ PRODUCTIVE MATHEMATICAL NOTICING 

DURING LESSON PREPARATION 

Ban Heng Choy 

University of Auckland, New Zealand 

 

This study uses lesson study to investigate what mathematics teachers notice about 

students’ mathematical reasoning during the planning of a lesson on fractions. Most 

research examines teaching noticing during or after a lesson, and focuses on the 

specificity of what teachers notice as a characteristic of noticing expertise. In this 

paper I propose a new notion of productive noticing, and apply it to analyse two 

vignettes of teachers’ mathematical noticing during lesson preparation. Findings 

suggest that teachers’ noticing is most productive when it goes beyond the specificity 

of what teachers notice to include justification based on what they have noticed about 

students’ thinking. The study also demonstrates the usefulness of this construct in 

analysing what mathematics teachers notice when planning lessons.  

INTRODUCTION 

Mathematics teacher noticing—what mathematics teachers see and how they 

understand instructional events or details they see in classrooms (Mason, 2002; Sherin, 

Jacobs, & Philipp, 2011)—is central to mathematics teaching practices, and is needed 

for improving teaching (Mason, 2002). Most researchers who study mathematics 

teacher noticing do so by examining what teachers observe from video clips of lessons 

(Star, Lynch, & Perova, 2011; van Es, 2011); while others (Sherin, Russ, & Colestock, 

2011) capture what teachers notice in-the-moment during lessons. In this paper, I 

extend the notion of productive noticing to enable investigation of what mathematics 

teachers notice during the planning of mathematics lessons. The key research questions 

addressed in this paper are: What do mathematics teachers notice about students’ 

mathematical thinking during lesson preparation? More importantly, what 

distinguishes teachers’ productive noticing from less productive noticing? 

THEORETICAL CONSIDERATIONS 

Mathematics teacher noticing 

According to Mason (2002), noticing is a set of practices that work together to enhance 

teachers’ awareness to new responses in classroom situations. These practices include 

“reflecting systematically; recognising choices and alternatives; preparing and 

noticing possibilities; and validating with others” (Mason, 2002, p. 95). Many 

researchers view noticing as consisting of two main processes: “attending to particular 

events and making sense of events in an instructional setting” (Sherin, Jacobs, et al., 

2011, p. 5), but Jacobs, Lamb, and Philipp (2010) also include how teachers decide to 

respond to instructional events in order to link the intended responses to the two main 
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processes of noticing. This triad view of noticing—attending to; making sense of; and 

deciding to respond—ties in with Mason’s (2002) idea that noticing should bring to the 

mind of teachers a different way to respond. 

However, it can be very challenging to notice salient mathematical details in a 

classroom setting. Marking and discerning instructional events that are critical and 

useful can be difficult for teachers. In a video-club study involving 30 pre-service 

teachers, Star et al. (2011) found that they had problems attending to specific 

mathematical details of lesson tasks. Vondrová and Žalská (2013) also found that the 

pre-service teachers in their study did not notice mathematics-specific details, even 

when they were shown short video clips with prominent mathematical incidents.  

Developing teachers’ ability to notice 

Approaches to develop teachers’ noticing often centre around the use of video clips of 

teaching—where teachers are shown clips of classroom teaching and asked to notice 

certain features of the instruction (Sherin, Russ, et al., 2011; Star et al., 2011; van Es, 

2011). These approaches tend to focus largely on noticing instructional details after 

lessons are conducted. In order to examine teachers’ in-the-moment noticing, Sherin, 

Russ, et al. (2011) asked teachers to record short segments of video clips of what they 

noticed during lessons, using a wearable camera, before they discussed these recorded 

segments. Even though this approach gave researchers improved access to teachers’ 

in-the-moment noticing by triangulation with teachers’ reflections on the recorded 

segments, the researchers acknowledged that the sense-making and decision-making 

processes may not be fully captured (Sherin, Russ, et al., 2011).  

One issue with this approach of developing teachers’ ability to notice is the lack of 

focus on preparation to notice. As Mason (2002) put it, “noticing is an act of attention, 

and as such is not something you can decide to do all of a sudden. It has to happen to 

you, through the exercise of some internal or external impulse or trigger” (p. 61). More 

specifically, Mason (2002) highlights advanced preparation to notice,  and the use of 

prior experience to enhance noticing in order to have a different act in mind. In this 

paper, I propose a development of teachers’ noticing ability through explicit 

preparation during the planning of a mathematics lesson. 

Productive mathematical noticing—focusing on the ‘Three Points’ 

Most research focuses on the specificity of what teachers notice, but specificity is not 

sufficient for noticing to be productive. In a study involving seven prospective 

secondary school mathematics teachers, Fernandez, Llinares, and Valls (2012) found 

that most were unable to relate the strategies used by students to the characteristics of 

the problem, even though they were all able to describe the specific strategies at the 

beginning of the study. In the context of lesson planning, one possible approach is to 

support teachers’ ability to notice mathematical features by directing their attention to 

key mathematical ideas and students’ learning difficulties related to these concepts.  
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In a previous paper (Choy, 2013), I proposed a characterisation of productive noticing 

using Yang and Ricks’ (2013) Three-point framework—key point; difficult point; and 

critical point. According to Yang and Ricks (2013), the key point refers to key 

mathematical concepts or ideas of the lesson; the difficult point refers to cognitive 

obstacles encountered by students when they attempt to learn the key point; while the 

critical point refers to the approach taken by teachers to help students overcome the 

difficult point. I propose that teachers’ productive mathematical noticing occurs when 

they are able to: 

 attend to specific details related to the key point, difficult point or critical 

point that could potentially lead to new responses; 

 relate these details to prior knowledge and experiences to gain new 

understanding for instruction (key point and difficult point); 

 combine this new understanding to decide how to respond (critical point) to 

instructional events. 

This characterization of productive mathematical noticing uses the ‘three points’ not 

only to direct teachers’ attention to specific details of what they notice, but also to 

highlight the need to connect the critical point to the key point and difficult point. 

METHODOLOGY 

This paper uses data from a seven-week lesson study cycle situated in a Singapore 

primary school. Lesson study, as a collaborative inquiry approach, provides a means to 

make teachers’ thinking during lesson planning “more visible” (Lewis, Friedkin, 

Baker, & Perry, 2011, p. 171). There are five key tasks in lesson study—developing a 

research theme; working, discussing and anticipating student thinking through 

mathematics tasks; developing a shared lesson plan; collecting data during observation 

of research lesson and conducting a post-lesson discussion (Lewis et al., 2011). In this 

paper, I report results drawn from the first three tasks corresponding to the lesson 

preparation phase of the lesson study. 

Six mathematics teachers formed the lesson study group that explored the teaching of 

‘fraction of a set’ for Primary Four students (aged 10). Five of the teachers have more 

than 10 years of teaching experience and the other has at least five years.  

To facilitate productive mathematical noticing during lesson preparation, I introduced 

Yang and Ricks’ (2013) Three-Point Framework to teachers and encouraged them to 

focus their discussion for each lesson study task on the specifics of these three points. 

The teachers discussed explicitly the key mathematical ideas they wanted to teach, and 

the associated “difficult points” from their readings, prior experience or observations 

of their own students. Next they focussed their discussion on possible approaches 

(critical points) that could help students overcome the difficulties and learn the key 

ideas, before they agreed on a teaching approach. Teachers then designed the main task 

and anticipated students’ possible responses to the task in relation to the points raised. 



Choy 

2 - 300 PME 2014 

Finally, the team prepared a shared lesson plan containing the lesson sequence, key 

tasks, anticipated students’ responses and planned teachers’ responses to students.  

The researcher primarily took on the role of observer during the seven lesson study 

sessions, and served as a resource person for the mathematical knowledge for teaching, 

while Ms Kirsty (a pseudonym), the team leader, was facilitator. Data were collected 

and generated through voice recordings of the lesson study sessions and video 

recording of the lesson. The recordings were parsed and segmented into episodes, as 

determined by the goal of the conversation. The findings were developed through 

identifying categories, codes and themes related to what teachers noticed in the 

episodes. The episodes were then classified as more or less productive using the 

framework above. Noteworthy episodes were further developed into vignettes to 

highlight the characteristics of more and less productive mathematical noticing. 

RESULTS AND DISCUSSION 

Focussing on the data drawn from the first four sessions on lesson preparation, the 

language of the ‘Three-Point Framework’ seemed to have helped teachers attend to 

specific key points, difficult points, and critical points related to the topic.  

Less productive noticing 

During the second session, Mr Anthony went through how the textbooks present a 

diagrammatic representation of 2/3 + 1/4 by showing two diagrams with 12 equal parts 

each. Mr Anthony then highlighted that the reason for the 12 parts was not obvious to 

the students. 

Mr Anthony:  So the children will ask, why do you give me 12 equal parts? Why didn’t 

you give me 6 or 18 equal parts? So, Ah… we look at the multiples of 3, 6, 

9, and so on… at the end, we have 4, 8, 12… Coincidentally, we find just 

the lowest common multiple, so we have to use 12. 

Here, Mr Anthony attended to a specific mathematical detail (key point) that might 

present new possibilities in the approach. He was also very specific with regard to 

students’ difficulties—that they did not understand why 12 parts were used in the 

fractional representation (difficult point).  

When asked how he would helped them to bridge this gap, Mr Anthony recounted: 

Mr Anthony:  No choice… Because they are not in the same family, we want them to do 

some transaction, or you want to mix them together, we need to do 

something alike. 

Furthermore, he highlighted that students often just latch on to the procedure: 

Mr Anthony:  They will tell me this: My teacher tells me this… you multiply me and I 

multiply you. [Laughter] So, if the question is not that big, some times they 

are given 5/6 and then 4/9. They start to multiply 9 with 6 and 6 with 

9…Yeah! That’s right! And the numbers get bigger and bigger… Then they 

don’t know how to do. 
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The rest of the teachers in the team also agreed with Mr Anthony that the problem was 

common among students. However, the teachers did not explore this difficulty further 

and attributed the difficulty to a lack of procedural competency in finding the lowest 

common multiple: 

Ms Kirsty:   Because they fail to understand the factors and multiples well.  They don’t 

know the least common multiple. 

Ms Regina:  They don’t know how to list and find the lowest. 

Mr Jeff:  This is like the easy way out. 

The teachers thought that students could not find the lowest common multiple, but did 

not suggest why this was the main issue. It seemed that the crux of the problem was the 

reason behind the 12 equal parts instead of finding the multiple 12. However, they 

attended to specific key and difficult points, even though they did not reason and make 

sense of the difficult point to arrive at a possible approach (critical point). 

Productive noticing with reasoning and justification 

When discussing students’ difficulties in learning about a fraction of a set, Mr Jeff 

highlighted that students’ difficulty in understanding fraction of a set could be due to a 

‘met-before’ (Tall, 2004) of the notion of fraction as ‘part of a whole’: 

I think the objective for fraction of a set is for students to see, to interpret fraction as part of 

a set of objects. Previously, the fraction [concept] they learnt is more of part of a whole. 

They are very used to thinking about part out of a whole. Now that we give them a lot of 

whole things, they cannot link that actually these fractional parts can refer to a set of whole 

things also. So I think, to me, I feel that the connection that is missing, is that, how this 

fraction concept—which is part of one whole, which they have learnt so far—can be linked 

to whole things. For example, previously we used to teach fractions as parts of a cake or 

pizza. From that, how can it be that we have many pizzas, we don’t cut out the pizza, there 

is a fraction of the pizzas. I think they cannot make a link there.  

Mr Jeff elaborated further what he meant: 

For me, the main difficulty is to relate part of a whole into items that are “whole” but you 

take a fraction out of it. So, I think that’s where the confusion comes. 

He went on further to give a more concrete example: 

For example, if you say ¾ of the cats are… [Imitating the students] Ah… you cut the cat 

into three quarters? [Laughter] Cut each cat into four parts. So, yeah, but based on what 

they learnt so far, that may be the first thought they might have. To them, fraction could 

still be cutting up into parts. Whereas, fractions of a set, we leave the things as a whole 

entity but we look it as a collection of things. So out of these five things, how many are 

blue etc… For me, that would be the main difficulty. 

In this short exchange, Mr Jeff clearly identified the need to extend the notion of 

fraction to a set of items (key point). He was also able to attend to the expected difficult 

point with a good level of specificity. Mr Jeff linked students’ difficulty with a 

met-before of fraction—‘part of a whole’—and suggested how students’ image of 
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fractions as ‘parts’ might conflict with the concept of fractions referring to a subset of 

‘whole’ objects. However, unlike the first vignette, Mr Jeff used two examples—pizza 

cutting and cat cutting—to illustrate students’ difficulties. His use of specific examples 

strengthened what he attended to, and how he made sense of his prior experiences with 

students. Therefore, the link between the key point and difficult point was made 

explicit for the other teachers, and this provided an impetus for other teachers to notice 

students’ thinking. Hence, Mr Jeff’s noticing of students’ possible difficulty had 

productive potential for enhancing students’ thinking because it helped other teachers 

to focus their attention during the design of the task.  

Besides directing teachers’ attention to the three points, Mr Jeff’s productive noticing 

also heightened other teachers’ sensitivities to students’ thinking when they were 

teaching. For example, Ms Kirsty became more cognisant of her students’ difficulties 

in grasping the concept and related what she attended to during another planning 

session.  

Ms Kirsty:  And I think what we said is very right. They are not equating this concept of 

fraction as being the relationship between the part and its whole. 

Mr Jeff:  As in, the object being the whole, right? 

Ms Kirsty:  Not the fraction… part… and… what. 

Researcher:  Part of a whole? 

Mr Jeff:  … the number of whole things? 

Ms Kirsty:  Part of a whole… not as relationship between a part and its whole… but as 

part of a whole. They are still with the impression of ‘part of a whole’. 

Mr Jeff:  Actually the item that we use must be something that we cannot cut out 

one…  like cars… tables… chairs 

Ms Kirsty’s observations resonated with Mr Jeff’s noticing of student thinking about 

fraction of a set, and this later advanced the design of the task. Noticing is “validated” 

when others recognise that what is being noticed corresponds to their own experience 

(Mason, 2002, p.93). This validation heightens one’s sensitivity to notice, and 

promotes the possibility of improving practice (Mason, 2002). Mr Jeff’s reasoning 

based on his noticing also seemed to provide some justification for the proposed 

approach or response to students’ difficulties: Mr Jeff suggested using items that 

cannot be “cut” to help students get over the ‘part of a whole’ image of fractions. 

Moreover, when Mr Jeff was asked about a possible approach to help students 

understand the concept, he suggested an approach that made explicit links between the 

key point, difficult point and critical point: 

I think the confusion part also comes when… for example… this example here… we tell 

that … ¼ of the cups are yellow and then the answer is 4 cups. Huh… ¼ and then why got 

4 in the 1/4? They cannot link between the… the ¼ in their mind is still ¼ of a whole… and 

then there is this four cups, four whole things… and so they cannot link… I was thinking 

whether we can put it into… something more familiar because… eh… they have learnt 
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models, how to represent questions in model also, so, I was just looking at this… instead of 

just doing this, could we box the whole thing up instead. And to them, they are familiar 

with the part-whole model… a whole box is a whole… so while keeping the items inside 

and we draw the box… and… and… yes… we tell them that this looks familiar, and it 

looks like the model as a whole, right? These lines can be the partitioning of the whole 

model. While doing that… they can still see that the 4 items are still inside the parts. I don’t 

know whether that can help them to make the connection that if this one box [partition] is 

¼ of the whole, inside that box, I have four things. And this is where the 4 came from? 

Mr Jeff’s suggested approach (critical point) was directly linked to students’ image of 

¼ as ‘part of a whole’ (difficult point). Mr Jeff attempted to use the part-whole model, 

which the students were familiar with, as a scaffold to help students see that there could 

be ‘whole items’ inside a ‘part’. This provided a bridge for students to extend their 

notion of fractions by emphasising fraction as a means to express the relationship 

between a part and its whole (key point).  

What distinguished Mr Jeff’s noticing as more productive was not the workability of 

the approach suggested, but rather the justification that reinforces the alignment 

between the three points. Justifying based on what was noticed not only helped the 

teachers maintain their attention on specific key and difficult points, but also lessened 

the likelihood of generating a critical point that does not provide opportunities to 

enhance students’ reasoning. 

CONCLUSION AND IMPLICATIONS 

Productive mathematical noticing brings to the minds of teachers different ways to 

respond during teaching, and this can potentially improve the teaching of mathematics. 

This study highlights how processes of noticing can be incorporated into lesson 

planning. The findings suggest that the construct of productive noticing can be used to 

analyse teachers’ noticing during lesson preparation. Moreover, teachers’ noticing 

seems to be more productive when it goes beyond the specificity of what teachers 

notice about the three points, to include justification as a means to strengthen the 

linkages between the three points. The ability to notice productively during lesson 

preparation is important because it sensitises teachers to think about what to teach, 

students’ possible misconceptions, and ways to deal with these problems. Further 

research is needed to characterise productive noticing more rigorously, and more work 

is needed to show how this construct can be applied to teacher noticing during and after 

instruction. Nevertheless, this study brings out the value and potential of productive 

noticing to improve teachers’ practice. 
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This paper reports on the performance of 167 eighth graders in Singapore making 

generalisations for a quadratic figural pattern presented in a non-successive format. 

Data were collected through administering a written test in which the students had to 

establish the functional rule underpinning the pattern. The findings revealed that the 

students constructed a variety of functional rules, expressed prevalently in symbols 

using a range of generalising strategies, some of which were novel in the literature. 

BACKGROUND  

Most generalising tasks used in pattern generalisation research involve linear rather 

than quadratic patterns. The quadratic patterns typically depict the widely-recognised 

square and triangle numbers (see Steele, 2008). Moreover, the patterns are all too often 

presented in the form of a successive sequence of numerical terms or configurations. 

The generalising strategies that students employ to formulate a rule for predicting any 

term of a linear pattern are well established. However, if the rule were to change from a 

linear to a quadratic relationship, would the strategies that students engaged in the 

former case change to suit the latter? What types of rules would the students then 

establish for the latter? To gain more insights, an empirical study was conducted on a 

group of Year 8 students in Singapore to examine how they construct the rule 

underpinning a quadratic pattern presented in figural form. Specifically, this paper 

addresses these research questions: What are the different forms of rules that the 

Singapore students formulate for a figural quadratic pattern? What is the modality of 

the rules that the Singapore students formulated? What are the generalising strategies 

employed by the Singapore students in formulating the quadratic rule? 

THEORETICAL FRAMEWORK 

Students are often asked to construct a rule to describe the pattern structure that they 

see in a generalising task. Their rules take on mainly two forms: recursive and 

functional. The recursive rule allows the computation of the next term of a sequence 

using the immediate term preceding it whereas the more powerful functional rule 

refers to the rule expressed as a function that computes the term directly using its 

position in the sequence. Consider the linear task comprising a square made of four 

matchsticks in Figure 1, a row of two squares made of seven matchsticks in Figure 2, 

and a row of three squares made of 10 matchsticks in Figure 3. A recursive rule for this 

matchstick task could be expressed as “add three to get the next term” and its 

functional rule in closed form is . 
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The functional rules are often represented in three different modes: purely symbolic 

(S), purely in words (W), and in alphanumeric form (SW). These different modes of 

representation are referred to as the modality of the rules. The functional rule for the 

matchstick task above, , is expressed entirely in symbols. This rule can be 

stated wholly in words as: add one to three times the number of squares. Written 

alphanumerically, it can take the form: . Stacey and 

MacGregor (2001) reported that nearly half of their sample of 2000 Australian students 

in Years 7 to 10 described the functional rule underpinning a pattern in words. 

Mavrikis, Noss, Hoyles and Geraniou (2012) noted a student using the alphanumeric 

form in their study. 

The wealth of research on students’ generalising strategies suggests that students use a 

variety of strategies to derive the rule connecting the term and its position in a pattern. 

Bezuszka and Kenney (2008) identified three numerical strategies: (1) comparison, 

where the terms in a given number sequence are compared with corresponding terms of 

another sequence whose rule is already known, (2) repeated substitution, where each 

subsequent term in a number sequence is expressed in terms of the immediate term 

preceding it, and (3) the method of differences, which is an algorithm for finding an 

explicit formula when the pattern is derived from a polynomial. 

Different categories of figural strategy have also been identified. Rivera and Becker 

(2008) distinguished between (1) constructive generalisation, which occurs when the 

diagram given in a generalising task is viewed as a composite diagram made up of 

non-overlapping components and the rule is directly expressed as a sum of the various 

sub-components, and (2) deconstructive generalisation, which happens when the 

diagram is visualised as being made up of components that overlap, and the rule is 

expressed by separately counting each component of the diagram and then subtracting 

any overlapping parts. Chua and Hoyles (2010) introduced two further strategies into 

Rivera and Becker’s (2008) classification scheme: reconstructive, which involves 

rearranging one or more components of the original diagram to form something more 

familiar, and figure-ground reversal, which entails augmenting the original 

configurations to become part of a larger composite configuration. 

METHODS 

167 Year 8 students (89 girls, 78 boys) of average learning abilities from three 

secondary schools participated in the study. The students had to complete two linear 

and two quadratic generalising tasks in 45 minutes and were asked to produce the 

functional rule in each task. Only one of the quadratic tasks, Tulips, in Figure 1 below 

is discussed here. Prior to participating in this study, the students had learnt the concept 

of variables and the topic of number patterns in the Singapore mathematics curriculum. 

They should also be far more familiar in dealing with linear patterns than with 

quadratic ones, which are less commonly featured in their mathematics textbooks. 



Chua, Hoyles 

PME 2014 2 - 307 

 

Figure 1: Tulips 

The Tulips task was deliberately designed to depict the pattern with three 

non-successive configurations starting with Size 2 and made less structured without 

any part questions that gradually led students to detect and construct the general rule. 

This was to allow the students a greater scope for exploring the pattern structure so that 

we could then see how they recognised and perceived the pattern without any 

scaffolding. 

All the student responses for the Tulips task were analysed comprehensively to identify 

the types of rules produced and the generalizing strategies used. Several types of 

equivalent functional rules were observed and those with similar structure were 

collapsed into the same category after further examination, thereby developing the 

coding scheme for the types of rules. When two or more equivalent expressions of the 

functional rule were seen in a student response, the initial one, albeit simplified to 

another form subsequently, was coded. The rules were also coded for their modalities. 

The coding scheme for generalising strategies relied on a priori ideas drawn from 

different sources, including, mainly the research literature and our observations made 

during the analysis of the student responses. The generalizing strategy of every student 

was matched with the available codes and when it was not found to match any, a new 

code was created. Some student responses were subsequently selected and passed to a 

mathematics teacher for coding. After the inter-rater reliability was established, the 

frequencies of each type of rule and each type of generalising strategy were then 

determined. 

RESULTS 

93 students (56%) produced a correct functional rule for Tulips. Another nine students 

identified the first differences between consecutive terms correctly but only six of 

them articulated the recursive rule successfully.  

Types of functional rules 

Nine categories of different but equivalent expressions of quadratic functional rules 

were constructed, as shown in Table 1. The rules display variation in the mathematical 
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operations used to join different terms together, involving both addition and 

subtraction. For instance, illustrates the sum of two terms whereas 

 exemplifies the difference of two terms. 

Table 1: Rules and their modalities 

The two most common functional rules are  and . Figure 2 below 

illustrates how Student A established  by means of producing the missing 

Size-4 configuration and rearranging it into a 4 by  rectangle, followed by 

recognising the link between the dimensions and the size number. 

 

Figure 2: Functional rule  

 Rule 

Modality 

  Rule 

Modality 

Rule type S W SW  Rule type S W SW 

 40 5 5   1  1 

 22 1 2   1   

, , 
 

8  1   1   

 2 1      1 

 1        
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In Figure 3 below, Student B generated the rule, , by first 

shifting the bottom-most single tile to fill the gap in the top-most row, then imagining 

the resulting configuration as being formed by removing staircase-shaped tiles from 

each corner at the bottom left and bottom right of a “perfect” rectangle with 

dimensions  by n. The two sets of staircase-shaped tiles that are removed can 

be joined to form a rectangle of dimensions n by , hence the rule. 

The rule, , is worth highlighting even 

though it occurred only once in this study. Although it describes the structure 

underpinning the pattern, it is not algebraically useful in Lee’s (1996) language. This is 

because it does not allow the direct computation of the output when given an input. 

 

Figure 3: Functional rule  

Modalities of rules 

Three categories of modalities were identified, as indicated in Table 1. The functional 

rules were articulated predominantly in symbols, whilst the word and alphanumeric 

modes of representation were seldom used. Student A expressed the rule correctly in 

words and in symbols, thus the more sophisticated symbolic form was considered. 

Similarly, Student B also articulated the rule in two different forms: symbolic and 

alphanumeric, but the latter was considered because the former was incorrect (Note: 

 should have been  ). 

Generalising strategies 

Eight different strategies were used, the most common being what we call a combo 

strategy involving both the constructive and the comparison strategies (see (d) below). 

Descriptions of the various strategies, excluding guess-and-check, now follow. 

a. Grouping. In Figure 4(a), the size number is used to generate the number of 

groups of tiles in each configuration: for instance, there were four groups of two 
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tiles in Size 2, and five groups of three tiles in Size 3. Hence, there are  

groups of n tiles in Size n, or  tiles. 

b. Reconstructive. Figure 2 exemplifies this strategy where the original 

configuration is rearranged into a rectangle of dimensions  by n. 

c. Figure-ground reversal. The original configuration is visualized as being 

formed from a  by  rectangle with two step-shaped components 

removed from its bottom-left and bottom-right corners alongside a tile in the 

top-most row. Given that the two step-shaped components can be repositioned to 

form a n by  rectangle, the rule is thus  (see 

Figure 4(b)). 

d. Constructive-comparison combo. In Figure 4(c), each configuration is first 

viewed as comprising two non-overlapping parts: the top-most part made up of 

two rows, and the “step pyramid” (i.e., the constructive strategy first). The 

number of tiles in each “step pyramid” is then worked out and compared with the 

square numbers (i.e., the comparison strategy next). 

e. Constructive-reconstructive combo. As Figure 4(d) shows, the discernment of 

the pattern begins with separating the original configuration into the “stalk” and 

“petals” (i.e., constructive first), then rearranging the “petals” into a rectangle 

before combining it with the “stalk” to form a larger rectangle (i.e., 

reconstructive next). 

 

  

(a) Grouping (b) Figure ground reversal 
 

 

 

 
(c) Constructive -comparison (d) Constructive-reconstructive 

Figure 4: Generalising strategies 
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f. Reconstructive-constructive combo. This strategy is similar to (e) except the 

order of applying the strategies is switched around. 

g. Reconstructive-figure-ground reversal combo. Figure 3 illustrates an example 

involving the repositioning of a tile (i.e., reconstructive first) followed by 

envisioning the resulting configuration being cut out from a larger rectangle (i.e., 

figure-ground reversal next). 

DISCUSSION AND CONCLUSION 

It is a fact that making generalisations for a quadratic pattern challenges secondary 

school students (see Jurdak & El Mouhayar, 2014; Steele, 2008). In Singapore, 

quadratic patterns are rarely used in mathematics textbooks. Moreover, with the Tulips 

pattern presented in a non-successive format, the task of finding a general rule might be 

even more testing. It is therefore surprising, yet encouraging, to see the students 

achieving moderate success in Tulips. A key to their success in detecting the inherent 

pattern structure lies in their recognising the need to use the size number as a generator 

of the term-to-position relationship. 

The prevalence of functional rules expressed in symbols in Tulips stands in contrast to 

previous results by Stacey and MacGregor (2001). The fact that many Singapore 

students could develop the rule as an algebraic expression indicates that the concept of 

variables is generally well understood, a result of their prior experience with algebra 

where the teaching of number patterns follow the introduction of variables. 

A marked observation to emerge from the analysis of the generalising strategies used 

in Tulips is the lack of repeated substitution, a common strategy for linear tasks. Using 

this strategy to generate the quadratic rule is not as straightforward as one might expect 

and students favouring it might have faltered and did not know how to employ it when 

the first differences of the pattern were not a constant, like in Tulips. Another 

remarkable finding is the use of certain strategies that are hardly described in the 

literature: grouping and the combo strategies such as the constructive–reconstructive 

and constructive–figural-ground reversal strategies.  

To conclude, most studies on pattern generalisation have been undertaken in the west, 

offering a vast knowledge of students’ generalising abilities and strategies. We hope 

this paper provides new insight into how Asian students visualise, think and reason 

about patterns, and opens the door for comparisons and future research. 
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The aim of the research is to investigate the transformation of the perception process 

through mathematics education, by an example of scanning the Cartesian coordinate 

system in order to locate a target point. We compared participants with different 

competence in mathematics. Historically, motion along axes appeared as a specific 

“theoretical” action that constituted the Cartesian coordinate system. We detected this 

specificity as a dominance of vertical and horizontal saccades of eye movements in 

perception processes of all groups of participants. Experts-novices differences dealt 

with an ability of experts to use additional essential information and to discard 

unnecessary data. Furthermore, a lot of evidences of shortening of the perception 

actions from novices to experts are presented.  

THEORETICAL FRAMEWORK 

The theoretical background of this work is based on the culture-historical tradition and 

an activity approach in its application to the development of perception, which are 

based on the dialectical-materialistic philosophy. From this point of view the process 

of perception should be constituted in accordance with scientific theoretical 

understanding of a represented object. Davydov supposes that the correct perception of 

visual models should appear by developing “special object-related actions by which 

they [students] can disclose in the instructional material and reproduce in models the 

essential connection in an entity” (Davydov, 1972/1990, p. 174). These special actions 

have been elaborated through cultural-historical development of the represented object 

and they, according to Davydov, need to be approached by a child through specially 

constructed educational activity.   

Radford, following Marx, also assumes that an eye as a receptive organ should be 

converted to a “theoretician” and then it would be able to perceive scientifically 

essential features of figures. Radford (2010) supposes that this transformation occurs 

due to participation of a student in spontaneous but cultural forms of activity in 

classroom, which includes gestures, voice intonations and other embodied aspects of 

learning: “the senses … become shaped in certain historically formed ways as we 

engage in sociocultural practices”  (Radford, 2010, p.2). So, by one or another way, 

education transforms the perception process of a student into historically elaborated 

system of actions, which allows detecting essential features of a visual model. 

Let us now turn to some historical information in order to trace the main steps of the 

formation of the Cartesian coordinate system and to reveal the transformations of 
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perception that are needed to approach this mathematical visual model. The history of 

the Cartesian coordinate system had started long before R. Descartes in ancient time 

from the practical usage of a rectangular grid on the plane in astronomy and in 

geography independently (Jushkevich, 1970, p. 98). The Cartesian system of 

coordinates appeared in mathematics due to attempts to find analytical descriptions of 

geometrical curves by Fermat and Descartes (Jushkevich, 1970). An idea was that the 

distance from one given line to a point of a curve could be counted by measuring the 

distance along another selected direction. Both Fermat and Descartes drew only one 

axis and the direction of another one, which usually wasn’t perpendicular to the first 

one. Gradually, a rectangular system of coordinates became more popular.   

Another important difference from the modern Cartesian coordinate system was that 

Descartes used only positive numbers; directions of axes could differ from one 

illustration to another. Fluent usage of both axes and negative coordinates appeared in 

18 century (Jushkevich, 1970; Burton, 2011). 

So, we suppose that the specific action, which is needed to perceive the Cartesian 

coordinate system, is a motion along one of the axis in order to find а distance from 

zero-point to a projection of a target point. Another important step towards correct 

perception of coordinate system is an ability to find a correspondence between a 

positive or negative value of a coordinate and an axis orientation.   

This study claims that a child needs to acquire the specific ways of perception that were 

elaborated in the history of mathematics, during his educational practice. There are 

three stages of perception development distinguished by investigations framed in 

activity theory (e.g. Zaporozhets, 1986/2002). The first stage includes external, 

material actions with objects; for example a child could run along the axes by an index 

finger. The second stage reflects deployed sensory processes in which perceptual 

actions “are performed with the aid of motions of receptor apparatuses and anticipate 

subsequent practical actions” (Zaporozhets, p. 41). At this stage we should find a 

movement of eyes by the same route as fingers run at first stage. The third stage is a 

stage of most mature perception, the stage of shortening and automation. 

“Orienting-research action transforms into ideal action, into the movement of attention 

across the perception field” (p. 42), writes Zaporozhets.   

Our research question dealt with the transformation of the perception process by 

mathematics education: whether indeed matured perception of Cartesian plane 

includes specific “theoretical” actions, revealed in this research in our historical 

analysis, and whether these kinds of actions become dominant in perception of highly 

mathematically educated respondents. We also investigated a shortening of perception 

actions proposed by psychologists of activity approach, as a way of transformation of 

external perceptual actions into mental ideal actions.   
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METHODOLOGY OF RESEARCH  

Eye-tracking methodology appears more and more often in educational researches 

especially in area of multimedia learning, including multi-representational materials 

(van Gog & Scheiter, 2010). Only a few papers are devoted to mathematics education. 

Most of these papers are framed by a semiotics paradigm and analyze perception of 

representations as signs of mathematical objects. They calculate numbers and describe 

kinds of saccades between representations and compare number and duration of 

fixations in different area by participants with different level of mathematics 

competence. As Andra et al. write (2013), all kinds of analyses could be distinguished 

to macrolevel (analysis of shifting between representations, e.g. Andra et al., 2009; 

Andra et al., 2013), mesolevel (analysis of attendance of each representation by a gaze) 

and microlevel (analysis of activity inside of one representation, e.g. Epelboim and 

Suppes, 2001; Peter, 2010).  

Our research is focused on microlevel analysis since a development of perception, 

which doesn’t supposed by classical semiotics perspective, could be understood only 

through deep analysis of interaction of a subject with a visual representation. The most 

well founded fact is that experts are able to detect significant parts of representations 

(thus more fixations by experts were found in these areas in comparison with novices’ 

fixations). It was shown for such knowledge domains as sports, medicine, transport 

(Gegenfurtner, 2012), zoology (Jarodzka, Scheiter, Gerjets & van Gog, 2010), 

meteorology (Canham & Hegarty, 2010) and others. In mathematics there are 

evidences that experts are able to focus on a blank area, which is essential for 

additional constructions in geometry (Epelboim & Suppes, 2001).  

From cultural-historical point of view, all evidences of magnetism by essential parts of 

a picture or a text for experts could be interpreted as a reorganization of the perception 

process in accordance with their deeper theoretical knowledge. In our research we 

investigated if experts are able to choose an appropriate quadrant of the Cartesian plane 

faster than novices. We supposed that theoretical knowledge about negative or positive 

coordinate of a target point would influence on the perception process of experts to 

create an ability to use this information in a search for a point.  

Applying ideas of the activity approach we were focused on a procedural aspect of 

perception trying to understand perceptual actions. We supposed that directions of 

saccades reflect cultural way of approaching the Cartesian coordinates system: 

saccades should be performed along axes. So vertical and horizontal saccades should 

prevail on any other directions if perception is reorganized in a theoretical way. 

Participants 

In our research we compared eye movements of participants of 3 levels of mathematics 

competence. There were 11 participants with higher mathematics education, 23 

students of a first year of non-mathematical departments at University (they have 

passed school mathematics exam), 10 students of 9-11 grade of high school (14-16 

years old). We will refer to these groups as experts, intermediates and novices.  
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Apparatus 

For data collection we used SMI RED eye tracker with a sampling frequency of 120 

Hz, participants seated at approximately 40-50 cm distance from a monitor. IViewХ 

was used for tracking eyes’ activity. Stimuli were presented by Experiment Center 3.0. 

Data analysis was conducted by Begaze 3.1 and SPSS 20.0. Before the main 

experimental procedure, eye tracker was calibrated for an each participant by 9-points 

procedure with validation. Only those participants who showed better than 0,5 degree 

accuracy at the calibration stage were accepted for main experiment.  

Materials and procedure 

Each participant had to solve 9 tasks on detection a point on the Cartesian plane with 

determined coordinates. There was an instruction at the beginning of experiment: 

“Now you will receive tasks on the Cartesian coordinate system. Try to solve these 

tasks as accurate and as fast as you can.” Each task consisted of three slides: 1) a task 

with the coordinates of a point, 2) the Cartesian plane with two axis and four labeled 

points, 3) labels of the points to choose a correct answer. All tasks had an equivalent 

wording, for instance: “Choose a point with coordinates (3, -4)”. There were one or 

two points (of four) in target quadrant of the Cartesian plane. Participants switched 

from one slide to the next by pressing Space bar. There were no time limits either for 

reading of a task or for searching for a point.  

Hypotheses 

1. Vertically and horizontally directed saccades are prevailed on saccades with 

other directions. This ratio is more pronounced for experts than for novices.  

2. A number of fixations in irrelevant quadrants of Cartesian plane decrease with 

growing of participant competence.  

3. Perceptual actions lessen with growing of competence: the better participants are 

educated, the shorter are their gaze paths, and the more the number of their 

fixations is reduced, and the durations of their tasks solving become shorter. 

DATA ANALYSIS AND RESULTS  

First part of analysis dealt with directions of saccades.  

The problem is that the standard algorithm of saccades 

detection implemented in Begaze 3.0 defines a 

saccade as a vector from the center of an initial 

fixation to the center of an ending fixation. Thus our 

observations of raw eye-movements showed that 

directions of many saccades were calculated 

incorrectly due to significant drifts during fixations 

(Figure 1 gives an example of raw data). We 

elaborated our own software that detected saccades by 

simple Velocity Threshold algorithm (Salvucci & 

Goldberg, 2000). Eye movements were considered 

Figure 1: An example of raw 

eye movements by experts 
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saccades when velocity exceeded 120°/sec. Therefore, in respect to fixations, a 

saccade appeared as a vector from the point where the previous fixation is completed to 

the first point of the next fixation (instead of fixation centers). Saccade direction was 

computed as an angle from 0° to 90°. All saccade directions were divided into 6 sectors 

by 15 degrees: from a sector 0°-15° to a sector 75°-90°. Saccades of the first and the 

last sector were considered as horizontal and vertical respectively. The mean numbers 

of saccades of different directions were compared by repeated measures ANOVA with 

mathematics competence as a between group factor and saccade direction sector as 

within subject factor. 

Saccades with vertical or 

horizontal orientation appeared 

approximately 4 times more often 

than those with directions from 

other sectors (F=31.554, 

p<0.001), see Figure 2. This ratio 

is stable across groups. In spite of 

this fact we found a significant 

interaction between factors 

(F=4.225, p=0.021): a dominance 

of vertical and horizontal saccades 

is most noticeable for novices, 

and intermediates also use 

vertical and horizontal saccades 

4 times more often than all other saccades. But experts use only vertical, but not 

horizontal saccades as often as intermediates. Also it was shown that a total number of 

saccades decreases with mathematics competence (F=5.446, p=0.008); the result 

confirmed our third hypothesis about the shortening of the perception process. 

Next part of analysis was dedicated to participants’ ability to be focused on essential 

parts of a diagram. We defined six AOI (Aries of Interest): four quadrants of the plane 

and two axes. A target point belonged to one of the quadrants and this target quadrant 

could be figured out only by taking into account the sign (positive or negative) of the 

both coordinates. Three other (non-target) quadrants are irrelevant to the task. Number 

of fixations in irrelevant AOIs decreases with mathematics competence (Kruskal 

Wallis Test, χ
2
=11.065, p= 0.004). There were large individual differences but at the 

average expert did only 3.5 fixations (6% of all fixations) in irrelevant AOIs for the 

whole session of 9 tasks, intermediates and novices did 10.2 (14.8%) and 14.1 (15.3%) 

irrelevant fixations correspondently. 

To investigate shortening of perceptual actions we compared 1) number of fixations, 2) 

length of the gaze paths, 3) total time to solve each task in different groups using 

repeated measures ANOVA with mathematics competence as between group factor 

and task as within subject factor. Means and statistics for all parameters for each group 

are presented in Table 1. All parameters significantly indicated the reduction of 

Figure 2: Directions of saccades in groups with 

difference competence 
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explicit perceptual actions from novices to experts. Also specific tasks significantly 

influenced the process of problem solving (p<0.001). Significant interactions between 

tasks and competence were found for all parameters (p<0.03). Below we’ll consider 

only the number of fixations. 

 Level of competence Results of ANOVA 

Parameter novices intermediates experts F p (sig.) 

Time of solution (sec) 4.638 3.285 2.681 4.916 0.013 

Number of fixation 14.02 9.8 7.54 5.794 0.006 

Gaze path  (px) 1810.2 1250.1 814.5 5.744 0.007 

Table 1: Parameters of the shortening of perceptual actions (between group analysis) 

Figure 3 represents mean 

number of fixations for 

each task in different 

groups. First task 

provoked the most 

explicit search by novices 

and intermediates, which 

was reduced in next tree 

tasks. Experts solved first 

task with the number of 

fixations comparable to 

all other tasks. In contrast 

to the previous tasks, 

tasks 5, 6, 7, 8 had two 

points in the target 

quadrant (one correct 

and one wrong). Figure 3 

shows that the presence of an additional point influenced the search process in novices, 

while perception of intermediates and experts is kept as short as it was in tasks with the 

only one point in the target quadrant. Altogether, the results provide evidence for 

shortening of perception from one group to another and from the first task to the 

following tasks. 

DISCUSSION AND SOME CONCLUSIONS 

The main result is that we have found an evidence of “theoretical” perceptual actions: 

vertical and horizontal saccades appeared much more often than saccades of other 

directions. We observed these specific actions in perception of participants with all 

levels of mathematics competence. It means that their perception had been transformed 

in a cultural way already. And that special system of tasks (as Davydov (1972/1990) 

Figure 3: Reduction of fixations from group to group 
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claims) is not needed for it; but it could be acquired through classroom practices as 

Radford (2010) supposed.  

Another possible interpretation is that this way of perception is a natural one for these 

tasks. In order to trace “non-theoretical” perception, where the main principle of 

motion along the axes is not approached yet, we intend to collect data from less 

experienced participants in our future work, and check if their perception is not 

vertically and horizontally organized. Only then will we be able to claim that 

perception was transformed to be “theoretical” as Radford anticipates (2010).  

Davydov supposed that the transformation of the perception process is a result of 

theoretical understanding. Our results show that perception, which is structured by 

special actions (vertical and horizontal motions), could still be enriched by additional 

knowledge about negative or positive values of coordinates. Our Hypothesis 2 was 

confirmed: experts were almost never focused in irrelevant parts in comparison with 

other groups  (6% for experts vs. about 15 % for other groups). Empirically the result 

repeats the evidences that experts are able to distinguish essential parts of visual 

representations (e.g. Gegenfurtner, 2012; Jarodzka et. al, 2010; Canham & Hegarty, 

2010). But what is more interesting is that this result is similar to observations by 

Andra et. al (2009), that novices more often revisit different alternatives of answer than 

experts. From the activity theoretical point of view it means that experts conduct only 

executive actions, which lead to almost algorithmic solution, while novices need to 

perform orient-research activity to construct an image of a representation of the task 

and an algorithm how to perceive it (e.g. Zaporozhets, 1986/2002). 

We also observed that the experts were able to solve the tasks using only necessary 

information, while missing additional data: there was a reduction of vertical saccades 

from intermediates to experts when horizontal saccades were performed with the same 

frequency (Figure 2). Indeed, the second coordinate wasn’t necessary to choose a 

correct answer.  

As it was expected (Hypothesis 2) we have shown that orient-research parts of actions 

are reduced in perception of experts (they had the less amounts of fixations, the shorter 

gaze paths and the faster solutions (Table 1). It is interesting that this difference was 

especially strong for the first task (see Figure 3). We can explain it as follows: in the 

first task the orient-research activity of novices and intermediates was unfolded and it 

allowed them to construct an appropriate algorithm of perceptual actions. This 

algorithm was applied in further tasks. But new elements in tasks 5-8 (see Figure 3) 

broke the perception process of novices and returned it to the stage two of 

orient-research actions (see above from Zaporozhets, 1986/2002), while perception of 

experts and intermediates kept its maturity.   

In summary, an inclusion of special “theoretical” actions in perceptual process appears 

as only a first stage in the transformation of perception by education. The difference 

between experts and novices deals with the ability of experts to use additional essential 

information and to discard unnecessary data. Apart from this other evidences related to 
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the shortening of perceptual actions from novices to experts was found. So, being 

culturally organised, perception continues its development in order to find the shortest 

and simplest way and at the same time to include theoretical information. Future 

investigation of less experienced participants is also necessary.  
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SUPPORTING THE INTRODUCTION TO FORMAL PROOF 

Michelle Cirillo 

University of Delaware 

 

In this study, a tool that worked to support teachers with the introduction to formal 

proof in geometry is discussed. The tool helped teachers navigate the “shallow end” of 

proof. More specifically, the tool was shown to support teachers with introducing and 

scaffolding proof. Findings from this study suggest that the tool may be useful for 

supporting formal reasoning in geometry as well as other areas.  

INTRODUCTION 

Considering the teachers’ role in navigating the proof terrain, Herbst (2002) conducted 

an analysis of what is involved when teachers attempt to engage students in the 

production of a proof. He argued that alternative ways of engaging students in proving 

must be found if proving is to play, in the classroom, the same instrumental role for 

knowing mathematics that it plays in the discipline. Thinking about possible 

instructional alternatives for the reform-oriented classroom as an opportunity, Herbst 

(2002) stated: “The mandate to involve students in proving is likely to be met with the 

development of tools and norms that teachers can use to enable students to prove and to 

demonstrate that they are indeed proving” (p. 200). A primary goal of this paper is to 

describe and discuss the reported benefits of a tool that was developed in a research 

study whose aim was to better understand the challenges teachers faced when teaching 

proof in geometry. Following Smith and Southerland (2007), here “tool” references a 

teaching tool or guide that was used to help teachers envision a new way of teaching, in 

this case, mathematical proof. The research question addressed in this paper is: How 

can the mathematical proof tool (MPT) serve as a guide to support teachers’ work of 

introducing proof in secondary geometry? 

THEORETICAL PERSPECTIVE 

Past research has shown that students have difficulty with proof at various levels in 

many parts of the world (Knipping, 2004). The finding that most U.S. students are not 

developing through the van Hiele levels at all (Fuys, Geddes, & Tischler, 1988), is 

problematic because it implies that students enter high school unprepared for the 

formal deduction required in many geometry courses (Clements, 2003). This is 

important because students must understand geometric ideas in the middle grades in 

order to be successful in subsequent mathematics experiences (Sinclair, Pimm, & 

Skelin, 2012), including secondary level geometry. Thus, there is an obvious need for 

this curricular gap to be bridged. However, some secondary teachers have claimed that 

they do not have strategies for teaching proof and even expressed the belief that you 

cannot teach someone how to develop a proof (Cirillo, 2011). This belief may be the 
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reason that geometry is often thought of as the most difficult portion of school 

mathematics (Knuth, 2002).  

Much of Herbst and colleagues’ work has focused on classroom interactions and 

proving in geometry at the secondary level (Herbst & Brach, 2006; Herbst et al., 2009). 

For example, Herbst et al. (2009) described instances of student engagement with 

proof in various geometry courses in a high school. Through this work they unearthed a 

system of norms that appear to regulate the activity of “doing proofs” in geometry 

class. The authors contended that a collection of actions related to filling in the 

two-column form are regulated by norms that express how labor is divided between 

teacher and students and how time is organized as far as sequence and duration of 

events. They argued that despite the superficially different episodes in which doing 

proofs were observed, there were deep similarities among those events. The first 5 of 

25 norms reported by Herbst et al. (2009) are listed below: 

…producing a proof, consists of (1) writing a sequence of steps (each of which consists of 

a “statement” and “reason”), where (2) the first statement is the assertion of one or more 

“given” properties of a geometric figure, (3) each other statement asserts a fact about a 

specific figure using a diagrammatic register and (4) the last step is the assertion of a 

property identified earlier as the “prove”; during which (5) each of those asserted 

statements are tracked on a diagram by way of standard marks …(pp. 254-255)  

This model of the instructional situation of doing proofs in terms of a system of norms 

is helpful to those who wish to investigate what it might mean to create a different 

place for proof in geometry classrooms (Herbst et al., 2009). 

The documentation of classroom norms is relevant here because it provides a frame for 

examining the alternative practices supported by the tool used by the teachers in this 

study. This study builds on the work of Herbst and colleagues by examining 

possibilities outside of these normative practices. It also takes seriously the call to 

bridge the curriculum gap by supporting students’ development through the use of a 

teaching tool that has the potential to lead to new norms in geometry classrooms.  

METHODS 

To learn more about the challenges that teachers face when cultivating formal proof in 

their classrooms, a three-year study that made use of qualitative methods of inquiry, 

was designed. For the larger study, five teachers who had between one and ten years of 

experience with teaching proof in geometry were recruited. Baseline data, collected in 

Fall, 2010, included two non-consecutive weeks of classroom observations in one 

target classroom of each teacher. Beginning Spring, 2011, 20 professional 

development (PD) sessions were designed and implemented to attend to and reconsider 

the ways in which the study teachers taught proof. These sessions took place over the 

course of a year. In Fall, 2011 and 2012, additional data were collected to observe and 

understand changes made to the introduction and teaching of proof in geometry. 

Interviews designed to help the researcher better understand the data and the teachers’ 

evolving beliefs about teaching proof were also conducted.  
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Data and Analysis 

This paper draws on a subset of the teachers and the data described above. For this 

study, interview transcripts from two teachers’ data sets were transcribed and 

analyzed. This includes a total of 4-5 interviews with each teacher, comprising a total 

of 3-3.5 hours per teacher spread across the three years of the project. Interviews were 

coded for instances where the teachers discussed how engagement with the PD and the 

tool influenced their practice. Data from two classroom episodes are also presented. 

The teaching episodes were purposefully selected because it was from these two 

classroom lessons that the idea to develop the tool grew. Last, a written curriculum 

developed by the two teachers over the second and third years of the project was 

analyzed. Together, this collection of data allows me to describe how the tool was 

developed and used over time, given the limited space provided here.  

Setting 

Participants for this study include Mike and Seth (pseudonyms) who, at the onset of the 

study, had eight and five years of mathematics teaching experience, respectively. Mike 

had previously taught a high school geometry course every year since he began 

teaching, while Seth had only taught the geometry course once. Mike and Seth taught 

in a private, all-boys school with a racially diverse population and small class sizes 

(14-17 students). During Year 1, they taught from a conventional geometry textbook, 

teaching Euclidean geometry proof primarily over the course of the first semester.  

FINDINGS AND DISCUSSION 

The findings in this study are explored through three data sources. Two excerpts from 

Mike’s Year 1 baseline classroom data are presented. I then describe the Mathematical 

Proof Tool and explore its use in the classrooms through examples from the curriculum 

developed by Mike and Seth. Interview data is also included.  

The “Shallow End” of the Proof Pool 

In the first year of the study, project teachers were asked to invite the research team in 

when they first introduced formal proof. Before beginning the first proof, Mike said the 

following to the students: 

Here we go. So proofs are tough. You know one thing about proofs is, there's no easy way. 

There's no way to do it. There's no shallow end. You can’t like wade into the proof pool. 

You gotta kind of jump right in the deep end with these tough ones. (11/2/10) 

To this introduction, a student responded, “I would drown.” The next day, Mike began 

the lesson by explaining how difficult proofs are: 

These proofs are really hard and I think I said last time a couple things. One, there's no real 

easy way to start proofs. It's not like algebra where you could start with easy problems and 

work to more difficult problems and then do really challenging problems. The proofs start, 

and they are immediately difficult and they are immediately unlike anything that you have 

ever seen before and that's okay. Alright, so you'll learn how to do 'em by sort of trying 

them. (11/2/10) 
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These two examples suggest that Mike seemed to hold similar beliefs to those of the 

teacher in Cirillo’s (2011) study of a beginning teacher learning to teach proof in 

geometry. Like, Matt, despite his eight years of experience teaching geometry, Mike’s 

introduction to proof provides evidence that he was at a loss when it came to 

scaffolding the introduction of proof.  

The Development of the Mathematical Proof Tool 

There were four important findings from the first year of data collection across all five 

project teachers. First, teachers did not understand all that was involved in teaching 

students how to develop and write proofs. Second, as was demonstrated, teachers did 

not know how to scaffold the introduction to proof. Third, teachers thought that the 

only way to teach proof was through show-and-tell. Last, a set of ideas that were 

implicitly taught during these show-and-tell presentations were found in the analysis of 

classroom observations. In particular, students must learn the following 

simultaneously: (a) postulates, definitions, and theorems; (b) how to use definitions to 

draw conclusions (c) how to work with diagrams (i.e., what can and cannot be 

assumed);  (d) a variety of sub-arguments and negotiated classroom norms for writing 

them up; and (e) how sub-arguments come together to construct the larger argument. It 

was through these observations in conjunction with the consideration of Mike’s claim 

that there is no shallow end to proof that the Mathematical Proof Tool (MPT) was 

developed. Based on the shallow end proof pool metaphor suggested by Mike, I 

hypothesized that perhaps there was a set of competencies that students needed in order 

to develop proofs that could be ramped up over time. The PD sessions and subsequent 

observations gave me a way to test that hypothesis.  

In Spring, 2011, the group of teachers and the research team began meeting for PD 

sessions. In these sessions, the teachers participated in the following activities: 

discussing research and practitioner articles on proof and geometry, reflecting on 

practice through writing and watching teaching videos, participating in PD on 

classroom discourse, and considering alternative teaching approaches. After learning 

about van Hiele levels and coming to believe that their students were not ready to 

engage in proof, the MPT became a major focus of alternative teaching approaches. 

The tool began as sample alternative tasks and evolved into the tool that is shown in 

Table 1. The MPT works as an instructional guide to support teachers by offering 

pedagogical content knowledge that breaks down the practice of proving. It unpacks 

the sub-goals of proof and identifies competencies that occur frequently and are 

necessary to make a lesson focused on proof go well. By the third year of the study, 

project teachers were using the MPT as a planning guide to make sure that they were 

addressing each of the sub-goals, and providing learning activities that would foster the 

competencies in their students. In the paragraphs that follow, I briefly describe the 

sub-goals and include examples of each. Examples come from the written curriculum 

that Mike and Seth developed around the sub-goals.   
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Sub-Goals Description Competencies 

Understanding 

Mathematical 

Objects and 

Mathematical 

Notation 

 

This sub-goal connects a  

definition and notation  

to a particular instance  

of that object. 

1) Communicating a mathematical object by making use of spoken  

or written text 

2) Communicating or reading a mathematical object by making use of 

diagrams. Sometimes notation is used to mark these diagrams 

3) Communicating or reading a mathematical object by making use of 

symbolic notation 

4) Determining examples and non-examples 

Understanding 

the Nature of 

Definitions 

 

This sub-goal highlights the  

nature of definitions,  

their logical structure,  

how they are written,  

and how they are used. 

1) Writing a “good” definition (includes necessary and sufficient 

properties) 

2) Knowing definitions are not unique 

3) Understanding how to write definitions as biconditionals 

4) Knowing you cannot prove a definition 

Drawing 

Conclusions 

and 

Developing 

Conjectures 

 

This sub-goal presents the 

idea of an open-ended task  

that leads to conclusions  

that can be drawn  

from given statements  

and/or a diagram. 

1) Understanding what can and cannot be assumed from a diagram and 

recognizing that sometimes diagrams can be misleading 

2) Knowing when and how definitions can be used to draw a  

conclusion from a statement about a mathematical object  

3) Using combinations of postulates, definitions, and theorems  

to draw valid conclusions from some given information 

4) Developing conjectures that could be used to prove or disprove  

a mathematical statement where part of the process is making, testing, 

and refining conjectures as one works 

Sub-arguments 

 

This sub-goal presents the 

idea that there are common 

short sequences of 

statements and reasons that 

are used frequently in proofs 

and that these pieces may 

appear relatively unchanged 

from one proof to the next. 

1) Recognizing a sub-argument as a branch of proof and how it fits  

into the proof 

2) Understanding what valid conclusions can be drawn from a given 

statement and how those make a sub-argument (e.g., knowing some 

commonly occurring sub-arguments) 

3) Understanding how to write a sub-argument using acceptable  

notation and language (often negotiated with the teacher) 

Understanding 

Theorems 

 

This sub-goal highlights  

the nature of theorems,  

their structure, and how  

they are used. 

1) If applicable, marking a diagram that satisfies a hypothesis  

2) Interpreting a theorem statement to determine the hypotheses  

and conclusion 

3) Rewriting a theorem written in words into symbols and vice versa 

4) Understanding that a theorem is not a theorem until it has  

been proved (using definitions, postulates, or previously  

proved theorems, lemmas, and propositions) and that one  

cannot use the conclusions of the theorem itself to prove the 

conclusions of that theorem (i.e., avoiding circular reasoning) 

5) Understanding that theorems are mathematical statements that are 

only sometimes biconditionals 

6) Determining the theorem proved when presented with a proof 

7) Understanding the connection between logic and a theorem,  

for example, how to write the contrapositive of a conditional statement 

and the connection between laws of logic and the hypothesis and 

conclusion of a mathematical statement 

Table 1: Mathematical Proof Tool (MPT) 

The first sub-goal, Understanding Mathematical Objects and Mathematical Notation, 

supports students in working with commonly used terms in geometry, for example, 

angle bisectors. Students need to know particular definitions since these (along with 

theorems and postulates) are what make up the substance of a proof. Understanding 

Mathematical Objects connects a definition and notation to a particular instance of that 

object. Mike and Seth made use of this sub-goal early and often in their first unit on 
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definitions and constructions. For example, students were asked if it is possible to draw 

a picture in which DF  bisects PO  but PO  does not bisect DF . Students were expected 

to explain their answers. Students also worked with compasses, constructing medians 

and perpendicular bisectors, for example. 

The second sub-goal, Understanding the Nature of Definitions, highlights the nature of 

definitions, their logical structure, how they are written, and how they are used. An 

example from the curriculum was: “Write the two conditional statements that comprise 

the biconditional: Two angles are complementary if and only if their measures sum to 

90 [degrees].” Similarly, another problem asked the students to write out the complete 

statement in words: “Isosceles triangle ↔ 2  sides.” 

The Drawing Conclusions and Developing Conjectures sub-goal presents the idea of 

an open-ended task that leads to conclusions that can be drawn from given statements 

and/or a given diagram. This sub-goal is useful, for instance, in helping students 

understand what you can and cannot assume from a diagram. For example, you can 

assume vertical angles, but you cannot assume perpendicular lines. A benefit of 

explicitly attending to this sub-goal is that it helps teachers correct common errors 

students tend to make regarding the conclusions they draw from the given information 

before they begin developing formal proofs. An example of this sub-goal is provided in 

Figure 1. 

The Sub-arguments sub-goal presents the idea that there are common short sequences 

of statements and reasons that are frequently used in proofs and that these pieces may 

appear relatively unchanged from one proof to the next. An example of a common 

sub-argument is a proof of the proposition: If lines are perpendicular, then congruent 

angles are formed. In the teachers’ curriculum, after reviewing some common 

sub-arguments, students were asked to complete sub-arguments such as the one in 

Figure 2, justifying each claim with a reason. 

        

         

       

    
Figure 1: Sub-arguments Example Figure 2: Drawing Conclusions Example 

Last, the Understanding Theorems sub-goal highlights the nature of theorems, their 

structure, and how they are used. For example, rather than always providing students 

with a diagram, a given statement, and a conclusion to prove, students are asked to set 

up the proofs themselves. A sample problem from Mike and Seth’s curriculum was as 

follows: “Set up the following statement to be proved: If a figure is a parallelogram, 

then its opposite sides are congruent.” 
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Teachers’ Reactions to the MPT Implementation 

After the spring and summer PD that followed the baseline data collection in Year 1, 

Mike explained how one of the readings (see Cirillo, 2009) influenced his thinking 

about how he taught proof in geometry: 

One of the readings…was Ten Things I Wish I Knew, and I was like van Hiele levels, give 

me a break. I don't wish I knew that. But, I actually wish I knew that [laughing]. So one of 

my ‘aha’ moments is that we have to adjust the curriculum, adjust our approach so that 

we're communicating with our students. (Mike, 8/23/11) 

In an interview during Year 2, Mike discussed the types of tasks he engaged his 

students with through the new curriculum that he started developing that semester 

(Seth later partnered with Mike in teaching with the new curriculum). Mike described 

the Understanding Mathematical Objects example provided above and said: 

I never would’ve asked this before. But just getting at the idea, you gotta look at what’s 

bisecting what. There’s a subject and an object there. Here was bisects but is not 

perpendicular. Perpendicular but does not bisect. Perpendicular and bisects. So does such a 

thing even exist? Oh perpendicular bisector. So now you come back here and construct a 

perpendicular bisector. (Mike, 10/6/11) 

During an interview at the conclusion of Year 2, the first year of using the MPT, Seth 

explained the impact that the tool had on him and his students: 

The really big change was all that scaffolding that we built up to the proofs…which 

provided some of these comments [from students] like proofs were easy, you know, that 

was fun….I think back to my first year teaching proof. Straight agony….I probably, like 

when I took geometry, I sort of understood it myself…but I certainly didn't have a great 

grasp of how to teach it. I mean, as we said…I just threw it up one day, like here we go, 

we're gonna do a bunch of these and you have two options – you can either understand 

what's going on or you're gonna recognize that there's only about ten of them, like in 

different forms and you can probably, if you're good enough, you can memorize basically 

what's going on and survive. But…there's no takeaway from that. So I think the way we 

built it this year was remarkable in terms of their retention. (Seth, 6/5/12) 

Like Seth, Mike also reported that he found that the tool supported him in teaching 

proof and supported his students in learning proof.  

DISCUSSION AND SUMMARY 

The tool described in this paper was developed in response to some of the findings 

related to the challenges of teaching proof in high school geometry. The tool was 

intended to scaffold the introduction to proof for the students. In contrast to the 

traditional teaching methods reviewed in the literature, the tool was intended to assist 

the project teachers with introducing proof to their students in a manner that did not 

feel like such an “abrupt transition” (Moore, 1994) into the deep end of the proof pool. 

The five sub-goals of the tool were intended to provide teachers with a support for 

teaching proof. Although this study only presents findings from two teachers using the 

MPT, these findings are promising because the teachers did more than just use the tool 
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in a casual way. Rather, they saw enough potential in the tool use to develop a new 

curriculum around them, and they reported strong effects from their use. Additional 

research that explores the use of the Mathematical Proof Tool with additional teachers 

in varying contexts are warranted to determine if this tool can be used by teachers to 

improve the teaching and learning of proof, even potentially in other sub-areas of 

mathematics.  
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ORDINALITY, NEUROSCIENCE AND THE EARLY LEARNING 

OF NUMBER 

Alf Coles 

University of Bristol 

 

Throughout the twentieth century there was debate as to the primacy of ordinality or 

cardinality in the development of the concept of number. Psychological experiments 

have largely given way to neuro-science in deciding this issue. There are results 

suggesting students’ awareness of symbol-symbol relations is the best predictor of 

future mathematical attainment, which could be interpreted as meaning ordinality is 

the key awareness. This report draws on evidence from a recent project in primary 

schools in the UK that took an ordinal approach to learning number. One suggestion 

arising from this work is the potential educational power of a pedagogy based on 

developing an awareness of mathematical structure.  

INTRODUCTION 

In this report, I first set up the theoretical notion of an ordinal approach to learning 

number, partly drawing on neuro-scientific evidence. I then discuss possible 

educational implications, before reporting on an empirical study in Primary classrooms 

in the UK where, although the focus was not on ordinality, it is clear the approach 

taken to number was ordinal. I conclude with implications for further study. 

ORDINALITY VERSUS CARDINALITY 

Ordinality refers to the capacity to place numbers in sequence, for example, to know 

that 4 comes before 5 and after 3 in the sequence of natural numbers. Cardinality refers 

to the capacity to link numbers to collections, e.g., to know that “4” is the correct 

representation to denote a group of four objects. A significant question dealt with in the 

twentieth century, was which aspect of number was most primitive. On the assumption 

that ordinality and cardinality are the only two dimensions to developing a concept of 

number, there are three possible views and each one had its proponents. It could be that 

cardinality is primary (Russell, 1903), it could be that ordinality is primary (Gattegno, 

1974), and it could be that both are equally primary (Piaget, 1952). I will briefly 

summarise each perspective. 

Russell (1903) based his analysis of number on the concept of cardinality. For Russell, 

a number was what was common to sets containing members that could be placed in 

one-to-one correspondence. Lest there be doubt that questions of mathematical 

philosophy have relevance, it is only necessary to look at the prevalence of one-to-one 

mapping tasks in the first years of schooling in the UK, or the fact that work on number 

is limited to the integers 1-20 (the ones we can grasp), in the early years, to see the 

influence of Russell’s thinking. 
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An opposing view is that ordinality is the more primary. This view was used to inspire 

at least one mathematics curriculum (Gattegno, 1970) and the use of Cuisenaire rods. 

In Gattegno’s curriculum, students’ first experiences are to play with the Cuisenaire 

rods (wooden blocks with 1cm square faces and different lengths – each length 

associated with a unique colour) and work on relations (bigger than, smaller than). The 

first number to be introduced is “2”, to represent the action of placing two rods of the 

same size to match the length of a single rod. Numbers are introduced as relations, 

rather than denoting objects. 

A third perspective is that both ordinality and cardinality are equally primitive, and 

such a view was advocated by Piaget (1952). Piaget believed that the development of 

ordination and cardination was characterised by the same three stages, which occurred 

at the same age, hence his conclusion that they are acquired simultaneously. 

Experiments in the 1970s appeared to suggest that ordinality occurred in young 

children at a much earlier age than cardinality (Brainerd, 1979). Recently, the kind of 

ingenious psychological experiment conducted in the twentieth century, has given way 

to brain research. One of the findings of broad agreement from neuro-science is that 

humans share an early (in evolutionary terms) Approximate Number System (ANS), 

our ‘number sense’ which we use to judge the relative size of groups of objects (Neider 

and Dehaene, 2009), i.e., the ANS is a non-symbolic form of numerical reasoning. 

Research is currently being undertaken to try and map out how the ANS links to our 

symbolic use of number, since there is evidence that ANS acuity is correlated with later 

mathematical achievement (e.g., Gilmore et al., 2010). 

Some studies suggest a link between our symbolic and non-symbolic awareness of 

number, which could be taken to imply that cardinality is the key to learning early 

number. However, the situation may not be as simple as that. Lyons and Beilock 

(2011) suggest that many experiments related to ANS share an assumption that 

cardinality is the primary aspect of the number concept. Lyons and Beilock (2011, 

2013) conducted experiments that test this assumption and their conclusion was: 

a key aspect of transitioning from ANS to symbolic representations of number involves 

extraction of ordinal information from the ANS and codification of these ordinal relations 

in terms of direct associations between symbolically represented quantities (2011, p. 257). 

In other words, ANS acuity may not be a simple case of awareness of cardinality. 

Instead, codifying relations between symbols for numbers (characteristic of ordinality) 

may be key. Furthermore, Lyons and Beilock (2013) found that qualitatively distinct 

areas of the brain are active during ordinal tasks with number symbols, compared to 

tasks involving collections of objects (with or without the link to number symbols). 

There is evidence, then, that in the development of our concept of number, distinct 

processes are occurring in relation to our awareness of relations between number 

symbols (in an ordinal sense) and our awareness of how to link objects to numbers. 

Furthermore, there is evidence (again, from brain imaging) that when working with 
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number in more complex contexts, areas of the brain significant for linking numbers to 

objects are not activated (Lyons &Beilock, 2011).  

There are different interpretations of the neuro-scientific evidence. But one clear 

hypothesis to emerge is that students’ awareness of ordinality may be distinct from 

awareness of cardinality and, in terms of developing skills needed for success in 

mathematics, that ordinality is the more significant. If such a conclusion were 

accepted, it would represent a huge challenge to current practice in the UK where, as 

stated above, the emphasis in the first years of schooling is firmly on linking number 

symbols to collections of objects. 

In the next section of this report, I draw out educational implications of taking an 

ordinal approach to number, before then reporting on the results of an empirical study 

conducted in the UK where such an approach was adopted.  

EDUCATIONAL IMPLICATIONS OF AN ORDINAL APPROACH 

To take an ordinal approach to number, the focus shifts from linking numbers with the 

concrete (collections of objects) onto linking numbers with each other. Such an 

approach was developed by Gattegno (1974) where number is introduced as a relation. 

Rather than an appeal to collections of objects, number skills and awarenesses can be 

developed from a structure. As well as the structured Cuisenaire rods, mentioned 

above, Gattegno devised a chart (see Figure 1) that offers one powerful view of our 

number system. 

Figure 1: Gattegno’s tens chart 

There is a choice of what rows to display and early work may leave the decimal rows 

hidden, perhaps with larger numbers added below. When introducing the Gattegno 

chart to a group for the first time, students need to see how numbers are named on the 

chart. Rather than concern about the meaning or place value of numbers, the focus is on 

how to say and write numbers and to gain awareness of how they are ordered. The 

teacher might tap on a number in the units row and get the class to chant back in unison 

the number name. This can extends to numbers in the tens row. For example, the 

teacher taps on “4” (class chant FOUR) and then “40” (class chant FOUR-TY); tap on 

“6” and then “60”; tap on “8” and then “80”. Attention can be focused on how the 

number name changes (i.e., adding ‘-ty’), the task for students is to say and read the 

numbers. In contrast to limiting students to 1-20, on such an approach, the single 
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awareness of how to move from the units to tens row allows access to 1-99 (students 

can enjoy saying the structurally correct “three-ty” for thirty, “two-ty” for twenty and 

“one-ty” for ten). 

Gattegno’s ordinal approach to number was the background to a research project in the 

UK that aimed to develop creativity in the Primary mathematics curriculum as a way of 

tackling underachievement. In the next section I report on this project, drawing out the 

links to an ordinal approach (that were not made explicit at the time), before giving 

some results and offering implications. 

AN EMPIRICAL STUDY IN THE UK 

During 2010-2013, I worked in collaboration with the charity “5x5x5=creativity” 

(5x5x5) with 5 different Primary schools (and one teacher in each school) to develop 

creative approaches to teaching mathematics. Projects with 5x5x5 often involve an 

artist working with a group of students in a school, to develop and document their 

learning in relation to a provocation. In 2010-11, 2011-12 and 2012-13, I acted as a 

mathematician-artist with the project schools as well as co-ordinating meetings (six a 

year) between teachers from project classrooms. As the mathematician-artist, I would 

go in to schools to take lessons. In all schools, we agreed the project lessons would 

centre around the notion of students ‘becoming a mathematician’. We emphasised that 

mathematicians look for pattern and ask questions. The content of the lessons I taught 

was always discussed and agreed with the classroom teachers and we would de-brief 

afterwards. Teachers continued to work on developing activities that would allow 

students to notice and develop patterns, when I was not there, and at the meetings 

would share their ideas and activities (see Coles, Fernandez and Brown, 2013). Some 

teachers devoted one lesson a week to activities linked to ‘becoming a mathematician’, 

in a few cases, teachers shifted their entire approach to teaching mathematics and every 

lesson had a focus on students’ noticing and emerging ideas. 

The tool that was used more than any other in schools (in the context of the project) 

was the Gattegno chart (Figure 1). A common activity with year 1 (age 5-6) students 

was to tap on a number of the chart and get the class to chant back (in unison) the 

number one higher (or one lower). After working on this and taking different starting 

points, the students might be invited to choose their own starting number and to keep 

on either adding or subtracting 1 and to see what they noticed. 

Another activity tried in several schools, usually with year 3 or 4 students (age 7-9), 

involved tapping on the chart and getting students to chant back the number ten times 

bigger. This can be done on the chart with a simple movement down a row. After 

practising in unison, the class do the same for division by 10, then for multiplication 

and division by 100. For this activity, the class were then invited to choose a ‘starting 

number’ somewhere on the chart, to go on a ‘journey’ of multiplying and dividing by 

powers of 10, with the challenge to get back where they started from. 
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To give a sense of what students might do in the course of these activities, a typical 

example from a students’ book is copied below (see Figure 2). This student was in year 

3 (age 8) and was working on multiplication and division journeys. She had decided to 

challenge herself to go on a journey and get back in one go, “I went back in one” is her 

comment on the right of the page (Figure 2). 

 

 

Figure 2: One student’s ‘journey’ and comment 

Division by 10,000 is many years in advance of what a year 3 students would normally 

be expected to compute. There is tentative evidence in Figure 2 that this student has 

become aware of a relation between successive multiplications by 10 and their inverse. 

She is making connections between the symbols themselves and seems to be gaining 

some confidence in working with symbols in their own right (something closely linked 

to an ordinal view of number). 

While ordinality was not an explicit focus of the project, the description above, of 

activities on the Gattegno chart, demonstrates that the approach to number was one of 

linking symbols to symbols and moving away from concrete representations. 

METHODOLOGY 

The original focus of the project was on teacher development, hence audio recordings 

were taken of all meetings with teachers and these have been analysed (e.g., Coles, 

Fernandez and Brown, 2013). For this report, I have re-analysed the audio recordings 

of teacher meetings from 2012-13, using the theoretical framing of 

ordinality/cardinality, i.e., looking out for instances where ordinality/cardinality was 

being discussed as an issue. The taking of multiple views of data is in keeping with the 

enactivist methodology (Reid, 1996) that underpinned the study. Rough transcripts had 

already been created for the project meetings. I re-read these transcripts and returned to 

the audio data to confirm and make accurate the transcription of any sequence of talk 

that touched on issues of symbol use or the connection between symbols and objects. I 

also report briefly on the statistical progress data that was collected across the 5 

schools. All the schools routinely monitored student progress (in relation to a system of 

National Curriculum levels) and schools, at points throughout the year, assessed 

students from project classrooms. Assessments were made by teachers, informed by 
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written tests and moderated by a local authority. For the purposes of the project, 

progress was judged from the end of the year before the work began, to the end of the 

year in which the project took place. 

RESULTS 

The issue of ordinality/cardinality is raised at three meetings during 2012-13, and 

always by Teacher G. These three meetings are reported briefly below and analysed. 

In November 2012, Teacher G (who had a year 2, age 6-7, class) reflected on the work 

of a student who is attaining well below government expectations for his age. 

G: He’s loved doing the number journeys, loved exploring what’s happening 

when dividing by ten and dividing by a hundred. He didn’t always know 

what the numbers were. He might know it has two zeros at the end but not 

know it’s six hundred. He’s used the pattern in terms of how it looks 

without being able to say the number. That makes me a bit uneasy. 

The student in question appears to have been able to write out some journeys 

successfully, but G expresses concern that he is working with numbers he cannot say. 

A similar discomfort was expressed again when Teacher G reflected (February 2013) 

on further work he was doing using the Gattegno chart and a group of students who had 

been working on writing out multiples of 21 (students had chosen what multiples to 

work on): 

G: They were doing 21 and then 42 and 63 and 84 and they were looking to see 

what was happening with the digits. So they could see what was happening 

and they could see could see the pattern, they could predict next one … I’m 

not sure if it’s a danger but I’m aware some children see the patterns and 

can write a sequence of digits but maybe not know how to read those digits 

as a number … it just makes me aware you can’t just leave it there because 

they just see it as patterns of numbers and they don’t get to feel the truth 

underneath it, the place value underneath it. 

I interpret Teacher G here as grappling with precisely the ordinal/cardinal issue. He 

reports his students being successful writing multiples of 21 (beyond what would be 

expected of students at that age in the UK) and yet being concerned whether students 

got the ‘truth underneath it’, the place value sense of the number – which may be a 

wish for a more cardinal awareness of the link to objects.  

Another teacher responded directly after G’s turn above: 

E:  you mean the symbols representing numbers have become disconnected 

from what they represent … the thing we’re always trained not to do is to 

take children beyond those numbers they can grapple and handle. It’s 

almost the whole thing is, what happens when we do do that, and is it 

empowering or is it actually quite shocking, quite weird, I don’t know. 

Teacher E here interprets the whole purpose of the 5x5x5 project: ‘the whole thing is, 

what happens when we do’ take children beyond those numbers they can ‘grapple and 
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handle. E is a headteacher and he gives an interesting insight into the orthodoxy of 

Primary teacher training in the UK: ‘the thing we’re always trained not to do’, is move 

beyond students’ cardinal sense of number. 

By July 2013, students in G’s class made, on average, 18 months progress over the 

academic year. The headteacher at G’s school described the impact of the project as 

‘transformational’ and in 2012 and 2013 (the years the school was involved) the school 

achieved its best ever results for the end of year 2 (the project class in 2012 and 2013). 

The progress by students in this school was higher than in the other 4 project schools 

(although in all schools, student progress matched or exceeded government 

expectations). Factors that were different at G’s school compared to the others 

included: the teacher involved in 2011-12 having responsibility for developing 

numeracy across the school; the teachers at this school in 2011-12 and 2012-13 

adopting a ‘project’ approach more consistently throughout their teaching than in other 

schools; students in the school having lower prior attainment than other schools and 

coming from areas of higher deprivation (as judged by the UK school inspectorate, 

Ofsted). 

Teacher G and E’s concerns and questions are significant and also give an insight into 

the challenge of creating new ways of working. Teacher G was subject to an Ofsted 

inspection during 2013, which he discussed at the meeting in June 2013. Whilst being 

impressed by what they saw, the inspector picked up on the issue of students working 

with numbers they could not read and raised this as a concern. The issue of reading 

numbers is an intriguing one. The Gattegno chart (Figure 1) can be used to support 

number reading and can be powerful in this respect. I interpret, in the concerns 

expressed by G, E or the inspector the exact issues discussed at the start of this report – 

what is a number? and, what does it mean to know a number? At what point is it okay 

to work with numbers we cannot ‘grapple with and handle’? 

DISCUSSION 

In this report, I have presented neuro-scientific evidence and results from an empirical 

study that both suggest the idea of an ordinal approach to early number should at least 

be taken seriously as a possible focus in Primary school. Experimental brain studies 

have suggested that awareness of ordinality may be the key attribute determining the 

chance of success in later mathematics. In the empirical study, we certainly witnessed 

students becoming excited, interested and successful in mathematics, through a focus 

on the structure of the number system and through giving students permission to 

explore larger numbers than they would normally be allowed. There is clearly a need 

for further work on the neuro-scientific basis of early number acquisition and this is on 

going. There is also a need for further work in the classroom, and with teachers, to 

develop and trial materials, activities and ways of working that support students’ 

awareness of ordinality. Not only that, we need to know more about effective way of 

working with teachers to support the development of an ordinal approach to number 

and to address the real concerns expressed about place value. 
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There are also possible implications for mathematics teaching in higher years. One 

interpretation of the success of an ordinal approach to early number is that it stems 

from having a focus on developing awareness of mathematical structure in an almost 

game-like manner. Once the structure (the rules of the game) is established (for 

example, through choral response with the Gattegno chart, Figure 1) there is space for 

creativity as students enter into a dialogue with the challenge of learning mathematics. 

There is nothing to stop such an approach being used at any level of mathematics (see 

Coles & Brown, 2013). 
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MATHEMATICAL DISCOURSE FOR TEACHING: 

A DISCURSIVE FRAMEWORK FOR ANALYZING 

PROFESSIONAL DEVELOPMENT 

Jason Cooper 

Weizmann Institute of Science
 1
 

 

The framework of mathematical knowledge for teaching (MKT) is brought under the 

discursive framework of Commognition in order to track learning in professional 

development (PD). I follow MKT in differentiating between subject matter discourse 

and pedagogical discourse. The framework, which I call Mathematical Discourse for 

Teaching (MDT) permits a combined view on mathematical and meta-mathematical 

issues as constituted in discourse. Such meta-issues are found to be a significant part 

of what is taught and learned in a particular PD, where mathematics Ph.D. students 

teach elementary school teachers. Through the analysis of a lesson on parity I show 

how "knowing" has different meanings in mathematical and pedagogical discourses, 

and find evidence of learning in the evolving ways in which the parties use this term.  

INTRODUCTION 

What are teachers learning? This is an important question for any professional 

development (herein PD) program. Yet it is not clear how we should go about 

answering it. Though the ultimate goal of PD is a sustainable change in teaching 

practices, it is important to track learning as it occurs or fails to occur. In this paper I 

present a discursive framework for conceptualizing and analyzing knowledge and 

learning in mathematics PD, and demonstrate how this framework helps make sense of 

a particular session on parity, in which the participants were 1
st
 and 2

nd
 grade teachers 

and the instructor was a mathematics Ph.D. student. This unusual PD setting highlights 

the strength of the discursive approach; the instructor and the teachers are shown to 

have had very different ideas about what it means to know, learn and do mathematics, 

ideas that are constituted in their discursive practices. The crossover of these 

meta-mathematical ideas, as mathematical content is being discussed, is shown to be a 

significant aspect of the learning that is taking place. 

THEORETICAL FRAMEWORK 

The framework of MKT – Mathematical Knowledge for Teaching (Ball, Thames, & 

Phelps, 2008) has been influential in conceptualizing what mathematics teachers need 

to know for effective teaching, differentiating between subject matter and pedagogical 

content knowledge (PCK). However, to track learning as it occurs in PD, we must find 

indications of learning in the parties' discourse. For this I propose to embed MKT in an 

overarching discursive framework. The discursive approach I adopt is commognition 
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(Sfard, 2008), whose basic tenet is that fields of human knowledge (such as 

mathematics) are nothing more than well defined forms of communication, and thus 

communication and cognition are aspects of a single entity termed discourse
2
 . Ball et. 

al. lament that “after two decades of work, the nature of this bridge [PCK bridging 

content knowledge and the practice of teaching] remains inadequately understood” (p. 

3). The commognitive view, seeing PCK and teaching as aspects of a single entity – 

discourse – may be exactly what is needed.  

To understand how MKT may be embedded (and extended) in a commognitive 

framework, I first present a short exposition of commognitive assumptions and 

methods. Discourses are types of communication common to particular communities. 

They are identifiable through four interrelated characteristic features: keywords, visual 

mediators, distinctive routines, and generally endorsed narratives. Most 

commognitive research to date has focused on mathematical discourses; however in 

PD we are interested in the discourse of teaching mathematics. This discourse makes 

use of keywords, mediators, routines and narratives of mathematics, but also of 

teaching mathematics, much in the same way as MKT consists of content knowledge 

and PCK. Thus, each of the MKT categories of knowledge may be redefined as a 

discourse, calling their union Mathematical Discourse for Teaching (MDT). For the 

purpose of this paper it will be sufficient to distinguish between a mathematical 

discourse within MDT (paralleling subject matter) and a discourse of teaching 

mathematics, which I will call Pedagogical Content Discourse (PCD, paralleling 

PCK). The keywords, mediators, routines and narratives of PCD will be those that are 

related to teaching, students and curriculum, for example: words such as difficult, prior 

knowledge, understand, misconception; visual mediators such as manipulatives, 

routines of teaching, and narratives about how to teach particular content. The notion 

of discourse goes far beyond the cognitivist notion of knowledge. To demonstrate this 

point, the empirical part of this paper analyzes discursive aspects of the notion of 

knowing that some mathematical claim is true. Following Wittgenstein (1958, p. 20), 

the meaning of a word is taken to be the ways in which it is used, which in our 

framework means: what are the endorsed narratives in which the word knowing 

features, what are the routines that are invoked by this word, and what are the visual 

mediators and other keywords associated with it.  

METHOD 

The PD under investigation was the initiative of a university professor of mathematics, 

and was taught by mathematics graduate students. Approximately 90 teachers enrolled 

in the 2011-12 program, which consisted of ten 3-hour sessions taught in six groups 

spread over the year. The data collected consists of audio recordings of all the sessions, 

interviews with the instructors before and after the lessons, and teacher questionnaires 

                                           
2
 The present analysis does not rely strongly on this assumption, and is valid under the weaker 

assumption that ways of talking do not neutrally reflect social practices such as teaching but rather 

play an active role in forming them. 
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– expectations at the outset and feedback after each session. In this paper I analyze part 

of a lesson on parity in which approximately 15 1
st
 and 2

nd
 grade teachers participated. 

The decision to focus on meanings of knowing is not arbitrary; rules and routines by 

which knowledge is endorsed are a central characteristic of mathematical discourse.  

The instructors' stated goal for the PD was mathematical – to broaden and deepen the 

teachers' understanding of the mathematical content they teach. The teachers' 

expectations, based on questionnaires, were pedagogical – classroom-ready activities 

and teaching tips. These conflicting goals are the backdrop for my discursive analysis. 

DATA ANALYSIS 

A comprehensive analysis of the transcript is beyond the scope of this report. I limit my 

analysis to utterances that reflect meanings of the word know for various participants. I 

omit utterances that are not relevant for the analysis. 

Turns Duration  What's going on 

1-84 4:30 Teachers suggest 5 definitions for even number 

85-280 15:00 Discussion: Do we want to give this as a definition? 

281-321 3:00 Comparing definitions – which are similar? 

322-401 6:30 Even + even = even. How do we know this? 

402-480 4:00 How to define an odd number 

481-665 11:00 Sign of parity (even ones digit) – why does it work? 

Table 1: Overview of transcript data 

Segment 1: Do we want to give this as a definition? 

85  I
3
: Do we want to give 0, 2, 4, 6, 8, etc as a definition of even number? 

91  I: If we tell a child that 0, 2, 4, 6, 8, etc are even, will he know to say if 1024 is 
an even number? 

96 T1: Of course he'll know, according to the ones digit. 

98 T2: If we only explain it to him this way. 

Here are two different meanings of knowing. T1, drawing on the teaching routines of 

her Pedagogical Content Discourse (PCD), says that children know 1024 is even based 

on a rote endorsement routine (checking ones digit). In contrast, T2 understood the 

instructor's intention – that the imaginary child only knows what he was told explicitly 

– the definition – and that this knowing should be the basis of endorsement. 

114 I: What's bothering me is that I can continue differently. 0, 2, 4, 6, 8, then 12. 

119 T3: But we learned skip counting; he knows it's by 2, he won't pull a 12 on you. 

A real child knows that 10 follows 8, thus in a pedagogical discourse skipping by 2 

does not need to be made explicit. However the instructor's endorsement routine is 

mathematical in spite of his pedagogical phrasing (will he know), where knowing is 

based on what is explicit in the definition. 
                                           
3
 'I' indicates Instructor. 'T2' (capital T) indicates a particular teacher. t165 (small t) indicates turn 

number 165. 
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124 I: So when I skip by 2 from 0 I reach 2, 4, 6, and I can continue ... eventually 

I'll arrive, it's not very efficient to say if 1024 is even, but it's something. 

The instructor "fixes" the definition – skipping by 2 is made explicit; yet it is being 

judged by a rather basic routine – determining evenness – and is deemed inefficient. 

They proceed to discuss the definition: a number that divides into two identical parts.  

158 T4: But... for example divide 5 into two and a half and two and a half. 

163 I: Alright, that's important. In grade 2 and 1, I'm not sure the kids know... 

164 T4: They know only halves. 

165 I: Ok, if they know then we must be precise. 

The instructor seems to have adopted a pedagogical discourse. Mathematically 

speaking, the precision of a definition does not depend on what any particular audience 

does or does not know, but an imprecise definition may be endorsed in a pedagogical 

discourse if the imprecision is unlikely to create a problem for students. 

166 T5: They say 5 is divisible, they take the concrete, break the stick... 

167 I:  Ok... even numbers are only in the context of integers. We don't even know 

fractions. A number will be called even if I can divide, if I can take that 

quantity of objects and divide them into two equally large sets.  

168 I: This is one way. I'll write another: a number is even if one can take such a 

quantity of objects and divide them into equally large sets without applying 

violence, without breaking things along the way. We don't permit breaking. 

In the context of integers are the words of a mathematician, who has alternative 

contexts (natural, integer, rational, real, or complex numbers). "We don't even know 

fractions" is a code, having little to do with what real people know. In retrospect t165 

appears less pedagogical. It is not a question of whether children know that a 5-foot 

stick can be divided equally into 2, but rather are rational numbers part of the children's 

world? The instructor is now aware of two different discourses. In the pedagogical 

(t168) we specify without violence, since halves are in the child's discourse; in the 

mathematical (t167) this is not necessary; everything is in the context of integers. 

Segment 2: Proving even plus even is even 

322 I: Let's say I gave you some oranges, and the number of oranges is divisible 

by two, that is even. And I also gave you oranges, and you checked, and this 

number is also even. Now we take the oranges that you both received and 

put them in a crate. Do I need to check all over if the number is even or not? 

329 T6: No. It's even.  

330 I: Why? 

331 T6: Because it's divisible by two. Even plus even is even. 

338 T7: If mine is divisible by 2 and hers is divisible by 2, the definition didn't 
change... mine remains even and hers remains even, why should it change? 

The instructor chooses to ask about the sum of even numbers realized by quantities. 

The teachers return the discussion to abstract numbers. T6 knows that 
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even+even=even, but this doesn't answer the instructor's why. In contrast, T7 accepts 

the need to prove the claim based on a definition – divisible by two – but does not yet 

see what exactly needs to be proven. 

347 I: You checked, and [each of the quantities] can be arranged in pairs. 

350 T8: You transfer them in pairs, you don't change [the pairing]. 

The instructor takes them back to quantities and T8 completes the mathematical proof.  

Segment 3: Definition of odd number 

397 T9: Every odd [number], if I go with a division into pairs, you have one left. 

398 I: Why?... So what's an odd number? 

Odd number has not yet been defined. To endorse the narrative in t397 the instructor 

explicitly asks for a definition , which will become the basis for an endorsement. 

437 I: Suppose I tell you that a number is odd if it's not even. How do we show 

that the remainder, when we try to divide into pairs, I'll have one left over? 

445 T9: I'd ask them to arrange in pairs... I'd like them to experience it themselves... 

Because if the remainder is 3, they need to check if this is really the 

remainder... so they see the two that can be arranged in [another] pair. 

The instructor gives his definition for odd. Knowing in t437 relies on showing, but 

what does showing mean? T9 suggests a demonstration, using children as a visual 

mediator. This routine is clearly pedagogical, but it is also mathematical – in t445 this 

demonstration becomes the foundation for a generic proof by contradiction – if you 

have 3 left over, you can form another pair. 

Segment 4: Sign of parity 

481 I: Let's try to understand now from the definitions we have, why if a number's 

ones digit is 0, 2, 4, 6, or 8 - it's even. Here's a number... 

500 T11: The ones digit is the end of your pairing. After you've paired them, what 

you have at the beginning doesn't matter; it's only the bottom line that 

matters... You bring down the ones digit.  

512 T8: All the numbers before the ones digit are even. 

T11 is proving based on a definition (pairs), but has not provided an acceptable 

argument. She appears to be influenced by the long division routine. T8 provides the 

missing link – we have already shown that the sum of two even numbers is even. She 

will show that all numbers are the sum of even numbers and the ones digit. The routine 

here is proving a property based on previously proven properties; we no longer need to 

refer all the way back to the definition. 

554 T12: When she says 90 and 500 are even, she's basing it on the ones digit. You 

must! How else can you know that 1000 is even? 

568 T13: I know it's a multiple of 2. 500 times 2 is 1000. 

T12's rote endorsement routine is so entrenched that she can't imagine any other. T13's 

proof draws on the more abstract definition of even number – multiple of 2. Later, the 
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instructor helps generalize – numbers are shown to be a sum of an even number (in fact 

divisible by 10) and the ones digit. Thus, every number is either even+even=even or 

even+odd=odd.  

DISCUSSION 

The transcript has shown various meanings (in the commognitive sense) of knowing, 

that is: narratives of knowing, routines invoked for knowing (e.g. proof), visual 

mediators used to support knowing (e.g. demonstration), and words associated with 

knowing (e.g. showing). In Pedagogical Content Discourse (PCD) we see meanings 

that are concerned with learners and the rules by which they endorse their narratives 

(t96, t331). In this discourse knowing is not linear – learners may know halves before 

they have officially learned fractions. Conversely, in the instructor's mathematical 

discourse knowing is structured. Its endorsement routines begin with definitions, and 

proceed through theorems that are proven based on these definitions. Furthermore, it is 

reflective – at any point we know what we "know" and what has yet to be shown. With 

this in mind, I now ask about the learning that took place, where learning is 

conceptualized as discursive change. The limited scope of this report cannot show that 

a learning trajectory was completed. Opportunities for learning, where interlocutors 

meet new discourses and engage in them, will be the focus of this discussion.  

Participation in mathematical discourse may be ritualized or explorative (Sfard & 

Lavie, 2005). The goal of exploration is endorsing new narratives, thus explorative 

discourse will focus on the autonomous derivation of new narratives and their 

deductive endorsement. The PD episode can be seen as modeling explorative 

participation in mathematical discourse, where progressively sophisticated 

endorsement rules are introduced. This is seen twice. First in the mathematical content 

where the topic is parity (what are even numbers, prove that even+even=even). In this 

context, virtually all of the mathematical narratives came from the teachers. The 

instructor's contribution was in organizing well known narratives into a structure, 

where endorsement begins with definitions and proceeds, by means of deductive proof, 

to more sophisticated properties and theorems. The second exploration was 

meta-mathematical, where the implicit topic was definition (“do we want to take this as 

a definition?”). In both contexts the rules of endorsement evolved. Evenness was first 

endorsed based on a "rote" property (ones' digit), later it was based on checking a 

definition, and finally on proven properties. At the meta-mathematical level, 

definitions were at first endorsed for efficiently deciding if a number is even, later for 

their productiveness in routines of proving properties and theorems. For the teachers, 

engaging in these explorative routines is not only a model for classroom teaching, it is 

also an opportunity to "forget" the rote endorsement routines they have adopted as 

adults, which for many have become automatic, and recall what there is to learn in such 

a seemingly straightforward topic as parity.  

What in the instructor's pedagogical discourse enabled learning? Modeling, as 

described above, is not the only tool the instructor used. When an expert is teaching 
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novices, the expert's discourse may be incomprehensible to the learner, and it is up to 

the expert to adopt a discourse that bridges the discursive gap
4
 . I have shown instances 

where this is achieved by means of a discursive move called interdiscursivity – “the 

use of elements in one discourse and social practice which carry… meanings from 

other discourses and social practices” (Candlin & Maley, 1997). A common instructor 

move was carrying mathematical meanings of words (e.g. knowing, checking) into 

pedagogical narratives (t91 t322), all in the context of mathematical routines of 

proving. The instructor chose to mediate one proof by means of quantities (t347) – a 

pedagogical realization of number – after teachers failed to find a proof using abstract 

numbers (t331).  

Much of the commognitive research to date has focused on the asymmetrical situation 

of children learning. In PD, adult learners are accomplished teachers, and thus the 

situation is more symmetrical. It is not only the teachers who learned - the instructor 

came to appreciate the significance of PCD (e.g. t168). Furthermore, the teachers did 

not blindly adopt the instructor's patterns of participation in mathematical discourse; 

the discourse that emerged is an interdiscursive synthesis: t554 prefers a decimal 

decomposition (1000+500+90+2) over the instructor's decomposition, recognizing 

place value as a critical topic, and in t445 T9 added a pedagogical mediator – children 

pairing up – to achieve a mathematical proof. This interdiscursivity on the part of 

teachers shows that they are appropriating
5
 a new mathematical discourse – an 

indication that learning is taking place. For this to happen, the teachers and the 

instructor need opportunities to reflect on the mathematics in the context of teaching, 

thus bridging the gap between their different goals for the PD. The instructor's 

interdiscursive routines support this. This is also supported in the open nature of the 

questions he asks, e.g. do we want to give this as a definition of even number? Who is 

meant by we? What are the considerations to want a particular definition? Give to 

whom? How do we endorse a statement as a definition? The fact that all these are left 

open permits the discussion to draw on multiple discourses. The pedagogical discourse 

is concerned with learners, for whom numbers are realized as quantities (a number that 

can be divided into 2 equal sets). It addresses classroom routines such as determining 

efficiently if a number is even. In the mathematical discourse the abstract concept of 

number is disassociated from quantity, precision is crucial, and the routines that 

involve definitions, such as proving properties, are more sophisticated. The instructor 

was careful not to let the teachers' pedagogical concerns derail his mathematical goals, 

but he delayed voicing his own ideas until after the teachers had had their say (t114). It 

is clear that the instructor was uncomfortable with imprecise phrasing number that can 

be divided into quantities, but he merely revoiced it more precisely – I can take that 

quantity of objects...(t167) – perhaps recognizing that the less precise wording is 

                                           
4
 This is a discursive paraphrasing of Wertsch's notion of intersubjectivity (1984). 

5
 Appropriation as used by Moschkovich (2004), in the sense of actively transforming goals and 

meaning. 
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productive in a pedagogical context. Even when he adopted parts of a pedagogical 

discourse (t168), it was alongside the mathematical discourse he is aiming for (t167). 

SUMMARY 

In this paper I have argued for a discursive approach in analyzing learning in PD, and 

have shown how a commognitive embedding and extension of mathematical 

knowledge for teaching, which I call Mathematical Discourse for Teaching (MDT), 

provides both theoretical framework and methods for such an analysis. This 

framework highlights discursive aspects of knowing, which may be difficult to 

conceptualize in a more cognitivist approach. Through focusing on a discursive 

analysis of meanings of knowing, I have shown the kind of learning, conceptualized as 

discursive change, that is taking place alongside the learning of mathematics. The 

instructor adopted elements of the teachers' PCD, and the teachers participated in an 

explorative mathematical discussion, which drew on the instructor's university 

routines and narratives and on the teachers' pedagogical discourse. In this discussion, 

the concept of definition took on new meanings, as it was used in increasingly 

sophisticated mathematical endorsement routines. This explorative experience may 

eventually serve as a model for the teachers' classroom teaching. They did not blindly 

adopt the instructor's discourse, but rather transformed the mathematical discourse into 

a discourse for teaching, appropriating it for their pedagogical purposes.  

In this paper I too have tried to model an explorative discursive practice, enriching the 

commognitive framework with new words, routines and narratives, interdiscursively 

drawing on other theories (i.e. discourses) such as MKT. 
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USING HABERMAS TO EXPLAIN WHY LOGICAL GAMES 

FOSTER ARGUMENTATION 

Jenny Christine Cramer 

University of Bremen, Germany  

 

Argumentation and proof have been in the focus of attention in mathematics education 

research for several decades. While it has often been pointed out that it is important to 

give argumentation a prominent position in the mathematics classroom, it is far from 

clear how to teach argumentation, particularly to students from non-privileged 

backgrounds. In this paper, I show how Habermas’ theory of communicative action 

gives a valuable perspective on what makes argumentation likely to occur. The context 

of a logical game situation in which argumentation happened is analysed to support 

the following result: the exclusion of force and a cooperative mode of communication 

are helpful elements in understanding the fostering of argumentation. 

LEARNING ARGUMENTATION IS DOING ARGUMENTATION 

Research in the past decades has looked at argumentation from various angles, often 

connected to mathematical proof. In this paper, Knipping’s (2003, p. 34) view is 

adopted: argumentation is seen as a sequence of utterances in which a claim is made 

and reasons are brought forth to rationally support this claim; so proof is one form of 

argumentation. Different approaches have been made to promote proving in the 

mathematics classroom
1
. Boero (2011, p. 120, italics in original) claims that to teach 

the rules of argumentation and proving: “the best didactical choice is to exploit suitable 

mathematical activities of argumentation and proof”. Douek (1999) however pointed 

out that having proof as the goal of the activity can be a restraint for argumentation. I 

decided to look purely at argumentation and the question of how to involve students 

with a non-academic family background in reasoning.  

The only way of learning argumentation is engaging in argumentation, and as Ernest 

(1986, p. 3) pointed out, “playing games demands involvement”. In this theoretical 

paper I show how Habermas’ threefold approach to argumentation from his theory of 

communicative action provides a useful perspective for looking at classroom 

situations, and how logical games used in the context of mathematics teaching can 

provide a fruitful environment for argumentation. I support this approach with an 

example from my research in which I use a game to involve my students in 

argumentation. After playing two rounds of the logical game “Da Vinci Code” in a 

competitive mode, the students were faced with a hypothetical situation based on the 

game, whose solution required deductive reasoning. A part of the students’ 

                                           
1
 Knipping (2012) presents a concise overview on different approaches to the teaching and learning 

of argumentation and proof, including graphical representations, the debate approach and the concept 

of cognitive unity. 
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sophisticated argumentation is presented in this paper. I conclude by illuminating how 

mathematics education can benefit from Habermas’ view on argumentation, and how 

logical games can provide a context to promote argumentation.  

“IN THE MIDDLE, THERE IS TWO AND FIVE” 

In my doctoral research, I worked for an entire year as a teacher-researcher in a group 

of five 15-year-old girls from different schools in Bremen, whose mother tongue is not 

German. In different learning situations, some purely mathematical and some 

including elements of logical games, I tried to evoke argumentation. The transcript 

given in this paper is an excerpt from a lesson in March 2013. The girls and I had 

known each other for 6 months. For the last lesson prior to the spring holidays I 

decided to pose a task related to a logical game called “Da Vinci Code”, also known by 

the name “Coda” by Eiji Wakasugi. “Da Vinci Code” is about correctly guessing the 

numbers of your opponents. The game consists of black and white stones, 12 each, 

numbered from 0 to 11. At the beginning, each player takes a certain amount of stones 

and puts them up in front of him or herself, so that the other players cannot see the 

stones. They have to be put up in ascending order, and if a player has both stones of one 

number, the black number must stand left of the white number. In the course of the 

game, stones are taken up from the middle and wrong guesses lead to stones being 

tipped over, thereby revealing the number. At a certain point it can become possible 

from a player’s perspective to correctly deduce all of the remaining stones. 

I introduced the girls to the game in that lesson. There were only three girls present on 

that day, one of them does not make a contribution in the transcript; the others are 

labelled as S1 and S2. My contributions are labelled as “I”. I translated the transcript 

from German to English as thoroughly as possible. The girls were allowed to play two 

rounds of the game before I took away the material and presented them with a fictional 

situation (cf. Figure 1) based on the game. The task for the girls was to find out all of 

the missing numbers; the only information they had was that all stones were arranged 

according to the rules of the game. I decided to work with a fictional situation so that 

the students could collaborate in finding a solution, in contrast to the game situation in 

which they were opponents. The transcript covers a time span of approximately 2 

minutes, which took place directly after distributing the worksheets. In the situation, 

one of the girls (S2) argues that the two black stones in the middle need to be 2 and 5. 

 

Figure 1: The fictional game situation 
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1 S1: (points to the stones in the middle) Do we have to guess these, too? 

2 I: Yes, but of course there you cannot assign which one’s which. But you  

3  will guess them in the end, so to say. Actually they are only those, which 

4   are left over.  

5 S2: Hey, the two is IN THERE, in that, in that hole there. 

6 S1: Mhm (agreeing; 27s silence) 

7 I: (gets up) Feel free to tell the others when you found out a number. (11s) 

8 S2: Well, in the middle there is five and two. 

9 I: Mh (questioning), how do you think you know? (walks over) 

10 S2: BECAUSE (1s), eh, the two, here (points to right opponent) it would not  

11  fit because there is a white one.  

12 I: Mhm (agreeing). 

13 S2: (4s) And here it would not fit (points to left opponent) because the  

14  black one isn’t in front.  

15 I: Yes (1s), that’s true.  

16 S2: Oh, and this is the three (points to the middle), isn’t it? 

17 I: No, the three is lying in front of you. I’m //not saying it’s wrong// 

18 S2: //No, I mean five, I mean five// and the five can’t fit here (points to right  

19  opponent) because there is the six. And here, the five can’t fit here (points  

20  to left opponent) because there is a four.  

21 I: Yes (1s). Very nice. So the two and the five black are already set in the  

22  middle. (4s). Well considered. I actually thought they’d just be left over in 

23  the end (laughs).   

After this situation, the girls found all other missing numbers with hardly any guidance 

and arrived at a correct solution for the overall situation in less than 10 minutes.  

Analysis of the argumentation structure 

In my analysis of the situation, I reconstructed the argumentation using the Toulmin 

scheme in the way Knipping (2008) introduced. The analysis is based on the transcript; 

the numbers in the boxes indicate the referenced lines. Implicit data and warrants are 

added for clarification, marked by dashed lines. Roman numbers indicate the three 

different warrants which occurred:  

 I. All 24 stones (0 to 11, each once in white and once in black) are on the table, 

and there are no more stones than these.  

 II. The stones are arranged in ascending order in front of the players.  

 III. If a player has one number in both colours, the black stone stands left of 

the white stone.  
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In the scheme, data are represented as ellipses, both final and intermediate conclusions 

as rectangles, and warrants as diamonds. The implicit data is that the black 2 and the 

black 5 do not stand in front of the player; the blackened box stands for the false 

intermediate conclusion that the black 3 is in the middle. 

 

Figure 2: Logical analysis of the presented argument 

The warrants used, not only in this transcript excerpt but also in all other arguments in 

that lesson, are equivalent to the rules of the game. In this argument, all warrants were 

left implicit which is common according to Toulmin (1958/2008). The structure of the 

argument is highly complex, and the only implicit parts are the warrants and the pieces 

of data referring to the immediately visible situation in front of the player.  

Obviously, S2 was capable of using the rules learnt in the game to create a 

sophisticated argument. The deductions she makes to show that the black stones in the 

middle need to be 2 and 5 are similar to those used in mathematical proving. She 

comprehensibly establishes that both black 2 and black 5 have to be in the middle, for 

they cannot be in front of any of the players. In many other much less complex 

classroom situations, this particular student was not capable of creating arguments. 

This leads to the question, how argumentation was facilitated in the presented 

situation. In the following, I will elaborate a theoretical framework that can explain 

why logical games are likely to evoke argumentation and reasoning. 

HABERMAS’ THEORY OF COMMUNICATIVE ACTION 

Boero (2006) introduced Habermas’ concept of rationality into the analysis of 

argumentation and proving in mathematics education. This concept of rationality 

provides a fruitful tool for the analysis of argumentation and proving processes and 

their products. In this paper I use another concept from Habermas’ theory of 

communicative action: the three-layered view on argumentation as a process, 

procedure and product. While Habermas’ theory of rationality provides a tool for 

analysing the epistemic and cognitive aspects of actual argumentation and proving 

processes and products, the view on argumentation presented in this paper can provide 

an explanation why students do or do not engage in argumentation. In his theory of 
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communicative action, Habermas (1983) elaborates on how the sciences of rhetoric, 

dialectic and logic differ in their approaches to argumentation as processes, procedures 

and products. 

Argumentation as a process 

Rhetoric analyses focus on the process character of argumentation. From this 

perspective, Habermas (1983) describes argumentation as an act of structured 

communication that follows almost ideal preconditions. Characteristic for 

argumentation processes is the exclusion of force from outside and the reliance on 

nothing but the best arguments. The rules which, according to Habermas, any 

argumentation process needs to fulfil are: Every subject capable of speech and action 

may participate in the discourse; every participant may problematize and introduce any 

statement and utter his or her wishes, attitudes and needs; and no forces from within or 

without the discourse may hinder any participant to use these rights. While hardly any 

communicative situation objectively fulfils these criteria, Habermas clarifies that the 

subjective impression that these criteria are met is sufficient. The subjective feeling 

that there is no force from outside the situation is a prerequisite for engaging in 

argumentation. 

School situations are usually marked by an imbalance in the distribution of power 

between teacher and students. The teacher controls and defines topics, suitable 

arguments, relevant background information and data that can be regarded as shared 

knowledge. For the students, it is often far from obvious which inference rules and data 

can be seen as common knowledge and where further clarification is required. Control 

remains with the teacher. Logical game situations, on the other hand, are shaped by 

clear instructions and equal positions of the participants. Although players may have a 

different level of experience, the game treats them as equal. Superiority can only arise 

from a better understanding of the instructions. The possibility of eye-level 

communication, the shared knowledge of rules and premises and the absence of force 

from outside create ideal preconditions for argumentation. In the situation presented in 

this paper, S2 self-confidently supports her claims with arguments. She clearly feels 

encouraged to engage in reasoning and to bring forth arguments to support her claims, 

and no force prevents her from doing so.  

Argumentation as a procedure 

Dialectic is the science concerned with argumentation as a procedure. Habermas 

(1981) characterizes argumentation procedures as cooperative communication 

situations in which proponents and opponents hypothetically check claims and their 

appropriateness by reasons, acting without pressure arising from experience or from a 

call to action. The rules for argumentation procedures (1983) are the following: 

Speakers are only allowed to claim what they believe, and if they attack statements or 

norms outside of the initial discussion matter, they need to give a reason. Arguments 

are the only way of reaching agreement, and cooperative communication of all 

participants is necessary to reach a decision.  
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In the mathematics classroom, students sometimes make claims without being 

convinced of their truth, looking for their teacher’s evaluation of validity. In game 

situations, on the other hand, claims are made according to the players’ best 

hypothesis, intrinsically motivated by the desire to win. If the rules of the game do not 

allow for any activity but hypothetically considering logical implications, reasons are 

the only available way of dealing with the situation.  Topics which are outside of the 

game content are unlikely to be introduced into the discussion while playing a game, 

because the validity of the rules is strictly limited to the game setting. In the two rounds 

preceding the task, the opponents were responsible for checking the validity of claims. 

The teacher did not play a role; true and false was exclusively defined by the students. 

This independence transferred to the task situation: The students trusted their 

argumentation and did not require feedback from the teacher once they were convinced 

they had found the right number. Durand-Guerrier et al. (2012) pointed out how 

conjecturing can motivate students to look deeper into logical structures. In a game 

situation, the desire to win can motivate students to find good arguments and make 

conjectures. In the competitive mode the finding of arguments is practiced, whereas 

the fictional task promotes the movement from a strategic desire to win towards an 

internal motivation to cooperate. This cooperative communication situation creates 

ideal preconditions for argumentation as a procedure. 

Argumentation as a product 

Arguments are the products of argumentation processes and can be examined from a 

logical point of view. Habermas (1983) states rules for the logical structure of 

arguments: No speaker may contradict himself, every speaker who uses a warrant for 

an inference in one case needs to be willing to use this warrant in analogous cases, and 

different speakers may not use the same expression with varying meanings.  

In most argumentations, the warrants used remain implicit. In everyday interaction we 

usually assume that our conversation partners share the knowledge from which the 

warrants arise. In mathematical argumentation, it is common to leave out inferential 

steps if the reader can easily fill the gaps. For students, however, it is not always 

obvious which knowledge counts as shared and how to find arguments. In logical 

games, there is not only a fixed set of rules but also a limited number of outcome 

possibilities. Analogous cases are easily identified and contradictions are easy to see. 

Context complexity as described by Douek (2002) is reduced: time and space are 

irrelevant, the sources of arguments are clearly defined by the game’s rules and 

structure, and frame changes between the abstract rules and the concrete situation are 

easily undertaken. In the task, a further reduction of complexity is achieved by giving 

the same situation to all students. This way, communication is facilitated.  

Although the game is not directly connected to any mathematical content, the mode of 

reasoning used is essential for the learning of mathematics. General inference rules are 

used to deduce hypotheses from the data given on the worksheet. The conclusions the 

students arrive at are certain as long as we assume that all players act according to the 

instructions. In his work about proving, Jahnke (2007) has established the dependence 
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of statements on hypotheses as characteristic for mathematical argument. The analysis 

of the situation at hand has shown that the warrants applied by the students to create 

arguments were equivalent to the rules of the game. Furthermore, the available data to 

arrive at conclusions was limited by the game setting presented to all students. This 

creates an ideal situation for the development of argumentation. 

WHAT IS THERE TO LEARN FROM LOGICAL GAMES? 

Proof is an essential component of academic mathematics, and so the products of 

argumentation have often been in the focus of mathematics education research. 

However, if we want to take a closer look at the products, we might have to look more 

closely at what Habermas calls ‘processes’ and ‘procedures’ as well. Habermas’ theory 

of communicative action does not specifically focus on the mathematics classroom but 

on how argumentation spontaneously develops in society. If we want to include more 

students in argumentation, taking a closer look at Habermas’ criteria for when 

individuals engage in argumentation can be a helpful means. 

Logical games may help to establish a situation where force from outside is excluded 

and a cooperative mode of communication is predominant. In this environment, 

argumentation can be practiced in a meaningful and motivational way. Especially for 

students who are not used to argumentation, this presents a good opportunity to 

develop and practice their reasoning skills. In a game situation, all participants have 

equal power, rights and duties, and the same limitations seem true for everyone. In the 

light of social imbalances whose high impact on mathematical argumentation 

Knipping (2012) has pointed out, games could present one way of overcoming 

problems.  

Another clear advantage of game situations is their clarity about applicable warrants 

and about the scope of data that can be used as a reference. The concrete and the 

abstract are tightly linked in the game situation, because the abstract rules guide the 

argumentation in a concrete situation. The steps from data to conclusion in a logical 

game, which one student makes, are easily comprehensible for the other participants in 

the situation. Despite the easy construction of arguments in this structured game 

context, the conclusions are not obvious. Logical games are often designed so that 

logical thinking and arguments with several intermediate steps are necessary to arrive 

at a conclusion. The products arising from these situations are likely to be sophisticated 

arguments.  

Last but not least, the motivation to win a game by producing the cleverest argument 

creates a positive atmosphere in the classroom. Children are fascinated by games in 

general, and if these games contain argumentation they may become even more 

interested in the search for the best argument, which is so typical for the science of 

mathematics.  
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TOWARD BUILDING A THEORY OF MATHEMATICAL 

MODELLING 

Jennifer A. Czocher 

Texas State University 

 

This study utilized an innovative data analysis approach to examine how engineering 

undergraduates engaged in mathematical modelling. Individual modelling routes were 

constructed via modelling activity diagrams and were used to critically examine the 

theoretical framework. Implications for the theoretical model are offered along with 

implications for future research. 

The purpose of this study is to contribute to the growing body of work indicating that 

the mathematical thinking which supports mathematical modelling is not regular and 

cyclic, but is instead idiosyncratic and context-dependent. Theories of how individuals 

engage in mathematical modelling – the practice of combining mathematical and 

nonmathematical knowledge to develop mathematical explanations for natural 

phenomena – assert regularities in the construction of mathematical models. In 

particular, claims have been made that the process is cyclic and iterative, involving a 

sequence of stages of model construction and mathematical activities that transform 

them (Blum & Leiß, 2007). Others suggest that this may not be the case (Ärelebäck, 

2009; Borromeo-Ferri, 2007). As the next step in developing a model of individuals’ 

mathematical modelling activity, the existing theory must be evaluated in light of a 

broader observational base and analytic techniques. Thus, the theory of model 

construction was adopted both as a theoretical framework to guide data collection and 

analysis and as a research framework. 

This study is a close, systematic inspection of the mathematical thinking that 

constitutes the activities involved in mathematical modelling. Two questions guided 

task selection and data analysis: (i) Is mathematical modelling a regular, quasiperiodic 

process? (ii) How do individuals engage in mathematical modelling tasks? 

LITERATURE REVIEW AND THEORETICAL FRAMEWORK 

This study uses the theory of model construction as a research framework and as a 

theoretical framework. Mathematical modelling has been theorized as an iterative, 

cyclic process that renders a real world problem as a mathematically well-posed 

problem that is then analysed mathematically and its solution interpreted in terms of 

real world constraints. The model is then validated against real-world observations and 

rejected or revised. Typically, models begin as crude representations or explanations 

and become more detailed and sophisticated after multiple iterations of this process. A 

schematic describing the process is given in Figure 1 (Blum & Leiß, 2007). The 

mathematical modelling cycle (MMC) is a series of six stages of model construction 

(stages [a] – [f]) sequentially linked by a series of six transitions (transitions [1] – [6]). 
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Tables 1 and 2 give brief descriptions of each of the stages and transitions among them. 

The MMC was adopted as theoretical framework for this study. 

 

Figure 1: The mathematical modelling cycle (Blum & Leiß, 2007) 

Stage of Model Definition 

[a] real situation  situation, as observed in the world 

[b] situation model conceptual model of problem 

[c] real model idealized version of the problem (serves as basis for 

mathematization) 

[d] mathematical model model in mathematical terms 

[e] mathematical results answer to mathematical problem 

[f] real results answer to real problem 

Table 1: Stages of Model Construction 

 

Transition Captures Sample Indicator 

[1] understanding forming an idea about what 

the problem is asking for 

reading the task 

[2] simplifying & 

structuring 

identify critical components of 

the problem situation 

making assumptions to 

“simplify” the problem 

[3] mathematizing represent the idealized real 

model mathematically 

writing mathematical 

representations of ideas 

[4] working 

mathematically 

mathematical analysis explicit algebraic or arithmetic 

manipulations 

[5] interpreting recontextualizing the 

mathematical result 

speaking about results in context 

of the problem 

[6] validating verifying results against the 

real world 

implicit or explicit statements 

about the reasonableness of the 

answer 

Table 2: Transitions among stages in the modelling process 
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Using a similar theoretical framework, Borromeo-Ferri (2007) suggested individual 

modelling routes as a means for documenting individuals’ cognition during 

mathematical modelling. An individual modelling route is “the individual modelling 

process on an internal and external level,” (p. 265) though only visible modelling 

routes (verbal utterances or external representations) can be observed. 

Borromeo-Ferri’s individual modelling routes took the form of arrow diagrams which 

traced the modeller’s work through the modelling cycle. Findings suggested that 

modelling routes are idiosyncratic rather than cyclic as predicted by theory. 

Additionally, it was suggested that a change in representation might aid in 

understanding how individuals combined their mathematical and nonmathematical 

knowledge. 

Ärelebäck (2009) adapted problem solving activity diagrams (Schoenfeld, 1985) to 

create Modeling Activity Diagrams (MADs) in order to study groups’ modelling 

activity. MADs map a modelling event to a staff where each line is colour-coded to the 

modelling transition that leads the line. The result is a concise graphical representation 

of model construction with the advantage of providing chronological structure to the 

modelling activity.   

The MADs track the length of time that the solver(s) were engaged in each activity. 

There are two drawbacks to this approach. First, the researcher cannot precisely 

determine when a particular transition begins or ends. Second, it is unclear how the 

time unit is meaningful because duration of the transition may not correspond to its 

meaningfulness mathematically or to its import to modelling progress. For example, if 

an individual spends a long time working mathematically, it may indicate a task with 

many steps to analysis; it may indicate an individual’s difficulty in carrying out that 

analysis; or it could indicate that the individual paused to think about something else 

though outwardly he appeared to be on task. To further complicate matters, an 

individual may be engaged in more than one activity simultaneously or not visibly 

engaged in any activity. Both issues are important to consider because interpretations 

of the MADs are highly sensitive to the grain size of analysis and to whether verbal and 

written externalizations of the model are treated equivalently.  

This study responds to Borromeo-Ferri’s call for examining modelling routes and it 

uses MADs to do so. By reducing the grain size of the analytic unit and treating verbal 

and written externalizations of the mathematical model with equal weight, analysis of 

individual modelling routes and MADs can strengthen theoretical models of 

individuals’ mathematical thinking during mathematical modelling. 

METHODOLOGY 

Participants were four engineering majors enrolled in a course on differential equations 

at a large US Midwestern university. A calculus screening test based on the Calculus 

Concept Inventory (Epstein, 2006) was administered to volunteers and four 

participants were selected such that two had high performance and two had low 

performance. The individuals were purposefully selected to maximize variation in 
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their backgrounds and ability levels. All participants were male: Mance (sophomore, 

environmental engineering, low performance), Trystane (sophomore, mechanical 

engineering, low performance), Orys (freshman, chemical engineering, high 

performance), Torrhen (freshman, electrical engineering, high performance). 

Seven one-on-one, semi-structured, task-based interviews and one follow up member 

check interview were conducted. The goal of each primary interview was to elicit 

modelling activity. Interview techniques were drawn from experiment principles such 

as cross-fertilization and thought experiments (Brown, 1992). Nineteen tasks were 

designed to elicit the stages and transitions of the MMC and were developed through 

an iterative process starting with gathering modelling tasks from textbooks and 

research papers, mapping expected student responses against the MMC, and then 

review by a panel of mathematics educators and mathematicians. Many were solvable 

through multiple methods ranging from arithmetic to differential equations. Fourteen 

tasks were administered and 7 eliciting all transitions (some of the 14 focused on only 

one) were used for analysis. 

Interviews were video recorded, transcribed, and reduced to MADs in the following 

way. The unit of analysis was one student working on one task, termed an event. The 

transcript of each event was parsed into a series of mathematically complete verbalized 

or written ideas. Using the method of constant comparison, a rubric of indicators for 

each transition activity in the MMC was developed and these indicators were applied 

to each unit. Sample indicators are given in Table 2. 

The MADs were constructed in MATLAB as two dimensional graphs. Time (in 

seconds) is along the horizontal axis and transitions from the MMC along the vertical 

axis. Each transition was assigned a colour and vertical position. Each analytic unit 

was assigned the ordered pair (timestamp, transition). In this way, interview protocols 

were reduced to individual modelling routes represented as MADs (Figures 2 – 4). 

Each coloured mark represents when that particular transition between two stages of 

model building began. Elongated marks are artefacts of the scale do not indicate the 

length of time an individual was engaged in an activity. This serves to emphasize 

sequencing of transitions through the MMC, when the MADs are read left-to-right, 

rather than relative lengths of time spent executing each activity.   

Each event was regarded as a product of some configuration of personal experiences, 

mathematical knowledge, and nonmathematical knowledge. These configurations 

were then examined for regularities across events and for divergences from predictions 

of the MMC. To accomplish the latter, an “ideal” MAD (Figure 2) was generated from 

the idealized MMC. 
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Figure 2: MAD corresponding to the MMC 

RESULTS 

This section presents the findings of a cross-event analysis of all MADs, but due to 

space constraints, the MADs for only one task, the Falling Body Problem (Figure 3 and 

4), are displayed. This task was chosen because its MADs most clearly show each of 

the five deviations of the data from theoretical predictions. The task was: On 

November 20, 2011, Willie Harris, 42, a man living on the west side of Austin, TX died 

from injuries sustained after jumping from a second floor window to escape a fire at 

his home. What was his impact speed? 

This was a standard dynamics problem (a critical variable is time) from physics and 

calculus solvable using kinematics, energy, or first-order differential equations. Mance 

used kinematics and made only one pass through the modelling cycle. In his MAD 

(Figure 3), each of the transitions fades in and out over time. That is, 

simplifying/structuring ceased as mathematizing took over and mathematizing faded 

out as working mathematically dominated. Torrhen, Trystane, and Orys made multiple 

passes through the modelling cycle as they changed their approaches by considering 

the effect of air resistance. Trystane refined his model multiple times, changing his 

conceptual model from energy to kinematics to differential equations, ultimately 

considering variables such as force-due-to-drag and surface area of the falling object. 

For all students except Mance, understanding, simplifying/structuring, and validating 

were exhibited frequently and consistently throughout the MADs. 

The MADs provide an overview of an individual’s modelling activity. The ideal MAD 

(Figure 2) exhibits a sawtooth pattern corresponding to the individual traversing the 

MMC over and over again as he adjusts the model to make it more accurate. 

Considering the MAD as encoding information about the individual’s mathematical 

thinking during modelling, then this pattern is a signal and deviations from it are noise. 

Analysis revealed five deviations from theoretical prediction and possible reasons for 

the noise are discussed below. 
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Figure 3: MADs for Mance (left) and Torrhen (right) 

 

Figure 4: MADs for Orys (left) and Trystane (right) 

First, the MADs show that an individual’s movements are not solely “forward” in the 

modelling cycle. The individual may go back to consider previous stages of the model, 

may consider multiple stages simultaneously, or may skip transitions altogether. For 

example, at 600s, Torrhen was considering important variables and relationships while 

he is mathematizing them and at around 1000s, he rereads the problem statement 

(understanding) but returned directly to working mathematically without exhibiting 

the transitions in between. 

Second, the sawtooth pattern is present, but noisy and spread out over time. For 

example, Mance’s MAD progresses through the transitions in the MMC over the 900s, 

but is neither linear nor cyclic. Mance made corrections to his mathematical work, but 

did not revise his model. When revisions occur, they appear as bands of activity rather 

than neat, linear, sequential steps of a sawtooth pattern. The macroscopic banding 

structure is most clear in Trystane’s MAD. Trystane’s MAD exhibits three bands (0 – 

300s, 400 – 900s, and 1000 – 1400s), but they are difficult to distinguish because 

understanding, simplifying/structuring, and validating occur throughout the MAD. 

Third, understanding activity is present throughout the MADs; its appearance does not 

correspond to the start of a cycle. This is visible in Torrhen’s, Orys’s, and Trsytane’s 

MADs. The most common source of this noise was the student returning to read the 

problem statement. Some instances could be considered monitoring because the 
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individual compared his goal or subgoal to the task. In other instances, the problem 

statement was used to find more information for the simplifying/structuring phase. 

Fourth and fifth, there is increased presence of simplifying/structuring and validating 

activities. These features are evident in all of the MADs. Both transitions typically 

occurred throughout the MADs. In MADs presented here, with the exception of 

Mance, they occurred throughout each pass through the MMC. Taken together, this 

suggests that the individuals were consistently checking throughout modeling whether 

the variables and relationships assumed to be important in the model were necessary 

and sufficient. That is, it was not an activity that occurred only at the end of a cycle.  

Validating often occurred at sites where there were no real results to verify. For 

example, Torrhen checked the accuracy of a computation at 200s prior to obtaining a 

result to evaluate in terms of the real world. At 100s, Orys engaged in validating 

activity immediately after reading the task when he questioned the legitimacy of the 

task itself asserting “most people would survive from jumping from a second floor 

window.” The individuals were indeed validating other aspects of their models and 

how real world information might relate to their models. A focused investigation is 

necessary to determine the nature of the role of validating in mathematical modelling 

and in particular its relationship to simplifying/structuring. 

DISCUSSION AND CONCLUSIONS 

Analysis shows that the mathematical thinking involved in mathematical model 

construction is not sequential nor quasi periodic. The macroscopic structure of the 

MADs echo the idealized MMC. However the kind and quantity of deviations of the 

observed individual modelling routes from the model’s predictions suggest that there 

are critical phenomena which are unaccounted for by the theoretical framework.  These 

findings confirm prior conjectures that “the view presented on modelling as a cyclic 

process is highly idealised, artificial, and simplified” (Äreleb ck , 2009, p. 353). This 

is expected, since models are representations of simplified versions of reality. These 

discrepancies should lead to revision of the MMC. 

There is tension between a desire for an accurate, predictive model and a model that is 

too complex or situation-specific to be of general use.  Zbiek and Connor (2006) 

responded to the irregularities within students’ work by introducing more stages and 

transitions which may collapse when an individual is facing a routine task. Collapsing 

would be consistent with the appearance of Mance’s MAD for the Falling Body 

Problem. The MMC accurately describes the practice of modelling, but requires 

additional consideration to account for factors like individuals’ prior knowledge, 

experiences modelling, and the purpose of the model.  

The MADs and their subsequent analysis are a product of how the list of indicators 

operationalized the transitions in the MMC and grain-size of the unit of analysis. These 

modifications were necessary to capture the students’ mathematical work and thinking, 

especially in the advanced mathematical settings not yet explored with the MMC.  In 
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particular, working mathematically was defined broadly to include observations like 

using deductive reasoning; validating was redefined in terms of indicators instead of 

by the MMC. One avenue for future research is to use similar analytic techniques to 

examine the nature and role of validating activity and how it interacts with other 

mathematical activities. Another is to use the MADs to investigate where validating 

and simplifying/structuring occur in the modelling sequence as a means to examine 

how individuals combine mathematical and nonmathematical knowledge. 

The goal of this line of research is to model individuals’ mathematical thinking as they 

conduct mathematical modelling. The MMC provides an overview of its macroscopic 

structure. There is enough variation across tasks and individuals that we cannot claim 

that a cyclic, quasiperiodic description provides the only theoretical view of how 

individuals combine mathematical and nonmathematical knowledge. Mathematical 

modelling is a complex process and there is much work to be done to build a 

comprehensive theory of mathematical modelling. 
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“THAT SOUNDS GREEK TO ME!” 

PRIMARY CHILDREN’S ADDITIVE AND PROPORTIONAL 

RESPONSES TO UNREADABLE WORD PROBLEMS 

Tine Degrande, Lieven Verschaffel, Wim Van Dooren 

Centre for Instructional Psychology and Technology, University of Leuven, Belgium 

 

Both additive and proportional reasoning are types of quantitative analogical (QA) 

reasoning. We investigated the development and nature of primary school children’s 

QA reasoning by offering two missing-value word problems to 3
rd

 to 6
th
 graders. In one 

problem, ratios between given numbers were integer, in the other ratios were 

non-integer. These word problems were written in the Greek alphabet, and thus totally 

incomprehensible to the children. QA answers considerably increased with age. 

Younger children more frequently chose additive relations, whereas older children 

chose more proportional relations. The nature of the ratios between the given numbers 

also affected the answers, particularly in 5
th

 grade. 

THEORETICAL AND EMPIRICAL BACKGROUND 

Solving proportional missing-value problems 

In primary school, children frequently encounter proportion problems, mainly with a 

missing-value structure (Cramer & Post, 1993), in which three magnitudes are given 

and a fourth one has to be found by identifying the multiplicative relation between two 

given magnitudes and applying this relation to the third given magnitude (Kaput & 

West, 1994; Vergnaud, 1997). To illustrate the structure of missing-value word 

problems, and the two main approaches to solve them, we use the ‘placemat problem’ 

of Kaput and West (1994): “A restaurant sets tables by putting seven pieces of 

silverware and four pieces of china on each placemat. If it used thirty-five pieces of 

silverware in its table settings last night, how many pieces of china did it use?” (p. 

254). Proportional reasoners using the external ratio assume a proportional relationship 

between silverware and china pieces (i.e. 7 ∙ 4/7 = 4), and apply this relationship to the 

third magnitude (i.e. 35 ∙ 4/7 = 20). Proportional reasoners using the internal ratio 

assume a proportional relationship between the first and second number of silverware 

pieces (i.e. 7 ∙ 5 = 35), and apply this relationship to the third magnitude (i.e. 4 ∙ 5 = 20).  

From 4
th

 grade on, children get ample instruction in, and practice with, the solution of 

proportional missing-value problems in a diversity of contexts (such as equal sharing, 

constant price, or uniform speed) (Vergnaud, 1983, 1988). However, previous research 

(e.g., Hart, 1988, Kaput & West, 1994; Karplus, Pulos & Stage, 1983) has shown that 

in the beginning children frequently give additive solutions instead of proportional 

ones. In the aforementioned ‘placemat problem’, those children would assume an 

additive relationship between pieces of silverware and pieces of china (i.e. ‘the 

external difference’, 7 – 3 = 4), and apply it to the third known magnitude (i.e. 35 – 3 = 
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32). Additive reasoners could also assume an additive relationship between the two 

numbers of silverware pieces (i.e. ‘the internal difference’, 7 + 28 = 35), and apply this 

to the third magnitude (i.e. 4 + 28 = 32). Studies have pointed out that children use 

additive solution methods in proportional problems more frequently when the numbers 

in the problem form non-integer ratios (Kaput & West, 1994; Karplus et al., 1983; 

Vergnaud, 1983, 1988).  

Solving additive missing-value problems 

Of course, not every missing-value problem should be solved by means of proportional 

reasoning. In some missing-value word problems, another type of reasoning (e.g. 

quadratic, or exponential) is required. In this paper, missing-value problems where 

additive reasoning is required are of specific interest. An example is the one that 

Cramer, Post and Currier (1993) gave to pre-service elementary education teachers: 

“Sue and Julie were running equally fast around a track. Sue started first. When Julie 

had run 3 laps, Sue had run 9 laps. When Julie completed 15 laps, how many laps had 

Sue run?” (p. 159). Here, the relation is an additive one (i.e. a relation of difference). 

Sue is 6 laps ahead of Julie, so when Julie ran 15 laps, Sue ran 15 + 6 = 21 laps.  

We are not aware of any mathematics curriculum where attention is spent to solving 

additive missing-value problems. Still, this could be valuable, given that (analogously 

to our overview of the incorrect use of additive reasoning to proportional 

missing-value problems as given above) many children erroneously use proportional 

solution methods to additive missing-value word problems. For instance, the most 

frequent erroneous answer to the aforementioned runner problem of Cramer et al. 

(1993) is “15 ∙ 3 = 45”. Previous research pointed out that the improper use of 

proportional reasoning is also strongly determined by task and subject characteristics, 

similar to those for the improper use of additive strategies (Van Dooren, De Bock, 

Hessels, Janssens, & Verschaffel, 2005; Van Dooren, De Bock & Verschaffel, 2010): 

First, the application of proportional methods occurs more frequently when the 

numbers in the word problem form integer ratios, and, second, the overuse of 

proportional methods to additive problems tends to increase with age during 

elementary school and the first years of secondary school. Moreover, between the stage 

where children overuse additive methods on proportional problems (as described in the 

previous paragraph) and the stage where they overuse proportional methods on 

additive problems, there is a stage of simultaneous overuse of additive and 

proportional methods. Children in this intermediate stage give additive answers to 

word problems with non-integer ratios and proportional answers to problems with 

integer ratios, independent of their actual mathematical structure. In Flanders 

(Belgium), this intermediate stage typically occurs in 5
th

 grade of primary school.  

Similar despite differences: quantitative analogical reasoning  

Most research on the development of proportional reasoning considered children’s 

additive reasoning as an indicator of not having reached the stage of proportional 

reasoning yet (or at least not yet completely). While we agree with this conclusion, a 
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basic tenet of the present paper is that children who reason additively in those 

proportional word problems have already taken a valuable step in their development 

towards proportional reasoning, as compared, for instance, to children who just add all 

the given numbers. Kaput and West (1994) already emphasized that children who 

improperly use the additive approach for proportional reasoning problems of the 

missing-value type, still “distinguish the quantities, construct units, and correctly 

identify the unknown quantity” (p. 251). In other words, improper additive reasoners 

demonstrate insight into the different known and unknown magnitudes and the fact 

that these are analogously related. They focus on the quantitative relation between two 

magnitudes that are given in the word problem, and apply this relation to a third given 

magnitude in order to calculate the missing one. So, regardless of the correctness for a 

given problem, additive and proportional missing-value reasoning have in common 

that children focus on the analogical relations between the four magnitudes in the word 

problem. Thus, both additive and proportional missing-value reasoning are types of 

quantitative analogical reasoning (hereafter abbreviated as QA reasoning). 

RATIONALE 

In this study, we applied a novel approach to investigate the development of QA 

reasoning, namely by giving children word problems that were unreadable to them. We 

will explain the rationale for this – at first sight indeed strange – methodological 

choice. In all aforementioned previous studies into children’s choice for an additive or 

proportional solution method, word problems with an underlying mathematical model 

that could be determined clearly and unquestionably by carefully reading and 

processing the word problem, were used. In the current study, besides the development 

of children’s quantitative analogical reasoning per se, we also wanted to investigate 

children’s choice for an additive or proportional approach in situations where they 

were not directed whatsoever by the mathematical structure of the word problem. This 

allowed us to get a view on children’s general and spontaneous inclination towards QA 

reasoning, and, in case such reasoning occurred, which type of QA reasoning then 

would be used (additive or proportional). For this reason, we used an atypical kind of 

items, namely mathematically neutral word problems. We designed such neutral 

problems by posing them in Greek literal symbols which were completely inaccessible 

to the (Flemish) children involved in our study. The numbers were of course accessible 

as they were presented in their usual Arabic form. Still, children were asked to try to 

solve these ‘incomprehensible’ word problems. Our intention was thus to find out to 

what extent they would look for a quantitative analogical relation between the given 

numbers, and if so, if they would opt for an additive or a proportional one.  

RESEARCH QUESTIONS AND HYPOTHESES 

Our first research question was: To what extent do children apply quantitative 

analogical reasoning in neutral word problems, and how is this affected by age? 

Because of elementary school children’s increasing classroom experiences with 

solving missing-value word problems, we expected that even those neutral word 
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problems would elicit a substantial amount of QA reasoning (hypothesis 1), and that 

this amount would increase with age (hypothesis 2). 

Our second research question was: What is the nature of children’s QA reasoning, and 

how is it affected by age and by number characteristics of the neutral word problem? 

Given that both additive and proportional types of answers to missing-value problems 

were observed in previous research, we hypothesized that we would observe both types 

of QA answers to our neutral word problems (hypothesis 3). Furthermore, based on the 

aforementioned previous research results about clearly additive and proportional word 

problems, we anticipated that among the QA answers, there would be a development 

with age, from a dominance of additive answers towards a dominance of proportional 

answers for neutral word problems too (hypothesis 4). We also expected a reliance on 

the characteristics of the numbers in the word problem. More specifically, we 

predicted that problems containing non-integer ratios would lead to a higher number of 

additive answers than problems with integer ratios, and that the latter problems would 

lead to a higher number of proportional answers than problems with non-integer ratios 

(hypothesis 5). Finally, we anticipated that the sensitivity to the numbers in the 

problem would be the strongest in the intermediate stage of children’s development, 

between the initial stage, with mainly additive answers, and the final stage, wherein 

mainly proportional answers were expected (hypothesis 6).  

METHOD 

Participants were 325 children from 3
rd

 to 6
th
 grade from two primary schools in 

Flanders (88 3
rd

 graders, 78 4
th

 graders, 81 5
th

 graders and 78 6
th
 graders). The number 

of boys and girls was approximately equal in the sample. The children solved two 

neutral word problems, that will be the focus of the current paper. These neutral word 

problems were part of two larger paper-and-pencil tests. Each of these tests contained 

one neutral word problem, along with some buffer items (related to various parts of the 

children’s curriculum). Both neutral word problems were stated in Greek literal 

symbols, but the numbers were given in the usual Arabic form as shown in Figure 1. 

Flemish children could absolutely not read nor understand the text of these problems, 

so neither the proportional nor the additive solution method     nor any other solution 

method     could be considered as correct or incorrect. The two word problems only 

differed with respect to the numbers used in the problem: the given numbers formed 

integer (internal and external) ratios (e.g., 4, 16 and 8 as given magnitudes) for one 

problem, and non-integer (e.g., 4, 14 and 6 as given magnitudes) for the other one. To 

minimize the influence of the specific numbers in both problems, several sets of 

numbers forming integer and non-integer ratios were used.  

The two tests were administered on two separate moments, with one week in between. 

The researcher told children that the test was aimed at assessing general mathematics 

achievement. For the neutral problems the test merely mentioned that the problems 

were in Greek but that children were nevertheless invited to try to fill them in. 
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This word problem is a Greek one. Try to fill in a number on the dotted line. 

 








 

Answer: 

 



 

Table 1: Percentages of quantitative 

analogical (QA), other and sum-of-three 

answers in different grades. 

 

 

 

 

 

 

Figure 1: ‘Greek’ word problem. 

RESULTS 

Quantitative analogical reasoning 

In a first step of the analysis, the responses to the two neutral word problems were 

classified as ‘QA answers’ when either proportional or additive operations were 

executed on given numbers (i.e. calculating x in b / a = x / c or in b – a = x – c), or as 

‘other answers’ when the given numbers were combined in another way than specified 

above, or when the problem was left unanswered. 

While coding the responses, a third category, namely ‘sum of three’ answers was 

added for coding cases wherein the three given numbers were added (i.e. calculating x 

as x = a + b + c). This solution method is not of specific interest for the present study 

(as it is not a QA answer in the sense explained above), but was still included because a 

large number of children had used it. 

Table 1 gives an overview of the 

percentage of all QA, other and 

sum-of-three answers in different 

grades. This table reveals that 20.5% 

of all answers were QA answers. 

Another 42.6% was of the 

sum-of-three type, and the remaining 

36.9% were other answers. So, in line 

with hypothesis 1, we found a 

substantial number of QA answers, 

especially given that the two neutral 

word problems were completely 

incomprehensible to these children. 

However, even more interesting is the effect of age on the percentage of QA answers. 

A generalized estimating equations analysis revealed that children’s age affected their 

answers. The percentage of QA answers significantly increased from 9.1% in 3
rd

 grade 
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Table 2: Percentages of additive and 

proportional answers by grade and type 

of numbers. 

to 41.1% in 6
th

 grade (χ²(3)= 43.858, p < .001), which was in line with our second 

hypothesis. As shown in Table 1, the initially low percentage of QA answers was due 

to the remarkably large percentage of sum-of-three answers. Almost half of the 

answers (48.9%) was characterized as such in 3
rd

 grade, and still almost a quarter in 6
th
 

grade (χ²(3)= 24.579, p < .001). The percentage of other answers also decreased with 

age, from 42.0% in 3
rd

 grade to 35.9% 6
th

 grade, but this decrease was much smaller 

and non-significant.  

Proportional or additive quantitative analogical reasoning 

In a second step, we focused on the subset of answers being coded as QA answers 

(20.5% of all answers, i.e. 133 out of 650), to answer our second research question 

about the precise nature of QA reasoning. All QA answers were further categorized as 

‘proportional answers’ (when multiplicative operations were executed on given 

numbers, i.e. calculating x in the expression b / a = x / c) or ‘additive answers’ (when 

additive operations were executed on given numbers, i.e. finding x in b – a = x – c). 

Table 2 gives an overview of the percentage of additive and proportional answers. As 

expected (hypothesis 3), the neutral word problems elicited both proportional and 

additive answers. Of all QA answers, half were additive (49.6%), whereas the other 

half were proportional (50.4%). 

Moreover, the percentage of additive 

and proportional answers differed 

depending on children’s grade and on 

the nature of the numbers. The results of 

a generalized estimating equations 

analysis indicated, first, that the 

percentage of proportional answers 

significantly increased with age, from 

25.0% in 3
rd

 grade, to 64.1% in 6
th

 grade 

(χ²(3)= 884.927, p < .001, see Table 2). 

Accordingly, the percentage of additive 

answers significantly decreased from 

75.0% in 3
rd

 grade to 35.9% in 6
th

 grade. 

These findings were consistent with 

hypothesis 4. Second, the nature of the 

numbers affected the kind of QA 

answers, as expected in hypothesis 5. 

The integer problem evoked 

significantly more proportional answers 

than the non-integer problem (69.4% 

vs. 27.9%, χ²(1)= 1349.979, p < .001). 

Third, the number effect interacted 

significantly with the effect of grade 

(χ²(2)= 452.825, p < .001), which was in 
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line with hypothesis 6. The number effect was the largest in 5
th
 grade (leading to a 

difference of 51.7% between the percentage of proportional answers to the integer and 

non-integer variant), and decreased towards 6
th
 grade (39.1%). However, the 

difference in 3
rd

 grade (40.0%) and 4
th

 grade (20.0%) was not reliable, due to the very 

low absolute number of QA answers.  

CONCLUSION AND DISCUSSION 

This study focused on children’s quantitative analogical (QA) reasoning in word 

problems that could be considered neutral in terms of their underlying mathematical 

model, given the completely unknown alphabet and language in which they were 

posed. In a first step, we analyzed children’s tendency to give answers based on QA 

reasoning. This kind of analysis is rather unique, because previous research into this 

topic has mainly focused on either additive reasoning or proportional reasoning, 

without explicitly recognizing the common nature of these two types of reasoning. Our 

study indicated that the neutral word problems did elicit answers based on QA 

reasoning, in approximately one out of five cases. This percentage considerably 

increased with age. Consciously or not, older children more frequently looked for a 

relation between two given numbers in the word problem and applied this to the third 

number, in order to calculate a fourth one.  

The finding that children became more focused on quantitative relations relates to the 

notion of ‘spontaneous focus on relations’ (SFOR) introduced by McMullen, 

Hannula-Sormunen and Lehtinen (2013). However, they studied this SFOR tendency 

by means of non-explicitly mathematical tasks, whereas we conceptualized QA 

reasoning in the context of missing-value word problems which are clearly 

mathematical. Future research should study the relation between these two notions. 

In a second step, we investigated on which kind of quantitative relation the quantitative 

analogical reasoners relied. The same overall percentage of answers was additive or 

proportional, but the percentage of additive answers decreased with age, while that of 

proportional answers increased. Furthermore, problems with integer ratios evoked 

more proportional than additive answers, whereas there reverse was true for problems 

with non-integer ratios. This number effect was most prominent in 5
th
 grade.  

The explanation for our findings is still open for discussion, but it may at least partly be 

found in the current elementary mathematics curriculum. Children encounter in their 

elementary mathematics lessons a restricted and stereotyped diet of word problems, 

and are taught to solve them by recognizing the problem type and activating the 

arithmetic solution method that is associated with it (e.g., Verschaffel, Greer, & De 

Corte, 2000). The majority of word problems with a missing-value structure with 

which children are confronted must be solved by focusing on the proportional 

relations. Moreover, when proportional reasoning is introduced, problems typically 

first involve numbers forming integer ratios (Van Dooren et al., 2010). This way, it is 

not surprising that older children increasingly reason proportionally, and that children 
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connect superficial cues in the word problem (i.e. number characteristics) with 

concrete solution methods.  

Regardless of the fact that additive analogical reasoning often inappropriately occurs 

in proportional missing-value problems, it is still an important and valuable step in 

children’s development towards proportional reasoning. Additive reasoning is after all 

already a way of QA reasoning. Therefore, we suggest that both additive and 

proportional missing-value problems should be included in the elementary school 

curriculum, and that children repeatedly should be stimulated and helped to distinguish 

between them. 

References 

Cramer, K., & Post, T. (1993). Proportional reasoning. Mathematics Teacher, 86, 404-407.  

Cramer, K., Post, T., & Currier, S. (1993). Learning and teaching ratio and proportion: 

Research implications. In D. T. Owens (Ed.), Research ideas for the classroom: Middle 

grades mathematics (pp. 159-178). New York: Macmillan.  

Kaput, J. J., & West, M. M. (1994). Missing-value proportional reasoning problems: Factors 

affecting informal reasoning patterns. In G. Harel & J. Confrey (Eds.), The development of 

multiplicative reasoning in the learning of mathematics (pp. 235-287). New York: State 

University of New York Press.  

Karplus, R., Pulos, S., & Stage, E. (1983). Proportional reasoning of early adolescents. In R. 

Lesh & M. Landau (Eds.), Acquisition of mathematical concepts and processes (pp. 

45-89). New York: Academic Press. 

McMullen, J. A., Hannula-Sormunen, M. M., & Lehtinen, E. (2013). Young children's 

recognition of quantitative relations in mathematically unspecified settings. The Journal of 

Mathematical Behavior, 32, 450-460. 

Van Dooren, W., De Bock, D., Hessels, A., Janssens, D., & Verschaffel, L. (2005). Not 

everything is proportional: Effects of age and problem type on propensities for 

overgeneralization. Cognition and Instruction, 23, 57-86.  

Van Dooren, W., De Bock, D., & Verschaffel, L. (2010). From addition to multiplication … 

and back. The development of students’ additive and multiplicative reasoning skills. 

Cognition and Instruction, 28, 360-381. 

Vergnaud, G. (1983). Multiplicative structures. In R. Lesh & M. Landau (Eds.), Acquisition 

of mathematics concepts and processes (pp. 127-174). New York: Academic Press. 

Vergnaud, G. (1988). Multiplicative structures. In J. Hiebert & M. Behr (Eds.), Number 

concepts and operations in the middle grades (pp. 141-161). Reston, VA: Lawrence 

Erlbaum Associates & National Council of Teachers of Mathematics. 

Vergnaud, G. (1997). The nature of mathematical concepts. In T. Nunes & P. Bryant (Eds.), 

Learning and teaching mathematics: An international perspective (pp. 5-28). Hove, UK: 

Psychology Press Ltd. 

Verschaffel, L., Greer, B., De Corte, E. (2000). Making sense of word problems. Lisse, NL: 

Swets & Zeitlinger. 



2014. In Nicol, C., Liljedahl, P., Oesterle, S., & Allan, D. (Eds.) Proceedings of the Joint Meeting 2 - 369 

of PME 38 and PME-NA 36,Vol. 2, pp. 369-376. Vancouver, Canada: PME. 

ALGEBRA-RELATED TASKS IN PRIMARY SCHOOL 

TEXTBOOKS 

Eleni Demosthenous, Andreas Stylianides 

University of Cambridge 

 

Even though there is growing consensus for engaging primary students with early 

algebraic ideas, there is limited research knowledge about the relevant learning 

opportunities designed in textbooks. Textbooks are considered to play an important 

role in what is happening in classrooms, especially in educational contexts where 

classroom instruction relies heavily on textbooks. An analytic framework was 

developed to identify the opportunities designed in textbooks for engaging students 

with algebra-related tasks and to examine the respective guidance (or lack thereof) in 

the accompanying teacher guidebooks. The framework was used to analyse a primary 

textbook series for grades 4-6 and relevant findings are presented. Implications for 

textbook design, research, and practice are discussed in light of these findings. 

INTRODUCTION 

Algebra is seen as a gateway to higher mathematics, and both researchers and 

curriculum frameworks recommend that primary students should be offered learning 

opportunities that can prepare them for formal algebra learning at secondary school 

(e.g. Carpenter, Franke & Levi, 2003; NCTM, 2000; Stacey, Chick & Kendal, 2004). 

Even though the issue of which specific algebra-related topics are appropriate for 

primary students is not settled in the educational community, there is extensive 

reference to generalised arithmetic (e.g. Kaput, 2008), patterns and functions (e.g. 

NCTM, 2000), and problem solving and modelling (e.g. Kieran, 2004).  

While intervention studies showed that it is possible for primary students to 

successfully engage with early algebraic ideas (e.g. Carpenter et al., 2003), little is 

known about what is happening in ordinary primary classrooms in terms of algebra 

teaching and learning. Textbooks offer a way to investigate this issue, as they can 

influence what and how mathematics is taught and thus students’ learning experiences 

(Tarr, Chávez, Reys, & Reys, 2006). Indeed, the TIMSS 2007 study showed that, on 

average, 65% of the fourth grade teachers from the participating countries used 

textbooks as a primary basis for their lessons while 30% used textbooks as a 

supplementary resource (Mullis et al., 2008).  

Only few studies have investigated how textbooks promote algebra-related topics. A 

comparative study analysed how algebraic concepts are introduced and developed in 

five primary curricula: the Chinese, South Korean, and Singaporean curricula, and 

selected Russian and U.S. curricula (Cai, Lew, Morris, Moyer, Ng & Schmittau, 2005). 

They found that the main goal in all curricula was to deepen students’ understanding of 

quantitative relationships but the emphasis and approaches in achieving this goal 
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differed across curricula. Also, Hodgen, Küchemann and Brown (2010) analysed two 

textbooks in widespread use in lower secondary schools in England (one currently 

used and one from the 1970s) focusing on linear relations. They found that none of the 

textbooks exploited available research knowledge on the teaching and learning of 

algebra. Both of these studies examined the selected textbooks across some general 

dimensions such as their goals for algebra-related learning and their content 

organisation and coverage. Another approach would be to use a systematic unit of 

analysis such as the textbook task (Stylianides, 2009), and to examine all the textbook 

tasks in regard to their algebra-related content (or lack thereof). Such an examination 

could offer a good basis for inferences about the kind of learning opportunities offered 

to students in classrooms, especially in educational contexts whose teachers tend to 

follow closely the textbooks. 

Primary school teachers tend to recognise algebra-related tasks by the existence of 

letter symbolism or symbol manipulation (Stephens, 2008). Yet, this conception of 

algebra does not reflect the breadth of algebra-related topics currently mentioned in the 

literature. Considering that teachers’ use of textbooks depends not only on the 

opportunities designed in textbooks but also on teachers’ interpretations of these 

opportunities, it is important to explore also whether the accompanying teacher 

guidebooks offer some support to teachers to understand or appreciate the learning 

potential of algebra-related tasks in the textbooks. Indeed, the value of curriculum 

materials that aim to promote teacher learning alongside student learning is well 

elaborated in the literature (e.g. Ball & Cohen, 1996; Davis & Krajcik, 2005). 

This paper presents an analytic framework for investigating algebra-related tasks in 

primary school textbooks and the respective guidance (or lack thereof) in the 

accompanying teacher guidebooks. The framework was used to analyse the textbooks 

for the fourth, fifth and sixth grades in the Cypriot educational context. In this context 

there is a unique textbook series that is used in all state schools and teachers rely 

heavily on textbooks to plan and enact their teaching (Kyriakides, 1996). These two 

characteristics of the Cypriot educational context elevate the importance of a textbook 

analysis, as such an analysis can offer a good insight into the learning opportunities 

offered to students in Cypriot primary classrooms. 

ANALYTIC FRAMEWORK 

The development of the framework involved four stages. First, it was decided that the 

unit of analysis would be the textbook task, which is taken to be the smallest unit 

identified by a separate marker in a textbook page (Stylianides, 2009). Second, it was 

decided that algebra-related tasks would not be limited to tasks that involved the use of 

letters; this is because letter symbolism is considered to be neither a necessary nor a 

sufficient condition for algebraic thinking (Radford, 2010). Third, three categories of 

algebra-related tasks were originally identified by synthesising key definitions of 

algebra from the literature (Bednarz, Kieran & Lee, 1996; Kaput, 2008; Kieran, 2004; 
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NCTM, 2000) and were then refined after piloting. Finally, two codes were selected 

that would provide evidence about the respective guidance in teachers’ guidebooks. 

Algebra-related tasks were grouped into the following three categories according to the 

relations between numbers and quantities in the tasks: arithmetically-situated relations, 

rule-based relations and known-unknown relations. Arithmetically-situated relations 

tasks focus on the structure of arithmetic by attending to the behaviour of arithmetic 

operations and properties as mathematical objects and why they work. Also, these 

tasks could engage students in generalising these relations. This category of tasks 

corresponds to what is referred to in the literature as generalised arithmetic (Carpenter 

et al., 2003; Kaput, 2008). An example is a task that asks students to form a general 

expression for the commutative property of addition.  

Rule-based relations tasks focus on the relations within a dataset or between datasets. 

These tasks could engage students in forming a rule that applies for all the elements of 

the datasets, testing plausible rules, extending a rule to nearby and far away cases and 

generalising a rule. Also, these tasks could provide opportunities for working with 

equivalent representations of the same rule (e.g. verbal and algebraic expressions). An 

example is a task that asks students to generalise verbally the functional rule of a 

growing geometric pattern. This category of tasks relates with the study of patterns, 

functions, change and variation (Kaput, 2008; NCTM, 2000). The generalisation 

perspective on the introduction to algebra (Bednarz et al., 1996) includes topics that 

engage students in generalising activities such as numeric or geometric patterns which 

would belong to rule-based relations tasks according to this categorisation of tasks, and 

laws governing numbers which would belong to arithmetically-situated relations tasks. 

Known-unknown relations tasks focus on the relations between known and unknown 

quantities and numbers, and treat unknowns as objects (entities that stand on their own) 

rather than as processes. The nature of the relations range from simple direct relations 

to complex non-direct relations (i.e., relations for which there is no direct bridge 

between known and unknown). An example is the following story problem: ‘A farm 

has chickens and rabbits. We counted the heads and we found 27. We counted the feet 

and we found 78. How many are the chickens and how many are the rabbits?’ This 

category of tasks draws on the description of algebra as a cluster of modelling 

languages (Kaput, 2008) and the problem solving approach on the introduction to 

algebra (Bednarz et al., 1996). The potential of forming expressions and equations 

during engagement with the three categories of algebra-related tasks aligns with the 

purpose of generational activities as defined by Kieran (2004) (i.e., forming general 

expressions that arise from patterns and numerical relationships, and equations that 

represent problem situations). 

In investigating the guidance provided in the teachers’ guidebooks regarding the role 

of algebra-related tasks, it was examined whether these tasks were explicitly or non- 

explicitly identified. The code explicitly identified algebra-related task was used when 

there was an explicit reference to the task’s relationship with an algebraic idea as 

signified by the presence of at least one of the following key words in the commentary 
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for the task: algebraic symbols/thought/representations/equations, 

verbal/symbolic/algebraic generalisation, finding the rule/formula, general numbers, 

investigating relations between numbers/quantities, patterns, functions, arithmetic 

properties and relations, forming and solving equations, finding the unknown, 

problem-solving. The code non-explicitly identified algebra-related task was used 

when there was no such relevant key word or commentary in the teachers’ guidebook. 

For example, the two algebra-related tasks below (Figure 1) were both coded as 

rule-based relations tasks since they can engage students in extending the pattern to a 

far away case, but only Task 1 was coded as explicitly identified due to the presence of 

the key word ‘identifying pattern’ in the commentary for the task in the teachers’ 

guidebook. 

1. Observe the figures and find the number 

of cubes that will compose the 25th figure of 

this sequence. 

 

2. Draw the fourth figure and complete the 

table. 

 

 

(MEC Grade 5 Volume D, 1999, p.43) (MEC Grade 4 Volume C, 1998, p.80) 

Figure 1: Algebra-related tasks in students’ textbooks 

Inter-rater reliability was tested by comparing the coding of the primary rater (first 

author) with the codes of a second rater, who coded a subsample of 25% of the tasks in 

the textbooks of grades 4, 5 and 6. Two reliability values were calculated. The first 

reliability value concerned the decisions on whether or not a task in the subsample was 

algebra-related. The inter-rater agreement was kappa=0.82. The second reliability 

value concerned the decisions on assigning algebra-related tasks to the three categories 

described earlier. The second inter-rater agreement was kappa=0.84. 

FINDINGS AND DISCUSSION 

The framework was applied to the textbook series used in the Cypriot educational 

context in the three upper grades of state primary schools. It was found that 10.7% of 

the total number of tasks in the textbooks for the fourth, fifth and sixth grades 

(N=2814) were algebra-related. The specific percentages for grades 4, 5 and 6 were 

10.7%, 9.2%, and 16.7%, respectively. 

These findings suggest that algebra-related tasks seem to become more frequent in the 

sixth grade textbooks. Also, 43.4% of the total identified algebra-related tasks were 
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found in this grade (see Table 1). This is possibly because grade 6 is the last one before 

secondary school and students’ preparation for algebra gets more priority then than in 

the previous grades, which may focus more on the development of students’ fluency 

with arithmetic calculations. Another hypothesis is that sixth grade students might be 

considered more developmentally ready to engage with algebra-related tasks than 

younger students. However, this hypothesis is inconsistent with the observed decrease 

of algebra-related tasks from fourth to fifth grade (as shown in Table 1). Of course this 

inconsistency may be a byproduct of the specific definition used in this study to 

identify algebra-related tasks, which may differ from the textbook authors’ (working) 

definition of these tasks. 

Categories of 

algebra-related tasks 

Fourth grade 

(n=90, 29.8%) 

Fifth grade 

(n=81, 26.8%) 

Sixth grade 

(n=131, 43.4%) 

Arithmetically-situated 

relations (n=36, 11.9%) 

15.6 7.4 12.2 

Rule-based relations (n=128, 

42.4%) 

28.9 45.7 49.6 

Known-unknown relations 

(n=138, 45.7%) 

55.5 46.9 38.2 

Total 100 100 100 

Table 1: Distribution by percent of the three categories of algebra-related tasks across 

grades 

Opportunities for engaging with rule-based relations (42.4%) and known-unknown 

relations (45.7%) prevail in this textbook series. This possibly reflects a systemic view 

on mathematical development that focuses on these two categories of tasks while 

fewer opportunities seem to be designed for arithmetically-situated relations (11.9%). 

Table 1 shows further that opportunities for engaging with arithmetically-situated 

relations are more frequent in the fourth and sixth grades than in the fifth grade. Tasks 

that involve rule-based relations are increasingly more frequent while those that 

involve known-unknown relations decrease in frequency from grade four to grade six. 

This indicates that students have more opportunities to construct first notions of 

algebra relevant to known-unknown relations while they have more opportunities to 

develop ideas relevant to rule-based relations in the last two grades of primary school. 

Opportunities for students to engage with known-unknown relations and rule-based 

relations are desirable because they are likely to help students recognise the limitations 

of arithmetic problem-solving approaches and start familiarising themselves with 

making generalisations. 
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The low percentage of arithmetically-situated relations tasks indicates that there are 

relatively limited opportunities for students to attend to the structure of arithmetic and 

how that relates with algebra. Linchevski and Livneh (1999) mentioned that students’ 

difficulties with the structural properties of the algebraic system originate in a limited 

understanding of the number system. This difficulty is partly attributed to the lack of 

attention given to students’ awareness of the mathematical structure and of arithmetic 

operations as general processes during the learning of arithmetic (Booth, 1984). 

Table 2 shows that 84.1% of the tasks categorised as ‘algebra-related’ in this 

investigation were explicitly identified as such in the teachers’ guidebooks while the 

remaining 15.9% were not. For the non-explicitly identified tasks, there were no 

relevant key words or commentary in the teachers’ guidebooks. It is unknown if these 

tasks were actually intended by textbook authors to engage students with 

algebra-related topics, but in any case this lack of clarity leaves space for teachers to 

interpret in different ways the role of these tasks in the textbooks. 

Guidance in the teachers’ guidebooks 

for algebra-related tasks 

Fourth grade Fifth grade Sixth grade 

Explicitly identified (n=254, 84.1%) 66.7 88.9 93.1 

Non-explicitly identified (n=48, 15.9%) 33.3 11.1 6.9 

Total 100 100 100 

Table 2: Distribution by percent of explicitly and non-explicitly identified 

algebra-related tasks across grades 

The number of explicitly identified algebra-related tasks increases from fourth to sixth 

grade. This indicates that the available guidance in teachers’ guidebooks differs across 

grades. Also, the opportunities designed for students seem to become more explicit for 

the fifth and sixth grade teachers than for the fourth grade teachers. For the 

non-explicitly identified algebra-related tasks, the lack of key words in the teachers’ 

guidebooks seems to hinder the role that these tasks can serve in the curriculum. 

Referring back to the two textbook tasks presented above, the tasks seem to promote 

similar algebra-related learning goals since they can engage students in extending the 

geometric pattern to far cases. Yet, the algebra-related goal of Task 2 was not explicitly 

stated in the teachers’ guidebook for grade 4 and this may obscure the relationship 

between this task and other similar tasks in the curriculum, such as Task 1, which 

students would encounter in grade 5. 

CONCLUDING REMARKS 

The distribution of tasks across the three categories of algebra-related tasks raises 

questions about the possible implications of designing limited opportunities for 

students to engage with one kind of tasks, in this case the arithmetically-situated 
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relations tasks. Fewer opportunities are designed for students to understand that the 

same underlying properties of arithmetic are applied to algebra and more opportunities 

are designed for them to solve algebraic problems, identify and generalise quantitative 

relations.  

The findings raise also questions about what might be the essential support in teachers’ 

guidebooks. Given the fact that algebra has traditionally been considered a 

mathematical topic for secondary school, in cases where algebra-related tasks in 

primary textbooks are non-explicitly identified, there is a danger that the potential of 

these tasks to engage students with early algebraic ideas will not be fulfilled. Teachers’ 

approaches to tasks are underlain by the different ways they read the textbooks, which 

in turn are influenced by their beliefs about teaching and their expectations of students’ 

learning (Remillard, 1999). Therefore, by not providing explicit information about the 

role of these tasks, textbooks allow further space for disparate interpretations among 

teachers and thus more variability in the opportunities that teachers offer to students to 

engage with algebra-related topics. 

One could argue that it does not matter whether or not these tasks are explicitly 

identified in the teachers’ guidebooks as long as teachers encourage students’ 

engagement with algebraic ideas. However, research suggests that primary teachers 

have rather narrow conceptions about algebra-related tasks (Stephens, 2008), and this 

raises concerns about the implementation of non-explicitly identified algebra-related 

tasks in primary school classrooms. Further research is needed to explore primary 

teachers’ interpretations and enactment of different kinds of algebra-related tasks. 
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MATHEMATICS TEXTS: WORKSHEETS AND GENRE-BENDING 
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This paper reports an in-depth study that explores the nature and use of mathematics 

worksheets using a genre analysis approach. Nine secondary level teachers with 

collective experience from five different countries participated. Through individual 

online and focus group interviews teachers shared their own worksheets and their 

understandings and use of worksheets for teaching and learning math. Results indicate 

that mathematics worksheets have culturally recognizable features and 

characteristics, they are used to emphasize procedural over conceptual aspects of 

mathematics learning, and can structure the way mathematics is taught. This study 

highlights the potential of genre-bending as an approach to extend and re-imagine the 

structure and use of mathematical texts such as worksheets. 

INTRODUCTION 

In many countries around the world teaching and learning mathematics involves the 

use of curriculum materials such as mathematics textbooks (Schmidt et al., 1997). In 

addition to the textbook, or sometimes in place of it, mathematics worksheets 

distributed by teachers to their students also play a role in mathematics education. As 

with other curriculum materials mathematics worksheets can impact the ways teachers 

teach and interact with their students as well as influence their own and students’ 

interaction with mathematics (Mousley, 2012). Problems selected by teachers and 

posed to students can communicate implicit understandings of what it means to do 

mathematics and what is involved in getting better at it (Schoenfeld, 1992). 

Understanding better the kinds of mathematics problems teachers select or design and 

offer their students can provide insight into how materials are used, what is taught and 

learned, and how teacher education can better support learning to teach (Nicol & 

Bragg, 2009). Although there is increasing research on the nature and use of 

mathematics textbooks (Haggarty & Pepin, 2002), we know little about the nature and 

use of mathematics worksheets including their textual features and how they are used 

to teach mathematics (Kaymakci, 2012).  

In this paper we explore the textual and contextual features of mathematics 

worksheets. We use genre analysis (Gerofsky, 2012; Kearsey, 1997) as a dynamic and 

holistic method to examine how worksheets, as text, are shaped and used, and thereby 

how they might provide opportunities to be imagined differently. With this paper our 

purpose is twofold: 1) to provide insight into the nature and use of mathematics 

worksheets through a small empirical study; and 2) explore the potential of genre 

analysis as an approach to understand the use and impact of curriculum materials such 

as mathematics worksheets. 
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THEORETICAL CONSIDERATIONS 

Studies on the analysis of curriculum materials reveal their impact and role in 

mathematics teaching and learning. They explore what texts are (e.g. Love & Pimm, 

1996), how they are accessible to students (e.g. Van Dormolen, 1986), how teachers 

and students conceptualize and use texts (e.g. Remillard, 2000), and how the power of 

texts can become a “surrogate curriculum” (O’Keeffe, 2013). International studies of 

textbooks such as the Third International Mathematics and Science Study [TIMSS] 

found that student achievement is impacted by curricular and pedagogical intentions 

presented in textbooks (Schmidt et al., 1997) and that textbooks are “important 

mediators between policy and pedagogy” (Valverde et al., 2002, p. 171). These studies 

typically analysed textbooks for their structural features and organizational 

characteristics through examination of the intended, implemented and attained 

curriculum.  

More recent studies employ a linguistic approach to analyse mathematics curriculum 

materials in order to better understand how mathematics activities are presented and 

the kinds of mathematical messages portrayed. Drawing from a systemic functional 

linguistic approach Morgan (1996) proposes a method to examine mathematical texts 

through the analysis of language and considers “the ways in which reasoning is 

expressed” (p. 7). Herbal-Eisenmann and Wagner (2007) build on Morgan’s work and 

examine the use of imperatives, pronouns and modality in mathematics textbooks and 

found how language choices within a text not only influences how readers make sense 

of it but also how the text might position students in relation to other students and their 

teachers.  

Although mathematics worksheets are used at the elementary and secondary school 

levels there are few studies that focus explicitly on worksheets. An exception is 

Mousley (2003) who examined how a particular worksheet on the topic of percentages 

was used by two Grade 6 teachers and found that the worksheet shaped how the teacher 

and students interacted with each other. However, we know little about the nature of 

mathematics worksheets, how they are conceptualized, their language, and how they 

are used. Genre analysis provides an approach to understand both the features of text 

and the relationship between the participants (producers, consumers, and content itself) 

in that text (Kearsey, 1997). Whereas most previous studies of curriculum materials in 

mathematics education focus on either the features of or the use of the materials, genre 

analysis brings the study of these two areas together for a more holistic approach to text 

analysis.  

Genre analysis conceptualizes genre as “a culturally-recognizable form” and involves 

asking questions about the presence and nature of the particular generic form, such as 

mathematics worksheets, from many different disciplinary perspectives. Genre can be 

defined as a category, a kind, or a type of artistic, musical, or literary composition that 

is characterized by a certain style, form, or content. More recently genre is considered 

to be a “form of cultural knowledge that conceptually frame[s] and mediate[s] how we 

understand and typically act within various situations” (Bawarshi & Reiff, 2010, p. 3). 
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From this view, a genre analysis of a worksheet not only provides insights regarding 

the features of the text, but also the producers’ intentions, how the readers are 

addressed, and the kind of motives portrayed by the genre itself. Genre analysis can 

help to answer the question of what a worksheet is. It is also an approach that can 

provide opportunities to consider or re-imagine what a worksheet could be; to explore 

what Gerofsky (2012) refers to as the genre-benders of mathematics texts. Thus the 

focus of our study is on mathematics worksheets: What kind of genre are mathematics 

worksheets? How do teachers report on their use? And in what other ways might 

worksheets be imagined? 

DATA COLLECTION AND ANALYSIS 

This report draws upon an in-depth study that included both conceptual and empirical 

data phases. The conceptual phase involved examining worksheets as a cultural and 

pedagogic genre. The empirical phase worked with 8 experienced and 1 novice 

secondary school level educators who, at the time of this study, were also graduate 

students at a major university (8 participants) or retired (1 participant). Four 

participants earned their undergraduate degrees from Canada, two from China, one 

from Belize, one from India, and one from the United States of America (US). 

Participants were asked to provide samples of mathematics worksheets from their own 

teaching resources and participated in two individual on-line interviews along with a 1 

hour focus group interview.  

The first individual interview focused on gathering participant background 

information and how participants say they used worksheets in their teaching. This was 

followed by a focus group interview in which participants shared their experiences and 

understandings of mathematics worksheets. In order to better understand what counted 

as a worksheet and what didn’t participants were provided with a range of worksheets 

and asked to examine them for their features, similarities and differences. They were 

also asked to provide samples of worksheets they had used from their own teaching 

resources and examples they thought could lie on the boundary of counting as a 

worksheet. When needed participants translated their worksheets to English. The focus 

group was followed by a second individual interview to further pursue comments and 

ideas shared during the group interview. Questions asked during the interviews 

included: What are your memories of worksheets as a student? How would you 

describe what a worksheet is and what it is used for? In what situations would you use 

mathematics worksheets? Are worksheets for all students? What did using worksheets 

accomplish for you? How do they differ from mathematics textbooks? All interviews 

were audio recorded. Data therefore included copies of participant’s mathematics 

worksheets (22 worksheets; 295 questions in total), online interview text, and 

transcriptions of the audio-recorded interviews.  

Data analysis drew upon genre analysis approaches that included a study of the 

existence of worksheets, their historical development, and their defining features and 

characteristics. Language analysis included coding worksheets at a word level by 
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identifying imperatives, pronouns and modality (Herbel-Eisenmann & Wagner, 2007) 

and in terms of the placement of mathematics in the worksheets (Morgan, 1996). 

Analysis focused not only on the features of worksheets but also on the contexts in 

which they were used as well as the stated relationships by teachers on the interactions 

between the teacher, student and the mathematics.  

RESULTS 

Our findings are presented in two parts: 1) a focus on the existence, features and 

characteristics of mathematics worksheets; and 2) a focus on their use and purpose. For 

this paper we briefly highlight results on worksheet features and characteristics (part 1) 

in order to provide more depth on their use (part 2).   

Existence, features, and language of mathematics worksheets 

The conceptual phase included a general search to verify the cultural recognition of 

mathematics worksheets as a genre. Entering “mathematics worksheets” as a key 

phrase in the Google search engine revealed a result of 4,410,000 documents (May 14 

2013). A search was conducted in other languages as well: Turkish “matematik 

calisma kagitlari” revealed 445,000 documents; German “mathematic arbeitsblatt” 

revealed 823,000 documents, and Chinese “数学随堂小试卷” revealed 2,110,000. 

This abundance of documents provides evidence that internationally mathematics 

worksheets are a culturally recognizable form.  

Analysis of participants’ submitted mathematics worksheets found common features 

among the worksheets on form, content, graphics and language as shown in Table 1. 

Features Detailed Characteristics 

Form Page full of a series of math questions; organized into columns and 

rows; includes a math topic as title; requires completion by students 

Content Developed by teachers; required by students to complete; questions 

listed from easy to more difficult; focuses on one particular math topic; 

emphasizes certain skills 

Graphics No or few graphics; few words; no or few variations of representation 

such as graphs, numerical, illustrations 

Linguistic Use of symbolic statements; use of imperatives (e.g. find, calculate, 

divide); use of sentence phrases (e.g. fill in the blanks)  

Table 1: Common features of teachers’ mathematics worksheets 

Participants self-identified their mathematics worksheets as central to, peripheral to 

and contrasting with what might commonly be referred to as mathematics worksheets, 

or in other words with the genre of mathematics worksheets. According to participants, 

worksheets that are central to the genre provide repetitive practice questions for 

mathematical fluency and accuracy. Participants identified worksheets that were 

peripheral as focusing on skill practice but also including different activities such as 
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sketching, using a number line, or communicating mathematical reasoning or 

including questions that were more open-ended or personalized to student interests. All 

participants agreed that worksheets that could be considered as on the boundary of 

counting as a worksheet were less focused on drilled practice and included more use of 

graphics (pictures or graphs), complex language structures, and required more critical 

reasoning.   

A language analysis of participants’ worksheets focused on the frequency of pronouns, 

imperatives, and modality of the text indicated that the use of imperatives was the most 

frequent occurring linguist form in the data set. There were 139 imperative statements 

within the worksheets. Of these 17 were categorized as inclusive imperatives (e.g., 

show, explain, describe) while 121 were exclusive imperatives (e.g., find, calculate, 

express, determine, write) [I’m not sure of the difference between inclusive and 

exclusive – can you add something to this?]. There were 25 pronouns found across all 

the samples: 2 first person plural pronouns (we), 17 second person pronouns, and 8 

third person pronouns. No first person singular pronouns were found. Modality, an 

aspect of text that reveals how human agency is constructed within the text, was also 

analyzed. Modality examined through the use of modal auxiliary verbs such as must, 

will, could, or might revealed that 11 of the 22 worksheet samples used modal verbs. In 

total 22 modal verbs were found across all the samples with the verb “can” being the 

most frequent (11 times).  

How teachers describe, use, critique and imagine worksheets 

Analysis of individual and focus group interviews reveals that all participants 

distinguished worksheets as being quite different from class handouts. For example, 

worksheets were for “practice, practice, practice” (Anton) or “a series of questions 

with single right answers” (Rambo). Four of the nine participants associated 

worksheets with acquiring fluency and accuracy while handouts were used to engage 

students in critical thinking or conceptual understanding. In this way participating 

teachers stated they found worksheets limiting, with a focus on repetitive, drill type 

questions, worksheets tended to lack challenging questions or prompt critical thinking. 

Mohna’s comment reflected others: “teachers don’t use [worksheets] as a tool for 

critical thinking or conceptual thinking” worksheets generally focus on “what you’ve 

already learned.” 

Although participants’ descriptions of worksheets were similar, their pedagogical use 

of worksheets varied. Some said that they used worksheets as preparation for tests 

(Lizzy), homework and practice to sharpen students’ memory (Anton), for practice 

following a lesson (Chloe), to develop students’ independent studying habits (Serena), 

to provide time for teachers to circulate around the class and provide individual help to 

students (Pascal), or for evaluation (Mohna). For some, such as Mohna, it was the way 

teachers used worksheets that made the difference: “worksheets should be created and 

utilized as formative evaluations and also for encouraging hands-on, minds-on 

learning not just as copied text-based list of problems.” 
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All participants reported using mathematics worksheets but they were also critical of 

them. Worksheets were described as “drill and kill exercises,” offering few 

opportunities to challenge students (Rambo), hindering creativity in favour of the 

teacher’s activities (Lizzie), “getting the answer at the expense of in-depth 

understanding” (Anton), or closed problems that didn’t provide teachers access to their 

students’ thinking (Serena). Some, such as Rambo, reported his experience that 

students sometimes preferred worksheets to other more challenging work that required 

creativity or critical engagement. 

In order to better understand mathematics worksheets as a genre, participants were 

asked to imagine possibilities for other ways in which mathematics worksheets might 

be structured or used. Participants suggested playing with the form of the worksheet as 

well as the content. They identified a sheet with the single division problem: 

(-1)
998

 + (-1)
895

 + (+1)
1000

  
  

(-1)
901 

accompanied with prompts: “I think the answer is ….because … and… therefore ….” 

as an example of pushing the boundaries of what counts as a mathematics worksheet. 

All participants agreed with Rambo and considered this sheet to be more of a handout 

than a worksheet because it contains one question and “it asks for an explanation… it’s 

asking students to think.” Participants also discussed possible worksheets that 

challenged the typical structure of worksheets as progressing from easy to more 

difficult questions. In addition, it was suggested that worksheets could be designed to 

engage students in working with others in order to challenge the individual nature of 

worksheet engagement. All participants acknowledged Rambo’s suggestion of 

challenging the idea of worksheets as consisting of multiple questions offered to 

students all at once by instead developing “one problem at a time worksheets.” Such a 

worksheet could allow teachers to differentiate the questions to individual student 

interests or needs.  

CONCLUSIONS 

The results of this study suggest that mathematics worksheets can be considered a 

genre. Findings revealed that mathematics worksheets have typified regularities 

(Miller, 1984) that conform to a certain consensus and mediate interactions (Bawarshi 

& Reiff, 2010). Analysis of the form, content, graphic and linguist features of 

worksheets provided characteristics that help define worksheets as culturally 

recognizable forms. Comparing the typical mathematics worksheet with contrasting or 

marginal examples provided further clarification in terms of the nature and generic 

structure of the worksheet genre. For instance, our results indicate that worksheets 

central to the genre were composed of questions that emphasized the calculational and 

procedural aspects of mathematics and reinforced drill-type skill development by 

highlighting accuracy and speed. Marginal forms, on the other hand, included 

questions that involved mathematical reasoning, pattern recognition and critical 
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thinking. Results indicate that although teachers are familiar with worksheets as a 

genre they are also able to consider possibilities for bending the genre, that is, thinking 

of possibilities for worksheets that extend its features and use. Worksheets could be 

created that allow for one question at a time, include questions that are more 

open-ended or questions which require students to raise their own questions.  

A genre analysis of worksheets has helped clarify the form of worksheets that can 

shape activities in the mathematics classrooms. Genre-bending provided opportunities 

to think about worksheets and their use in a different way, and therefore opened 

possibilities for improving the structure and use of mathematics worksheets. 

This study revealed that worksheets emphasized the procedural aspects of mathematics 

but not conjecturing, relating, or testing activities. The language analysis revealed that 

the authoritative language of worksheets positions students outside the mathematics 

community. If worksheets are used to force students to learn in a specific way, and treat 

them as a cohort rather than individuals without addressing individual abilities, 

interests and needs, worksheets become hegemonic and homogenizing force. This 

study contributes to our understanding of mathematics worksheets and provides a 

strategy, genre analysis, to engage in a critical analysis of worksheets as a genre. This 

study is an example of how educators can come together to reconsider and re-invent 

their use of worksheets in mathematics teaching and learning. As mathematics 

worksheets are recognized internationally as playing a role in mathematics teaching 

and learning, it is important that we gain a better understanding of how they are 

conceptualized, how they are used, and how they might be re-imagined. This study 

adds to the beginning research in this area and contributes to the analysis of 

mathematics texts by focusing on one kind of text, the mathematics worksheet.  
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TEACHERS’ BELIEFS ABOUT STUDENTS’ GENERALIZATION 

OF LEARNING 
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Researchers in psychology and mathematics education have been conducting 

systematic investigations of students’ generalization (or transfer) of learning since the 

beginning of the 20
th
 century. However, we do not know how teachers, the people 

typically associated with student learning, think about this phenomenon. This study, 

thus, identified teachers’ beliefs about students’ generalization of learning. Five 

categories of teacher beliefs were identified, highlighting the importance of bringing 

teachers into the ongoing transfer conversation as the categories identified both 

extend current conceptualizations of transfer into the domain of mathematics 

education and identify new beliefs regarding students’ transfer of learning. 

INTRODUCTION 

The idea that students generalize classroom learning to novel situations serves as the 

foundation for our educational system (Bassok & Holyoak, 1989; McKeough, Lupart, 

& Marini, 1995; National Research Council, 2000). One body of research that has 

examined students’ generalization of learning is the research on transfer (e.g., Bereiter, 

1995; Engle, 2006; Gick & Holyoak, 1983; Lobato, Rhodehamel, & Hohensee, 2012; 

Markman & Gentner, 2000; Singley & Anderson, 1989; Thorndike & Woodworth, 

1901). Traditionally, transfer has been characterized as “how knowledge acquired 

from one task or situation can be applied to a different one” (Nokes, 2009, p. 2). 

Transfer has had a rich and varied history dating back to the turn of the 20
th
 century and 

has evolved to include a multitude of perspectives regarding what transfer is, how it 

occurs, and how it might be supported. One might assume that since teachers are the 

people typically associated with student learning, some of the transfer literature would 

have identified teachers’ beliefs about their students’ generalization of learning. 

However, such studies do not appear to exist. Thus, I sought to determine whether 

teachers think about students’ generalization of learning as part their typical practice 

and, more specifically, to answer the following question: What are teachers’ beliefs 

regarding students’ generalization of learning? 

FRAMEWORK 

As noted above, transfer has traditionally been conceived of in terms of the application 

of one’s previously acquired knowledge. Heeding critiques of such 

acquisition-application views of transfer (e.g., Lave, 1988), researchers have 

reconceived of and redefined the phenomenon in many different ways (e.g., Bereiter, 

1995; Lobato et al., 2012). Here, I use the term transfer to reference the phenomenon in 

which students generalize, extend, or in some way make use of their learning when 
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engaging with novel situations (rather than in reference to a particular conception or 

definition of transfer). 

This study identified teachers’ beliefs about students’ generalization (or transfer) of 

learning. Drawing upon Philipp’s (2007) definition, I define a belief regarding transfer 

as a conception (i.e., a general notion or view) regarding transfer that I, the observer, 

can respect as intelligent and reasonable even when it differs from my own conceptions 

regarding transfer. Here, beliefs are distinguished from knowledge (i.e., conceptions 

that I can not respect as intelligent and reasonable when they differ from my own). This 

decision indicates my own orientation towards conceptions of transfer. The fact that 

transfer is one of the most researched topics in psychology coupled with the fact that 

many different conceptions of transfer are documented in the transfer literature leads 

me to believe that transfer is a complex phenomenon, best studied as a belief wherein I 

am supported in making sense of differing conceptions of transfer rather than casting 

them aside as unintelligent and/or unreasonable. 

METHODS 

Participants 

I recruited eight practicing teachers from multiple urban school districts in Southern 

California to participate in this study. Teachers were selected on the basis of several 

criteria. First, practicing teachers were selected to help ensure the selection of teachers 

who, at the time of the study, naturally thought about the phenomenon of interest to this 

study. Second, participants were recruited on the basis of the nature of the mathematics 

courses they taught and whether they had the opportunity to develop students’ 

understanding of slope during the 2011-2012 or 2012-2013 school year. (Slope 

provided the mathematical context in which teachers’ beliefs were examined.) Finally, 

teachers were recruited so there was variation across the following: the forms of 

practice enacted in their classrooms, the number of years teaching experience, the 

amounts of training and professional development received, and the type of school 

where employed (charter school vs. non-charter school). The rationale for seeking such 

variation was to increase the chance of selecting a group of teachers who held different 

beliefs regarding students’ generalization of learning. 

Data collection 

I engaged the eight practicing-teacher participants in two 2-hour semi-structured 

clinical interviews (Clement, 2000; Ginsburg, 1997). During these interviews, teachers 

were asked questions and posed tasks that were designed to elicit their beliefs 

regarding students’ generalization of learning. The same major questions and tasks 

were posed to each teacher, but follow-up probes were tailored to individuals. The 

interviews were recorded with a video camera and a table microphone. The video 

camera was aimed to capture teachers’ gestures, written inscriptions, and verbal 

reports. All written work and materials were collected. 
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Instruments 

The major questions and tasks designed to get at teachers’ beliefs about students’ 

generalization of learning were separated into three sets: (a) questions related to an 

instructional item teachers selected and brought to the first interview, (b) questions and 

tasks designed to provide teachers with opportunities to explicitly espouse their beliefs 

regarding students’ generalization of learning and me data from which to infer such 

beliefs, and (c) questions related to a lesson plan teachers constructed to support their 

students’ generalization of learning. Each set is briefly discussed. (Note that because 

the word transfer is a researcher construct, it was not used with teachers; rather, 

phrases like “generalization of learning” were used.) 

Prior to engaging in the first interview, I asked teachers to select an item or items (e.g., 

an activity, lesson plan, test, or homework) they had used during a unit on slope and 

linear functions that they believed demonstrated an instance in which they thought 

about supporting their students in being able to generalize their understanding of slope 

to a new task, activity, or situation. The discussion of this teaching item took place at 

the beginning of the first interview and involved questions like: “Describe how your 

[item] shows you were thinking about helping students to make future use of their 

learning.” All of the teachers brought a task or activity involving slope and were thus 

asked questions like “As a consequence of your students’ engagement with this [item], 

what types of tasks and activities do you believe your students are (and are not) 

prepared to successfully engage with?” 

The second set of questions and tasks was not associated with either the 

aforementioned instructional item or the lesson plan still to be discussed. It involved 

more general questions like “What do you do, or what do you think teachers in general 

can do, to help enable students to be able to generalize their learning to new situations? 

Explain how these actions support students’ generalization of learning.” This set of 

questions also involved more specific tasks and questions including a task in which 

teachers were presented with hypothetical student responses to a slope task and a set of 

novel slope tasks, and asked to discuss which of the novel tasks the hypothetical 

students would be able to successfully engage with given their work. Teachers were 

also presented with three hypothetical instructional activities and asked to discuss 

which activities best supported students in generalizing their understanding of slope. 

Between interviews, teachers were asked to develop a lesson plan on slope that 

implemented some of the ideas they discussed during the first interview regarding 

students’ generalization of learning. They were also asked to design a novel task (not 

discussed in the lesson) with which their students could successfully engage after 

participating in the lesson. In the second interview, teachers’ were asked questions 

about their lesson plans, novel tasks, and the relationship between the two.  

Data analysis 

I transcribed and analyzed all interview data qualitatively, using what Miles and 

Huberman (1994) describe as “partway between a priori and inductive coding” (p. 61). 
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Categorizing teachers’ beliefs about students’ generalization of learning involved 

drawing upon the transfer literature. For instance, some teachers appeared to believe 

that students would be able to productively generalize their learning to a novel 

situation if the novel situation prompts students to make use of a learned association, 

procedure, or formula—a belief found in the research literature from an associationist 

view of transfer and mainstream cognitive accounts of transfer (e.g., Singley & 

Anderson, 1989; Thorndike & Woodworth, 1901). Other categories of teachers’ 

beliefs were induced using open coding from grounded theory (Strauss, 1987). 

RESULTS 

I identified five categories of teacher beliefs about students’ generalization of learning. 

These categories fit within three super-categories: content, students’ disposition, and 

students’ affect (see Table 1). Content refers to the mathematically specific knowledge 

students generalize; students’ disposition refers to the general orientation towards 

problem solving students generalize; students’ affect refers to student-held beliefs that 

support students’ generalization of learning. The number found within parentheses 

indicates the number of teachers holding a particular belief. (Note that teachers held 

multiple beliefs about students’ generalization of learning.) 

Content (7) Students’ Disposition (3) Students’ Affect (7) 

Category 1: 

Associations, Procedures, 

and Formulas (3) 
Category 3: 

Orientation towards 

Problem Solving (3) 

Category 4: 

Students’ View of Self (6) 

Category 2: 

Meaning (4) 

Category 5: 

Students’ View of 

Mathematics (3) 

Table 1: Categories of teachers’ beliefs about students’ generalization of learning. 

Content 

The first two categories of teachers’ beliefs about students’ generalization of learning 

involved the role of mathematical content. Specifically, 3 of the 8 teachers seemed to 

believe that students productively generalize their learning to a novel situation when 

the novel situation prompts the use of a learned association, procedure, or formula 

(Category 1). Association refers to students linking a specific word, phrase, or image to 

a particular mathematical response. Procedure refers to the use of a pre-determined set 

of steps to solve a problem. Formula refers to the employment of a conventional rule to 

solve a problem. For instance, Anne believed that students would productively 

generalize their learning to a novel activity that asked students to select appropriate 

graphs for given sentences like “We raced down the hill away from the museum” if 

they were prompted to make use of the associations she had previously instructed them 

to copy into their notes (e.g., “away” and an unlabeled graphical image of a diagonal 

line going up as one looks from left to right). She explained that if students focused on 
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phrases like “down the hill” rather than “away” when confronted with such sentences, 

they would not be prompted to make use of the learned association and would therefore 

be unsupported in choosing the correct graph. (Note that gender-preserving 

pseudonyms are used for all participants.) 

In contrast, half of the teachers in the study seemed to believe that students’ 

generalization of learning is based on the ways in which students interpret their 

mathematical activity and the meanings they develop for mathematical topics like 

slope (Category 2). Moreover, these teachers appeared to believe that students’ 

productively generalize their learning when they develop mathematically-valid 

interpretations of topics like slope, for example, slope is a ratio providing a description 

of the multiplicative relationship between two quantities. Thus, teachers holding this 

belief made predictions about students’ generalization of learning based on the 

meanings they thought students might develop for a particular topic rather than on 

whether they thought a particular task would prompt students to make use of a 

pre-determined association, procedure, or formula. For example, Patrick believed 

students would be able to find and explain the meaning of slope in a novel slope task 

involving a burning candle if, during previous classroom activities, they had developed 

an interpretation of slope as a ratio, or a multiplicative comparison, of two quantities. 

However, Patrick predicted that students who had not fully developed such an 

interpretation of slope would attend primarily to the height of the candle, saying a slope 

of -2.5 means “the candle is shrinking” or “the candle isn’t as tall” rather than “the 

candle burns 2.5 cm per hour.” 

Students’ disposition 

Whereas teachers in the first two categories emphasized particular mathematical 

content in their beliefs about students’ generalization of learning, the emphasis in this 

category was on students’ more general dispositions toward problem solving. The term 

disposition is used in the spirit of Gainsburg (2007) to refer to students’ personal 

outlook on or orientation towards problem solving; this includes what problem solving 

is about. Teachers seemed to believe that students productively generalize their 

learning to novel situations when they develop and make use of particular dispositions. 

Moreover, these teachers appeared to believe that the dispositions themselves carry 

over to novel situations and function to facilitate students’ generalization of learning. 

For instance, Emma shared that students will be better able to “assess where to go” and 

“find the solution” in novel problem-solving situations if their orientation towards 

those situations is one of sense-making and visualization of the problem (e.g., by 

asking questions like “What is actually going on here?” rather than “What equation do 

I use to solve this—what is the formula?”).  

Students’ affect 

The last two categories of teachers’ beliefs about students’ generalization of learning 

involve the role of students’ affect, specifically students’ beliefs. To avoid confusion 

from using the word “belief” twice, I use the word “view” in reference to the students. 
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Hence, Category 4 involves teachers’ beliefs regarding the role students’ view of self 

plays in their generalization of learning and Category 5 involves teachers’ beliefs 

regarding the role students’ view of mathematics plays in their generalization of 

learning. This follows McLeod (1992) who conceived of both views of self and views 

of mathematics as components of the affective domain in mathematics.  

Six of the 8 teachers in this study seemed to believe that students generalize their 

learning to novel situations when they develop confidence in their ability to engage in 

mathematical activity (Category 4). Here, confidence refers to a student’s view of his 

or her “competence in mathematics” (McLeod, 1992, p. 583) or the “belief that one can 

learn to do that which is expected of one” (Broekmann, 1998, p. 18). These teachers 

believed that students’ generalization of learning is dependent upon how confident a 

student is that he/she can engage in mathematical activity. For instance, Donna said, 

“It’s hard to get kids to generalize [their learning] … because you have to break down 

their beliefs of ‘I just suck at this; I don’t know anything.” She went on to say, “For me, 

it is making that ‘Ah-ha’ like ‘Oh, I can do this.’ … You have to build self-esteem into 

those learners like ‘No, you’re not stupid.’” Similarly, 3 of the 8 teachers in this study 

seemed to believe that students generalize their learning to novel situations when they 

view mathematics as relevant and useful outside of the mathematics classroom 

(Category 5).  

These beliefs seemed vague in the sense that they were not well specified as 

mechanisms for supporting students’ generalization of learning. It could be that the 

teachers in these categories believed students’ views acted like a key to unlock the door 

to their engagement with new situations thereby creating an opportunity to apply 

particular mathematical understandings. Alternately, it could be that teachers believed 

students’ views acted at a more general level allowing students to productively engage 

with new situations regardless of the particular mathematical topic. In this way, the 

limits of these beliefs regarding students’ generalization of learning remain unclear. 

CONCLUSION 

The findings outlined above point to the importance of bringing teachers into the 

ongoing conversation regarding students’ transfer of learning. Using artifacts from 

their own teaching, teachers were engaged in conversations about transfer using the 

terminology of students’ “generalization of learning.” This resulted in the 

identification of new beliefs about students’ generalization of learning. In other words, 

talking to practicing teachers resulted in the identification of beliefs not found in the 

transfer literature. Looking across Categories 4 and 5 (see Table 1), the role of 

students’ affect was present in 7 out of 8 of the teachers’ beliefs about students’ 

generalization of learning despite the fact that it is absent in the transfer literature. This 

finding indicates that while researchers have yet to identify affect as an important 

factor in the generalization of students’ learning, teachers have. 

This is not to say that overlap did not exist between teachers’ and researchers’ beliefs 

regarding students’ generalization of learning. For example, Anne (from Category 1) 
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appeared to hold the Thorndikean belief that transfer is mediated by common 

associations (cf., Thorndike & Woodworth, 1901). However, the teaching items she 

selected to illustrate her belief were drawn from reform-oriented and 

constructivist-inspired textbooks suggesting practice-based decision-making that 

transcended a Thorndikean approach to curricula. 

The Category 3 belief is similar to Bereiter’s (1995) dispositional approach towards 

problem solving wherein Bereiter argued that students’ “way of approaching things” is 

of primary concern when teaching for transfer (p. 23). Teachers holding this belief 

emphasized, in the spirit of Bereiter, the ways in which students orient towards 

problem solving and the roles their dispositions play in the generalization of their 

learning. However, Bereiter illustrated his ideas with examples from moral education 

and science education. Thus, the particular dispositions articulated by the teachers in 

this study (e.g., a visualization and sense-making disposition) are new to the transfer 

literature. In other words, by talking to teachers of mathematics, I was able to identify 

specific beliefs about dispositional approaches to transfer relevant to the field of 

mathematics education. 

Lastly, the fact that all but one of the teachers appeared to hold multiple beliefs 

regarding students’ generalization of learning suggests that in practice multiple beliefs 

about students’ generalization of learning may actually function together. Together, 

these findings suggest that investigations into the transfer of student learning may 

benefit from a shift in point of view—from the eyes of researchers to the eyes of 

practicing teachers. 
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WHAT DETAILS DO GEOMETRY TEACHERS EXPECT IN 

STUDENTS’ PROOFS? A METHOD FOR EXPERIMENTALLY 

TESTING POSSIBLE CLASSROOM NORMS 
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We report on the development and piloting of a method that provides a sufficient 

condition for confirming that an observed regularity in a classroom is a norm. The 

method we describe is a refinement of the breaching experiment technique (Garfinkel, 

1963; Mehan, 1979) that uses random assignment to experimental conditions as a 

means to facilitate controlled comparisons between participants’ reactions to different 

episodes of instruction. We use this method to confirm the existence of normative ways 

that teachers scrutinize the details of proofs in geometry.   

INTRODUCTION 

International comparisons of teaching have brought attention to the notion of cultural 

scripts and the claim that regularities are observed across episodes of teaching in a 

given country (Stigler & Hiebert, 2009; Santagata & Stigler, 2000). The existence of 

these cultural scripts is warranted by observations of different teachers who share a 

national culture engaging in stable patterns of classroom activity—patterns that are 

similar to each other yet distinct from patterns of teachers from other national cultures 

(Stigler & Hiebert, 2009). On account of the scale of such comparisons, the identified 

scripts have been largely subject-independent and rather general. Furthermore, the 

extent to which cultural scripts capture norms of classroom action—that is, what is 

expected to happen, for the absence of which would be seen as a violation of the social 

order (Garfinkel, 1963)—as opposed to provide descriptions of what is observed to 

happen in classrooms—is an open question. A social norm is not merely an action that 

might be frequently observed, but actually an action that participants expect (or expect 

their coparticipants) to engage in. Developing methods for identifying the classroom 

regularities that are actually norms is pressing because providing an account of what 

teachers expect to happen in classrooms—as opposed to just recording those things 

that do happen—brings us closer to understanding what it might cost to change 

classroom instruction.  

In this paper, we report on the development and piloting of a method that provides a 

sufficient condition for confirming that an observed regularity in a classroom is a 

norm. We use for that the classroom activity doing proofs in geometry (Herbst & 

Miyakawa, 2008) and norms that we call semiotic norms. By semiotic norm, we mean 

a norm of the way in which semiotic resources (e.g., written words, diagrams) are used 

to produce and evaluate mathematical work. The method we describe is a refinement 

of the breaching experiment technique (Garfinkel, 1963; Mehan, 1979) that uses 
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random assignment to experimental conditions as a means to facilitate controlled 

comparisons between participants’ reactions to different episodes of instruction. The 

method we developed for confirming the existence of classroom norms will help 

researchers describe more precisely the mathematics that students have an opportunity 

to learn and will also help identify levers for piecemeal alterations to curriculum and 

instruction in order to improve the mathematical quality of the work students are 

involved in.  

THEORETICAL FRAMEWORK 

Doing proofs in geometry is an example of an instructional situation: A stable segment 

of classroom activity within which students trade (or “cash”) completed work for a 

claim—from the teacher—that they have acquired a particular item of knowledge 

(Herbst 2006; Herbst & Chazan, 2011). When doing proofs, the work to be produced is 

a proof of a particular mathematical statement and when a proof is so produced it may 

be exchanged (i.e., cashed) for a claim that some knowledge exists implicit in that 

proving work (such as the knowledge of how to produce a specific kind of 

mathematical argument). Within any instructional situation, the exchange of work for 

knowledge-claims is made possible through the available semiotic resources (Herbst & 

Chazan, 2012) that, together, comprise the semiotic currency of the situation. We are 

concerned with describing the normative ways that semiotic resources are used in such 

situations, or what we call semiotic norms. 

From the perspective of social semiotics (van Leeuwen, 2004), instructional situations 

may be conceptualized as genres of classroom activity that have different realizations 

(Christie, 1997; Lemke, 1990; Martin & Rose, 2008). From video records of different 

geometry classrooms doing proofs
1
, we identified presenting/checking a proof as a 

realization of the doing proofs situation in which the teacher presents a completed 

proof to the class and the students in the class take turns scrutinizing its written steps. 

In video episodes of different geometry lessons, there were recurring instances of 

details of the proof being insufficient under such scrutiny. These included instances 

when conceptual entailments—such as the conclusion that two angles that form a 

linear pair are supplementary—were not unpacked into more primitive steps (i.e., a 

statement that identifies such angles as being a linear pair followed by a statement that 

angles forming a linear pair are supplementary) and instances when distinctions 

between geometric objects and their measures (such as a segment versus the length of a 

segment) were not strictly enforced. Since the kinds of details that were scrutinized in 

the written arguments of proofs recurred in different geometry classrooms, we 

hypothesized the existence of a details norm when checking proofs. To confirm that 

there are, in fact, normative ways of scrutinizing the details of a proof, we devised a 

planned comparison study between groups of teachers in treatment and control 

conditions. The design of the experiment and the results of the data analysis are 

reported in the next sections.  

                                           
1
 This data corpus had been gathered with the support of NSF grant 0133619 to P. Herbst. 
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METHOD  

The method we developed to confirm the existence of the details norm combines the 

technique of a virtual breaching experiment (Herbst & Chazan, 2003; Nachlieli & 

Herbst, 2009) with a planned comparison study. As a virtual breaching experiment, we 

developed storyboards consisting of a sequence of classroom images to represent 

episodes of high school geometry lessons and showed these to participants. There were 

from 9 to 22 images in each storyboard. These scripted image sequences were 

adaptations of geometry lessons that were based on video recordings of classrooms 

doing proofs. As a planned comparison study, participants were randomly assigned to 

treatment and control conditions in which the teacher in the storyboard episode 

breaches (treatment) or complies with (control) the details norm. The purpose of 

randomly assigning participants to conditions was to be able to compare reactions 

(both within and across conditions) to the different lessons.  

We used image sequences, rather than actual video, for two reasons. One, since we 

wanted to compare reactions to episodes where a norm is breached to reactions to 

episodes where a norm is not breached, using actual classroom video was not feasible, 

since in actual geometry classrooms, the norm is not usually breached. Second, using 

sequences of images allowed the breach and control conditions to feature 

representations of instruction that were minimally different from each other—that is, 

for a given instructional episode, its breach and control versions were identical except 

for those images in the sequence that depicted the breach of (or compliance with) the 

norm. This principle of minimal variation allowed us to make comparisons across the 

conditions.   

What is described above as the details norm was the subject of four classroom stories 

(A, B, C, D), and each of these classroom stories had a version (A’, B’, C’, D’) in 

which the norm was breached and a version in which the norm was not breached. In 

stories A and B, the teacher allows minor omissions
2
 in the written argument of a proof 

to stand without correction (thus breaching the norm), while in stories A’ and B’—the 

control duals of A, B, respectively—the teacher corrects the omissions. In stories C 

and D, the teacher insists that students explicitly justify claims
3
 that are tacitly 

warranted by a diagram (thus breaching the norm), while in stories C’ and D’—the 

control duals of C and D, respectively—the teacher uses the diagram to elide some 

steps in the proof.  

As a group, these four sets of stories concern the necessary details of the semiotic 

currency for a valid exchange of proof-for-credit when doing proofs. We hypothesize 

that the teacher in stories A and B would be seen as breaching the details norm because 

the teacher accepts less detail in the written argument of a proof than what is usually 

                                           
2
 Respectively: failing to include an explicit step that establishes the congruence of two segments 

from the definition of midpoint, and failing to distinguish between angles and their measures. 
3
 Respectively: that a point of intersection between two rays exists, and that two angles are collinear. 



Dimmel, Herbst 

2 - 396 PME 2014 

required, while the teacher in stories C and D would be seen as breaching the details 

norm because the teacher asks for more details than what is usually required. The 

instrument we developed thus allowed us to test two different ways in which the details 

provided in a proof might be seen as breaching the norm. We thought important to test 

both hypotheses to be able to argue that the norm is not actually a generic one (insisting 

on detail, no matter what detail), but rather a mathematically specific one—some 

details are insisted upon, others frowned upon, and the semiotic systems involved are 

the bearers of the distinction. 

The structure of the instrument was the same for all stories: participants were shown 

one of the classroom stories, then asked a series of questions. These included a general 

open response question—“What did you see happening in this scenario?”—a general 

closed-response rating question—“How appropriate was the teacher’s review of the 

proof?”—and two targeted, closed-response rating questions (described below). All of 

the rating questions used the same 6-point Likert-style rating scale, with choices from 

1 (very inappropriate) to 6 (very appropriate). The rating questions also included a 

“please explain your rating” follow-up prompt.  

For the targeted rating questions, participants were shown a “clip” of the story (that is, 

a segment of the storyboard) that focused on a particular teaching action. One of these 

targeted rating questions showed participants the 3 to 5 image clip in which the norm 

was either breached or not breached, stratified by condition. The purpose of this 

targeted rating question was to focus participants’ ratings on the part of the story where 

the teacher complies with or departs from the norm. Participants were also asked to rate 

a different clip. For this other targeted rating question, participants in the 

breach/control conditions were shown identical sets of 3-5 images in which the teacher 

in the story does a routine instructional action unrelated to the target norm. It was 

possible to identify such clips because each set of breach/control stories were identical 

except during those parts of the story that represent the breach of (or compliance with) 

the target norm. The purpose of including the two types of targeted rating questions 

was to enable comparisons across the breach and control conditions. These 

comparisons and their results are described below.  

DATA 

We gathered data from 34 high school teachers (working in different schools and 

districts) during a pilot study in the fall of 2013. The teachers were randomly assigned 

to treatment and control conditions. 16 teachers were assigned to a condition where 

they viewed stories that breached the norm (7 assigned to the “less details” breach, 9 

assigned to the “more details” breach), and 18 teachers were assigned to a condition 

where they viewed stories that complied with the norm (9 assigned to the “less details” 

control, 9 assigned to the “more details” control). Within each condition, a teacher 

either viewed two stories that breached the norm or two stories that complied with the 

norm. No participant viewed the breach and control version of the same story, and the 

order in which the stories appeared was randomized (to neutralize any effects from the 
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order in which the stories are viewed). Since each participant viewed and rated two 

stories, there were 32 responses to each question about stories where the target norm 

was breached and 36 responses to each question about stories where a norm was not 

breached.  

ANALYSIS AND RESULTS 

The study was a planned comparison study between participants assigned to treatment 

and control conditions. Since a norm is not only what is routine but also what is 

expected, we hypothesized that participants would find the work of the teacher less 

appropriate in those stories that breached the hypothetical norm. We made three 

comparisons of answers on closed-response questions both across and also within the 

different conditions to test this hypothesis. The first was a comparison of the mean 

scores on the general rating question across the breach and control conditions. The 

second was a comparison of ratings on the targeted rating questions between breach 

conditions and control conditions, while the third was a within-condition comparison 

between ratings on the targeted rating questions—i.e., comparing ratings on the 

breach/nonbreach storyboard segments to the ratings on the other storyboard segment 

within a condition. These comparisons and the results of statistical tests are reported 

below.  

Comparison 1: Across condition comparison of mean scores on the general rating 

questions 

The general closed-ended rating question asked participants to rate the appropriateness 

of the teacher’s review of the proof: “how appropriate was the teacher’s review of the 

proof?” There were 32 responses to this question across 4 stories that breached a norm, 

and 36 responses to this question across 4 stories that complied with a norm. Using the 

6-point Likert-syle rating scale for appropriateness described above, the mean rating of 

the breach responses was 1.14 points lower than the mean rating of the control 

response (3.47 compared to 4.61, respectively), a statistically significant difference in 

means at the .05 level (two-tailed, heteroscedastic t-test assuming unequal Ns, p<.01). 

Because of the random assignment, this difference in means provides some evidence 

that any secondary math teacher would notice when the details norm is breached when 

doing proofs in geometry.  

Comparison 2: Across condition comparison of mean scores on the targeted 

rating questions 

The targeted rating questions asked participants to rate the appropriateness of the 

teacher’s actions at a specific place in the story. Each participant answered two types of 

targeted rating questions: one that targeted the place in the story where the teacher 

breaches (or complies with) the norm, and one that targeted a moment in the story 

when the teacher engages in some other action. We refer to the first type of targeted 

rating question as the “targeted breach/compliance” (TBC) rating and the second as the 

“targeted distracter” (TD) rating. By design, the TD rating questions targeted an action 
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that appeared in both the breach and compliance versions of a story, so participants 

across the conditions viewed identical story segments when answering this rating 

question. The purpose of including these targeted rating questions was to be able to 

compare ratings both across and within conditions at specific points in the stories.  

Across the conditions (32 and 36 respective responses, as above), the mean ratings on 

the TBC questions for those who viewed breach stories was 1.61 points lower than the 

mean rating on the TBC questions for those who viewed compliant stories (2.78 to 

4.39, respectively), a statistically significant difference at the .05 level (two-tailed, 

heteroscedastic t-test assuming unequal Ns, p <.001). This significant difference in 

means on the rating questions that target the moments in the stories that either breach 

or comply with the norm is complemented by a non-significant difference in means on 

the TD rating questions: 4.1 (breach) to 4.6 (control), a .5 difference that is not 

significant at the .05 level (two-tailed, heteroscedastic t-test assuming unequal Ns, p = 

.13).  The significant difference in mean TBC ratings together with the non-significant 

difference in TD ratings suggests that participants’ overall lower ratings on the breach 

stories (compared to the control stories, reported above) are linked to the teacher’s 

breach of the norm, rather than some other action the teacher takes in the story. The 

experimental design and the deliberate scripting of the stories to be identical in all 

places except for where the teacher breaches the norm underscores this point.   

Comparison 3: Within condition comparison of mean scores on the targeted 

rating questions 

Further evidence that participants were responding to breaches of a norm—as opposed 

to other aspects of the stories—comes from within condition comparisons of the 

targeted rating questions (32 and 36 responses, as before). For the breach stories, the 

mean scores on the TBC ratings was 1.31 points lower than the mean scores on the TD 

ratings (2.79 to 4.1, respectively), a statistically significant difference at the .05 level 

(paired, two-sample t-test, p < .001). Complementing this, there was no significant 

difference between TBC and TD ratings for the stories in the control condition (means 

scores of 4.39 and 4.6, respectively, p = .15). The fact that, in the breach condition, 

participants’ ratings on the TBC questions were significantly lower than their ratings 

on the TD questions—together with the fact that there were no such significant 

differences between the targeted rating questions for participants in the control 

condition—indicates that participants noticed the moments in the episodes of 

instruction when teachers were shown departing from the norm.  

Open-response data 

The open response data also indicate what participants view as appropriate or 

inappropriate ways of scrutinizing a proof. For example, a participant who viewed 

story D—one in which the teacher breaches the details norm by problematizing the 

existence of a point of intersection for the angle bisectors of a 

parallelogram—remarked: “The rays [of the parallelogram] intersect by definition. We 

don't need a theorem to justify it (participant ID 2248)”. As a comment on this same 
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story, another participant remarked: “I don't think we need to validate the fact that the 

two rays intersect here.  This is…focusing on minutia that will prevent kids from 

focusing on the important parts of the problem (participant ID 2333, emphasis added).” 

Yet other open responses indicate that the scrutiny of some aspects of a proof is 

compulsory. For example, a participant who viewed story B—one in which the teacher 

allows a student to make statements about the sum of the angles of a triangle as 

opposed to the sum of the measures of the angles—said: “The teacher is down-playing 

the little things. Sometimes those little things can change the whole outcome 

(participant ID 2300).” Viewing this same story, a different participant commented: 

“When you do proofs, you can't assume anything (participant ID 2359, emphasis 

added).” These comments would seem to be directly at odds with those reported above. 

That both under-scrutiny of the written argument (second example responses) of a 

proof and hyper-scrutiny of the diagram accompanying a proof (first example 

responses)—practices that could be seen as equivalent from the perspective of 

justifying every step in a proof—can draw the concern of secondary teachers provide 

evidence that the routines for checking the details of a prof are, in fact, norms.  

Two-column proof has been criticized for being ritualistic or attentive to excessive 

detail (e.g., Harel & Sowder, 1998; Schoenfeld, 1988); however, our research shows 

that such statements are too broad—attention to detail depends on what details are 

being considered and how those details are being expressed. When it comes to 

statements—such as the existence of a point of intersection—that are tacitly warranted 

by a diagram, participants reacted unfavorably to episodes that showed a teacher 

asking for the explicit justification that would warrant those statements, on the grounds 

that doing so was focusing on minutia. However, when it comes to statements—such 

as deducing the congruence of two segments from the definition of midpoint—that are 

tacitly entailed by definitions, participants reacted unfavorably to episodes that showed 

a teacher not asking for the explicit justification that would warrant those statements, 

on the grounds that every step in a proof requires an explicit justification. That teachers 

would hold different views of the appropriate level of detail in a proof is not a priori 

obvious, and the account we have provided highlights the affordances of the method 

we have developed.  

CONCLUSION 

The research reported here describes a method for confirming that a routine classroom 

practice is a norm and uses that method to confirm the existence of semiotic norms 

when doing proofs in geometry. The articulation of a semiotic norm contributes an 

elaboration of the theory of instructional exchanges, while its experimental 

confirmation contributes a method that can be used to identify normative practices in 

instruction. More generally, we have shown that representations of lessons may be 

used in an experimentally controlled way to target what teachers notice about 

instruction.   
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Using data from a research project in Shanghai, China, this paper reports on an expert 

teacher’s implicit ‘Local Instruction Theories’ (LIT) (Gravemeijer, 2004) that 

underpin his guidance of a junior teacher in lesson design and implementation. Our 

analysis focuses on the expert teacher’s input to the junior teacher to help her 

understand how and why to redesign a lesson as part of a school-based teacher 

professional development project. We identified three key points of the expert’s 

implicit LIT: mathematics has its own form of exploration; each student should have 

their own thinking path at each key point of the learning process; and each student 

should not only be able to experience use of their own representation, but also learn 

about other students’ representations and the excellence of representations. 

INTRODUCTION 

At a PME36 Research Forum, Li and Kaiser (2012) examined “the concept and nature 

of teacher expertise in mathematics instruction valued in selected education systems” 

(p121). In doing so, they highlighted different approaches, practices and cultural 

resources that are used to develop teacher expertise in mathematics instruction in 

different countries. In similar vein to Jaworski (2004), who sees teachers and educators 

working together in an inquiry community and in a “reciprocal relationship of a 

reflexive nature” (Jaworski 2001, p. 315), the analysis of five nation-wide teacher 

professional programs (Canada, China, Japan, Norway, and USA) by Kieran, Krainer 

and Shaughnessay (2013) concludes that teachers should be viewed as key 

stakeholders in research – “stakeholders who co-produce professional and scientific 

knowledge” (p. 387).    

In Shanghai (SH), China, Gu and Wang (2003) have proposed the ‘Action Education’ 

(AE) model (‘Xingdong Jiaoyu’ in Chinese) to tackle the challenge of improving 

teaching through inservice teacher professional development (TPD). Three key 

features are emphasized in the AE model: the use of Keli (‘exemplary lesson 

development’ in English) (see Huang & Bao, 2006), the collaborative work of teachers 

with expert teachers and university researchers (mostly local but sometimes foreigners 

in the case of SH), and teacher follow-up reflection and action in their own class. Paine 

and Fang (2006, p286) consider that this SH AE as a hybrid model – a means of 

connecting Chinese educators to foreign ones – that characterizes reform in Chinese 

TPD. Such a teacher/expert collaboration attempts to develop and promote the 
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teacher’s expertise by absorbing and building on a combination of Chinese experts’ 

accumulated “wisdom of practice” (Shulman, 1986, p. 9) and international expertise. 

Given the long tradition of China’s own cultures of teaching and learning (Paine, Fang, 

& Wilson, 2003), it remains under-researched how this combination works out in 

practice. It is this that is a focus of our research. 

In a previous paper, Ding, Jones and Pepin (2013) report how an expert teacher guided 

a junior teacher to develop what we called a ‘hypothetical learning structure’ (HLS) in 

her lesson design. We carefully distinguished this HLS from Simon’s (1995) 

‘hypothetical learning trajectory’ (HLT), as the HLS in our study was not based on 

constructivist theory but rather on the Chinese expert teacher’s ‘wisdom of practice’ in 

the form of their expertise and experiences with local classroom practice. In this paper, 

we seek a deeper understanding of the pedagogical principles of this local expert 

teacher through studying his coaching of a junior teacher during our lesson design 

study.  

In this we refer to Gravemeijer’s (2004) ‘local instruction theories’ (LIT) of the expert 

teacher. As pointed out by Gravemeijer (2004), local instruction theories go “beyond 

the level of an instructional sequence in terms of a series of instructional activities” (p. 

108); rather, LIT are a “description of, and rationale for, the envisioned learning route” 

(p. 107; emphasis added). Our research question in this paper is: “what are the expert 

teacher’s implicit LIT that underpin his guidance of a junior teacher in lesson design 

and implementation, with the particular teaching objective of developing individual 

children’s mathematical reasoning in the class?” 

THEORETICAL FRAMEWORK 

Simon (1995) suggested the HLT as a way to consider the reflexive relationship 

between a teacher’s design of activities and considerations of students’ thinking as the 

students engage and participate in particular classroom tasks. As pointed out by Simon 

(1995), the term HLT underscores the importance of having a goal for teaching, some 

ideas for learning activities, and a sense of the direction of students’ learning. The HLT 

consists of three components: the learning goal; learning activity/ies; and the 

hypothetical learning process. 

Gravemeijer (2004) points out that it is not easy for teachers to design the HLT for 

reform mathematics in which the aim is to transform of students’ current ways of 

reasoning to more sophisticated ways of mathematical reasoning. The central problem 

that teachers face involves the tension between the openness toward the students’ own 

constructions and the obligation to work toward certain given endpoints. As 

Gravemeijer (2004) clarifies:  

I reserve the term hypothetical learning trajectories for the planning of instructional 

activities in a given classroom on a day-to-day basis, and I use the term local instruction 

theories to refer to the description of, and rationale for, the envisioned learning route, as it 

relates to a set of instructional activities for a specific topic. (p. 107)  



Ding, Jones, Pepin, Sikko 

PME 2014 2 - 403 

That is, the term local instruction theory is coined to “convey the intention of offering 

more than a description of a learning route, or the corresponding instructional 

activities. In addition to these two, a local instruction theory also includes a rationale” 

(Gravemeijer, 2004, p. 100). As such, and akin to Simon’s HLT with the addition of a 

rationale, the conjectured LIT consists of three components: (a) learning goals for 

students; (b) planned instructional activities and the tools that will be used; and (c) a 

conjectured learning process in which one anticipates how students’ thinking and 

understanding could evolve when the instructional activities are used in the classroom. 

In our study, we use the three components of Gravemeijer’s (2004) conjectured LIT 

(noted above) to analyse both the junior teacher’s and the expert teacher’s pedagogical 

thinking and decision-making during the lesson design and implementation, as well as 

during the lesson redesign.  

METHOD 

Our school-based TPD study is being conducted in a local laboratory school located in 

Qingpu district, a western suburb of SH (see also Ding et al., 2013). The overall 

methodological approach of our TPD study is in the form of the AE model by Gu and 

Wang (2003) that aims at developing the teacher’s professional knowledge – in the 

nature of absorbing and building on the accumulated “wisdom of practice” (Shulman, 

1986) – through the teacher’s lesson planning, lesson delivery, post-lesson reflection 

and lesson re-delivery. Two features highlighted by Huang and Bao (2006) distinguish 

the SH AE model from other types of TPD used in other countries – such as ‘Japanese 

Lesson Study’, case inquiry (Shulman, 1986), and course-based training and 

workshops: (1) the expert’s input to upgrade teacher ideas in the context of peer 

support; and (2) the whole process of teacher action follow-up and reflection is 

included. At the present stage of our data analysis, we particularly focus on the expert’s 

input to the junior teacher to help her understand how and why to redesign the lesson. 

The participant groups of the study were: (1) four researchers (the four authors); (2) an 

expert teacher (Mr Zhang); and (3) three teachers (two in Grade 3 (G3) and one in G4; 

4) twelve mathematics teachers from the mathematics teacher group of the school 

(from G1 to G6, ranging from newly-appointed teachers to teachers with about ten 

years teaching experience). In this paper we focus on one of the G3 teachers, who we 

call Peipei (a pseudonym), who, at the time of the research, had four years teaching 

experience in primary school mathematics. 

Our data sources include: Peipei’s initial lesson plan and accompanying classroom 

tasks; the transcript of her video-recorded lesson; the transcript of the video-recorded 

comments of the expert teacher and his work/documents to redesign the lesson and 

tasks; and the transcript of the video-recorded re-taught lesson. 

The analysis of the development/design research approach (Gravemeijer, 2004) was 

used to analyse the cumulative interactions between the junior teacher’s initial lesson 

design and implementation, and the expert teacher’s comments and lesson re-design. 
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In so doing, we aim to make the expert teacher’s implicit LIT explicit, and explain how 

and why the teacher reflected and revised her mathematics teaching across an 

interactive series of teaching cycles. 

FINDINGS 

Understanding the learning goal of the lesson 

In Peipei’s initial lesson plan and implementation, we found that the teacher tried to 

guide students to achieve the learning goal given in the SH official teacher’s textbook 

reference (TTR). The TTR suggested the teacher to make one point of mathematical 

knowledge clearly to students in the lesson inquiry activity. In this case, the core of the 

inquiry was the relationship of the area, length and width of rectangles (including 

squares) with the constant perimeter as a stepping stone to understanding the 

relationship of the constant sum of two numbers and the maximum product of them.  

After observing Peipei’s initial lesson, the first point that Mr Zhang suggested to Peipei 

was carefully to consider about the learning goal suggested by the TTR. Mr Zhang 

explained to Peipei the learning goal as follows: 

In primary mathematics, this content is considered as a typical topic to learn how to 

establish a mathematical proposition. Strictly speaking, it is not about concept learning, 

but about proposition learning [learning how to find laws and relations in mathematics]. 

Redesigning the instructional activities and the tools 

In the initial lesson, Peipei directly used the task given in the textbook (using 20 

matches to form rectangles and to find the largest area). To achieve the learning goal 

explained in the TTR, Peipei organized three main instructional activities in her lesson 

plan and implementation: (1) The starting activity: Peipei asked students to use four 

numbers 1, 3, 4, 5 to combine two two-digital numbers, and then to guess which of the 

two to multiply to get the largest result. (2) The main activity: Peipei asked students to 

cooperate in a group of four students and to respectively use 20 and 18 matches to form 

rectangles and to record the possible length, width and area of rectangles with the 

constant perimeter on the worksheet. Students were also asked to use mathematical 

language to represent their findings on the worksheet. (3) The exercise activity: One of 

the tasks in this activity was to ask students to find the larger product of 94×83 and 

93×84. 

Mr Zhang considered that Peipei constructed the learning process not from the 

perspective of students, but from the perspective of the textbook. Mr Zhang said the 

following: 

From the teaching perspective, the logic of the lesson structure [the three instructional 

activities] is clear. If the teacher added one more activity to ask students to talk about the 

conclusion of the lesson, I guess most students could make it. Such a way of teaching is 

very traditional as it merely concerns on students’ learning product, not on their learning 

process. However, students would gain benefits from the learning process, not merely from 

the learning product. The application of the learning product is based on students’ learning 



Ding, Jones, Pepin, Sikko 

PME 2014 2 - 405 

experience, method and thinking path. To support individual learning, the teacher should 

address questions [pertaining to] students’ starting points in their own learning and 

experience and what they can achieve in the lesson. 

Accordingly, Mr Zhang suggested to Peipei not to use the activity of four numbers 1, 3, 

4, 5 to start the lesson. Instead, Mr Zhang suggested Peipei to start the lesson by using 

a smaller number of matches so as to enable students with various levels of skills to 

handle the task within the available lesson time. The instructional activities were 

redesigned to enable students to experience the whole reasoning process of 

rediscovering the mathematical proposition (e.g., observation/operation – guesses – 

plausible reasoning / proving – using proper representations and language to represent 

the mathematical proposition) as follows: (1) Starting activity: students were asked to 

use matches to form rectangles and then to record the length, width, perimeter and area 

of the rectangles in a table; (2) Follow-up activity: students could make guesses and 

reasoning about their findings and then confirm their own guess. (3) Conclusion of the 

activity: students should learn to use different representations (e.g., drawing, symbols, 

their natural language and mathematical language) to characterize and to simplify the 

mathematical proposition of the relationship of perimeter and area of rectangles. 

The expert teacher’s implicit LIT  

We analysed the complexity of Mr Zhang’s implicit LIT according to his perspectives 

on students’ learning methods, students as active learners, and students’ mathematical 

reasoning development. 

Students’ learning methods: Mr Zhang highlighted the role of the worksheet as an 

effective tool to develop individual students’ independent learning method. For 

instance, in the redesigned starting activity, students were given opportunities to 

independently decide the length and width of rectangles and the number of matches. 

As the worksheet was A4 size, the space was limited for students to draw and put 

matches on the worksheet. A maximum of 10 matches could be used. In using the 

worksheet, students would have opportunities to experience the process of reviewing 

their own previously learned knowledge of perimeter and area of rectangles and 

squares, drawing and forming rectangles and gradually to develop their reasoning of 

their observations and guesses. 

Students as active learners: Mr Zhang explained to Peipei the complex relationship 

between the cognitive processes of an individual student and the classroom learning 

community. Mr Zhang’s view is evident in his discussion with Peipei about students’ 

group discussion, as follows: 

Students’ group [or class] discussion is based on each individual’s own learning 

experience and the related learning results. It would be too abstract for students if the 

teacher asked students to discuss their observation during the starting activity. Because 

students had not yet experienced the cognitive processes such as from sample [of matches] 

to operations [form rectangles by matches], and from the diagram to language, the group 

[or class] discussion encouraged by the teacher was from one student’s language to another 
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student’s language. The individual student’s cognitive process was interrupted by others’ 

discussion. Sometimes, other students’ talk is positive to develop the individual student’s 

thinking development. Yet, other times, it may prevent the individual student’s 

independent thinking. The teacher should reflect on her role of how to enable each student 

to develop their own learning outcome and then how to help students to correct and revise 

their learning experience. 

Mr Zhang further used an example to explain to Peipei the teaching strategy of how to 

tackle such complexity of the relationship between individual, group and class during 

the follow-up activity in the lesson: (1) individual students should be selected by the 

teacher to report their worksheet data to the class; (2) a group of students would share 

the similar data (due to the same size of worksheet); (3) the whole class could share all 

reported data listed on the blackboard.  

Students’ mathematical reasoning development: Mr Zhang referred to two theoretical 

ideas to address the teacher’s role in students’ mathematical reasoning development: 

(1) the teacher can use variation as a means of “Pu dian” (scaffolding in Chinese) (Gu, 

2012) to enable different students’ reasoning and representations to be shared in the 

whole dynamic mathematical activity; (2) the teacher should ensure that at each key 

point of the learning process, each student should have their own thinking path. He 

said:  

Students should first develop their independent representation of their findings. After that, 

they can present their representations in the class. They would then learn from their peers 

in the class which representation is correct or incorrect, which one is a suitable, rigorous or 

scientific form of representation. The representation of mathematical proposition is 

complex as it can be represented by multiple languages and reasoning path. The teacher 

should ensure that each student not only has learning opportunities to demonstrate their 

representations and to compare with others, but also to learn to appreciate the excellence of 

the multiple forms of representation. 

DISCUSSION AND CONCLUSION 

By analysing the cumulative interaction between the junior teacher’s initial lesson 

design and implementation and the expert teacher’s comments and lesson redesign, we 

can identify three key points of Mr Zhang’s implicit LIT as follows: 

1. Mathematics has its own form of exploration. The teacher should think about how 

to develop students’ ways of mathematical reasoning during their exploration 

process. The lesson should be designed in such a way that students are able to 

experience on their own the whole process of plausible reasoning in mathematics. 

2. To experience the whole process of mathematical reasoning (plausible reason in 

this study), the construction of the learning process should focus on each 

individual student. That is, at each key point of the learning process, each student 

should have their own thinking path. Each student should enjoy a whole process 

of their own independent thinking in the learning process.  
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3. Mathematical proposition is complicated for it can be represented by multiple 

kinds of languages and various types of thinking. Each student should not only be 

able to experience to use their own representation, but also to learn others’ 

representations and the excellence of representations. 

In our previous studies (Ding et al., 2013; Ding, Jones, Pepin & Sikko, 2014), we 

focused on the expert teacher’s voice. For instance, in Ding et al. (2014) we reported 

that while guiding the teacher to understand the new teaching norms from the overseas 

textbooks (e.g., Pepin & Haggarty 2001), the expert teacher simultaneously 

encouraged our case study teacher to use the traditional Chinese ‘two basic’ (basic 

knowledge and skills, briefly named as TB) teaching (e.g., Shen Tou) method carefully 

to develop students’ TB in mathematics. In this paper, the expert teacher highlighted an 

alternative teaching method (Pu Dian) in the redesigned activities to develop students’ 

mathematical reasoning. The expert teacher’s voice on the empirically-grounded 

teaching approaches echoes Shulman’ (1986) influential work on the nature of 

teachers’ professional knowledge development – absorbing and building on the 

accumulated “wisdom of practice”. In our case, it is as a key stakeholder (Kieran, et al, 

2013) in our inquiry community (Jaworski, 2004). 

Li, Huang and Yang (2011) show the complexity of the Chinese expert teachers’ 

teaching expertise valued in China. In our study, we showed the complexity of the 

expert teacher’s implicit LIT. As Mr Zhang pointed out, ‘at each key point of the 

learning process, each student should have their own thinking path’. That is, while 

individual students participate into the group and class-shared thinking process, they 

should not stop their own thinking path and passively listen and take others’ thinking 

path. Others’ thinking path should be considered as an alternative means for 

individuals to develop and complete their independent thinking path. If we borrow 

Simon’s (1995) metaphor of travel plan, the teachers ought to have a sophisticated 

‘travel plan’ not only for one individual, but for the class of pupils. Our next step in our 

project is towards understanding the expert teacher’s sophisticated ‘travel plan’ that 

makes the connection to each individual student’s thinking in their mathematics 

learning journey within the class.   
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Results of the last thirty years in mathematics education have shown the importance of 

an operational concept development. One of the geometrical concepts that has been 

researched for years already, however, not with the particular focus on its systematic 

teaching in school mathematics, is the concept of angle. In this paper we focus on 

children’s understanding of the angular size of 1° and its development obtained 

through a test followed by a task-based interview. The interview results with 9 pupils 

showed that they have a fragmented understanding of the angle concept, enabling them 

to fully grasp what 1° angle is. Moreover, many of the children’s misconceptions were 

directly connected to the measuring tool, namely set square, and angle notation. 

Implications for systematic teaching of the angle concept are given at the end. 

INTRODUCTION 

The angle concept is a fundamental concept of plane geometry and central to the 

development of geometric knowledge and thinking. This concept is not only relevant 

for the entire geometry teaching, but also in everyday situations and in different 

careers. In Germany, the angles, namely right angle, get introduced at the elementary 

level, but its systematic learning starts at 5
th
 grade and lasts throughout grade 10. Both 

the state curriculum and the standards give guidelines as to what ideas, knowledge with 

respect to the angle concept should be learned. The angle concept, although being an 

elementary concept of plane geometry, poses problems for many middle-school and 

high-school students; the students have no sense of angle size, have fragmented 

knowledge of angle aspects, lack knowledge of angle attributes, do not understand the 

protractor as a measuring tool, and so on (Dohrmann & Kuzle, 2013, in press; Krainer 

& Cooper, 1990; Mitchelmore & White 1995, 2000; Van de Walle, 2001). For that 

reason, project WiKUL (Winkel konstruktiv unterrichten und lernen, that is teaching 

and learning of angle concept under constructivist epistemology) was developed. The 

goal of the project is to understand which of these ideas and operations about angle are 

encountered by middle- and high-school students and how the angle concept can be 

conveyed to students in a meaningful manner by using fundamental ideas of concept 

learning to prevent the development of angle misconceptions. For the purpose of this 

paper we focus on one of these aspects, namely students’ angle measure 

understandings past elementary level, which was focus of previous research (Kaur, 

2013; Mitchelmore & White, 1995, 2000) and have prevailed in our previous research 

(Dohrmann & Kuzle, 2013, in press).  
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THEORETICAL PERSPECTIVE 

The nature of the angle concept has been vividly debated for over two thousand years, 

and the discussion is not close to be over (Krainer & Cooper, 1990). This discussion 

resulted in three different definitions or aspects as well as different representations 

being typified in school mathematics. Having this complexity in mind, research has 

shown that students have serious misconceptions about the concept of angle based on 

their personal experiences. For that reason a somewhat radical approach is needed to 

alter preexisting concept structure. With this in mind, the conceptual change theory is 

becoming more prominent in the mathematics education research to explain student’s 

difficulties in learning mathematical concepts (Posner et al., 1982). According to this 

this theory, that draws from both Kuhn’s sociology of science and Piaget’s 

developmental psychology, learning can occur in two manners: (1) new knowledge is 

added to the prior knowledge (assimilation) and (2) old knowledge is first 

reconstructed as a result of disequilibrium or conflict when confronted with new 

knowledge (accommodation) before the conflict can be resolved or it gets overthrown 

(rejection) by the learner. Following this process students can then undergo the process 

of accepting, integrating and using the new concepts.  

Though the conceptual change approach has been proven to be a fruitful framework for 

analyzing student difficulties, it does not exhaustively reflect the complexity of the 

learning process, student’s understanding of a particular concept nor student’s learning 

difficulties. Essential reasons for these problems are due to the fact that mathematical 

concepts and symbols, which are used in the teaching of mathematics are often 

understood by students with a totally different meaning from what was intended by the 

teacher (vom Hofe, 1998). For that reason, different concepts of the generation of 

“mental models” have been developed to counteract these problems. In Germany these 

mental models, which bear the meaning of mathematical concepts or procedures are 

called Grundvorstellungen (GVs), which emphasize the constitution of meaning as a 

central aim of mathematical teaching. They can be interpreted as “elements of 

connection or as objects of transition between the world of mathematics and the 

individual world of thinking” (vom Hofe, 1998, p. 320), which show structural and 

functional aspects of a mathematical subject. GVs are not static mental models, which 

are valid forever, but its generation is a dynamic process of changes, reinterpretations 

and modifications as involvement with new mathematical subjects takes place. It is a 

cognitive net in which single GVs are in correlation to others. 

GVs cannot be directly studied but require the need to be aware of three different types 

of behavior, prescriptive (basic idea), descriptive (individual image) and constructive. 

In mathematical literature, prescriptive notion of angle GVs are given describing 

adequate interpretations of the core of the respective mathematical contents which are 

intended by the teacher in order to combine the level of formal calculating with 

corresponding real live situations. For instance, from a normative aspect (basic ideas) 

of 1° angle can be the amount of openness between the two rays of an angle, which 

corresponds to 360
th
 part of the circle circumference with degree as a unit of measure 
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equal to it, which openness is so small (on paper) that one can barely see the difference 

between the two rays. However, descriptive notion focuses on describing ideas and 

images, which students actually have and which usually more or less differ from the 

relevant mathematical thoughts intended by mathematical instruction. Thus, in the 

teaching-learning context it is important that the teacher specifies an adequate basic 

idea of 1° angle, so that the students do not generate an image detached from it, such as 

1° being understood as a Euclidean distance between the two rays or as measure of the 

extent of a two-dimensional shape. The third perspective focuses on developing and 

confronting students with learning situations that would allow them to change, rebuild, 

and refine their individual images.  

In summary, when thinking about the teaching-learning process, the first focuses on 

ideas that have to be formatted by the students, the second on images, which have been 

activated by a student and third initiated by the teacher as a result of faulty or not fully 

developed basic ideas. In this paper we focus on the process of teaching-learning of the 

angle measure of 1° with the interplay between individual images and basic ideas, and 

how these can lead to the constitution of basic ideas of the students in a psychological 

sense.  

METHODOLOGY  

The study took place in a Montessory comprehensive school in the state of Saxony. We 

administered a WiKUL test to approximately 300 students in grade 5 to grade 10. The 

purpose of the test was to grasp and understand their existing ideas and aspects about 

the angle concept, and to obtain an image for the understanding of the concept and the 

associated operations. The students had 45 minutes for the test. The test items were 

aligned with the Saxon curriculum and consisted of two types of items, that focused on 

the following two aspects: (a) intra-mathematical knowledge on both grade and 

across-grade tasks, and (b) patterns of thinking in application tasks about the angle 

concept (Dohrmann & Kuzle, in press). A special test item was used, namely 

Anna-letter developed by Thomas Jahnke, as a source of data for the pupils’ individual 

images about the angular size of 1°. In this data source a 12-years old bright girl by the 

name of Anna is introduced asking students for an advice or help. For the purpose of 

our study, Anna-letter focused on asking the pupils to help Anna understand what 1° 

angle is: 

Dear …, 

Yesterday we repeated angles in math calls. Our teacher wanted to know what 1° is. With 

the question I was totally overwhelmed. Although I know that we have constantly used 

this, I cannot exactly explain what 1° means. Can you please help me? Maybe you can also 

draw a sketch.  

Thank you and best regards, Anna. 

This item was used for 5-10
th
 graders. By using this data source and through children’s 

communication, representations and arguments, we obtained an insight into children’s 
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images about the 1° angle. The analysis of Anna–letters occurred in several steps 

where both inductive and deductive methods were used as suggested by Patton (2002). 

The analysis showed that pupils held many different images about 1° angle (Dohrmann 

& Kuzle, in press) with distance GV about the 1° angle being highly coded and across 

different grades (ca. 10% of children). This GV was assigned when word distance was 

used in the verbal explanation, and/or when 1° was equated with a distance measure 

(e.g., 1°=1mm, 1° equals distance between two dashes on the set square).  

To confirm written explanation and to better understand this GV, nine pupils were 

chosen on the basis of their contrasting responses (GVs and misconceptions) about the 

angular size of 1° and interviewed; two from grades 5 and 6, one from grades 7, 8 and 

9, and two from grade 10. The interviews lasted ca. 15-20 minutes and focused on 

student’s elaboration of Anna-letter and how this GV developed. In addition, another 

instrument was used, namely Anna-video. In it a girl Anna measures the angle as 

described by each pupil in the Anna-letter; she measured the angle by measuring the 

distance between the two rays, concluding that since the distance between the two rays 

equals 1mm, the angular size corresponded to 1°.  

     

Figure 1: Anna-video. 

The children were supposed to comment on Anna’s solution and give us a better 

understanding of their image by explaining their notion, refining, rejecting or 

rethinking their distance GV. In other words, we were interested how the children deal 

when confronted with new experiences and challenges as explainer earlier. 

This data was again analyzed using content with contrasting comparative methods 

(Patton, 2002). To increase the reliability of the study, both authors coded the data 

separately and meet to discuss the codes. When agreement was meet, the code was 

assigned. 

CHILDRENS’ DISTANCE GRUNDVORSTELLUNGEN OF 1° ANGLE  

A summary of findings is presented in terms of children’s distance image(s) in angle 

context, their understanding of 1° angle given through elaboration and arguments on 

the basis of their Anna-letter and reaction to Anna-video, and relationship among their 

identification of 1° angle and its representation on paper and set square. Brief 

descriptions are provided for the categories with quotes from participants.   

Individual image of “distance” in angle context – in mathematics, from a normative 

perspective distance is a function that describes how apart objects are. In the angle 

context the normative aspect of distance is described as the length of the unit circle arc 
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enclosed by a particular angle. However, the descriptive perspective exhibited by the 

participants was different. They held three different images of distance GV with 

respect to 1° angle: (1) the distance between the two dashes on the set square which 

was equal to 1mm (N=3), (2) the 1 mm distance between the two half-rays (N=3), and 

(3) the length of the arc closed by the 1° (N=3). First image was observed by Lynn (5
th
 

grade), Elli (5
th

 grade), and Toni (7
th
 grade). These children showed the 1° angle on the 

set square; it was identified as a plane between zero and two dashes on the set square. 

However, the distance between the dashes was then estimated to 1mm and equated 

with the 1° angle.  

Lynn: Well, I just thought that 1mm …So when I have here the set square, that 

here between the two lines maybe 1mm is … 

Toni (7
th
 grade) argumented similarly, but by using the half-circle scale.  

Tony:        So, I’d say that for instance here on the set square 1° is 1mm here on 

the circular edge marking. 

Joanna (6
th
 grade), Toni (7

th
 grade), and Mike (8

th
) similarly identified 1° degree as 

1mm “distance” but between the two half-rays, whereas Elaine (10
th
 grade) as 1cm 

distance. Ally (6
th

 grade), Jess (9
th
 grade) and Layla (10

th
 grade) associated the 

“distance” with the arc length. For instance, Jess viewed it as 360
th
 part of circle, which 

had the length of 1mm. Based on the sample we can conclude that independent of the 

grade level, pupils held these different misconceptions about the 1° angle. Hence, these 

different sub-misconceptions were stabile throughout grades 5 to 10. Moreover, the 

source for some was traced to the tool itself, namely the set square, used in all grades 

when teaching and learning the angle concepts.  

Individual image of 1° angle on the basis of Anna-instruments given through 

elaboration and arguments – children differently reacted to Anna-video. Four pupils 

tried to make sense of the newly acquired information by trying to make connections to 

their own learning. At the end they assigned it to another way of measuring an angle. 

Hence, they accommodated the new technique into their existing scheme.  

Elaine: I’m not sure, maybe one can measure an angle like that. I think, when she 

would have measured the angle a bit further, then it would have become 

bigger, the distance… However, I guess that it does not make a difference 

how much one extends the dashes. 

Five pupils after trying to make sense of it, consciously rejected the new technique.  

Jess: I would tell her [Anna], that one has to differently lay the set square. So one 

lays it onto the angle where zero is und that one reads it off like that, but 

yeah I write it myself incorrectly.  

Interviewer: At what point would you say that you wrote it down incorrectly? 

Jess: Well I assumed the same ideas… I also measured it from the top and the 

said to myself ‘1mm is also 1°’. But when I think about it, it is clear to me, 

that that is not correct and that I also incorrectly lied down the set square.  
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As shown in this one excerpt, as a consequence they got aware how their explanations 

using mathematically inappropriate language led Anna to false actions. These few 

excerpts show that pupils generated multiple related ideas for this situation. In other 

words, conceptual change was exhibited allowing children to challenge their written 

and verbal explanation about the 1° concept. These were exhibited on two meta-levels: 

language and situative. In the former certain words and formulations were used to 

describe the distance GV that could be interpreted in different manner. However, the 

children used the word “distance” in a non-linear context, as they could not find 

another word for it, such as “angle openness”. In the latter, Anna-letter and Anna-video 

were seen as two independent entities. The ideas from the video were regarded as a 

new concept that got either accommodated or rejected.  

Relationships among identification of 1° angle and its representation – the pupils 

identified 1° angle on the set square and represented in then on paper. Collectively, the 

pupils identified 1° angle either along the leg of the set square or on the half-circle 

scale. More precisely, four pupils identified it as an angle between first two dashes on 

the leg, whereas only two pupils as an angle between any to dashes lying next to each 

other on the leg of the set square. Three students referred to the half-circle scale; 

similar to the above description, two pupils identified it as an angle between any two 

dashes next to each on the half-circle scale. Surprisingly, one student, Joanna (6
th
 

grade), claimed 1° angle not existing on the set square. 

Interviewer: And now show me a 1° angle on it [set square].  

Joanna: That doesn’t work since it [scale] begins with 10°. So, it’s a bit difficult to 

measure.   

Interviewer: One cannot see 1° angle on the set square?  

Joanna:  Nah-ah … This is merely 170°, when one doesn’t have an entire half-circle.   

Pupils were then asked to draw 1° angle using the set square or the protractor. 

Collectively almost all pupils identified 1° angle as a part of plane bounden by two 

half-rays and an arc. That is, as a part of plane bounded by the arc and close to the 

vertex; what was “outside” of the arc was not identified as 1° angle. 

Elaine: That’s 1°.   

Interviewer: Show it one more time.  

Elaine:  Here and here, so here behind would be 1°…Well, maybe here would also 

be 1°, because when one … so I have here… nah, in fact it has to be here in 

the front. 
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Figure 2: Elaine’s identification of 1° angle through fixation on angle notation. 

Hence, 1° angle was identified through notation. Such fixation on notation enabled the 

conceptual understanding of the angle concept; she thought about extending the rays, 

but then concluded that 1mm would not come out. At the end 1° angle was again 

equated to 1mm, where 1mm was the Euclidean distance between the two rays and part 

of the angle enclosed the by vertex and plane bounded by the 1mm length. Similar 

behavior was observed with other participants. Thus, interplay between both ideas 

about 1° angle and its notation allowed for developing deep misconception not only 

about 1° angle, but angle concept and its main ideas.  

CONCLUSIONS  

The results presented here show that students have a fragmented understanding of the 

angle concept as shown in previous studies. However, we have shown that the 

development from grade 5 to grade 10 continues to cause a rising gap between the 

angle concept and its main ideas. In particular as a consequence pupils cannot fully 

grasp what 1° angle is, cannot fully describe it or show it, and reject fallible actions of 

others. Different misconceptions, such as notation fixation, can severely inhibit 

identification or construction of adequate images. Secondly, the results have shown 

that some children do have the mathematical understanding of 1° angle, but missing 

appropriate mathematical language competencies to communicate their thinking. 

Thirdly, many of children’s misconceptions were directly connected to the set square. 

Through the routine tasks procedures were learned and practiced, without building a 

deeper understanding of the tool and its affordances, which then inhibited conceptual 

understanding of the angle concept and its operations. Moreover, the tool emphasizes 

the static angle perspective, but is not suitable for developing the dynamic angle 

perspective.  

The pupils cannot assimilate the ideas given by the teacher, nor can these be transferred 

into the pupil’s mind. Children construct their own images, ideas, and models based on 

the available teaching-learning situations. As a result of this and other research (e.g., 

Dohrmann & Kuzle, 2013; Kaur, 2013; Mitchelmore & White, 1995, 2000), we 

advocate for teaching and learning concept oriented towards the student, on the 

understanding and the application with respect to the angle concept on the basis of a 

GV-grounded access and by using a didactically more appropriate angle tool. In more 

details, the process of teaching and learning focused on transposing basic ideas on the 

one hand, and being sensible for the individual images on the other hand, are didactical 

means for inviting students developing adequate meaning of mathematical concepts. 
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We are currently developing materials for teachers and students with these ideas in 

mind. On the one side, the materials should allow students with the situation that 

support discovery of fundamental ideas and aspects in order to develop understanding 

for corresponding operations. Moreover, the students need to development the ability 

to handle the daily situations for which the angle concept is crucial. Last but not least, 

we want to support teachers by developing materials that would allow them to analyze 

children’s strategies and mistakes, and hinder misconceptions to enable the further 

progress. Such appropriate teaching-learning situation would allow for changes, 

reinterpretations, or modifications to basic ideas contributing to a greater 

understanding of a multi-faceted angle concept. 
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GENERALIZING DOMAIN AND RANGE FROM 

SINGLE-VARIABLE TO MULTIVARIABLE FUNCTIONS  

Allison Dorko, Eric Weber 

Oregon State University 

 

The purpose of this paper is to describe (a) multivariable calculus students’ meanings 

for the domain and range of single and multivariable functions and (b) how they 

generalize their meanings for domain and range from single-variable to multivariable 

functions. We first describe how students think about domain and range of 

multivariable functions as inputs and outputs, independent and dependent quantities, 

and as associated with particular variables. We then use an actor-oriented transfer 

framework to describe the ways in which students identify similarities between domain 

and range in single- and multivariable functions, and how they use these similarities to 

generalize their meanings for domain and range.  

INTRODUCTION 

While researchers have identified interesting and useful phenomena about how 

students think about single-variable functions, far fewer studies exist about how these 

findings might extend to multivariable functions This motivates the first focus of our 

paper. Multivariable functions form the backbone of multivariable calculus, and are 

frequently used in physics and other sciences, but research about how students 

understand multivariable functions and ideas in multivariable calculus is largely 

preliminary (Kabael, 2011; Martinez-Planell & Trigueros, 2013; Trigueros & 

Martinez-Planell, 2010; Yerushalmy, 1997). Given the documented difficulties 

students have with single-variable functions and single-variable calculus, it bears 

investigating if and how these difficulties appear in multivariable functions and 

multivariable calculus. We focus on domain and range because researchers have 

suggested that a robust conception of function begins with students thinking about the 

correspondence between inputs and outputs; that is, the function’s domain and range 

(Oehrtman, Carlson, & Thompson, 2008).   

It is clear to experts that multivariable functions and ideas related to them (e.g., 

domain, range, rate of change) are extensions of the same ideas in the single-variable 

function context. However, students do not always make the connections that experts 

do, and they do not necessarily develop the meanings that instructors intend. This 

motivates the second focus of our paper. We analyze what students see as similar 

between the domain and range of single- and multivariable functions. This 

actor-oriented perspective yields insight into how students generalize ideas; that is, 

how they develop meanings for ideas in a novel setting by leveraging their meanings 

from a familiar setting. Though there have been many studies about generalization in 

algebra (e.g. Amit & Klass-Tsirulnikov, 2005; Carpenter & Franke, 2001; Cooper & 
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Warren, 2008; Ellis, 2007), there are fewer in undergraduate mathematics topics. At 

the same time, generalization is a critical component of mathematical thinking (Amit 

& Klass-Tsirulnikov, 2005; Lannin, 2005; Mason, 1996; Peirce, 1902; Sriraman, 2003; 

Vygotsky, 1986) and thus it is important to extend knowledge of how students 

generalize in higher mathematics. If we know the specific ways in which students 

generalize their ideas about single-variable functions to multivariable functions, 

instructors can build on connections that appear naturally to students while providing 

evidence to counter any unproductive generalizations (that is, not congruent with 

experts’ views) students make. 

BACKGROUND LITERATURE 

While a systematic search of the literature did not reveal studies explicitly focused on 

domain and range, there are some findings in the function literature that are relevant to 

the present study. For instance, one way to define domain and range is the set of inputs 

and outputs of the function, respectively. According to Oehrtman, Carlson, and 

Thompson (2008), thinking about a function in terms of an input and corresponding 

output is the beginning of a robust function conception. Monk (1994) found that most 

calculus students have developed this pointwise view of function but fewer develop an 

across-time view of function, in which students’ conception of function progress to 

thinking about the function for infinitely many values and understanding how the a 

change in one variable affects the other(s). That is, a robust function conception 

involves not only the ability to pair an input with an output, but an understanding of the 

relationship between quantities. Confrey and Smith (1995) say the beginning of this 

understanding occurs as students form connections between values in a function’s 

domain and range. However, as function is introduced in algebra and/or precalculus, 

the functions instructors ask students to reason about are single-variable functions. 

How students build an understanding of multivariable functions is not known. 

Investigating students’ meanings for domain and range thus extends the literature 

about students’ understanding of single-variable functions, and adds to the body of 

knowledge that has just begun to develop regarding students’ understanding of 

functions of more than one variable.  

When students learn multivariable functions, they must broaden their notion of 

function beyond the single-variable case; that is, they must generalize their ideas. Note 

that abstraction is also a key part of this process, but space limits the discussion to 

generalization. Generalization is a critical component of mathematical thinking (Amit 

& Klass-Tsirulnikov, 2005; Lannin, 2005; Mason, 1996; Peirce, 1902; Sriraman, 2003; 

Vygotsky, 1986), and while there have been many studies about generalization in 

algebra (e.g. Amit & Klass-Tsirulnikov, 2005; Carpenter & Franke, 2001; Cooper & 

Warren, 2008; Ellis, 2007), but far fewer studies exist about generalization in 

undergraduate mathematics. Findings from generalization studies typically indicate 

that generalization is difficult for students; for instance, algebra students’ 

over-generalize of linear relationships interferes with their understanding of quadratic, 

exponential, and logarithmic functions (Chazan, 2006; Ellis & Grinstead, 2008; 
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Schwarz & Hershkowitz, 1999; Zaslavsky, 1997). Other difficulties include trouble 

transitioning from pattern generalization to abstract algebraic thinking (e.g., Moss, 

Beatty, McNab, & Eisenband, 2006; Mason, 1996; Orton & Orton, 1999; Schliemann, 

Carraher, & Brizuela, 2001) and shifting from thinking about a pattern recursively to 

developing a formula for the n
th

 case. If we know the specific ways in which students 

generalize, instructors can build on connections that appear naturally to students while 

providing evidence to counter any unproductive generalizations (that is, not congruent 

with experts’ views) students make. 

THEORETICAL PERSPECTIVE 

We studied generalization from an actor-oriented perspective, which attends to what 

students see as similar in mathematical situations. This is in contrast to an 

observer-oriented perspective in which students’ ideas are compared to what an expert 

would see as similar across situations. Such perspectives often find that students 

cannot or do not generalize ideas from one setting to another, and focus on students’ 

final generalizations rather than generalization as a process. We are interested in how 

students generalize, and the actor-oriented perspective allows us to privilege students’ 

perceptions of similarity, even if those perceptions are not necessarily correct. We 

follow Ellis (2007) and Lobato (2003) in thinking about generalization as “the 

influence of a learner’s prior activities on his or her activity in novel situations” (Ellis, 

2007, p. 225). This was a useful lens for looking at how students viewed domain and 

range, a topic they had experienced prior with single-variable functions, in the novel 

situation of multivariable functions. We use Ellis’ (2007) generalizations taxonomy as 

an analytic framework, which is detailed later in the paper.  

DATA COLLECTION AND ANALYSIS 

We interviewed 20 students enrolled in multivariable calculus at a mid-size university 

in the northwestern U.S. The students were volunteers from all the multivariable 

calculus students enrolled during that term, and were compensated for their 

participation. The course topics included vectors, vector functions, curves in two and 

three dimensions, surfaces, partial derivatives, gradients, directional derivatives, and 

multiple integrals in different coordinate systems. Each student participated in a 

semi-structured interview that lasted about an hour. We recorded audio and written 

work from each of the interviews using a LiveScribe Echo Pen, which provides a 

recording consisting of synced audio and written work of the student. These recordings 

also allowed us to create dynamic playbacks of the interviews during analysis of the 

data.   

The students responded to the following tasks, which were developed to elicit their 

verbal definitions for the concepts (Q1) and how they operationalized those definition 

in problem contexts involving single-variable (Q2) and multivariable (Q3, Q4) 

functions. 
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Q1. What does domain mean? What does range mean? 

Q2. What are the domain and range of f (x)= 4+1/ (x-3)? 

Q3. What are the domain and range of f (x,y) = x2 + y2? 

Q4. What are the domain and range of x2 + y2 + z2 = 9? 

Each research foci required its own analytic framework. We used a constant 

comparative analysis Corbin (2008) to investigate students’ meanings for domain and 

range (the first focus), and Ellis’ (2007) generalizations taxonomy to investigate how 

students generalized their meanings for domain and range (the second focus). We 

discuss the specifics of the constant comparative analysis and its results in the next 

section, and the specifics of the generalizations analysis and its results in the section 

following that. 

MEANINGS FOR DOMAIN AND RANGE 

To perform the constant comparative analysis, Researcher 1 listened to half of the 

interviews and highlighted phrases students used to talk about domain and range. 

These phrases included words like input, dependent variable, ‘goes with x,’ etc. The 

researcher formed codes from these words (e.g., input/output, 

independence/dependence, associated with particular variables) and used these to code 

the second half of the data. The researcher added to and modified the codes based on 

this data, and then both researchers independently used the codes to code all of the 

data. They compared results, discussed any differences, and modified the codes a final 

time. The researchers then used the coded and categorized data to describe students’ 

meanings for domain and range.  

These meanings fit into three categories: as attached to specific variables (e.g., Adam), 

input/output (e.g., Jim), and independence/dependence (e.g., Phillip). We found that 

students talked about all of these ideas for both single-variable and multivariable 

functions, as is evident in the selected excerpts below. 

Adam:  [Q3] It’s a helix, or spinny spring looking thing. Domain and range, so the 

domain of this would be all real numbers for x values, so x can equal any 

number, and it changes what z equals, but even negative numbers squared 

equal positive z. And the range is all real numbers because there is no value 

of y for which the graph is undefined. 

Jim: [Q1] Domain is your input values, otherwise known as your x values. It 

could also represent your independent values. The range is your output, 

your dependent variables, y values. 

 [Q3] There would be two different domains. You have your x input and our 

y input. Your x domain and your y domain give you a range of a different 

variable. It’s the range of z or f(x,y). 
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Phillip: [Q3] It’s a function of two variables. x and y are both independent 

variables, rather than the dependent variable. You could say the domain is 

the independent variable and range is the dependent variable. 

Students who thought about domain and range as attached to specific variables thought 

that domain always meant the possible values of x and range meant the possible value 

of y, regardless of whether the function was f(x) or f(x,y). Other students’ meanings for 

domain and range relied on the notion of function as a ‘machine’ which generates 

inputs from outputs; these students’ meaning for domain was the possible input values 

and their meaning for range was the possible output values. Finally, students thought of 

domain as a set of values for an independent variable, and range as a set of values for a 

dependent variable. These categories are not mutually excusive, and many students 

had a meaning for domain and range that incorporated both ideas of input/output and 

independence/dependence. Having identified students’ particular meanings, we then 

analysed the generalization of those meanings from the single-variable to multivariable 

context. 

GENERALIZING THE MEANING OF DOMAIN AND RANGE 

The generalization analysis was based on Ellis’ (2007) generalizations taxonomy (see 

Ellis, 2007, p. 235, 245). The taxonomy distinguishes between generalizing actions, 

which are “learners’ mental acts as inferred through the person’s activity and talk” 

(Ellis, 2007, p. 233) and reflection generalizations, or students’ public statements 

about a property or pattern common to two situations. The taxonomy includes 

subcategories that represent specific types of generalizing actions and reflection 

generalizations. The first researcher coded all of the data according to the descriptions 

indicated in the tables. The second researcher reviewed the coding and any the 

researchers discussed and adjudicated any points of disagreement.  Not all of the 

categories in Ellis’ (2007) taxonomy appeared in this data. The categories that did fit, 

their descriptions, and examples from this data are shown in tables 2 and 3. 

We found that students primarily used the generalization methods of relating objects 

(equations and graphs), stating global rules, and using and/or modifying prior ideas 

and strategies. Students often appealed to the similarities of f(x) and f(x,y) as each 

being a function “of” something, and stating that in the multivariable case, x,y were 

inputs or independent variables just as x was an input in the single-variable case. They 

used this to justify that the domain of f(x,y) was the possible values for x and y, as it was 

in the single-variable case. Students related graphs by noticing that the range typically 

had to do with the variable on the vertical axis and domain typically had to do on with 

the variable on the horizontal axis, and they used this to infer that the range of a 

multivariable function would be the possible z values and the domain would be for the 

horizontal plane. Finally, other students stated that domain would mean the input or 

independent variable no matter how many variables in the function argument, and 

range would always be the output, the dependent value, or the function value. These 
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similarities allowed them to apply a prior idea or modify their idea as they thought 

about the domain and range of multivariable functions.  

Ellis (2007) framework Example in domain/range data 

T
y
p
e 

I:
 R

el
at

in
g

 

1. Relating 

situations: 

The 

formation of 

an 

association 

between two 

or more 

problems or 

situations. 

Connecting Back: The 

formation of a 

connection between a 

current situation and a 

previously-encountere

d situation. 

Domain is your input values. It could also represent 

your independent values. I am trying to think like in 

terms of my physics lab where there are independent 

and dependent variables and you plug in the numbers 

that you use. 

Creating New: The 

invention of a new 

situation viewed as 

similar to an existing 

situation. 

Say you need to calculate temperature and you have 

the temperature relative to California and you have 

some conversion, so the input values are the 

temperatures in Oregon and the output values are the 

temperature in California.  

2. Relating 

objects: The 

formation of 

an 

association 

between two 

or more 

present 

objects. 

Property: The 

association of objects 

by focusing on a 

property similar to 

both. 

Lets call z the dependent variable here and move the x 

and y to the other side. Now the domain is x and y. 

Form:  The association 

of objects by focusing 

on their similar form. 

You can’t have negative z but I don’t know if that’s 

the domain or the range. I’m going to say it’s the 

range, and treat the z axis like the y axis of the 

function. 

T
y
p
e 

II
I:

 E
x
te

n
d
in

g
 

1. Expanding the range of 

Applicability: The application of a 

phenomenon to a larger range of cases 

than that from which it originated. 

Domain is your input values, otherwise known as 

your x values. It could also represent your 

independent values. The range is your output, your 

dependent values, your y values. 

2. Removing Particulars: The removal 

of some contextual details in order to 

develop a global case. 

I am a little fuzzy on range in 3D. I think in 2 

dimensions, whatever your domain is, you put that in 

and that’s what your output is. I suppose that’s the 

same in 3D as well: the array of possible values I can 

get out of the function. 

Table 1: Generalizing actions for domain and range. 
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Ellis (2007) framework Example in domain/range data 

T
y
p
e 

IV
: 

Id
en

ti
fi

ca
ti

o
n
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r 

S
ta

te
m

en
t 

3. General 

Principle: A 

statement of a 

general 

phenomenon. 

Rule: The 

description of 

a general 

formula or 

fact. 

[Q3] Domain of this would be all real numbers for x 

values, so x can equal any number, and it changes what z 

equals, but even negative numbers squared equal 

positive z. And the range is all real numbers because 

there is no value of y for which the graph is undefined. 

Global Rule: 

The statement 

of the 

meaning of an 

object or idea. 

[Q3] Z is kind of like the function value. It equals f(x,y) 

kind of like y = f(x). It’s the dependent variable, not the 

independent. 

T
y
p
e 

V
I:

 I
n
fl

u
en

ce
 

1. Prior Idea or Strategy: The 

implementation of a 

previously-developed 

generalization.   

[Q1] Range is the set of numbers the function can have. 

[Q4] I think the range is 9 for this one… because that's 

the value on the other side of the equal sign. So it can't 

range to any other values.  

2. Modified Idea or Strategy: The 

adaptation of an existing 

generalization to apply to a new 

problem or situation. 

[Q3] In this instance the range is z, the output value. So I 

would say the variables applied to the function doesn’t 

necessarily correspond to domain as x, range as y. So if I 

looked back to my definitions in question one, I could 

define domain and range in 3D space with domain as the 

span of values that can occur on the horizontal plane and 

I would define range to be the span of values that are 

dependent on the domain and span the vertical plane.   

Table 2: Reflection generalizations for domain and range. 

IMPLICATIONS FOR INSTRUCTION AND SUGGESTIONS FOR FURTHER 

RESEARCH  

The results of actor-oriented generalization research have direct implications for 

instruction. Knowing what students see as similar allows instructors to build on the 

productive connections that appear naturally to students. For instance, many of our 

subjects developed a mathematically correct notion of the domain of f(x,y) by thinking 

of f(x,y) as having two inputs (and a domain for each) just as f(x) has one input (and a 

corresponding domain). Others thought about extending the concept of an independent 

variable (and its domain) to two independent variables (with a domain for each). 

Therefore, instructors can introduce multivariable functions by referencing students’ 

notions of inputs, outputs, independence, and dependence. They can also point out the 

generalizations students may make that are not mathematically correct, such as 

explicitly noting that ‘domain is x, range is y’ is not necessarily correct for functions of 

more than one variable.  
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Our further research plans are to select other topics in multivariable calculus, such as 

partial derivatives and multiple integrals, and study both students’ understanding of 

these concepts and their generalizations from single- to multivariable calculus.  
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EMPIRICAL STUDY OF A COMPETENCE STRUCTURE MODEL 

REGARDING CONVERSIONS OF REPRESENTATIONS – THE 

CASE OF FRACTIONS 

Anika Dreher, Sebastian Kuntze, Kirsten Winkel 

Ludwigsburg University of Education 

 

Given the key role of conversions of representations for mathematical understanding, 

it is highly relevant to investigate in detail competencies regarding conversions of 

representations. In particular, a corresponding competence model should not only be 

developed theoretically, but also examined empirically. However, such empirical 

studies are rather scarce, especially concerning content domains other than functions. 

Consequently, this study focuses on the design and empirical validation of a 

competence structure model regarding conversions of representations in the domain of 

fractions using multidimensional item response modelling. The results suggest that the 

data support the theoretically developed structure of the model and moreover, they 

indicate a hierarchical relationship which may give rise to a competence level model. 

INTRODUCTION 

The ability of dealing flexibly with distinct representations of a mathematical concept 

and changing between them has been shown to be an important factor for successful 

mathematical thinking and problem solving (e.g. Lesh, Post & Behr, 1987; Deliyianni 

et al., 2008). Research into students’ competencies regarding the idea of using multiple 

representations is thus highly relevant. Hence, our project “La viDa-M” (c.f. Dreher, 

Winkel & Kuntze, 2012) aims at investigating aspects of students’ competence 

regarding conversions of representations domain-specifically by focusing on the 

content domain of fractions. Moreover, La viDa-M examines possible impact factors 

on such competencies including specific professional knowledge and views of their 

teachers. Central to the first project phase is the development of a competence model 

for learners and its empirical evaluation, on which we will report in this paper. Taking 

into account different research projects and findings concerning students’ 

competencies in dealing with multiple representations, a competence model regarding 

conversions of representations and a corresponding domain-specific test instrument 

were designed. In order to validate the developed model empirically the data of 675 

students in 29 sixth-grade classes were analyzed using multidimensional item response 

modelling. The theoretical background, methods and results reported in the following 

refer to this first phase of our project. In the last section, additionally to the discussion 

of these results an outlook is given on first findings regarding interrelations between 

students’ specific competencies and teachers’ corresponding views. 
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THEORETICAL BACKGROUND 

The significance of using multiple representations for learning mathematics is 

emphasized in many national standards (e.g. KMK, 2003; NCTM, 2000). This has 

good reasons: Doing mathematics relies on using representations, since mathematical 

objects are not accessible without them (Duval 2006). In fact, a single representation 

standing for a mathematical object is usually not enough, since mostly a representation 

can merely emphasize some properties of the corresponding object, so multiple 

representations have to be integrated in order to develop appropriate conceptual 

understanding (Ainsworth, 2006; Duval, 2006). Consequently, making connections 

and conversions between different representations is central to the understanding of 

mathematical concepts (e.g. Lesh, Post & Behr, 1998; Deliyianni et al., 2008, Renkl et 

al., 2013). For the purposes of this study we chose to focus on conversions of 

representations in the content-domain of fractions, since it is particularly well-known 

that different representations of fractions may highlight different core aspects of the 

concept and that hence changing between them is important (e.g. Ball, 1993).  

This key role of conversions of representations for conceptual understanding leads to 

the research aim of describing learners’ competence regarding conversions of 

representations. Two requirement scenarios can be distinguished: Firstly, a conversion 

of representations may be given, which has to be examined, i.e. one has to check 

whether two representations match, if they represent the same mathematical object. 

Secondly, a conversion of representations may have to be performed, i.e. one has to 

construct a matching second representation in a different representation register on the 

base of a given representation. Similar distinctions have been made by several 

researchers investigating students’ competencies in dealing with multiple 

representations, who focused however mostly on the content domain of functions (c.f. 

e.g. Hitt, 1998, Bossé, Adu-Gyamfi & Cheetha, 2011,  Nitsch et al., accepted). Bossé et 

al. (2011) differentiate for instance between “interpretative activity” and “constructive 

activity” and Nitsch et al. (accepted) use the distinction of “identification” and 

“construction”  referring to them as “elements of cognitive action”. However, in the 

cited studies it becomes not entirely clear whether the notions “interpretative activity” 

resp. “identification” refer to single representations or to conversions of 

representations. Yet, it makes a difference whether aspects of one given representation 

have to be identified/interpreted or if a conversion of representations has to be 

examined in the sense of identifying/interpreting aspects of both given representations 

and deciding if they match. Since we focus on learners’ competencies regarding 

conversions of representations, we do not adopt these notions, but use instead the terms 

examining a conversion and performing a conversion. As metacognitive activities like 

justifying, in the sense of reflecting, explaining and giving reasons play an important 

role for conceptual understanding using multiple representations (c.f. Renkl et al., 

2013), learners should also be able to justify why a given or a self-performed 

conversion of representations is correct or not. Regarding the content domain of 

functions, Nitsch et al. (accepted) have implemented the actions “description” and 
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“explanation” in their competence structure model, which could however not be 

separated empirically, but formed a common dimension instead. With respect to the 

domain of fractions Deliyianni et al. (2008) differentiated between “recognition tasks” 

and “conversion tasks” within the construct of “flexibility in multiple representations” 

and they have also taken into account so-called “justification tasks”, but those were 

operationalized as being part of another competence construct, namely “problem 

solving”. However, seeing the ability to justify conversions of representations as an 

important facet of competence regarding dealing with multiple representations, it 

appears to be appropriate to include it into the structural modelling of such 

competence. Hence, our theoretical competence structure model regarding conversions 

of representations encompasses the following facets: examining, performing and 

justifying. In particular, tasks regarding conversions of representations may require 

examining or performing these conversions and optionally they may in addition ask for 

justifying the given or self-performed conversions. Since it may be argued that these 

three abilities differ in their cognitive demands, this suggests a 3-dimensional 

competence model (3D) regarding conversions of representations which is shown in 

Figure 1. According to this model examining, performing and justifying of conversions 

of representations form one dimension each in the sense of being empirically separable 

(but not necessarily independent) constructs representing different facets of such 

competence. 

 

Figure 1: 3D competence structure model regarding conversions of representations 

For the purpose of empirical validation of the structure of this model, multidimensional 

item response theory (MIRT) is used, which is particularly suitable for psychometric 

modelling of competence taking into account different potentially relevant abilities 

(Hartig & Höhler, 2008). In this approach possible alternative models are compared to 

the anticipated model (c.f. Figure 1) with respect to how well the empirical data from 

our study focusing on the domain of fractions fit them. One of these alternative 

psychometric models which should be taken into account is the 2-dimensional model 

(2D), where examining and performing are not separated, but form a common 

dimension. This dimension is hence relevant for all tasks regarding conversions of 

representations and justifying represents a separate (optionally relevant) dimension, as 

it requires metacognition which has to be verbalized. Moreover, a 1-dimensional 

psychometric model (1D) which assumes that a single dimension represents all three 

abilities regarding conversions of representations should be tested. 

Besides the structure of the competence regarding conversions of representations in the 

sense of underlying dimensions, the level of difficulty of the abilities encompassed are 

highly relevant for designing specific learning opportunities and for the diagnosis of 
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learning processes. From a theoretical point of view one may suppose that performing 

a conversion of representations is generally more difficult than examining a given 

conversion of representation, since in the first case a new representation has to be 

created (c.f. Nitsch et al., accepted). Corresponding assumptions can be found for 

instance in the context of the theoretical competence level model by Hitt (1998). Since 

empirical evidence for such a hierarchy is however still lacking, it is a question worth 

investigating, whether performing is generally speaking more difficult than examining 

with respect to conversions of representations. 

RESEARCH INTEREST 

Examining the model shown in Figure 1 in comparison with other potential models in 

the content domain of fractions can help to describe the structure of competence 

regarding conversions of representations. In line with the need for research outlined 

above, the evaluations presented in this paper are guided by the following research 

questions: 

 Is it possible to validate our theory-based competence structure model 

regarding conversions of representations in the domain of fractions 

empirically using multidimensional item response theory? 

 Do the empirical data support the theoretical assumption that performing 

conversions of representations constitutes a higher level of difficulty than 

examining conversions of representations? 

DESIGN, SAMPLE AND METHODS 

For answering these research questions, a test instrument corresponding to our 

theoretical competence structure model was designed specifically for the domain of 

fractions. In line with the structure shown in Figure 1, this competence test includes 

four types of tasks, for each of which Table 1 shows a sample item. The first type is 

about examining given conversions regarding their correctness, i.e. one has to decide if 

given representations match in the sense of representing the same mathematical object. 

The second type of tasks demands performing conversions of representations. For 

solving the third resp. fourth type of tasks, it is not enough to examine resp. perform 

conversions of representations, but they also have to be justified. From each type, three 

tasks were included in the test instrument, so that it consisted of 12 items in total. Tasks 

of different types were arranged in alternating order. The paper-pencil test was 

completed by 675 students in 29 sixth-grade classes at academic track secondary 

schools in Germany. Within a lesson (45 min.) they were given enough time to solve 

all the tasks under the supervision of a member of the project team. The answers to 

each task were scored dichotomously as being correct or incorrect according to criteria 

established beforehand. Prior to fitting any item response models, one of the type 2 

tasks which had been revised after piloting had to be excluded, as a misconception 

could lead to a correct answer of the item. The modelling of the competence structure 
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was conducted with CONQUEST software (Wu et al, 2007) using multidimensional 

item response theory (Rasch analysis). 

Examining a conversion (type 1 tasks) Examining a conversion and justifying (type 3 tasks) 

The second photo was taken shortly after the first one. 

1.                             2.                           

 

 

 

Do the following calculations match what has happened 

between the two shots? 

A. 
8

1

8

6
  □ yes □ no         B. 

8

1

8

7
  □ yes □ no 

Class 6c has lost a soccer game 3-4 against class 6d . 

Lars considers whether the class 6c has scored 
4

3  or  
7

3 of 

the total goals. Fatima wants to help Lars: “Only a fraction 

less than 
2

1  is possible.” 

Is Fatima right?         □ yes □ no 

Why or why not? 

Performing a conversion (type 2 tasks) Performing a conversion and justifying (type 4 tasks) 

For solving word problems you have to find calculations 

to given situations. Here you are asked to do it the other 

way round. Write down a word problem which exactly 

matches the calculation 
2

1

2

2
 . 

Take two crayons and color parts of the 

square so that the calculation 
16

2

16

2


is 

shown and the entire square is the whole. 

Explain in detail why the calculation can 

be seen in your representation. 

Table 1: Sample items for each of the four types of tasks 

RESULTS 

Focusing on the first research question, we started by fitting the three possible models 

(1D, 2D and 3D) to the data. Table 2 shows the resulting deviances as a measure of 

discrepancy and the number of parameters estimated as a measure for the complexity 

of the model. Since models using more parameters always deviate less (or at least 

equally) from the real data, both these characteristics of the models have to be taken 

into account for deciding which one fits best. As the 1D model is a sub-model of the 2D 

model, which requires two parameters less, the difference between the deviances of the 

two models follows an approximate chi-square distribution with two degrees of 

freedom (c.f. Wu et al., 2007). Given the estimated difference of 20.6 in the deviance, 

we conclude that the extra parameters of the 2D model highly significantly improve the 

fit (p<.001). In the same way we can compare the 2D model with the 3D model, as the 

2D model is a sub-model of the 3D model with three fewer parameters estimated. 

Considering the chi-square distribution with three degrees of freedom shows that the 

reduction in deviance of 12.36 indicates that the 3D model may fit the data 

significantly better than the 2D model (p<.05). 

Model 1D 2D 3D 

Deviance 7533.83 7513.23 7500.87 

# Parameters 12 14 17 

Table 2: Comparison of the fits of the three alternative models 



Dreher, Kuntze, Winkel 

2 - 430 PME 2014 

The evaluation of how well the items in the developed competence test fit these 

models, can be done based on the weighted mean square (MNSQ) fit statistics (c.f. Wu 

et al., 2007). As this statistic takes the value 1 for a perfectly fitting item, we have 

checked for each item whether its weighted MNSQ statistic regarding the respective 

model is significantly different from 1. This analysis shows for the 1D model that not 

all the MNSQ fit statistics lie inside the ninety-five percent confidence interval for the 

expected value and thus we have rejected the null hypothesis that the data conforms the 

model. For the 2D model as well as for the 3D model however, the weighted MNSQ 

statistic of none of the items is significantly different from 1 (0.90 ≤ MSNQ ≤ 1.07, 

resp. 0.95 ≤ MSNQ ≤ 1.06), which indicates that the test items fit both of these models 

very well. 

Addressing our second research question, we focus next on comparing the difficulties 

of the tasks which demand examining conversions with those demanding performing 

conversions of representations. The difficulties estimated from the data which are 

displayed in Figure 2 indicate that in both cases (with or without requirement of 

justifying) performing was more difficult than examining with respect to conversions 

of representations in the domain of fractions. The same pattern could also be found by 

considering simply the percentage of students who have solved the respective items. 

-1

-0,5

0

0,5

1

1,5

2

examining

performing

 

Figure 2: Empirical difficulties of the tasks of the four different types 

DISCUSSION AND OUTLOOK 

The results of this study may contribute to a better understanding of the construct of 

competence regarding conversions of representations – with respect to its structure as 

well as with respect to the differentiation of possible competence levels.  

Before these results are discussed in more detail we would however like to recall the 

limitations of this study which suggest interpreting the evidence with care: Although 

the sample of this study is reasonably large, it is not representative for German students 

in sixth grade. Furthermore, even though a spectrum of different items was developed 

according to the theoretical competence structure model, only a relatively small 

number of items could be implemented in the test instrument for reasons of feasibility. 

Without 
requirement of 

justifying 

 

With 
requirement of 

justifying 
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Bearing this in mind, the findings however allow answering the research questions and 

indicate several aspects of theoretical and practical relevance.  

Concerning the first research question, the result that the 3D model fits the data better 

compared to the alternative models backs up the structure of our theoretical 

competence model regarding conversions of representations. Moreover, seen in 

connection with similar findings by Nitsch et al. (accepted) with respect to the domain 

of functions, this indicates that the framework may even be valid across content 

domains. The finding that the items also fit the 2D model very well suggests that the 

2D model, where examining and performing conversions of representations form a 

common dimension, may also be used for pragmatic and simplicity reasons. It has the 

advantage that a joint competence score for both of these abilities may be considered.  

Regarding our second research question the results have provided some empirical 

evidence for a hierarchical relationship of the abilities examining and performing 

which was previously merely theoretically postulated. This finding may be an 

important step towards a model of competence levels regarding conversions of 

representations and hence it should be replicated by studies using a bigger pool of 

items and also focusing on additional content domains. From a practical point of view, 

implications of the findings of this study concern in particular the design of specific 

learning opportunities, the analysis of the demands of tasks and the diagnosis of 

learning processes with respect to conversions of representations (in the domain of 

fractions).  

First evaluations focusing both on students’ competencies regarding conversions of 

fractions as well as on their teachers’ views on how to use multiple representations for 

teaching fractions suggest interesting interrelations. For instance, the teachers’ view 

that pictorial representations of fractions should merely be used for the introduction of 

the concept was significantly negatively related to the mean joint competence score 

(examining and performing conversions) of his or her students (r=-.55, p<.01). Despite 

such significant correlations, multi-level analysis showed that the differences between 

classes are not significant. This could be due to the fact that individual differences 

within the classes are much higher than the differences between the classes. However, 

further analyses have to be conducted in order to explore possible explanations for this 

interesting phenomenon.  
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LINGUISTIC RELATIVITY AND NUMBER 

Cris Edmonds-Wathen 

Charles Darwin University 

 

Linguistic relativity, the idea that language affects the way that people think, and that 

people who speak different languages think differently, has implications for 

mathematics education because people use different languages to teach, learn and 

practice mathematics. This paper reviews research on linguistic relativity and number, 

looking at languages with very few number words, languages with extensive and 

regular number systems and the order of composition of numbers. Linguistic relativity 

appears to involve memory more than perception. Linguistic relativity effects involving 

number need to be taken into account in designing mathematics education research. 

INTRODUCTION 

In the science fiction novel Nineteen Eighty-Four (Orwell, 1954), the state-imposed 

language Newspeak is designed to constrain and control the thoughts of the speakers. 

Another science fiction novel, Babel-17 (Delany, 1966), focuses on a language which 

simultaneously enhances speakers’ analytic abilities and turns them into political 

saboteurs. Both these novels explore linguistic relativity, the idea that language affects 

the way that people think, and that people who speak different languages think 

differently.  

The term linguistic relativity was coined by the American linguist Benjamin Whorf 

(1956) and the idea is also widely known as the Whorfian Hypothesis. The premise is 

that since different languages have different structures and categorise the world 

differently, they promote different conceptual developments and practices. Language 

shapes the way that we see the world.  

The linguistic relativity hypothesis exists in two forms. The strong form, that language 

determines and constrains the thoughts of speakers, is explored in the 

above-mentioned science fiction novels. Such “linguistic determinism” has been 

discredited to the extent that the linguistic relativity hypothesis was out of scientific 

favour for some time (Brysbaert, Fias & Noël, 1998) and remains contentious today 

(e.g. Pixner, Moeller, Hermanova, Nuerk & Kaufmann, 2011). 

The weak form, as Whorf (1956) himself put it, is that “people act about situations in 

ways which are like the ways they talk about them” (p. 148). How a language expresses 

things and what it must express thorough the imperatives of grammar, as opposed to 

what it may express, has an impact on what the individual is likely to think and to do.  

This means that the effects of linguistic relativity apply to habitual thought rather than 

potential thought (Lucy 1992).  It is not that people cannot understand concepts that are 

not commonly expressed in their language. Rather, language affects what we pay 
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attention to in the world, how we remember it and how we conceive it. Hunt and 

Agnoli (1991) expressed this in terms of perception and memory: 

although perception may be relatively immune to language, memory is not. Memory can 

be based on two different records, a direct record of the sensory information at the time that 

we perceive an event and an indirect, linguistically based record of our description of the 

event to ourselves. The latter effects, because they are coded by language, are subject to 

any biases built into the memorizer's language.” (p. 381)  

Rather than being a true hypothesis, Hill and Mannheim (1992) contend that linguistic 

relativity is in fact an axiom which “can only be judged on the basis of the extent to 

which it leads to productive questions about talk and social action, not by canons of 

falsifiability” (p. 386). Linguistic relativity is significant for mathematics education 

because it points to possible impacts of the language of students on their mathematical 

thinking. There is thus a need to look deeply into languages for how they might affect 

speakers’ mathematical thinking. 

LINGUISTIC RELATIVITY EFFECTS 

Linguistic relativity effects reviewed here consider the impact of speaking languages 

that have very few number words, of speaking languages with extensive and regular 

number systems, the order of composition of numbers and grammatical number. In 

most cases the educational implications of these effects have not yet been described or 

are somewhat speculative. This review hopes to stimulate such considerations. 

Few number words: Australia and Brazil 

Some investigations into linguistic relativity effects regarding number have focused on 

languages which have very few number words. This includes various indigenous 

Australian languages. Traditionally, Wik Mungan had only a single unique number 

name: a word for exactly ‘one’; the words for ‘two’, ‘three’ and ‘five’ (‘hand’) had 

approximate values and fingers and toes could be used to indicate larger number, but 

without number names (Sayers, 1983). Warlpiri has number names only for very small 

numbers such as ‘one’ and ‘two’ (Hale, 1975). Some other Australian languages 

traditionally used elements of a base-5 system such as in Yolngu (Cooke, 1990) and 

Anindilyakwa (Stokes, 1982). However, the larger numbers – numbers above three – 

were traditionally used in few contexts, such as the division of foods such as turtle eggs 

(Cooke, 1990; Stokes, 1982). In these cultures, quantification was traditionally not 

very important outside those restricted contexts (Rudder, 1983).  

Experiments in Australia have shown that monolingual Warlpiri- and 

Anindilyakwa-speaking children were able to match small collections of objects in 

one-to-one correspondence with an accuracy comparable to urban English-speaking 

Indigenous Australian children (Butterworth, Reeve, Reynolds & Lloyd, 2008). 

Butterworth and colleagues claimed that these Indigenous children “with very 

restricted number vocabularies possess the same numerical concepts” (p. 13179) as the 

comparison group. However, a similar ability to match small collections of objects in 
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one-to-one correspondence does not necessarily mean that the two groups have the 

same numerical concepts. Success with small quantities compared to larger ones could 

be related to having number words for small quantities, or it could because of the use of 

subitisation, that is, the instant recognition of the size of a small collection without 

counting. In fact, the Australian language-speaking children used a very different 

strategy to the English-speaking children. The Warlpiri and Anindilyakwa children 

were successful with a spatial strategy, reproducing the way the objects were arrayed 

in the stimulus, rather than using enumeration (Butterworth, Reeve & Reynolds, 2011).  

Similar experiments have been conducted in Brazil. The Amazonian Pirahã people 

speak a language that has number words only for ‘one’, ‘two’ and ‘many’ (Gordon, 

2004; Everett, 2005). The Munduruku, also from the Amazon, have number words up 

to five (Pica, Lemer, Izard & Dehaene, 2004). Studies into their number abilities show 

that both the Munduruku and Pirahã are able to match small collections of objects in 

one-to-one correspondence (Gordon, 2004; Pica et al., 2004). The Munduruku are also 

able to make evaluations of larger collections in an approximate manner, such as 

telling which collection is larger than another (Pica et al., 2004). Gordon identifies the 

Pirahã strategy with small quantities as subitisation, which he calls parallel 

individuation. Although Pirahã speakers performed well on some number matching 

tasks, language was a factor in reduced performance on numerical tasks involving 

memory (Frank, Everett, Fedorenko, & Gibson, 2008).  

This research demonstrated that people without number words have abilities and 

strategies for dealing with numerosities. However, different strategies and reduced 

performance in memory tasks suggest that these people have different numerical 

concepts from people who count with words. 

Regular and extensive number words 

There is also the contention that the language features of some counting systems 

facilitate the performance of certain numerical and arithmetic tasks. Some East Asian 

languages such as Chinese, Korean and Vietnamese have regular, transparent base-10 

counting systems. The spoken number in these languages explicitly corresponds to the 

base-10 composition of the number, so for example, 14 is said ten-four, and 44 as 

four-ten(s)-four (Miura, Kim, Chang & Okamoto, 1988). The regularity and 

transparency is also reflected in the written symbols used for the numbers. These 

languages have a minimum of arbitrary number names and complete regularity in the 

rules generating numbers above ten. This contrasts with languages such as English 

where the tens numbers in particular show irregularities, and although a number name 

such as twenty contains roots meaning two-ten(s), the roots are not immediately 

obvious to most learners. The regularity of the number system in the East Asian 

languages makes learning to count easier (Miller & Stigler, 1987; Song & Ginsburg, 

1988). The short word length of the East Asian number names allows larger numbers to 

be held in short-term memory, which is another factor that contributes to arithmetic 

success in speakers of these languages (Geary, Bow-Thomas, Fan & Siegler, 1993; 

Nguyen & Grégoire, 2011; Wong, Taha & Veloo, 2001). There are many other factors 
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that influence arithmetic success among these East Asian cultures or Confucian 

cultures including personal, familial and cultural motivation (Leung, 2006; Song & 

Ginsburg, 1988). It is difficult to separate linguistic effects from effects of these other 

cultural factors in experiments (Saxton & Towse, 1998). As mentioned above, the 

linguistic relativity impact of number systems on counting and arithmetic performance 

is due to differences in memory use in these mathematical activities.  

Alternatively, a complex multi-base counting system may facilitate arithmetic 

computation in quite a different way. The Yoruba counting system of Nigeria uses a 

primary base of twenty with subsidiary bases of ten and twenty. Yoruba uses 

subtraction as well as multiplication in numeral composition, thus a number such as 36 

is said as minus-four-plus-(twenty-times-two) (Verran, 2001). While this system is 

awkward to write, Verran claims that the multiple bases and multiple ways of 

composing and decomposing larger numbers assist mental calculation in Yoruba.  

Order of composition of numbers 

Some studies have attempted to investigate how the order of composition of base-10 

numbers may affect cognitive processing, specifically whether the tens proceed or 

follow the units. Brysbaert, Fias and Noël (1998) found differences in the verbal 

processing of numbers between Dutch numbers, which are said units first and then 

tens, and French numbers which are said tens first and then units. This difference 

disappeared when participants wrote their numbers. The authors fail to give 

significance to the fact that in writing their numbers, Dutch speakers use the same tens 

and then units structure as the French. A comparative study of German, Czech and 

Italian found a small Whorfian effect regarding the compatibility between the written 

and spoken form, that is, whether the spoken and written forms agreed or not in the 

order of composition (Pixner et al., 2011). This effect was not taken into account in 

Brysbaert et al. (1998). 

Arabic might be a fruitful language to include in a comparative investigation because 

its numbers are units-first in both spoken and written form. Alsawaie’s (2004) 

investigation of the linguistic relativity hypothesis and place value with Arabic 

speaking children did not use natural (in the sense of day-to-day use) Arabic numbers, 

but instead made the tens more explicit, such that 23, which is usually said 

thalathah-wa-ishroon, (3 and twenty) was said thalathah-wa-asharatan (3 and two 

10s). The study thus investigated the effect of making explicit the tens in the number 

rather than the effect of saying the unit first. Interestingly, units first numbers, 

described by Brysbaert et al. (1998) as “reversed”, predated the practice of saying and 

writing the higher powers first, which began with a reversal of the reading order of 

numbers adopted from Arabic (Edmonds-Wathen, 2012). 

Grammatical number 

Grammatical number refers to how and whether a language marks singularity and 

plurality of objects or actions grammatically. In languages like English, most nouns 

must be either singular or plural, where plural is any quantity of two or more. In many 
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Australian languages, there are singular, dual and plural categories. The dual form is 

used for two objects, and the plural form is used for three or more (Cooke, 1990; Hale, 

1975; Sayers, 1983; Stokes, 1982). Hale (1975) speculates that the small number 

names in Warlpiri are not counting words at all, but are instead grammatical 

“determiners” or tags, corresponding to the singular, dual and plural the grammatical 

categories. These Australian languages emphasise the use of small numbers through 

their dual (and sometimes triple) grammatical categories in addition to the single and 

plural categories of a language such as English. While English makes a grammatical 

division between one item (singular) and more than one (plural), these languages must 

also specify grammatically exactly two and sometimes exactly three items. The 

cognitive effects of this attention to small quantities have not been investigated. 

DISCUSSION AND CONCLUSION 

Understandably, the claim of a Whorfian effect seems to generate more controversy 

when it can be used to suggest a deficiency, as in the case of the Pirahã or Munduruku 

languages, rather than a superiority, as in the case of Korean or Chinese. The reader 

may have noted that in most cases English or another European language is used as 

reference for comparison either directly or indirectly. It is worth considering how 

linguistic and cognitive norms are constituted within mathematics education as well as 

in field such as linguistics or psychology. Since when we talk about languages we are 

also talking about peoples and cultures, we need to be careful that a claim for an 

increased or decreased ability is not used to reinforce hierarchical ideas about peoples 

and cultures. The findings of Butterworth et al. (2011) are important because they 

show different groups of people using different strategies rather than focusing on a lack 

or deficiency in one group.  

The balance of the evidence shows that people who do not have counting words, 

perhaps because historically they have not felt the need to invent and use them, have 

different concepts of number than people who have and use counting words. Although 

speakers of Pirahã, Munduruku, Warlpiri and Anindilyakwa can all subitise small 

quantities and match concrete collections, their use of memory in tasks involving 

quantities differs from that of English and French speakers. People with few number 

words think differently during these tasks than people who have many. 

It is difficult to avoid a deficit perspective in a discussion of people not using numbers 

because Western culture and mathematics education values quantification so highly. 

Nevertheless, it also does learners a disservice if their prior learning and conceptual 

development is not taken into account by mathematics educators. This is particularly 

relevant for remote Indigenous Australian children who enter a compulsory school 

system that is largely designed and taught by English-speaking non-Indigenous people 

who learnt their own number words from their parents within their own cultural milieu. 

Similar contexts exist in many countries and educational systems. 

There is extensive scope for further empirical investigations into the effects and 

implication of linguistic relativity in mathematics education. For example, the studies 
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of the East Asian languages suggest that number naming practices that make the place 

value structure explicit can be advantageous for learners. The teaching of comparative 

number systems may also help develop rich and solid conceptual structures of number. 

Although is it difficult to separate cultural and linguistic factors in learning and 

practice, investigations that require the use of memory in number processing might 

better draw out linguistic factors.  

At this point it might also be productive to consider the implications for mathematics 

education and mathematics education research of taking linguistic relativity as an 

axiom rather than a hypothesis (Hill & Mannheim, 1992) and as a fundamental part of 

linguistic diversity in mathematics education. There is still the need for carefully 

designed comparative research. Mathematics education researchers need to avoid 

making normative and universalist assumptions about language processing in their 

designs. Linguistic relativity may also offer an explanation of why effects of linguistic 

diversity cannot be written out of large scale international testing regimes.  

The languages that people speak, particularly those they learn as a child, affect their 

worldview and their thought processes. Mathematics educators and mathematicians 

need to be thinking about the possibilities created out of these differences between 

languages. What mathematical practices might be drawn out of the attention to small 

quantities in Australian languages, from the complexity of multi-base counting 

systems such as Yoruba or from speaking and writing lower powers before higher 

powers as in Arabic? People use different languages to teach, learn and practice 

mathematics, and the differences between these languages matter. Accepting linguistic 

relativity is part of true acceptance of linguistic diversity. 
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Accurate interpretations of large-scale assessment results and sound judgments about 

students’ mathematical literacy depend on these assessments’ validity and reliability. 

One important type of evidence towards this validation is the dimensionality analysis, 

which explores the conformity between the intended factorial structure (related closely 

to defining a construct –e.g., mathematical literacy, and its perception) and the 

statistical structure of the test results. This study investigates the dimensionality of 

mathematical literacy in PISA. Our results show that the structural relationship 

between PISA’s theoretical (cognitive) and score interpretation frameworks is not at 

an expected level. These results have important implications for the way mathematical 

literacy is assessed from mathematics education and psychometric perspectives. 

BACKGROUND 

This research focuses on the validity of assessment of mathematical literacy at a 

large-scale through the lens of the Programme for International Student Assessment 

(PISA) by studying the conformity between the intended structure of the cognitive 

framework provided for mathematical literacy, and the statistical structure of the 

results of students’ scores in the 2009 implementation cycle. Based on the 

recommendations from the National Research Council (NRC) (NRC, 2001), the three 

components of assessment design: cognition, observation, and interpretation, need to 

be coordinated in a consistent and integrated way, as opposed to having them develop 

as isolated from each other. Cognition refers to the model of student learning in the 

domain, or mathematical literacy for our study; observation consists of the evidence 

provided by the student of the assessed construct; and interpretation entails making 

sense of this evidence. Our study is centered on the alignment between the theoretical 

framework for cognition and the score interpretation framework provided in PISA’s 

2009 assessment of mathematical literacy. There are a limited number of studies 

investigating the connection between the assessment framework and results. Schwab 

(2007) found that the multidimensional nature of PISA’s science framework was 

reflected well in the items. Ekmekci and Carmona (2012) studied the students’ 

responses to PISA 2003 mathematics items and detected unidimensionality for the 

U.S. student population. However, this study extends prior work by conducting a 

dimensionality analysis using the database for PISA 2009 for all students’ mathematics 

literacy scores from 32 countries in order to better understand the complexities of 

assessing mathematical literacy at a large scale.  
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Mathematical Literacy 

The conversations around being mathematically literate began in the early 80’s and 

have continued to gain importance to this day. Furthermore, the standards that have 

been set for literacy (being able to read and write) have sifted to incorporate 

mathematics as having equal importance in defining literacy (Jablonka, 2003; Moses & 

Cobb, 2001). In support of these views, this study is motivated by: (a) the perception of 

mathematical literacy through assessments; and (b) the reflection of mathematical 

literacy on assessments, especially in large-scale assessments whose results might 

have serious impact on education systems globally. In the literature, some math 

educators (e.g., Kilpatrick, Swafford, & Findell, 2001) focus on proficiencies or 

competencies when defining mathematical literacy, while others (e.g., Ojose, 2011) 

describe knowledge and skills. Some others (e.g., Steen, 2001) situate mathematical 

literacy according to its connection to real life situations (i.e., context). As diverse as 

multiple approaches taken by different mathematics educators and researchers might 

be, it seems a consensus that there are multiple dimensions or components constituting 

mathematical literacy. For this study, mathematical literacy is defined and viewed as 

“a multidimensional construct composed of distinguishable but related components 

rather than single, general mathematics ability” (Ekmekci, 2013, p. 1). 

Since 2000, the Organisation for Economic Co-operation and Development (OECD) 

organizes PISA to assess 15-year olds' skills and competencies in reading, science, and 

mathematics through a worldwide large-scale assessment every three years. In its 

theoretical (cognitive) framework, PISA presents mathematical literacy as a 

multidimensional construct. The following is the program’s given definition of 

mathematical literacy.  

An individual’s capacity to identify, and understand, the role that mathematics plays in the 

world, to make well-founded judgments and to use and engage with mathematics in ways 

that meet the needs of that individual’s life as a constructive, concerned, and reflective 

citizen. (OECD, 2003, p. 24).  

PISA's mathematical literacy framework has a multidimensional structure composed 

of three main attributes: content, processes and context. Content is divided into four 

sub-dimensions: quantity, space, shape, and change and relationship. The process 

dimension has three sub-dimensions: reproduction, connections, and reflection. 

Context is composed of four sub-dimensions: personal, educational/occupational, 

public, and scientific. The goal of this study is to show how and to what extent this 

multidimensional structure is reflected on the actual tests by analyzing dimensionality 

of the students’ responses to PISA 2009 mathematics items for 32 countries 

participating in the OECD. 

Test Dimensionality 

One of the most powerful ways to explore the connection and conformity between the 

framework for mathematical literacy and its assessment is dimensionality analysis. 

Dimensionality of a test could be informally defined as “the minimum number of 
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examinee abilities measured by the test items” (Tate, 2002, p.182). If items in a test are 

found to have a unidimensional structure, then this set of items are said to be measuring 

one dimension of a construct. Similarly, if an assessment is said to be measuring 

several important attributes of a construct, then it is expected to have a 

multidimensional structure. Issues in development and use of large-scale assessments 

such as validity and test fairness are related to test dimensionality. For example, 

unidimensionality is one of the basic assumptions of some measurement models such 

as Rasch model (Hattie, 1985). The results of the tests whose items are calibrated 

according to these measurement models have to produce a unidimensional structure for 

construct validation of those tests (Rubio, Berg-Weger, & Tebb, 2001). However, it 

might be the case that a test that is intended to be unidimensional measures more than 

one latent variable (construct or one dimension of a construct). Conversely, it might be 

the case that some factors that do not relate to construct being measured, such as item 

type and format, could introduce multidimensionality to the assessment. Therefore, 

analyzing the dimensionality of an assessment is important and required for construct 

validity and to ensure accurate interpretations of test results. 

PROBLEM STATEMENT 

The dimensionality of PISA’s mathematical literacy assessment with the inclusion of 

data from 32 OECD member countries has not been undertaken before. Thus, this 

investigation is an important contribution to the study of its construct and inferential 

validity. Moreover, assessing dimensionality of PISA mathematics items is needed to 

understand the relationship between the important assessment design components of 

PISA’s assessment design for mathematical literacy, as recommended by the NRC 

(NRC, 2001). The significance of this study comes from the need to provide evidence 

for validation process of PISA’s mathematical literacy assessment. Prior studies (e.g., 

Ekmekci & Carmona, 2012; Schwab 2007) have set the ground in this direction. 

However, this study extends prior work by conducting a comprehensive 

dimensionality analysis incorporating all students’ responses to mathematics items 

from 32 OECD member countries in order to better understand the complexities of 

assessing mathematical literacy globally and at a large scale.  The following are the 

research questions that guided this study. 

1. What is the correspondence between the dimensional structure of PISA’s 

mathematical literacy assessment framework and its score interpretation 

framework in terms of the content, process, and context dimensions? 

2. What is the best representation for the dimensional structure of the PISA 

mathematics items used to assess students’ mathematical literacy? 

METHODS 

This study entails a secondary-analysis of the dataset from the OECD’s PISA database. 

The data includes student responses to individual mathematics items from 32 OECD 

member countries in PISA 2009. There is a variety of ways to test dimensionality of 
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tests (see Hattie, 1985, for a comprehensive list). Having a well-developed 

mathematical literacy framework in PISA means that there is a strong prior expectation 

about the factorial structure of mathematics items (multidimensionality). In presence 

of a prior expectation, confirmatory factor analysis (CFA) is considered the best 

approach to analyze the structure of the assessed construct, i.e., mathematical literacy 

(Kline, 2010; Tate, 2002).  

Seven CFA models were developed based on the mathematical literacy dimensions 

described in OECD’s assessment framework for mathematical literacy. These models 

include a unidimensional model, three (content, process, and context) correlated factor 

(1-level) models, and three (content, process, and context) higher order factor (2-level) 

models. Correlated factors of 1-level models and factors at the first level of level-2 

models are the same factors – the sub-dimensions of each main dimension. The latent 

factors for content dimension are thus quantity, space, shape, and change and 

relationship. The factors for process dimension are reproduction, connections, and 

reflection. Lastly, the factors for context dimension are personal, 

educational/occupational, public, and scientific. Sample illustrations for different 

types of models are given in Figure 1 below. 

 

Figure 1: Sample models for the content dimension. 

Each CFA model was tested with the student responses to mathematics items. There 

were 35 mathematics items in PISA 2009. They were dichotomously scored (correct 

and incorrect). The binary nature of the response data requires using a weighted least 

squares means and variance adjusted (WLSMV) estimator for CFA (Muthen & 

Muthen, 2012). The total number of respondents from 32 OECD member countries 

was 276,142. This large sample size could inflate the power of chi-square tests on 

which CFA analyses were based (Kline, 2010). Therefore, to avoid Type-I error, a 

smaller sample was derived randomly using appropriate sampling weights to avoid any 

Model 1 (unidimensional 
model) 

Model 2 (Level-1 Content 
Model) 

Model 5 (Level-2 Content 
Model) 

GML: General Mathematical Literacy, QT: Quantity, SS: Space & Shape,  

CR: Change & Relationship, UN: Uncertainty, E: Error Term. 
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bias in the selection. Since the number of mathematics items were large compared to 

typical CFA analyses, a minimum of 15,000 observations were needed (lower number 

of observations produced incomplete matrices for CFA calculations). This minimum 

number also met the criteria for minimum sample size (at least three to five times the 

number of correlations between items) for CFA with dichotomous items in the 

literature (Tate, 2002).  

The statistical software Mplus 6.12 (Muthen &Muthen, 1998-2011) was used to 

conduct confirmatory analyses (with WLSMV being the default estimator for 

categorical data). For each of the three dimensions, the factorial structure of the 

students’ responses and the assessment framework were expected to corroborate each 

other. This would provide evidence supporting construct validity of the PISA 

assessment. In other words, multidimensionality was expected in the response data. 

The first research question addressed how different factorial models (derived from the 

PISA’s mathematical literacy framework) would fit the students’ responses to PISA 

mathematics items. Goodness of fit indices (GFIs) obtained from CFA analyses such 

as comparative fit index (CFI), the Tucker-Lewis index (TLI), and root mean square 

error of approximation (RMSEA) were used to evaluate model-fit. Moreover, 

individual item parameter estimates (factor loadings and R-square values) were 

evaluated to see how each mathematics item behaved in each model (i.e., the 

connection between items as observed indicators and their related dimensions as latent 

factors).  

The second research question related to comparing different structural models in order 

to find the best models that represented the dimensionality of response data. 

DIFFTEST (alternative version of chi-square difference testing modified for WLSMV 

estimator) and ΔGFI methods were used to compare models within each three main 

dimensions (content, process, and context). 

Hypotheses 

The single-factor model (Model 1) illustrates the hypothesis that PISA mathematics 

items measure a single construct labelled as general mathematical literacy (GML). The 

second type of models (Models 2-4) embody the hypothesis that the PISA mathematics 

items helps explain mathematics knowledge, competencies, and skills in terms of 

correlated factors of related dimension (content, process, or context) as the latent 

constructs. The third type of models (Models 5-7) illustrates the hypothesis that the 

PISA mathematics items measure GML (level-2 factor) by factors (the level-1 latent 

variables) of related dimension (content, process, or context). 

RESULTS 

All seven models were found a good fit for PISA 2009 mathematics items. Model fit 

indices are given in Table 1. All of GFI indices were significant according to the 

criteria for those indices set by Hu and Bentler (1999). In other words, the responses to 

the mathematics items do not contradict any of the models proposed for the 
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dimensionality of PISA’s mathematics framework. However, high correlations 

between latent factors in level-1 models (with the lowest correlation coefficient of 

0.860) and high latent factor loadings in level-2 models (with loadings of at least 

0.841) further supported the unidimensionality.  Complete table of these values will be 

presented in the session. Relating these results to the first research question 

(response-framework correspondence), overall model-fit results indicate a rather weak 

reflection of the mathematical literacy framework in the structural representation of the 

PISA mathematics items. On the other hand, since model-fit indices are relatively 

strong for all models, multidimensionality also holds. Therefore, results for model fit 

indices imply that there is evidence supporting both the unidimensionality and 

multidimensionality of mathematics items in terms of the content, process, and context 

dimensions. 

Secondly, all of the individual parameter estimates were found significant in each 

model meaning that all models provided a good account for factor loadings and that 

each mathematics item plays an important role in all models. A complete summary of 

individual item parameter estimates will be given in the presentation session. This 

supports that the mathematics framework is reflected in the multi-level models of 

dimensionality in the PISA mathematics items with respect to the three dimensions. 

 Model 1 Model 2 Model 3 Model 4 Model 5 Model 6 Model 7 

χ
2
 value 

d.f. 

p-value  

743.5 711.2 741.6 729.4 713.7 742.6 731.9 

560 554 557 554 556 559 556 

0.0000 0.0000 0.0000 0.0000 0.0000 0.000 0.000 

CFI/TLI        

CFI 0.980 0.983 0.980 0.981 0.983 0.980 0.981 

TLI 0.979 0.982 0.979 0.980 0.982 0.979 0.980 

RMSEA        

Estimate 0.005 0.004 0.005 0.005 0.004 0.005 0.005 

90% C.I. 
[0.004,  

0.005] 

[0.003,  

0.005] 

[0.004,  

0.006] 

[0.004,  

0.005] 

[0.003,  

0.005] 

[0.004,  

0.005] 

[0.004,  

0.005] 

Prob. 

≤ 0.05 
1.000 1.000 1.000 1.000 1.000 1.000 1.000 

Table 1: Model fit indices (all statistics are significant) 

Lastly, model comparison results revealed that the 2-level model performed better with 

the PISA 2009 mathematics items in terms of the content and the context dimensions. 

Therefore, a multidimensional content and context models were more plausible than 

the unidimensional model. However, this is not the case for the process dimension, 

where the unidimensional model was preferred to the multidimensional models. 

Complete results of the model comparisons (including statistical values) will be 

presented at the conference session. The summary of results is provided in Figure 2. 
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Figure 2: Model comparisons for PISA 2009. 

DISCUSSION AND IMPLICATIONS 

In summary, overall results reveal that although the most robust tools identified in the 

literature were used for analyzing PISA’s 2009 mathematics literacy test 

dimensionality, the results are inconclusive, and in some cases, contradictory. In other 

words, the connection between the assessment framework and the statistical structure 

of mathematics items is rather weak in that the intended multidimensional nature of 

mathematics items is not reflected well enough in the students’ responses. PISA is one 

of the most widely recognized and respected assessments in the world, having a 

well-articulated and comprehensive mathematical literacy framework and a robust 

psychometric design. Yet, the major components of its assessment design are not at an 

expected level of corroboration. This has important implications for mathematics 

education, measurement, and psychometrics fields.  

The authors argue that psychometric methods that are most commonly being used for 

large-scale assessments (e.g. Rasch models) might be too limiting to provide evidence 

for the types of constructs the field of mathematics education is interested in and in 

need of assessing, especially those with multidimensional structure. An important 

implication for the field of mathematics education is that this area of study is in high 

need of new assessment designs that can bring to bear other views on mathematics 

literacy -beyond those addressed in PISA, and that incorporate more current 

psychometric models that allow for assessment of mathematical literacy  in a 

multidimensional manner. This more consistent alignment between the nature of 

mathematical literacy construct and psychometric approaches allowing for 

multidimensionality in assessments can provide a more encompassing perspective and 

more valid assessments, especially those that are implemented at a large-scale and that 

have such high stakes decisions in educational systems all over the world. 
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