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History of PME

The International Group for the Psychology of Mathematics Education came into existence at the
Third International Congress on Mathematical Education (ICME-3) in Karlsruhe, Germany in
1976. It is affiliated with the International Commission for Mathematical Instruction.

Goals of PME-NA

The major goals of the North American Chapter of the International Group for the Psychology of
M athematics Education are:

1. Topromote international contacts and the exchange of scientific information in the
psychology of mathematics education.

2. To promote and stimulate interdisciplinary research in the aforesaid area, with the
cooperation of psychologists, mathematicians, and mathematics teachers.

3. Tofurther adeeper and better understanding of the psychological aspects of teaching and
learning mathematics and the implications thereof.
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Preface

These Proceedings are the product of the 32" Annual Conference of the North American
Chapter of the International Group for the Psychology of Mathematics Education held in
Columbus, Ohio, October 28-31, 2010. They are awritten record of the research presented at the
conference.

The theme of the conference, Optimizing Student Understanding in Mathematics, has been at
the fore-front of the mathematics education as a professional community since itsinstitution in
late 1890sin North America. Indeed, it has also been the motive behind a mgjority of inquiry
activities within mathematics education as a research community since its conception in mid 20™
century. With introduction of new theories of learning and teaching mathematics,
conceptualization of new methodologies for studying the problems of mathematics learning and
teaching, development of new curricular materials for advancement of mathematical knowledge
of teachers and learners either implicitly or explicitly the agenda of the community has focused
on defining ways and constructs that might help attain this long-standing goal and target of our
discipline.

This year’s conference brings together the voices of scholars from various genres of research
in mathematics education. Different perspectives offered by this diverse group can help build a
list of issuesthat need further contemplation as we, collectively, continue to conceptualize and
operationalize how Student Understanding in Mathematics might be initiated, nurtured and
monitored.

Azita Manouchehi & Douglas Owens
Conference Co-Chairs

Brosnan, P., Erchick, D. B., & Flevares, L. (Eds.). (2010). Proceedings of the 32" annual meeting of the North
American Chapter of the International Group for the Psychology of Mathematics Education. Columbus, OH: The
Ohio State University.
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THE POWER OF NATURAL THINKING: APPLICATIONSOF COGNITIVE
PSYCHOLOGY TO MATHEMATICSEDUCATION

Uri Leron
Technion — Israel Institute of Technology
uril@technion.ac.il

The talk begins with an inquiry into the relationship between peopl€e’ s natural thinking — the suit
of skillsthat isacquired by all people spontaneously and successfully under normal
developmental conditions —and mathematical thinking. More specifically, when do these two
thinking modes go together and when do they clash? The influential dual-process theory from
cognitive psychology is applied to shed some light on thisissue. A remarkable conclusion is that
many of the recurring errors we make come from the strength of our mind rather than its
weakness. The talk then proceeds to address a crucial design issue: In cases where natural and
mathematical thinking clash, what can we as math educators do to help students create peaceful
coexistence between the two? The extensively-researched medical diagnosis problem will be
used to demonstrate how theory, design and experiment collaborate in the pursuit of this goal.

Introduction

In the background of this talk lurks the momentous rationality debate: Are humans rational
beings or not? Or, better, how rational are human beings? Or, still better, what kind of rationality
(or irrationality) is invoked under what conditions? This question had been endlessly debated by
the great philosophers through the millennia, but has become an empirical issue for cognitive
psychologists in the second half of the 20" century, culminating with the 2002 Nobel Prize in
economy to Daniel Kahneman for his work with Tversky on “intuitive judgment and choice”
(Kahneman, 2002).

In this talk 1 will focus on a narrower (and more immediately relevant) facet of the rationality
debate: What is the relation between people’s natural thinking — the suit of skills that is acquired
by all people spontaneously and successfully under normal developmental conditions — and
mathematical thinking. More specifically, when do these two modes of thinking go together and
when do they clash? Or, even more specifically, when can we as math educators build on the
strength of students’ natural thinking, and when do we need to devise ways to overcome it (For a
comprehensive discussion of the rationality debate see Gigerenzer, 2005; Samuels et al., 2004;
Saunders and Over, 2009; Stanovich and West, 2000; Stanovich, 2004; Stein, 1996).

To begin our one-thousand-mile journey with a small step, consider the following puzzle:

A baseball bat and ball cost together one dollar and 10 cents. The bat costs one
dollar more than the ball. How much does the ball cost?

This simple arithmetical puzzle would be totally devoid of interest, if it were not for the fact
that it poses what | will call a cognitive challenge, best summarized in Kahneman’s (2002) Nobel
Prize lecture:

Almost everyone reports an initial tendency to answer ‘10 cents' because the sum
$1.10 separates naturally into $1 and 10 cents, and 10 centsis about the right
magnitude. Frederick found that many intelligent people yield to thisimmediate

Brosnan, P., Erchick, D. B., & Flevares, L. (Eds.). (2010). Proceedings of the 32™ annual meeting of the North
American Chapter of the International Group for the Psychology of Mathematics Education. Columbus, OH: The
Ohio Sate University.
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impulse: 50% (47/93) of Princeton students, and 56% (164/293) of students at the
University of Michigan gave the wrong answer (p. 451).

The trivial arithmetical challenge has thus turned into a non-trivial challenge for cognitive
psychologists: What is it about the workings of our mind that causes so many intelligent people
to err on such a simple problem, when they surely possess the necessary mathematical
knowledge to solve it correctly?

Complicating this cognitive challenge even further, research in cognitive psychology has
revealed that harder versions of the task may result in better performance by the subjects. For
example, we can enhance the subjects’ performance by making the numbers more messy (let the
bat and ball cost together $1.12 and the bat cost 94 cents more than the ball), or by displaying the
puzzle via hard-to-read font on a computer screen (Song & Schwarz, 2008).

This challenge, and many others like it, have led to one of the most influential theories in
current cognitive psychology, Dual Process Theory (DPT), roughly positing the existence of
“two minds in one brain”. These two thinking modes — intuitive and analytic — mostly work
together to yield useful and adaptive behavior, yet, as the long list of cognitive challenges
demonstrate, they can also fail in their respective roles, yielding non-normative answers to
mathematical, logical or statistical tasks. A corollary of particular interest for mathematics
education is that many recurring and prevalent mathematical errors originate from general
mechanisms of our mind and not from faulty mathematical knowledge. Significantly, such errors
often result from the strengths of our mind rather than its weaknesses (hence the power of
natural thinking in the title). This paper is organized in two main parts. In the first part (based on
Leron & Hazzan 2006, 2009), | introduce the dual process theory and demonstrate its
explanatory power in math education research. In the second part, which is based on work in
progress with Abraham Arcavi and with Lisser Rye Ejersbo, | address the educational challenge
of bridging the gap between intuitive and analytical thinking. This is treated as a design issue.
That is, given a problem with counter-intuitive solution (in our case, the famous and extensively-
researched medical diagnosis problem), design a variation of the problem that brings the solution
closer to intuition (or, alternatively, stretches the intuition towards the solution).

I hope that by focusing on the power of students’ natural thinking, this talk might contribute
to the goal of this conference: Optimizing student under standing in mathematics!

“Doin’ what comes natur’lly”: Dual-processtheory (DPT)

Annie Oakley’s phrase “doin’ what comes natur’lly”, from Irving Berlin’s musical Annie get
your Gun, touches charmingly on the ancient distinction between intuitive and analytical modes
of thinking. This distinction has achieved a new level of specifity and rigor in what cognitive
psychologists call dual-process theory (DPT). In fact, there are several such theories, but since
the differences are not significant for the present discussion, we will ignore the nuances and will
adopt the generic framework presented in Stanovich and West (2000), Kahneman and Frederick
(2005) and Kahneman (2002). For state of the art thinking on DPT — history, empirical support,
applications, criticism, adaptations, new developments — see Evans and Frankish (2009). The
present concise — and much oversimplified — introduction to DPT and its applications in
mathematics education is based on Leron and Hazzan (2006, 2009).

According to dual-process theory, our cognition and behavior operate in parallel in two quite
different modes, called System 1 (S1) and System 2 (S2), roughly corresponding to our common
sense notions of intuitive and analytical thinking. These modes operate in different ways, are

Brosnan, P., Erchick, D. B., & Flevares, L. (Eds.). (2010). Proceedings of the 32™ annual meeting of the North
American Chapter of the International Group for the Psychology of Mathematics Education. Columbus, OH: The
Ohio Sate University.
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activated by different parts of the brain, and have different evolutionary origins (S2 being
evolutionarily more recent and, in fact, largely reflecting cultural evolution). The distinction
between perception and cognition is ancient and well known, but the introduction of S1, which
sits midway between perception and (analytical) cognition is relatively new, and has important
consequences for how empirical findings in cognitive psychology are interpreted, including
applications to the rationality debate and to mathematics education research.

Like perceptions, S1 processes are characterized as being fast, automatic, effortless, non-
conscious and inflexible (hard to change or overcome); unlike perceptions, S1 processes can be
language-mediated and relate to events not in the here-and-now. S2 processes are slow,
conscious, effortful, computationally expensive (drawing heavily on working memory resources),
and relatively flexible. In most situations, S1 and S2 work in concert to produce adaptive
responses, but in some cases (such as the ones concocted in the heuristics-and-biases and in the
reasoning research), S1 may generate quick automatic non-normative responses, while S2 may or
may not intervene in its role as monitor and critic to correct or override S1’s response. The
relation of this framework to the concepts of intuition, cognition and meta-cognition as used in
the mathematics education research literature (e.g., Fischbein, 1987; Stavy & Tirosh, 2000;
Vinner, 1997) is elaborated in Leron and Hazzan (2006).

Many of the non-normative answers people give in psychological experiments — and to
mathematics education tasks, for that matter — can be explained by the quick and automatic
responses of S1, and the frequent failure of S2 to intervene in its role as critic of S1. Significantly,
according to this framework, some of the ubiquitous mathematical misconceptions may have
their origins in general mechanisms of the human mind, and not in faulty mathematical
knowledge.

The bat-and-ball task is a typical example for the tendency of the insuppressible and fast-
reacting S1 to “hijack” the subject’s attention and lead to a non-normative answer. Specifically,
the salient features of the problem cause S1 to jump automatically and immediately with the
answer of 10 cents, since the numbers one dollar and 10 cents are salient, and since the orders of
magnitude are roughly appropriate. For many people, the effortful and slow moving S2 is not
alerted, and they accept S1’s output uncritically, thus in a sense “behave irrationally” (Stanovich,
2004). For others, S1 also immediately had jumped with this answer, but in the next stage, their
S2 interfered critically and made the necessary adjustments to give the correct answer (5 cents).
Evolutionary psychologists, who study the ancient evolutionary origins of universal human
nature, stress that the way S1 worked here, namely coming up with a very quick decision based
on salient features of the problem and of rough sense of what’s appropriate in the given situation,
would be adaptive behaviour under the natural conditions of our ancestors, such as searching for
food or avoiding predators (Buss, 2005; Cosmides & Tooby, 1997; Tooby & Cosmides, 2005).
Gigerenzer (2005; Gigerenzer et al., 1999) claims that this is a case of ecological rationality
being fooled by a tricky task, rather than a case of irrationality.

Evans (2009) offers a slightly different view — called default-interventionist approach — of
the relations between the two systems. According to this approach, applied to the bat-and-ball
data, only S1 has access to all the incoming data, and its role is to filter it and submit its
"suggestions™ for S2's scrutiny, analysis and final decision. This is a particularly efficient way to
operate in view of the huge amount of incoming information the brain constantly needs to
process, because it saves the scarce working memory resources that S2 depends on. On the other
hand, it is error-prone, because the features that S1 selects are the most accessible but not always
the most essential. In the bat-and-ball phenomenon, according to this model, the features that S1

Brosnan, P., Erchick, D. B., & Flevares, L. (Eds.). (2010). Proceedings of the 32™ annual meeting of the North
American Chapter of the International Group for the Psychology of Mathematics Education. Columbus, OH: The
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has selected and submitted to S2 were the salient numbers 10 cents and 1 dollar, but the
condition about the difference has remained below consciousness level. Even though S2 has the
authority to override S1's decision, it may not do it due to lack of access to all the pertinent data.

The seemingly paradoxical phenomena that more difficult task formulations actually enhance
performance is also well explained by DPT. Making the task more difficult in the above-
mentioned sense, has the effect of suppressing the automatic response of S1, thus forcing S2 to
participate. Since the subjects’ S2 does possess the necessary mathematical knowledge, all that is
required to solve the problem correctly is suppressing S1 and activating S2, which is exactly the
effect of these added complications.

It is important to note that skills can migrate between the two systems. When a person
becomes an expert in some skill, perhaps after a prolonged training, this skill may become S1 for
this person. For example, driving is an effortful S2 behavior for beginners, requiring deep
concentration and full engagement of working memory processing. For experienced drivers, in
contrast, driving becomes an S1 skill which they can perform automatically while their working
memory is engaged in other tasks, such as a deep intellectual or emotional conversation.
Conversely, many S1 skills (such as walking straight or talking in a familiar but non-native
language), deteriorate with advancing age, or when just being tired or drunk, all of a sudden
requiring conscious effort to perform successfully (behaving in effect like S2).

We have now moved well along our one-thousand-mile journey, contemplating the power of
natural thinking (roughly the psychologists’ S1), and its uneasy relation with analytical thinking
(S2). The psychological research literature on dual-process theory is immense, and we could
barely touch the surface here. Many interesting and important questions remain open, such as
what are the mechanisms that cause (or fail to cause) S2 to intervene and override S1’s output.
Much more is known to psychologists about such questions, but equally much still remains
unanswered (see Evans and Frankish, 2009). In the rest of this paper we will delve more deeply
into the educational relevance of the foregoing theoretical framework.

Bridging intuitive and analytical thinking: A design approach
Our second one-thousand-mile journey begins again with a small step — this time the famous
string-around-the-earth puzzle (dating back to 1702).

Imagine you have a string tightly encircling the equator of a basketball. How
much extra string would you need for it to be moved one foot from the surface at
all points? Hold that thought, and now think about a string tightly encircling the
Earth —making it around 25,000 miles long. Same question: how much extra
string would you need for it to be one foot from the surface at all points?

Everybody seems to feel strongly that the Earth would need a lot more extra string than the
basketball. The surprising answer is that they both need the same amount: 2w, or approximately
6.28 feet (If R is the radius of any of them, then the extra string is calculated by the formula
2n(R+1) - 27R = 2n).

As with the bat-and-ball puzzle, this surpriseiswhat we are after, for it tells us something
important about how the mind works, which is why cognitive psychologists are so interested in
such puzzles. This time, however, alongside with the cognitive challenge, there is also an
important educational challenge, to which we now turn. Suppose you present this puzzle to your
math class. Being a seasoned math teacher, you first let them be surprised; that is, you first let
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them do some guessing, bringing out the strong intuitive feeling that the required additional
string is small for the basketball but huge for the earth. Then you have them carry out the easy
calculation (as above) showing that — contrary to their intuition — the additional string is actually
quite small, and is in fact independent of the size of the ball.

Now, given the classroom situation just described, here is the educational challenge: As
teachers and math educators, what do we do next? | haven’t conducted a survey, but my guess is
that most teachers would leave it at that, or at best discuss with the students the clash they have
just experienced between the intuitive and analytical solutions. But is this the best we can do?

Taking my clue from Seymour Papert (of Logo fame), | claim that in fact we can do better.
We want to avoid the “default” conclusion that students should not trust their intuition, and
should abandon it in the face of conflicting analytical solution. We also want to help students
deal with the uncomfortable situation, whereby their mind harbours two conflicting solutions,
one intuitive but now declared illegitimate, the other correct but counter-intuitive.

Papert’s (1993/1980, 146-150) response to this educational challenge is simple but ingenious:
Just imagine a cubic earth instead of a spherical one! Now follow in your mind’s eye the huge
square equator with two strings, one snug around its perimeter and the other running in parallel 1
foot away (Fig. 1). Then you can actually see that the two strings have the same length along the
sides of the square (the size doesn’t matter!), and that the only additional length is at the corners.
In addition, you can now see why the extra string should be 27 It is equal to the perimeter of the
small circle (of radius 1 foot) that we get by joining together the 4 circular sectors at the corners.

The final step in Papert’s ingenious construction is to bridge the gap between the square and
the circle with a chain of perfect polygons, doubling the number of sides at each step. The next
polygon in the chain after the square would be an octagon (Fig. 1, right). Here we have 8 circular
sections at the corners, each half the size of those in the square case, so that they again can be
joined to form a circle of exactly the same size as before. This demonstrates that doubling the
number of sides (and getting closer to a circle) leaves us with the same length of extra string.

Fig. 1: A string around a square Earth — and around an octagonal one.

Can this beautiful example be generalized? When intuitive and analytical thinking clash, can
we always design such “bridging tasks” that will help draw them closer? How should theory,
design and experiment be put together in this search? We go more deeply into these questions in
the next section.

Theory, design, experiment: The medical diagnosis problem (MDP)
Drawing inspiration from Papert’s approach, and prompted by the questions closing up the
last section, Lisser Rye Ejersbo and | set ourselves the challenge of designing an analogous
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treatment for the more advanced, relevant, and extensively-researched task from cognitive
psychology: the medical diagnosis problem (MDP).

MDP background. Here is a standard formulation of the MDP task and data, taken from
Samuels et al. (2004):

Before leaving the topic of base-rate neglect, we want to offer one further
example illustrating the way in which the phenomenon might well have serious
practical consequences. Hereis a problem that Casscells et. al. (1978) presented
to a group of faculty, staff and fourth-year students at the Harvard Medical
School.
[MDP:] If atest to detect a disease whose prevalenceis 1/1000 has a
false positive rate of 5%, what is the chance that a person found to have a
positive result actually has the disease, assuming that you know nothing
about the person's symptomsor signs? %
Under the most plausible interpretation of the problem, the correct Bayesian
answer is 2%. But only eighteen percent of the Harvard audience gave an answer
close to 2%. Forty-five percent of this distinguished group completely ignored the
base-rate information and said that the answer was 95% (p.136).

This task is intended to test what is usually called Bayesian thinking: how people update their
initial statistical estimates (the base rate) in the face of new evidence (the diagnostic
information). In this case, the base rate is 1/1000, the diagnostic information is that the patient
has tested positive, and the task is intended to discover how the subjects will update their
estimate of the chance that the patient actually has the disease. The meaning of “5% false
positive rate” is that 5% of the healthy people taking the test would test positive. Base-rate
neglect reflects the widespread tendency among subjects to ignore the base rate, instead simply
subtracting the false positive rate of 5% from 100%. Indeed, it is not at all intuitively clear why
the base rate should matter, and how it could be taken into the calculation.

A formal solution to the task is based on Bayes' theorem, but there are many complications
and controversies involving mathematics, psychology and philosophy, concerning the
interpretation of that theorem. Indeed, this debate, “Are humans good intuitive statisticians after
all?” (Cosmides & Tooby, 1996) is a central issue in the great rationality debate. See Barbey and
Sloman (2007) for a comprehensive discussion, and a glimpse of the controversy.

Subset of people tested positive Subset of people tested negative
(app. 50 of 1000) (App. 950 of 1000)
The whole set Subset of people actually sick
(1000 people) (1 of 1000)

Fig. 2: Nested subsets in the medical diagnosis problem (for 1000 people)
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Here is a simple intuitive solution for the MDP, bypassing Bayes' theorem. Assume that the
population consists of 1,000 people and that all have taken the test (see Fig. 2). We know that
one person will have the disease (because of the base rate) and will test positive (because no
false negative rate is indicated). In addition, 5% of the remaining 999 healthy people
(approximately 50) will test false-positive — a total of 51 positive results. Thus, the probability
that a person who tests positive actually has the disease is 1/51, which is about 2%.

Researchers with evolutionary and ecological orientation (Cosmides & Tooby, 1996;
Gigerenzer et al., 1999) claim that people are "good statisticians after all” if only the input and
output is given in "natural frequencies™ (integers instead of fractions or percentages):

In this article, we will explore what we will call the "frequentist hypothesis' —the
hypothesis that some of our inductive reasoning mechanisms do embody aspects of
a calculus of probability, but they are designed to take frequency information as
input and produce frequencies as output (Cosmides & Tooby, 1996, p. 3).

Evolutionary psychologists theorize that the brains of our hunter-gatherer ancestors
developed such a module because it was vital for survival and reproduction, and because this is
the statistical format that people would naturally encounter under those conditions. The statistical
formats of today, in contrast, are the result of the huge amount of information that is collected,
processed and shared by modern societies with modern technologies and mass media. Indeed,
Cosmides and Tooby (1996) have replicated the Casscells et al. (1978) experiment, but with
natural frequencies replacing the original fractional formats, and the base-rate neglect has all but
disappeared:

Although the original, non-frequentist version of Casscells et al.'s medical
diagnosis problem elicited the correct bayesian answer of "2%" from only 12% of
subjects tested, pure frequentist versions of the same problem elicited very high
levels of bayesian performance: an average of 76% correct for purely verbal
frequentist problems and 92% correct for a problem that requires subjects to
construct a concrete, visual frequentist representation (Cosmides & Tooby, 1996,
p. 58).

These results, and the evolutionary claims accompanying them, have been consequently
challenged by other researchers (Evans, 2006; Barbie & Sloman, 2007). In particular, Evans
(2006) claims that what makes the subjects in these experiments achieve such a high success rate
is not the frequency format per se, but rather a problem structure that cues explicit mental models
of nested-set relationships (see below). However, the fresh perspective offered by evolutionary
psychology has been seminal in re-invigorating the discussion of statistical thinking in particular,
and of cognitive biases in general. The very idea of the frequentist hypothesis, and the exciting
and fertile experiments that it has engendered by supporters and opponents alike, would not have
been possible without the novel evolutionary framework. Here is how Samuels et al. (1999)
summarize the debate:

But despite the polemical fireworks, thereis actually a fair amount of agreement
between the evolutionary psychologists and their critics. Both sides agree that
people do have mental mechanisms which can do a good job at bayesian
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reasoning, and that presenting problemsin a way that makes frequency
information salient can play an important role in activating these mechanisms (p.
101).

The educational challenge as design issue

The extensive data on base rate neglect in the MDP (leading to the 95% answer)
demonstrates the counter-intuitive nature of the analytical solution, as in the case of the string
around the earth. As math educators, we are interested in helping students build bridges between
the intuitive and analytical perspectives, hopefully establishing peaceful co-existence between
these two modes of thought. As we have seen in Papert’s example, achieving such reconciliation
involves a design issue: Design a new bridging task, which is logically equivalent to, but
psychologically much easier than the given task. (Compare Clements’ (1993) “bridging
analogies” and *“anchoring intuitions” in physics education.)

From the extensive experimental and theoretical research in psychology on the MDP, we
were especially influenced in our design efforts by the nested subsets hypothesis (Fig. 2):

All this research suggests that what makes Bayesian inference easy are problems that
provide direct cues to the nested set relationshipsinvolved [ .. ]

It appears that heuristic [ S1] processes cannot lead to correct integration of
diagnostic and base rate information, and so Bayesian problems can only be

solved analytically [i.e., by S2]. This being the case, problem formats that cue
construction of a single mental model that integrates the information in the form

of nested sets appearsto be critical (Evans, 2006, p. 391).

Indeed, it is not easy to form a mental representation of the subsets of sick and healthy people,
and even less so for the results of the medical test. Mental images of people all look basically the
same, whether they are sick or healthy or tested positive or negative. The task of finding a more
intuitive version of the MDP has thus been operationalized to finding a task which will “cue
construction of a single mental model that integrates the information in the form of nested sets”
(ibid).

Based on this theoretical background, we formulated three design criteria for the new task
(which would also serve as testable predictions):

1. Intuitively accessible: The bridging task we will design will be easier (*more intuitive”)
than the original MDP (i.e., significantly more people — the term is used here in a
qualitative sense —will succeed in solving it correctly).

2. Bridging function: Significantly more people will solve the MDP correctly, without any
instruction, after having solved the new task.

3. Nested subsets hypothesis: Base rate neglect will be significantly reduced.

Note that the first two design criteria pull the new task in opposite directions. Criterion 1
(turning the hard task into an easy one) requires a task that is sufficiently different from the
original one, while criterion 2 (the bridging function) requires a task that is sufficiently similar to
the original one. The new task, then, should be an equilibrium point in the “design space” —
sufficiently different from the original task but not too different.
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Armed with these criteria, we set out on the search for the new bridging task. After a long
process of trial and error, intermediate versions, partial successes and failures, we have finally
come up with the Robot-and-Marbles Problem (RMP), which we felt had a good chance of
satisfying the design criteria and withstanding the empirical test. The RMP is based on the idea
of replacing sick and healthy people in the population by red and green marbles in a box. The
medical test is then replaced by a colour-detecting robot, which can distinguish between red and
green marbles via a colour sensor. The sensor is not perfect, however, and 5% of the green
marbles are falsely identified as red, corresponding to the 5% healthy people in the MDP who
are falsely diagnosed as sick. We also decided to make the action of the robot on the marbles
more vividly imaginable by actually describing the process, not just the result. A final step in the
design of the new problem was to slightly change the numbers from the original MDP, in order
to make the connection less obvious. According to the bridging criterion, our subjects who
solved the RMP first, should then solve more successfully the MDP. For this to happen, they
would first need to recognize the similarity between the two problems, and we didn’t want to
make this too obvious by using the same numbers. (For a more detailed and nuanced description
of the design process, as well as the experiments that followed, see Ejersbo and Leron,
submitted).

Here then is the final product of our design process, the version that would actually be put to
the empirical test to see whether the design criteria have been satisfied.

RMP: In a box of red and green marbles, 2/1000 of the marbles are red. A robot
equipped with green-marble detector with a 10% error rate (10% green marbles are
identified as red), throws out all the marbles which it identifies as green, and then you are
to pick a marble at random from the box. What is the probability that the marble you have
picked would be red?

The experiment

The participants in the experiment were 128 students studying towards M.A degree in
Educational Psychology at a Danish university, with no special background in mathematics or
statistics. All the participants were assigned the two tasks — the medical diagnosis problem (MDP)
and the robot-and-marbles problem (RMP) — and were given 5 minutes to complete each task. (In
a pilot experiment we found that 5 minutes were enough both for those who could solve the
problem and those who couldn’t.) The subjects were assigned randomly into two groups of 64
students each. The order of the tasks was MDP first and RMP second for one group (called here
the MR group), and the reverse order for the second group (the RM group). The results of the
RM group were clearly our main interest, the MR group serving mainly as control.

Group 1: Robot first | Group 2: Medical diagnosis first

RMP 1 MDP 2™ MDP 1* RMP 2™
Correct 31 17 8 20
Base-rate neglect 1 12 22 4
Incorrect other 32 35 34 40
Total 64 64 64 64

Table 1: Numbers of responses in the various categories

Brosnan, P., Erchick, D. B., & Flevares, L. (Eds.). (2010). Proceedings of the 32™ annual meeting of the North
American Chapter of the International Group for the Psychology of Mathematics Education. Columbus, OH: The
Ohio Sate University.



Plenary Sessions Volumn VI, Page 18

The results are summarized in Table 1 above, and it can be seen that the design criteria have
been validated and the predictions confirmed. A brief summary of the results for the RM group
(with comparative notes in parentheses) follows.

e The RMP succeeded in its role as bridge between intuitive and analytical thinking: 48%
(31/64) of the subjects in the RM group solved it correctly. (compared to 18% success on
the MDP in the original Harvard experiment and 12% (8/64) in our MR group.)

e The RMP succeeded in its role as stepping stone for the MDP: More than 25% (17/64)
solved the MDP, without any instruction, when it followed the RMP. (Again compared to
18% in the original Harvard experiment and 12% in our MR group.)

e The notorious base-rate neglect has all but disappeared in the RMP: it was exhibited by
only 1 student out of 64 in the RM group and 4 out of 64 in the MR group. (Compared to
45% on the MDP in the original Harvard group and 34% on the MDP in our MR group.)

e Remarkably, the MDP, when given first, does not at all help in solving the RMP that
follows. Worse, the MDP gets in the way: The table shows 48% success on the RMP
alone, vs. 31% success on the RMP when given after the MDP.

e Even though the performance on the RMP and the MDP has greatly improved in the RM
group, still the largest number of participants appear in the “incorrect other” category.
This category consists of diverse errors which do not directly relate to the MDP,
including (somewhat surprisingly for this population) many errors concerning misuse of
percentages.

Conclusion

In this article I illustrated how the dual-process theory from cognitive psychology highlights
and helps explain the power of natural thinking. | used the medical diagnosis problem to discuss
the gap between intuition (S1) and analytical thinking (S2), and to develop design principles for
bridging this gap. It is my belief that bridging the gap between intuition and analytical thinking
(in research, curriculum planning, learning environments, teaching methods, work with teachers
and students) is a major step towards “optimizing student understanding in mathematics”.

Based on the above examples and analysis, and indulging in a bit of over-optimism, here are
some of the developments in the educational system 1’d like to see happen in the future. | make
no claim of originality of these suggestions since many related ideas have previously appeared in
the math education literature in various forms.

e Map out the high school curriculum (and beyond) for components that could build on
natural thinking and parts that would need to overcome it. For example, which
aspects of functions (or fractions, or proofs) are consonant or dissonant with natural
thinking?

e Design curricula, learning environments, teaching methods, that build from the power
of natural thinking.

e Build a stock of puzzles and problems which challenge the intuition, and develop
ways to work profitably with teachers and students on these challenges.

I wish to conclude with an even bigger educational challenge. If you ask mathematicians for
examples of beautiful theorems, you will discover that many of them are counter-intuitive;
indeed, that they are beautiful because they are counter-intuitive, because they challenge our
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natural thinking. Like a good joke, the beauty is in the surprise, the unexpected, the unbelievable.
Like a world-class performance in classical ballet, sports, or a soprano coloratura, the beauty is
(partly) in overcoming the limitations of human nature. Examples abound in the history of
mathematics: The infinity of primes, the irrationality of V2, the equi-numerosity of even and
natural numbers, the impossibility theorems (trisecting angles by ruler and compass, solving 5™-
degree equations by radicals, enumerating the real numbers, Godel’s theorems). Recall, too, the
joy of discovering that — contrary to your intuition — the extra length in the string-around-the-
earth puzzle is quite small, and the beauty of Papert’s cubic earth thought experiment.

Here, then, is the challenge: By all means, let us build on the power of natural thinking, but let us
also look for ways to help our students feel the joy and see the beauty of going beyond it, or even
against it. We thus arrive at the closing slogan — a variation on the title of the talk:

The power of natural thinking, the challenge of stretching it, the beauty of overcoming it.

Acknowledgement
The application of dual process theory in mathematics education is based on joint work with
Orit Hazzan (Leron & Hazzan 2006, 2009). The discussion of cognitive challenges and
educational challenges is based on work in progress with Abraham Arcavi. The discussion of the
medical diagnosis problem and its cognitive and educational challenges is based on work in
progress with Lisser Rye Ejersbo. | am also grateful to each of these colleagues for essential help
during the preparation of this manuscript.

References

Barbey, A.K., & Sloman, S.A. (2007). Base-rate respect: From ecological rationality to dual
processes. Behavioral and Brain Sciences, 30(3), 241-254.

Buss, D. M. (Ed.). (2005). The Handbook of Evolutionary Psychology, Wiley.

Casscells, W., Schoenberger, A., & Grayboys, T. (1978). Interpretation by physicians of clinical
laboratory results. New England Journal of Medicine, 299, 999-1000.

Clements, J. (1993). Using bridging analogies and anchoring intuitions to deal with students’
preconceptions in physics. Journal of Research in Science Teaching, 30(10), 1241-1257.
Cosmides, L., & Tooby, J. (1997). Evolutionary psychology: A primer. Center for Evolutionary
Psychology, University of California, Santa Barbara, accessed on 4.8.10 at

http://www.psych.ucsb.edu/research/cep/primer.html

Cosmides, L., & Tooby, J. (1996). Are humans good intuitive statisticians after all? Rethinking
some conclusions from the literature on judgment under uncertainty. Cognition 58, 1-73.

Evans, J.St.B.T. (2006). The heuristic-analytic theory of reasoning: Extension and evaluation.
Psychonomic Bulletin & Review, 13(3), 378-395.

Evans, J.St.B.T. (2009). How many dual-process theories do we need? One, two, or many? In
Evans J.St.B.T., & Frankish, K (Eds.), In Two Minds. Dual Processes and Beyond (pp. 33-
54). Oxford University Press.

Evans, J.St.B.T., & Frankish, K. (Eds.). (2009), In Two Minds: Dual Processes and Beyond.
Oxford University Press.

Ejersbo, L.R., & Leron, U. (Submitted). Reconciling intuitive and analytical thinking: A design
perspective.

Fischbein, E. (1987). Intuition in Science and Mathematics: An Educational Approach, Reidel.

Gigerenzer, G., Todd, P.M., & the ABC research group. (1999). Smple Heuristics that Make us
smart. Oxford University Press.

Brosnan, P., Erchick, D. B., & Flevares, L. (Eds.). (2010). Proceedings of the 32™ annual meeting of the North
American Chapter of the International Group for the Psychology of Mathematics Education. Columbus, OH: The
Ohio Sate University.


http://www.psych.ucsb.edu/research/cep/primer.html�

Plenary Sessions Volumn VI, Page 20

Gigerenzer, G. (2005). 1 think, therefore | err. Social Research, 72(1), 1-24.

Kahneman, D. (Nobel Prize Lecture, 2002). Maps of bounded rationality: A perspective on
intuitive judgment and choice. In T. Frangsmyr (Ed.), Les Prix Nobel (pp. 416-499). Also
accessible at http://www.nobel.se/economics/laureates/2002/kahnemann-lecture.pdf.

Kahneman, D., & Frederick, S. (2005). A model of Heuristic judgment. In K. J. Holyoak, &
Morisson, R.G. (Eds.), The Cambridge handbook of thinking and reasoning (pp. 267-294).
Cambridge University Press.

Leron, U., & Hazzan, O. (2006). The rationality debate: application of cognitive psychology to
mathematics education. Educational Studies in Mathematics, 62(2), 105-126.

Leron, U., & Hazzan, O. (2009). Intuitive vs. analytical thinking: four perspectives. Educational
Sudies in Mathematics, 71, 263-278.

Papert, S. (1993/1980). Mindstorms: Children, Computers and Powerful Ideas (2™ ed.). Basic
Books.

Samuels, R., Stitch, S., & Tremoulet, P. (1999). Rethinking rationality: From bleak implications
to Darwinian modules. In E. LePore, & Pylyshyn, Z. (Eds.), What is Cognitive Science? (pp.
74-120). Blackwell.

Samuels, R., Stitch, S., & Faucher, L. (2004). Reason and rationality. In I. Niiniluoto, Sintonen,
M., & Wolenski, J. (Eds.), Handbook of Epistemology (pp. 131-182). Kluwer.

Saunders, C., & Over, D.E. (2009). In two minds about rationality? In J.St.B.T. Evans, &
Frankish, K (Eds.), In Two Minds: Dual Processes and Beyond (pp. 317-334). Oxford
University Press.

Song, H., & Schwarz, N. (2008). Fluency and the detection of misleading questions: Low
processing fluency attenuates the Moses illusion. Social cognition, 26(6), 791-799.

Stanovich, K. E. and West, R. F. (2000). Individual differences in reasoning: Implications for the
rationality debate. Behavioral and Brain Science, 23, 645-726.

Stanovich, K. E. (2004). The Robot Rebellion: Finding Meaning in the Age of Darwin, Chicago
University Press.

Stavy, R., & Tirosh, D. (2000). How Sudents (Mis-)Understand Science and Mathematics:
Intuitive Rules. Teachers College Press.

Stein, R. (1996). Without Good Reason: The Rationality Debate in Philosophy and Cognitive
Science. Oxford University Press.

Tooby, J., & Cosmides, L. (2005). Conceptual foundations of evolutionary psychology. In D. S.
Buss (Ed.), The Handbook of Evolutionary Psychology (pp. 5-67). Wiley.

Vinner, S. (1997). The pseudo-conceptual and the pseudo-analytical thought processes in
mathematics learning. Educational Sudies in Mathematics, 34, 97-129.

Brosnan, P., Erchick, D. B., & Flevares, L. (Eds.). (2010). Proceedings of the 32™ annual meeting of the North
American Chapter of the International Group for the Psychology of Mathematics Education. Columbus, OH: The
Ohio Sate University.


http://www.nobel.se/economics/laureates/2002/kahnemann-lecture.pdf�

Plenary Sessions Volumn VI, Page 21

A Critique and Reaction to

THE POWER OF NATURAL THINKING: APPLICATIONSOF COGNITIVE
PSYCHOLOGY TO MATHEMATICSEDUCATION

HOW MAY CONCEPTUAL LEARNING INMATHEMATICSBENEFIT FROM DUAL
PROCESSING THEORIES OF THINKING?

Ron Tzur
University of Colorado Denver
ron.tzur@ucdenver.edu

Concurring with Uri Leron’s cross-disciplinary approach to distinct modes of mathematical
thinking, intuitive and analytic, | discuss his elaboration and adaptation to our field of the
cognitive psychology dual-processing theory (DPT). | reflect on (a) the problem significance, (b)
aspects of the theory he adapts, and (c) elegance of presentation. Then, | further discuss DPT in
light of a constructivist stance on the inseparability of thinking and learning. | link DPT to
accounts of (i) brain-based conceptual learning and (ii) how mathematics teaching may promote
such learning—and discuss advantages of those accounts.

Introduction

I thank the PME-NA organizers for a learning opportunity they created for me in discussing
Uri Leron’s plenary address. It re-acquainted me with the inspiring work that he and his
colleagues were conducting in the two decades since | last studied with him. It also provided me
with a window into literature outside mathematics education that | found thought provoking and
relevant to our field. Finally, via his paper(s) I realized how naturally his approach linked with
my recent efforts to relate math education with brain studies. I concur with him that “bridging
the gap between intuition and analytical thinking ... is a major step towards ‘optimizing student
understanding in mathematics’,” and am delighted to provide my reflections on this endeavor.

In itself, the thesis that human thinking and rationality consist of two distinct modes is not
new to math education. Skemp (1979) articulated and linked both, termed intuitive and reflective
intelligences. As far as | know, his constructivist theory evolved independently of the “heuristic
and bias’ approach (Kahneman, Slovic, & Tversky, 1982; Kahneman & Tversky, 1973; Tversky
& Kahneman, 1973). Moreover, in our field it distinction can be traced back to Dewey’s (1933)
notion of reflective thought (contrasted with unconscious mental processes), and to Vygotsky’s
(1986) notion of ZPD and his related distinction between spontaneous and scientific concepts.

However, two novelties in Uri’s contribution seem useful for math education. First, his
review of cognitive psychology literature reveals studies in which a dual view of thinking has
been elaborated on (Evans, 2006; Kahneman & Frederick, 2002; Stanovich, 2008) and ‘mapped’
onto corresponding brain regions (Lieberman, 2003). Thus, a timely direction, of linking math
education with brain studies, is supported by relevant findings from cognitive psychology.
Second, he reports on studies (Leron & Hazzan, 2006, 2009) informed by DPT that demonstrated
applicability to our field, including articulation of instructional goals and design criteria.
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Significant Problem/Questions, Useful Theory, Elegant Exposition

Sgnificance

Like many math teachers, Uri and his colleagues noticed what seemed to puzzle researchers
in other fields. Often, observers of people’s task solutions framed them as recurring faulty
judgments. Examples abound in the above papers; | shall add 3 of my own. Studies of such
examples fueled a debate on human rationality that conjoined epistemology and psychology
(Nisbett & Ross, 1994; Quine, 1994). For example, alluding to computational complexity,
Cherniak (1994) saw ‘ideal’ (normative) rationality as intractable. He proposed ‘minimal’
rationality, in which using ‘quick and dirty” heuristics that evade mental paralysis.

Addressing this puzzling and significant problem in math education is more pressing and
weighty than in other fields, in which solidly explaining why/how the human mind produces
erroneous judgments will suffice. Uri’s work indicates that for us this is but a start, while making
two key contributions: (a) clarifying a goal for student and teacher learning—closing the gap
between intuitive and analytic reasoning, and (b) explicating our duty to find ways of designing
and implementing teaching that fosters student development of and disposition toward analytic
reasoning. To these ends, Uri identifies four vital questions for mathematics educators:

1) What differentiates among those who solve problems correctly and incorrectly, that is, why
do the latter fail to use analytic reasoning whereas the former successfully do so?

i) How do problem formats cue for correctly solving a problem, and what does it entail for task
design?

i) When using puzzling problems in our teaching (e.g., string-around-earth), what follow-up
strategies can be used to effectively capitalize on students’ “Aha” moments regarding those
puzzlements?

iv) How can teaching promote (a) students’ awareness of improper intuitions and (b) disposition
toward activating analytic reasoning to override the faulty intuitions (i.e., resist + critique)?

Useful Theory?
I use 4 examples to present key features of and articulate purposes DPT can serve in math
education (to be brief, language does not precisely replicate the problems).

A. Adults with college education are asked: Two items cost $1.10; the difference in price is
$1. How much does each cost? (Over 50% submit to impulse and respond: $1 & $0.10)

B. In the elevator, the 9" floor button is already lit. A person (you?) who also wants that floor
gets on the elevator and, though seeing the lit button, presses it again.

C. Third graders were asked what to bet on next (Head/Tail), after 4 “Heads’ were flipped in
a row. About 50% said ‘Head’, because it’s always been so; the rest said “Tail’, because
it cannot always be ‘Head’. No one said 50-50 and that previous results are irrelevant.

D. A Sudoku expert solves a “‘black-belt’” puzzle and makes two careless errors (Fig. 1a-1b).

The key insight and tenet of DPT is that responses to diverse problems, faulty or correct, all
share a common root: two different modes of brain processing are at work (Evans, 2006;
Stanovich, 2008; Stanovich & West, 2000). One mode, intuitive reasoning (or heuristic), is
evolutionary more ancient, shared with animals, automatic (reflexive, sub-conscious), rapid, and
parallel in nature, with only its final product available to consciousness. The other, analytic, is

Brosnan, P., Erchick, D. B., & Flevares, L. (Eds.). (2010). Proceedings of the 32™ annual meeting of the North
American Chapter of the International Group for the Psychology of Mathematics Education. Columbus, OH: The
Ohio Sate University.



Plenary Sessions Volumn VI, Page 23

evolutionary recent, unique to humans, intentional (reflective, conscious), relatively slow, and
sequential in nature. The second mode monitors, critics, and corrects judgments of the first. It
suppresses (inhibits) default responses, serving as a failure prevention+correction mental device.
As Uri points out, some DPT proponents refer to these modes as System-1 (S1) and System-2
(S2) respectively, stating that often both work mostly in tandem (i.e., S1 judgment agreed by S2).

65 9 , 1813 9 8| 5
91 8 | 137 2]
12 20 . |5] [£]9
a 5| |1 121 5 216
, 6| | 6] 3]
7, 4 9L 6 1].]7]8
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116 4 121712 ERF: 5] [4]
Figure la. Processing error almost Figure 1b. Sameerror repeated &
committed—placing ‘4’ in mid-lower left céll  committed: ‘9 in left-lower cell
(transposed row, ignored vertical) (checked for vertical only)

A second tenet of DPT is that faulty responses reflect failure of analytic processes to prevent-
and-correct intuitive outputs. A key corresponding assumption, indicated by the notion of
rational judgment, is that at any given problem (e.g., economic benefit, academic success) a
person intends for a correct solution that serves one’s purposes. In the examples above, a person
tries solving the problems correctly but, as DPT explains, the “tendency of the insuppressible and
fast-reacting S1 to “hijack” the subject’s attention [leads] to a non-normative answer” (Leron,
this volume). In Example A, S1 “falls prey’ to one item’s cost ($1) being equal to the difference;
in Example B, S1 activates a planned action (enter elevator, identify + press 9" floor) before S2
re-evaluates circumstantial necessity; In Example D (Figure 1b), S1 directed my actions to place
digits with only partial checking before S2 detected that partiality. (Note: it occurred soon after |
actually thought of placing the ‘4’ where it’s shown in Figure 1a, but then avoided this error.)
Example C highlights a few hurdles with DPT, particularly the effect of solvers’ cognitive
abilities (Stanovich & West, 2000). What an observer considers non-normative responses
seemed a proper response to children—a case of S1 and S2 working in tandem for the reasoner.

A few points before turning to hindrances I find in DPT. First, Evans (2006) distinguished
between dual processes and dual systems. This is important for us particularly because, as he
asserted, dual system views are too broad. He suggested specifying dual-reasoning accounts at an
intermediate level that explain solutions to particular tasks. To me, his goal (particular task)
seems primary whereas the means (dual accounts, or singular, or triple) seems secondary.

This leads to my second point—the need to pay attention to solution processes and kinds of
tasks—in which the analytic successfully monitored and corrected the intuitive befor e the latter
reached its judgment. For example, upon reading Example A in Uri’s paper, | immediately
identified the task as “inviting” a faulty conclusion, as well as my conscious, proactive ‘flagging’
of this tendency. Consequently, | used a reflective process. This mental adjustment happened
before I calculated the faulty difference (90 cents), precisely the desired state of affairs indicated
in Uri’s question #4 above. This shows the need to precisely analyze how intuitive and analytic
processes interact. Initial DPT assumed sequential operation—outcomes of intuitive processes
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(or S1) served as input for and triggered the analytic only if S2 identified S1 output as faulty.
Recently, parallel processing of both modes was postulated, including possibly competing for the
immediate/final judgment to a given task (Evans, 2006). To further theorize S1-S2 interaction, he
suggested 3 principles: (a) singularity—epistemic mental models are generated and judged one-
at-a-time, (b) relevance—the intuitive contextualizes problems to exploit relevance to a person’s
goals, and (c) satisficing—the analytic accepts intuitive judgments unless there is a good reason
to override them. These crucial principles fall short of accounting for how | solved Example A.
My last point refers to factors that make a difference in ways people solve particular
problems (see Stanovich, 2008; Stanovich & West, 2000 for review). Here, | refer to a key factor
for math education highlighted in Uri’s address—the impact of problem format (*packaging’) on
suppression of intuitive judgments. A substantial part of Uri’s work, and a major contribution to
our field, focused on the design of bridging tasks for triggering solvers’ analytic processes and
enabling solution of congruent tasks that seemed ‘unpackable’ without bridging. This indirect
allusion to assimilatory conceptions of those for whom bridging is required points to a hindrance.
As theoretical and practical hindrance | find in DPT is the unproblematic application of an
observer’s frame of reference (‘normative’) to the evaluation of people’s responses (‘rational’ or
not). If people of varied cognitive abilities solve the same task differently, and if many who
failed on a congruent task solved a bridging task, then the mental toolbox solvers and observers
bring to the task must be distinguished. Simply put, the use of two cognitive frames of reference
is glossed over by DPT’s equating of the normative with rational (see Nisbett & Ross, 1994).
Theoretically, and crucial for math education, this lack of distinction fails to acknowledge
different interpretation(s) of a task and different mental activities available to the observed for
solving it. That is, it overlooks assimilation (Piaget, 1985; von Glasersfeld, 1995). Recent
cognitive psychology studies pointed out to solvers’ different interpretations (Stanovich & West,
2000). But the implication of addressing two frames of reference at once did not seem to follow.
In my view, distinguishing the observer and using assimilation as a starting point are necessary
in our field to move beyond cognitive psychology’s focus on thinking to accounts of learning as
a conceptual advance in someone else’s mind (Steffe, 1995). As Skemp (1979) and Thompson
(2010) asserted, at the core of a math education theory of teaching one must articulate learning as
a process of cognitive transformation in what the learner already knows toward intended math.
Practically, overlooking learners’ extant conceptions when analyzing their solutions, correct
or faulty, hinders the design of bridging tasks shown by Uri. Indirectly, specific features of those
tasks (e.g., cueing for a nested sub-set or for the invariant length of string when shapes increase)
and the rationale/criteria he provided for using those features (e.g., make the task accessible to
the solver’s intuition), draw on conjectured inferences about how a person may interpret and/or
solve the alternative tasks. This nicely leads to the discussion of Uri’s elegant and effective
exposition, which I shall follow by elaborating on DPT’s core hindrance (Section 3).

Elegant, Effective Exposition

I found Uri’s presentation of DPT’s contribution to math education to be elegant and
effective. Due to space limitations, | focus on two main features: (a) examples used to portray
DPT and (b) applying DPT in his empirical studies. To write this paper, | read a few articles
about DPT. My non-exhaustive sample revealed a complex set of constructs, as well as subtle
distinctions and heavy debates. Yet, via strategically chosen and lucid examples Uri’s paper
successfully conveyed the essence of DPT. Those examples depicted for me, as naive reader, (a)
the problems addressed by DPT, (b) key assumptions and explanations of phenomena studied,
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and (c) possible ways in which DPT can promote solution of these problems in math education.
Those of us whose interest is sparked by his exposition may inquire further (a great sign of
reach!); as is, it clearly portrays DPT and the potential contributions to math education.

Further, his examples draw on studies he conducted with colleagues to test how useful DPT can
be. The examples from those studies accomplish two key purposes of scholarly exchange of
ideas. They demonstrate a commitment for learning through authentic experimentation—walking
the walk and talking the talk. They also provide a critical look into adaptations needed for DPT
to become useful. In this sense, his elaboration of (bridging) tasks was powerful as it enabled
many students to ‘see’ a solution for problems they couldn’t unpack otherwise, while indicating
general criteria for designing such instructional tools. As one whao’s struggling with writing
scholarly papers, especially with drawing on examples, | marvel at Uri’s writing.

A Constructivist Lenson DPT: ‘Brainy’ Mathematics L earning and Teaching

Taking Issue with DPT

I adhere to a core premise common to Piaget’s (1970), Dewey’s (1902), and Vygotsky’s
(1978) grand theories: knowing (thinking) cannot be understood apart from how one’s knowing
evolved. This premise entails my twofold thesis about hurdles in adapting DPT to math
education. First, contrasting normative and faulty ‘snapshot’ reasoning in math (or cognitive
psychology) falls short of accounts needed to intentionally foster optimal student understandings.
Second, although DPT can inform our work, math education already has models that interweave
accounts of knowing, coming to know (learning), and teaching. As I shall discuss below, one
such model seems to (a) singularly resolve issues of faulty/normative reasoning and of
conceptual learning (with or without teaching) and (b) explain different modes of thinking
without alluding to 2 systems (or distinct processes). Moreover, this model is supported by and
gives support to cognitive neuroscience models of the brain. Due to space limitations, the brief
exposition below makes wide use of references to comprehensive versions.

Uri’s work, and accounts of DPT | read, raised 7 critical questions for math education:

1. Why/how does the mental system of some people make an error (e.g., selects $1 and 10 cents
in Example A) whereas other people focus also on the difference? Unless one also considers
a problem solver’s assimilatory conceptions, this question (and #2, #3, & #4 below) cannot
be resolved by DPT assumptions that S2 has no direct access to the perceived information, or
that it selects accessible instead of relevant information.

2. When a response is not normative, is it due to (a) having the required conceptions but failing
to trigger them (e.g., Sudoku and elevator examples), (b) having a rudimentary form of those
conceptions that require some prompting (e.g., nested subset in Uri’s bridging task, pointing
out the difference feature in Example A and/or making the numbers more “difficult’), or (c)
lacking a conception for S2 to monitor S1 (e.g., next coin-flip and DMP base-rate examples)?
And how can we distinguish among these three cases?

3. How does S2, which failed to monitor S1 in a specific task, become capable of doing so? Is

the process of learning, and required teaching, different for each of the three cases above?

How do new monitoring capacities learned by S2 ‘migrate’ to S1 (become automatic)?

What is the source of learners’ surprise (e.g., string-around-earth example), how may it be

linked to learning, and how might teaching capitalize on this (one of Uri’s key pleas)?

6. What role do specifically designed examples/illustrations play in learning (by S2 and/or S1)?

o ks
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7. Can we explain why particular bridging tasks promote some students’ learning but not
others’, and provide explicit ideas for changing them in the latter case?

A Brain-Based Model of Knowing and Learning

In recent years, a few interdisciplinary meetings of cognitive neuroscientists with math
educators took place. One of those (Vanderbilt, 2006) dealt with the design of tasks that (a)
reveal difficult milestones and (b) can be examined at the brain level. Using the reflection on
activity-effect relationship (Ref* AER) account of knowing and learning (Simon & Tzur, 2004;
Simon, Tzur, Heinz, & Kinzel, 2004; Tzur, 2007; Tzur & Simon, 2004), | presented fraction
tasks. This presentation, and the fertile dialogue with brain researchers that ensued, led to an
elaborated, brain-based Ref* AER account (Tzur, accepted for publication), found highly
consistent with DPT studies of the brain (Lieberman, 2003).

Briefly, knowing (having a conception) is explained as anticipating and justifying an invariant
relationship between a goal-directed activity-sequence the mental system executes at any given
moment (Evans’ Sngularity principle), potentially or actually, and the effect it must bring forth.
Learning is explained as transformation in such anticipation via two basic types of reflection.
Type-I consists of continual, automatic comparison the mental system executes between the goal
it sets for the activity-sequence and subsequent effects produced. As Piaget (1985) asserted, the
internal global goal (anticipated effect) regulates the execution and detects interim effects and
the final one (Relevance principle) (see also Stich, 1994). The effects either match the
anticipation or not (Satisficing principle). By default, the mental system runs the activity-
sequence to its completion as determined by the goal (e.g., elevator example). Yet, the execution
may stop earlier if the goal detects unanticipated sub-effects (e.g., Sudoku-1a) or if a different
goal became the regulator, including a sub-goal of the activity-sequence overriding the global
goal. Type-1l consists of comparison across records of experiences, each containing a linked, re-
presented ‘run’ of the activity and its effect, sorted as match/no-match. Type-II is not
automatic—it may or may not be executed. Recurring, invariant AER across those experiences
are linked with the situation(s) in which they were found anticipatory of the proper goal and are
registered as a new conception. Constructing a new conception proceeds through 2 stages. The
first, participatory stage requires reflection Type-I and is marked by anticipation that a solver
can access only if somehow prompted for the novel, provisional AER (In a forthcoming paper
with Lambert I linked this stage with ZPD). The second, anticipatory stage requires reflection
Type-I1l and is characterized by spontaneously activating and justifying the novel anticipation. It
should be noted that this model, although developed independently, is consistent with Skemp’s
(1979) foundational theory; the reflection types and stage distinctions extend his work.

To link Ref* AER to the brain, | separated and “distributed” von Glasersfeld’s (1995) tripartite
notion of scheme—situation, activity, and result—across 3 major neuronal systems in which they
are postulated to be processed. The assumption about both knowing and learning is that the basic
unit of analysis in the brain is not one synaptic connection or a neuron (Hebb, 1949, cited in
Baars & Gage, 2007; Fuster, 1997). Rather, and to stress neuronal ‘firing’ in the brain and
growth/change/decay of neuronal networks, I introduced the term Synapse inhibition-Excitation
Constellation (S EC)—any-size aggregate of synapses of connected neurons that, once “firing’
and updating, forms a pattern of activity. The roles and functions of SIECs are described below
in terms of three neuronal networks in which they may be activated (Baars & Gage, 2007): a
‘Recognition System’ (RecSys) with the sensory input/buffer and long-term memories, a
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‘Strategic System’ (StrSys) with the Central Executive, and an ‘Engagement-Emotive System’
(EngSys). Within these, solving a problem is postulated as follows (indices match Figure 2):

1. Solving a problem begins with assimilating it via one’s sensory modalities into the Situation
part of an extant scheme in the RecSys. This SEC is firing and updating until reaching its
activity pattern (recognizing state), and activates firing and updating of a Goal SEC in the
StrSys.

2. A Goal SEC s set in the StrSys, setting a desired inhibition-excitation state that will regulate
the execution and termination of an activity sequence. The goal SEC also triggers:

a. Corresponding SIECs in the EngSys, which set the desirability of the experience and the
sense of control the learner has over the activity (McGaugh, 2002; Tzur, 1996; Zull,
2002); This emotional component was linked to activity in the anterior cingulate cortex
(Bush, Luu, & Posner, 2000; Lieberman, 2003).

b. A temporary auxiliary SEC checks if an activity has already been partly executed and
can thus be resumed. If its output is “Yes’, it re-triggers the AER’s execution in the StrSys
from the stopping point (go to #4); if “No,” it triggers the Goal SEC to trigger #3 below.

3. A SEC responsible for searching/selecting an available AER is triggered by the Goal SEC.
The search operates on three different long-term memory ‘storages’ of SECs. Using a
metaphor of ‘road-map’, Skemp (1979) explained that, within every universe of discourse
(e.g., math, economy), the “‘path’ from a present state to a goal state may consist of multiple
activity-sequences from which the one eventually executed is selected (see also multiple-
trace theory in Nadel, Samsonovich, Ryan, & Moscovitch, 2000). The 3 SECsare:

a. Anticipatory AER of the mental process to be carried out;

b. Participatory AER that a learner is currently forming and can be called up only if
prompted (dotted arrow);

c. Mathematical ‘objects,” which are essentially anticipatory AER established and
encapsulated previously (e.g., “number’ is an encapsulated, anticipated effect of a
counting operation).

4. Once an operation and ‘object” AER were selected, the brain executes them while monitoring
progress to the goal via a meta-cognitive SEC in the StrSys responsible for Type-I
reflections. Skemp’s (1979, see ch. 11) model articulates this component in great details,
including how it can be carried out automatically (intuitive) and/or reflectively (analytic).
This component seems compatible with Norman and Shallice’s (2000) model of schema
activation and Corbetta and Shulman’s (2002) notion of ‘circuit breaker’.

5. The execution of the selected AER is constantly monitored by Type-I reflection to determine
3 features:

a. Was the learner’s goal, as set in SEC 2a, met?

b. Isthe AER execution moving toward or away from the goal (see McGovern, 2007, for
relevant emotions)?

c. Isthe final effect of the executed portion of the AER different from the anticipated, set
goal. Goldberg and Bougakov (2007) suggested that this is mainly a prefrontal cortex
(PFC) function.

Each feature (5a, 5b, 5c) can stop the executed AER. If the output of 5¢ is *‘No’, that ‘run’ of

the AER is registered as another record of experience of the existing scheme (see Zull, 2002).

Symbolically, such no-novelty can be written: Situationo-Goaly-AERy. If the output is “Yes’,

symbolized as Situationg-Goalp-AER;, a new conceptualization may commence (See next).

Brosnan, P., Erchick, D. B., & Flevares, L. (Eds.). (2010). Proceedings of the 32™ annual meeting of the North
American Chapter of the International Group for the Psychology of Mathematics Education. Columbus, OH: The
Ohio Sate University.



Plenary Sessions Volumn VI, Page 28

This perturbing state of the mental system (von Glasersfeld, 1995), has recently been linked

to anticorrelations of brain networks (Fox, et al., 2005).

6. Type-lI reflective comparisons may then operate on the output records of Type-I reflection.
Whenever the output of Type-l question 5¢ is “Yes,” the brain updates a new SEC for that
recently run AER and stores it in a temporary auxiliary SIEC in the RecSys (symbolized Ao-
E,, or AER;). Each repetition of the solution process for which the output of 5¢ is “Yes’ adds
another such record to the temporary auxiliary.

7. The accruing records of temporary AER; (novel) compounds are continually monitored by
the Type-1l reflective comparison SEC in terms of two features:

a. Isthe effect of the new AER (E;) closer to or further away from the Goal?

b. How is the new AER; similar to or different from the extant anticipatory and/or
participatory AER in the RecSys? This aspect of Type-Il reflection is consistent with
Moscovitch et al.’s (2007) articulation of the constant interchanges between the Medial
Temporal Lobe (MTL) and PFC.

The output of recurring Type-11 reflections is a new SEC (AER;). As the anticipatory-

participatory stage distinction implies, initially the Search/Select SEC (#3) may only access

a new SEC if the learner is prompted for the activity (Ap), which generates the effect (E,)

and thus ‘opens’ a neuronal path to using AER; in response to the triggering situation

(Situationg). In time, Type-1l comparisons of the repeated use of AER; for Situation, produces

a new neuronal pathway from the Situationy S EC to the newly formed AER, that is, to the

construction of a directly retrievable, anticipatory SSEC (new scheme symbolized as

Situation;-Goal;-AER).

Comparing DPT with Brain-Based Ref* AER.

I contend that Ref* AER, with its brain-based elaboration, simultaneously resolves not only
the reasoning puzzlement addressed by DPT, but also central problems of math learning and
teaching. Concerning normative solutions, Ref* AER explains and predicts their production as
the outcome of either an anticipatory conception, which can run automatically and/or reflectively,
or a compatible participatory conception that was accessed via a prompt—self/internal (e.g.,
Soduku-1a) or external (e.g., Uri’s bridging task, apple falling on Newton’s head). Accordingly,
faulty solutions are the outcome of (a) partial/inefficient/flawed execution of a suitable
anticipatory conception (e.g., Soduku-1b, elevator), (b) prompt-dependent inability to access a
proper participatory conception (e.g., incorrectly solving the $1.10 when difference=$1 but
correctly with other amounts), and, often, (c) lack of suitable conception for correctly solving the
given task (e.g., 3 graders facing the next coin flip problem; students in Uri’s study who could
not solve the bridging task).

| further contend that, for cognitive psychology and math education purposes, Ref* AER
resolves DPT problems better. Instead of postulating two systems (or processes), it explains how
the brain gives rise to a multi-part single thought process by which a problem solver may get at
a normative or a faulty answer. Furthermore, it stresses that a ‘solution’ must encompass not
only the answer, but also the (inferred) solver’s reasoning processes used for producing it.

Ref* AER makes such inferences via analyzing the solver’s: (i) goal and sub-goals (see Stanovich
& West, 2000, for differing researcher/subject goals), (ii) entire or partial activity-sequence
selected and executed (see Kahneman & Frederick, 2002, for Attribute Substitution), (iii)
suitability of objects operated on (see Uri’s explication of objects, such as length gap in string-
around-earth and nested sub-set in his RMP bridging task), (iv) sub- and final effects noticed and
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successful/failed reflections (both Types). Last but not least, Ref* AER analyses distinguish
between two frames of reference in the evaluation of solvers’ judgments—observer’s advanced/
justified frames and observeds’ evolving and sensible relative to her or his extant conceptions.
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Figure 2. Brain problem solving and lear ning processes

Thus, consistent with Stich’s (1994) assertion that cognitive systems serve an organism’s
goals and not absolute truths, Ref* AER evades the pitfalls of equating normative with rational.
Instead, it clarifies that upon a solver’s assimilation of a task and setting her/his goal(s), one path
is selected among multiple, extant activity-sequences (spontaneous or prompted), executed, and
being monitored by the solver’s goal. By default, the brain runs the sequence to its completion,
which is signaled via Type-I comparison (goal SEC), and may thus be portrayed by an observer
as intuitive/automatic. However, at any given moment during the execution or after completion,
the system’s regulator (goal SSEC) may notice effects that require interruption and/or correction
to the run and/or even to the goal (portrayed as analytic/reflective). Instead of “I think, therefore
I err,” (Gigerenzer, 2005), we say: “I (learn to) think, therefore | adjust erroneous anticipations.”

Most importantly, | contend that Ref* AER also contributes to resolving two problems that,
while not addressed by DPT, are vital for a foundation of math education (Thompson, 2010),
namely, explaining (a) how learning to reason—intuitively and analytically—may occur and (b)
how can teaching capitalize on it and foster (optimize) students’ maths. The former has been
articulated above; the latter exceeds the scope of this discussion and was articulated elsewhere
(Tzur, 2008, 2010) as a 7-step cycle that proceeds from analysis of students’ extant conceptions.

To briefly convey the potential of this teaching cycle, I return to Uri’s RMP bridging task. In
that task, a 2-phase activity-sequence of considering base-rate (1/1000) and diagnostic info (5%
false positive) was made explicit as linked sub-goals. What’s more, ‘objects’ on which this
alternative sequence would operate were replaced, from multiplicatively related quantities
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(fractions, percents) to whole number frequencies considered additively until the final
multiplicative calculation (51/1000). In terms of Ref* AER, these alterations shed light on why
some of those who incorrectly solved the DMP problem could correctly solve the RMP problem.
The alteration was more likely to orient a solver to (a) clearly coordinate sub-goals (specifying
each of the nested sub-sets) of the task’s global goal and (b) select and operate on accessible
guantities—anticipatory AER (‘objects’)—in place of quantities that are notoriously prompt-
dependent (or lacking) in youngsters and adults and, not surprisingly, were ‘neglected’.

These insightful alterations also explain the educative power of the RMP task as a ‘bridge’. It
brought forth an anticipatory AER that, | infer, could serve as an internal prompt for correctly
selecting/executing the entire activity-sequence when, later, operating similarly on the more
difficult-to-grasp multiplicative quantities/relationships. A novel dissertation study of my PhD
student, Xianyan Jin, provides a penetrating examination of how Bridging (xianjie) tasks are
uniformly fitted within a 4-component lesson structure in Chinese mathematics teaching. Her
work includes ‘mapping’ the 7-step cycle onto the fourfold lesson structure, emphasizing the role
that bridging tasks, like those designed by Uri et al., can play in activating students’ extant
assimilatory conceptions. Alluding to Uri’s closing slogan, while not positing thinking dualities,
I believe that such brain-based, Ref* AER-informed teaching can nurture “ the power of natural
thinking,” address “ the challenge of stretching it,” and inform “ the beauty of overcoming it.”
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PROMOTING STUDENT UNDERSTANDING THROUGH COMPLEX LEARNING

Lyn D. English
Queensland University of Technology
l.english@qut.edu.au

The world’ sincreasing complexity, competitiveness, interconnectivity, and dependence on
technology generate new challenges for nations and individuals that cannot be met by

“ continuing education as usual” (The National Academies, 2009). With the proliferation of
complex systems have come new technol ogies for communication, collaboration, and
conceptualization. These technologies have led to significant changes in the forms of
mathematical thinking that are required beyond the classroom. This paper argues for the need to
incor por ate future-oriented under standings and competencies within the mathematics
curriculum, through intellectually stimulating activities that draw upon multidisciplinary content
and contexts. The paper also argues for greater recognition of children’s learning potential, as
increasingly complex learners capable of dealing with cognitively demanding tasks.

Although reformers have disagreed on many issues, there is a widely shared concern for
enhancing opportunities for students to learn mathematics with understanding and thus a
strong interest in promoting teaching mathematics for understanding (Silver, Mesa, Morris,
Star, & Benken, 2009, p.503).

Introduction

In recent decades our global community has rapidly become a knowledge driven society, one
that is increasingly dependent on the distribution and exchange of services and commodities (van
Oers, 2009), and one that has become highly inventive where creativity, imagination, and
innovation are key players. At the same time, the world has become governed by complex
systems—financial corporations, the World Wide Web, education and health systems, traffic
jams, and classrooms are just some of the complex systems we deal with on a regular basis. For
all citizens, an appreciation and understanding of the world as interlocked complex systems is
critical for making effective decisions about one’s life as both an individual and as a community
member (Bar-Yam, 2004; Jacobson & Wilensky, 2006; Lesh, 2006).

Complexity—the study of systems of interconnected components whose behavior cannot be
explained solely by the properties of their parts but from the behavior that arises from their
interconnectedness—is a field that has led to significant scientific methodological advances.
With the proliferation of complex systems have come new technologies for communication,
collaboration, and conceptualization. These technologies have led to significant changes in the
forms of mathematical thinking that are needed beyond the classroom. For example, technology
can ease the thinking needed in information storage, retrieval, representation, and transformation,
but places increased demands on the complex thinking required for the interpretation of data and
communication of results. Computational skills alone are inadequate here—the ability to
interpret, describe, and explain data and communicate results of data analyses is essential
(Hamilton, 2007; Lesh, 2007a; Lesh, Middleton, Caylor & Gupta, 2008).

The rapid increase in complex systems cannot be ignored in mathematics education. Indeed,
educational leaders from different walks of life are emphasizing the importance of developing
students’ abilities to deal with complex systems for success beyond school. Such abilities include:
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constructing, describing, explaining, manipulating, and predicting complex systems; working on
multi-phase and multi-component component projects in which planning, monitoring, and
communicating are critical for success; and adapting rapidly to ever-evolving conceptual tools

(or complex artifacts) and resources (Gainsburg, 2006; Lesh & Doerr, 2003; Lesh & Zawojewski,
2007).

In this paper 1 first consider future-oriented learning and then address some of the
understandings and competencies needed for success beyond the classroom, which I argue need
to be incorporated within the mathematics curriculum. A discussion on complex learners and
complex learning, with mathematical modeling as an example, is presented in the remaining
section.

Future-oriented learning
Every advanced industrial country knows that falling behind in science and mathematics
means falling behind in commerce and property (Brown, 2006).

Many nations are highlighting the need for a renaissance in the mathematical sciences as
essential to the well-being of all citizens (e.g., Australian Academy of Science, 2006; The
National Academies, 2009). Indeed, the first recommendation of The National Academies’
Rising above the Gathering Storm (2007) was to vastly improve K-12 science and mathematics
education. Likewise the Australian Academy of Science has indicated the need to address the
“critical nature” of the mathematical sciences in schools and universities, especially given the
unprecedented, worldwide demand for new mathematical solutions to complex problems. In
addressing such demands, the Australian Academy emphasizes the importance of
interdisciplinary research, given that the mathematical sciences underpin many areas of society
including financial services, the arts, humanities, and social sciences.

The interdisciplinary nature of the mathematical sciences is further evident in the rapid
changes in the nature of the problem solving and reasoning needed beyond the school years
(Lesh, 2007b). Indeed, numerous researchers and employer groups have expressed concerns that
schools are not giving adequate attention to the understandings and abilities that are needed for
success beyond school. For example, potential employees most in demand in the mathematical
sciences are those that can (a) interpret and work effectively with complex systems, (b) function
efficiently and communicate meaningfully within diverse teams of specialists, (¢) plan, monitor,
and assess progress within complex, multi-stage projects, and (d) adapt quickly to continually
developing technologies (Lesh, 2008). Research indicates that such employees draw effectively
on interdisciplinary knowledge in solving problems and communicating their findings.
Furthermore, although such employees draw upon their school learning, they do so in a flexible
and creative manner, often generating or reconstructing mathematical knowledge to suit the
problem situation (unlike the way in which they experienced mathematics in school; Gainsburg
2006; Hamilton 2007; Zawojewski, Hjalmarson, Bowman, & Lesh, 2008). Indeed, such
employees might not even recognize the relationship between their school mathematics and the
mathematics they apply in solving problems in their daily work activities. We thus need to
rethink the nature of the mathematical learning experiences we provide students, especially those
experiences we classify as “problem solving;” we also need to recognize the increased
capabilities of students in today’s era.

In his preface to the book, Foundations for the Future in Mathematics Education, Lesh
(2007Db) pointed out that the kinds of mathematical understandings and competencies that are
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targeted in textbooks and tests tend to “represent only a shallow, narrow, and often non-central
subset of those that are needed for success when the relevant ideas should be useful in ‘real life”
situations” (p. viii). Lesh’s argument raises a number of issues, including:

What kinds of understandings and competencies should be emphasized to reduce the gap
between the mathematics addressed in the classroom (and in standardized testing), and the
mathematics needed for success beyond the classroom?

How might we address the increasing complexity of learning and learners to advance their
mathematical under standing within and beyond the classroom?

Under standings and competenciesfor success beyond the classroom

The advent of digital technologies changes the world of work for our students. As Clayton
(1999) and others (e.g., Jenkins, Clinton, Purushotma, Robinson & Weigel, 2006; Lombardi &
Lombardi, 2007; Roschelle, Kaput, & Stroup, 2000) have stressed, the availability of
increasingly sophisticated technology has led to changes in the way mathematics is being used in
work place settings; these technological changes have led to both the addition of new
mathematical competencies and the elimination of existing mathematical skills that were once
part of the worker's toolkit.

Studies of the nature and role of mathematics used in the workplace and other everyday
settings (e.g., nursing, engineering, grocery shopping, dieting, architecture, fish hatcheries) are
important in helping us identify some of the key understandings and competencies for the 21st
century (e.g., de Abreu, 2008; Gainsburg, 2006; Roth, 2005). A major finding of the 2002 report
on workplace mathematics by Hoyles, Wolf, Molyneux-Hodgson and Kent was that basic
numeracy is being displaced as the minimum required mathematical competence by an ability to
apply a much wider range of mathematical concepts in using technological tools as part of
working practice. Although we cannot simply list a number of mathematical competencies and
assume these can be automatically applied to the workplace setting, there are several that
employers generally consider to be essential to productive outcomes (e.g., Doerr & English,
2003; English, 2008; Gainsburg, 2006; Lesh & Zawojewski, 2007). In particular, the following
are some of the core competencies that have been identified as key elements of productive and
innovative work place practices (English, Jones, Bartolini Bussi, Lesh, Tirosh, & Sriraman,
2008). | believe these competencies need to be embedded within our mathematics curricula:
Problem solving, including working collaboratively on complex problems where planning,
overseeing, moderating, and communicating are essential elements for success;

e Applying numerical and algebraic reasoning in an efficient, flexible, and creative manner;

e Generating, analyzing, operating on, and transforming complex data sets;

e Applying an understanding of core ideas from ratio and proportion, probability, rate,
change, accumulation, continuity, and limit;

e Constructing, describing, explaining, manipulating, and predicting complex systems;

¢ Thinking critically and being able to make sound judgments, including being able to
distinguish reliable from unreliable information sources;

e Synthesizing, where an extended argument is followed across multiple modalities;

e Engaging in research activity involving the investigation, discovery, and dissemination of
pertinent information in a credible manner;

e Flexibility in working across disciplines to generate innovative and effective solutions.
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Although a good deal of research has been conducted on the relationship between the learning
and application of mathematics in and out of the classroom (e.g., de Abreu 2008; Nunes &
Bryant 1996; Saxe 1991), we still know comparatively little about students’ mathematical
capabilities, especially problem solving, beyond the classroom. We need further knowledge on
why students have difficulties in applying the mathematical concepts and abilities (that they
presumably have learned in school) outside of school—or in classes in other disciplines.

A prevailing explanation for these difficulties is the context-specific nature of learning and
problem solving, that is, competencies that are learned in one situation take on features of that
situation; transferring them to a new problem situation in a new context poses challenges (Lobato
2003). This suggests we need to reassess the nature of the typical mathematical problem-solving
experiences we give our students, with respect to the nature of the content and how it is
presented, the problem contexts and the extent of their real-world links, the reasoning processes
likely to be fostered, and the problem-solving tools that are available to the learner (English &
Sriraman, 2010). This reassessment is especially needed, given that “problems themselves
change as rapidly as the professions and social structures in which they are embedded change”
(Hamilton, 2007, p. 2). The nature of learners and learning changes likewise. With the increasing
availability of technology and exposure to a range of complex systems, children are different
types of learners today, with a potential for learning that cannot be underestimated.

Complex learners, complex learning

Winn (2006) warned of the “dangers of simplification” when researching the complexity of
learning, noting that learning is naturally confronted by three forms of complexity—the
complexity of the learner, the complexity of the learning material, and the complexity of the
learning environment (p. 237). We cannot underestimate these complexities. In particular, we
need to give greater recognition to the complex learning that children are capable of—they have
greater learning potential than they are often given credit for by their teachers and families
(English, 2004; Lee & Ginsburg, 2007; Perry & Dockett, 2008; Curious Minds, 2008). They
have access to a range of powerful ideas and processes and can use these effectively to solve
many of the mathematical problems they meet in daily life. Yet their mathematical curiosity and
talent appear to wane as they progress through school, with current educational practice missing
the goal of cultivating students’ capacities (National Research Council, 2005; Curious Minds,
2008). The words of Johan van Benthem and Robert Dijkgraaf, the initiators of Curious Minds
(2008), are worth quoting here:

What people say about children is: “They can’t do this yet.”
We turn it around and say: “Look, they can already do this.”
And maybe it should be: “They can still do this now.”

As Perry and Dockett (2008) noted, one of our main challenges here is to find ways to utilize
the powerful mathematical competencies developed in the early years as a springboard for
further mathematical power as students progress through the grade levels. | offer three
interrelated suggestions for addressing this challenge:

1. Recognize that learning is based within contexts and environments that we, as educators
shape, rather than within children’s maturation (Lehrer & Schauble, 2007).
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2. Promote active processing rather than just static knowledge (Curious Minds, 2008).
3. Create learning activities that are of a high cognitive demand (Silver et al., 2009).

In the remainder of this paper I give brief consideration to these suggestions. In doing so, |
argue for fostering complex learning through activities that encourage knowledge generation and
active processing. While complex learning can take many forms and involve numerous factors,
there are four features that | consider especially important in advancing students’ mathematical
learning. These appear in Figure 1.
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Figure 1. Key Features of Complex Learning

Research in the elementary and middle school indicates that, with carefully designed and
implemented learning experiences, we can capitalize on children’s conceptual resources and
bootstrap them towards advanced forms of reasoning not typically observed in the regular
classroom (e.g., English & Watters, 2005; Ginsburg, Cannon, Eisenband, & Pappas, 2006;
Lehrer & Schauble, 2007). Most research on young students’ mathematical learning has been
restricted to an analysis of their actual developmental level, which has failed to illuminate their
potential for learning under stimulating conditions that challenge their thinking—*“Research on
children’s current knowledge is not sufficient” (Ginsburg et al., 2006, p.224). We need to redress
this situation by exploring effective ways of fashioning learning environments and experiences
that challenge and advance students’ mathematical reasoning and optimize their mathematical
understanding.

Recent research has argued for students to be exposed to learning situations in which they are
not given all of the required mathematical tools, but rather, are required to create their own
versions of the tools as they determine what is needed (e.g., English & Sriraman, 2010; Hamilton,
2007; Lesh, Hamilton, & Kaput, 2007). For example, long-standing perspectives on classroom
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problem solving have treated it as an isolated topic, with problem-solving abilities assumed to
develop through the initial learning of basic concepts and procedures that are then practised in
solving word (“story”) problems. In solving such word problems, students generally engage in a
one- or two-step process of mapping problem information onto arithmetic quantities and
operations. These traditional word problems restrict problem-solving contexts to those that often
artificially house and highlight the relevant concept (Hamilton, 2007). These problems thus
preclude students from creating their own mathematical constructs. More opportunities are
needed for students to generate important concepts and processes in their own mathematical
learning as they solve thought-provoking, authentic problems. Unfortunately, such opportunities
appear scarce in many classrooms, despite repeated calls over the years for engaging students in
tasks that promote high-level mathematical thinking and reasoning (e.g., Henningsen & Stein,
1997; Silver et al., 2009; Stein & Lane, 1996).

Silver et al.’s recent research (2009) analyzing portfolios of “showcase” mathematics lessons
submitted by teachers seeking certification of highly accomplished teaching, showed that
activities were not consistently intellectually challenging across topics. About half of the
teachers in the sample (N=32) failed to include a single activity that was cognitively demanding,
such as those that call for reasoning about ideas, linking ideas, solving complex problems, and
explaining and justifying solutions. Furthermore, the teachers were more likely to use cognitively
demanding tasks for assessment purposes than for teaching to develop student understanding.
While Silver et al.’s research revealed positive features of the teachers’ lessons, it also indicated
that the use of cognitively demanding tasks in promoting mathematical understanding needs
systematic attention.

Modeling Activities

One approach to promoting complex learning through intellectually challenging tasks is
mathematical modeling. Mathematical models and modeling have been interpreted variously in
the literature (e.g., Romberg, Carpenter, & Kwako, 2005; Gravemeijer, Cobb, Bowers, &
Whitenack, 2000; English & Sriraman, 2010; Greer, 1997; Lesh & Doerr, 2003). It is beyond the
scope of this paper to address these various interpretations, however, but the perspective of Lesh
and Doerr (e.g., Doerr & English, 2003; Lesh & Doerr, 2003) is frequently adopted, that is,
models are “systems of elements, operations, relationships, and rules that can be used to describe,
explain, or predict the behavior of some other familiar system” (Doerr & English, 2003, p.112).
From this perspective, modeling problems are realistically complex situations where the problem
solver engages in mathematical thinking beyond the usual school experience and where the
products to be generated often include complex artifacts or conceptual tools that are needed for
some purpose, or to accomplish some goal (Lesh & Zawojewski, 2007).

In one such activity, the Water Shortage Problem, two classes of 11-year-old students in
Cyprus were presented with an interdisciplinary modeling activity that was set within an
engineering context (English & Mousoulides, in press). In the Water Shortage Problem,
constructed according to a number of design principles, students are given background
information on the water shortage in Cyprus and are sent a letter from a client, the Ministry of
Transportation, who needs a means of (model for) selecting a country that can supply Cyprus
with water during the coming summer period. The letter asks students to develop such a model
using the data given, as well as the Web. The quantitative and qualitative data provided for each
country include water supply per week, water price, tanker capacity, and ports’ facilities.
Students can also obtain data from the Web about distance between countries, major ports in
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each country, and tanker oil consumption. After students have developed their model, they write
a letter to the client detailing how their model selects the best country for supplying water. An
extension of this problem gives students the opportunity to review their model and apply it to an
expanded set of data. That is, students receive a second letter from the client including data for
two more countries and are asked to test their model on the expanded data and improve their
model, if needed.

Modeling problems of this nature provide students with opportunities to repeatedly express,
test, and refine or revise their current ways of thinking as they endeavor to create a structurally
significant product—structural in the sense of generating powerful mathematical (and scientific)
constructs. The problems are designed so that multiple solutions of varying mathematical and
scientific sophistication are possible and students with a range of personal experiences and
knowledge can participate. The products students create are documented, shareable, reusable,
and modifiable models that provide teachers with a window into their students’ conceptual
understanding. Furthermore, these modeling problems build communication (oral and written)
and teamwork skills, both of which are essential to success beyond the classroom.

Concluding Points

The world’s increasing complexity, competitiveness, interconnectivity, and dependence on
technology generate new challenges for nations and individuals that cannot be met by
“continuing education as usual” (The National Academies, 2009). In this paper | have
emphasized the need to incorporate future-oriented understandings and competencies within the
mathematics curriculum, through intellectually stimulating activities that draw upon
multidisciplinary content and contexts. | have also argued for greater recognition of children’s
learning capabilities, as increasingly complex learners able to deal with cognitively demanding
tasks.

The need for more intellectually stimulating and challenging activities within the mathematics
curriculum has also been highlighted. It is worth citing the words of Greer and Mukhopadhyay
(2003) here, who commented that “the most salient features of most documents that lay out a K-
12 program for mathematics education is that they make an intellectually exciting program
boring,” a feature they refer to as “intellectual child abuse” (p. 4). Clearly, we need to make the
mathematical experiences we include for our students more challenging, authentic, and
meaningful. Developing students’ abilities to work creatively with and generate mathematical
knowledge, as distinct from working creatively on tasks that provide the required knowledge
(Bereiter & Scardamalia, 2006) is especially important in preparing our students for success in a
knowledge-based economy. Furthermore, establishing collaborative, knowledge-building
communities in the mathematics classroom is a significant and challenging goal for the
advancement of students’ mathematical learning (Scardamalia, 2002).
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A Critique and Reaction to
PROMOTING STUDENT UNDERSTANDING THROUGH COMPLEX LEARNING

Bharath Sriraman
The University of Montana
sriramanb@mso.umt.edu

The plenary by Lyn English addresses “ the world’ s increasing complexity, competitiveness,
interconnectivity, and dependence on technology” which education and changes hitherto to
education fails to meet. In her talk, future oriented competencies and multidisciplinary activities
are proposed as ways in which complex learning as opposed to simplistic (rote) learning can be
promoted. In this critique | weigh the strengths and weaknesses of her proposalsin light of
existing research.

The times we live in have often been characterized as the nexus of the information age and
globalization in which society is increasingly driven by industry, economies, innovation,
research and development that need not occur at a local level. Numerous mathematics and
science educators as well as position documents from the national academy of science have
called for promoting a better understanding of the world in which students are situated by
making use of complex adaptive systems in the curriculum and in day to day lessons (The
National Academies, 2007, 2009). The plenary paper by English focuses on three main areas,
namely:

(1) What is future oriented learning and why it is relevant?
(2) What are the competencies necessary for success beyond the classroom, and
(3) What are complex systems and examples of complex learning activities?

By surveying the recommendations of existing research within models and modeling,
complex adaptive learning, and different types of workplace situated learning, English asks us to
recognize that contextual and complex learning within an idea rich environment should be
strived for in the classroom. Examples of learning activities are then given which place high
cognitive demands on students (Silver et al., 2009) as well as active knowledge processing
(Curious Minds, 2008).

Future oriented learning is described as learning that takes into account that disciplinary
boundaries of science today are not as rigid as they were, say even a decade ago, and promotes
competencies which takes this into account. Indeed new fields of study such as mathematical
biology, neuroeconomics, bioinformatics, ethnobotany, and other professions that have emerged
are often both interdisciplinary and transdisciplinary, and call for competencies related to
understanding complex real world phenomena, team work, communication and technological
skills.

Numerous definitions of complex systems are found in the literature. One commonly used
definition by different non-linear dynamic groups is as follows:
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Complex systems are spatially and/or temporally extended nonlinear systems characterized by
collective properties associated with the system as a whole—and that are different from the
characteristic behaviors of the constituent parts.

Viewing learning in a classroom as a complex adaptive system is a non-trivial enterprise. The
examples of research which (attempt to) “operationalize” complexity theory and examine
learning as a complex adaptive system in students occur in lessons involving simulations of a
real world phenomena which a classroom as a whole or in groups can simultaneously observe
and manipulate (Wilensky & Stroup, 1999, 2000), and those involved in models and modeling
research which make use of model eliciting activities (Lesh et al., 2007; Lesh & Sriraman, 2010).
In learning situations which make use of model eliciting activities, complex systems are
understood as: (a) “real life” systems that occur (or are created) in everyday situations, (b)
conceptual systems that humans develop in order to design, model, or make sense of the
preceding “real life” systems, and (c) models that researchers develop to describe and explain
students’ modeling abilities. Models for designing or making sense of such complex systems are,
in themselves, important “pieces of knowledge” that should be emphasized in teaching and
learning — especially for students preparing for success in future-oriented fields that are heavy
users of mathematics, science, and technology (English & Sriraman, 2010; Lesh, 2006; Lesh et
al., 2007; Lesh & Sriraman, 2005).

Having summarized some of the major themes in the plenary paper by Lyn English, | now
turn my attention to the problem of researching learning in complex adaptive situations. The
assumptions in such research are that individual learners, groups and classrooms are complex
adaptive systems (Hurford, 2010), and that learners adapt to the classroom situation involving a
model eliciting activity, or a simulation involving a CAS. With these assumptions in mind, the
goal of researchers is to identify the constituent components of learning without losing sight of
the big picture. In other words, if an individual learner is considered to be a meta-agent whose
activity is the observable pattern emerging from other interacting agents (Lesh & Yoon, 2004,
Hurford, 2010), then how are the internal conceptual models that learners are dynamically
forming reflected in the rules, actions and artifacts in external artifacts and representations. The
question I am posing is whether there is a match in the internal and external representations
produced by such learning activities, and if so, what implication does this have for a coherent
theory of learning that goes beyond the traditional neo-Piagetian/Vygotskian dichotomy or other
situated/socio cultural accounts of learning? Can cultural-historical activity theory provide an
adequate theoretical framework to clearly document and explain how these moments of complex
learning are reflected in the actions of lower and higher order agents, and in the continually
evolving artifacts produced by learners?

While 1 agree that “establishing collaborative, knowledge-building communities in the
mathematics classroom is a significant and challenging goal for the advancement of students’
mathematical learning (Scardamalia, 2002)”, | remain pragmatic about the adequacy of existing
theoretical frameworks to capture the learning that takes place in such environments. The
question of how this burgeoning area of research can have a systemic impact on school, curricula,
textbooks and teacher education is even more complex (pun intended).
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PRACTICAL RATIONALITY AND THE JUSTIFICATION FOR ACTIONSIN
MATHEMATICSTEACHING

Patricio Herbst
University of Michigan
pgherbst@umich.edu

The action happens in a high school geometry course in late November. The class has spent
some time learning to use triangle congruence to prove statements and has begun the study of
quadrilaterals. Mr. Jones starts the day congratulating students for their progress learning to do
proofs. He then draws Figure 1 on the board and asks the class to prove a statement about the
relationship between the sides of the rectangle ABCD. There is some hesitation. Somebody is
heard to ask whether they could prove that A& is longer than &C while another kid asks what
they have to go on; the teacher ignores them. A student asks whether triangles ADE and BCE are
congruent. Mr. Jones writes down this question on the board and draws two arrows from it. One
arrow points toward a question he writes, “how would it help to know that those triangles are
congruent?;” the other arrow points toward another question he also writes, “what would you
need to assume to be able to say that those triangles are congruent?” You can hear somebody say
that it’s obvious they are congruent while another says that they could then say the triangles are
isosceles. Another student says “you’d need to know that AEB is a right angle;” Mr. Jones writes
this on the boardand asks the class what they have to say about that. Some students claim to not
really know what the teacher means with that question but others raise their hands. One of these
students says that she thinks it would be useful if the angle were right because then the angles at
the top would be congruent with the small angles at E. Some kids perk up and one kid says, “and
you could then say that AB is twice BC.” The teacher asks them to take a few minutes and see if
they can prove that the ratio between the sides is 2 assuming as little as possible. You see a kid
write, “Prove: The ratio is 2 ” while others have written “Given:” and are pensive.

A B

D E ¢

Figure 1. Mr. Jones diagram

I want to use that episode to raise a few questions around mathematics instruction in school
classrooms. Some of these questions concern the substance of the episode—in particular, what is
the nature of students’ engagement in proving and of the teacher’s work managing that activity?
Other questions are about theory: What kind of considerations about classroom instruction could
help us describe and explain how teacher and students ordinarily transact mathematical ideas, in
such a way that we could also account for possible avenues for change and foresee their
consequences? Finally, other questions are about methodology: What kind of data can help us
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ground those theoretical considerations? How to obtain it? These questions, though large, serve
to introduce a program of research that falls under the name of practical rationality of
mathematics teaching (Herbst & Chazan, 2003; Herbst, Nachlieli, & Chazan, in review).

What mathematical work are students doing in the episode above? 1’d describe it as listing
plausible statements about a figure and considering whether they could be connected through
logical necessity. The source of some of those statements is perceptual—e.qg. the observation that
angle AEB is right. But regardless of their origin, statements are being connected through
deduction in two directions—what statements would enable one to infer the plausible statement
made and what inference could be made taking that plausible statement for granted. The
assertion about the relative length of the sides of the rectangle eventually derives from the
plausible truth of those earlier statements. Students are thus reducing a question of truth (what
could be true about an object) to a question of deducibility from possible statements about an
object. They are using proof as a method to find things out.

That mathematical work is valuable from a mathematical perspective as well as from a more
general epistemological perspective. Such use of proof as method in knowledge inquiry is
essential to the discipline of mathematics (Lakatos, 1976). It is also behind the drive to model
mathematically other fields of experience: The expectation that in those fields it will also be
possible to reduce the problem of truth to the quest for deducibility, which can then warrant new,
still unknown, possible truths is important in pure and applied science (Jahnke, 2007). Insofar as
that kind of work could empower students with such way of knowing, I’d argue that participating
in problem solving of the kind presented in the scenario above is not only authentic mathematical
work to do but also a skill that, if learned, would enable students to contribute to society. It is
likely the case, however, that few students encounter such opportunities to learn about proof in
school mathematics. The work they do during those years rarely includes chances to acquire the
skill or the appreciation of the methodological, model-making function of proof or even
experiences doing work that could have had that exchange value.

A B Given: ABCD rectangle,

E midpoint of E
ZAEB right angle

AB
Prove: —=2
BC

Figure2. A morelikely proof exercise

It is more likely that the problem above would be presented to high school geometry students
as shown in Figure 2. In particular, while students are responsible to prove propositions in high
school geometry, it is normative that the teacher (or the book) will state the givens and
conclusion of the propositions they prove. I call that statement a norm of “doing proofs” in the
sense that an observer describes teachers and students acting asif they expected this would be
the case. The sense to which ‘normative’ means ‘usual’ could be corroborated empirically by
observing, over large number of high school geometry classrooms, the recurrence of this feature
in proof activity. Yet other techniques would be needed to corroborate that the statement is a
norm in the sense that participants act as if they expected such behaviors as appropriate or
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correct. | return to this below, after more considerations about how the study of instruction and
its rationality can help improve opportunity to learn.

Traditionally the question of what opportunities to learn are created in instruction has been
thought of as a question of resources. For example, one might think that the limited nature of
students’ encounters with proof result from instruction having insufficient or inadequate
resources: unsophisticated curricula, teachers that don’t know enough, etc. Traditional theorizing
in education has had instruction playing an instrumental role, feeding from resources and
producing student learning; improvement has been conceptualized as improving resource quality.
But more recently researchers have realized that resource use in instruction is what makes a
difference (Cohen, Raudenbush, and Ball, 2003; Stein, Grover, and Henningsen, 1996). A more
fundamental inquiry into the nature and function of instruction itself is therefore warranted.
Within that inquiry I am interested in what in how instruction regulates itself.

| started my work from pondering whether the kind of mathematical work described above—
the use of proof as a tool to know with—could feasibly be deployed in classrooms. Of course
that question includes questions of resource development and my instructional experiments have
included developing resources (e.g., Herbst, 2003, 2006). But behind that feasibility question is
the fundamental hypothesis that classrooms are complex systems where actions are not merely a
projection of the will or capacity of the actors or the richness of their resources. Rather, actions
of individual actors contribute to the deployment of a joint activity system whose performance
also feeds back, and thus gives shape, to the actions that the participants can take in that system.
The question then is not simply how to design materials that enable desirable mathematical work
or how to create in teachers the desire to promote that work. The questions also are what is the
structure and function of the activity system where that work might be deployed and how this
system might accommodate or resist attempts to deploy that work. In particular this requires
thinking of mathematics instruction in school classrooms as a system of relationships that are
deployed under various conditions and constraints. A conceptualization of this system could
enable us to think in a more sophisticated and potentially accurate way about what teacher and
students do and thus be able to foresee if given improvement efforts have a prospect of success.

An analogy with how mathematics educators have evolved in their thinking about students’
errors can illuminate this conceptualization of instruction as a system. There used to be a time
when student errors were seen as indications of misfit, mishaps, or forgetfulness. Things changed
when research on students’ mathematical work started to be treated within a cognitive paradigm.
For example Resnick and colleagues’ (1989) study on decimal fractions showed that students’
errors had conceptual basis: Their errors could be explained on the existence of tacit controls
such as the “fraction rule” or the “natural number rule”. Students that made errors did so not out
of the lack knowledge but out of the possession of some knowledge. Our stance toward students’
errors thus changed from a judgment stance early on to an inquiry stance later on: Rather than
judging students as irrational when they make errors, we strive to understand what rationality
leads them to make those errors.

I want to propose that we think of the actions of teachers (and students) in the classroom in
analogy with how we have come to think about error in students’ mathematical work. The
analogy | propose is that we could think of “error” in teaching—really teaching that deviates
from what we might deem desirable—not as an indication of misfit, ill will, or lack of knowledge,
of the practitioner. Rather, we can think of it as an indication of the possible presence of some
knowledge, knowledge of what to do, which is subject to a practical rationality that justifies it.
This is a rationality that we should try to understand better before judging teachers or legislating
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their practice. Teachers and students act in classrooms in ways that attest to the existence of
specialized knowledge of what to do; knowledge that outsiders of those classrooms are less
likely to have even if they know the knowledge domain being taught and learnt. For example
teachers and students of geometry would likely see it as strange for Mr. Jones to ask the students
for the givens of the problem. | want to focus here on the rationality associated with the role of
the teacher and how this might warrant or indict actions like that one.

The teacher of a specific course of mathematics studies, such as high school geometry, is an
institutional role to play, not just a name to describe an aspect of an individual’s identity
(Buchmann, 1986). There is a person who plays the role, for sure, and that person comes to play
the role with personal assets that are likely to matter in what he or she chooses to do. These
assets are likely to include mathematical knowledge for teaching and skill at doing some tasks of
teaching (Ball, Thames, & Phelps, 2008). These assets make a difference; teachers who have
these assets may be able to figure out and do things that others may not be able to do. But while
teachers’ causes and motives to do things may have personal grounds, it is unlikely that their
actions could always be justified on personal grounds. One could imagine that Mr. Jones in the
scenario above was bored with the prospect of giving his students another routine proof exercise
or wanted to have a fun day teaching geometry. But we could not really expect him to use any of
that as the warrant for doing what he did—his job is not to find activities that amuse him, but
rather to teach geometry to his students. How could he justify having done that? The notion of
practical rationality points to a container of dispositions that could have currency in a collective,
for example within the set of colleagues who teach geometry in similar settings. By dispositions
we mean what Bourdieu (1998) describes as the categories of perception and appreciation that
would compel agents in a practice to act in specific ways. Dispositions tend to be tacit but they
can be articulated to others when justifying to one’s peers (or to other stakeholders) why one
might or might not do something like what Mr. Jones did with that proof problem. The high
school geometry course and the work of doing proofs, in particular, have been particularly fertile
grounds for me to develop theory about instruction and the practical rationality of mathematics
teaching. | want to use this context to present some of those theoretical ideas.

A basic notion to describe the role the teacher (and the student) play in classrooms is that of
didactical contract (Brousseau, 1997): The hypothesis that student and teacher have some basic
roles and responsibilities vis-a-vis a body of knowledge at stake. These responsibilities include
the expectation for the teacher to give students work to do which is supposed to create
opportunities to learn elements of that body of knowledge, and the expectation for the student to
engage in the work assigned, producing work that can be assessed as evidence of having
acquired that knowledge. I use the word normto designate each of those statements that an
observer makes in an effort to articulate what regulates practice: Actors act asif they held such
statement as a norm, though they may be quite unaware of it. From the perspective of the teacher,
the didactical contract authorizes a basic exchange economy of knowledge that he or she has to
manage: An exchange between work designed for, assigned to, and completed by students and
elements of knowledge, prescribed by the contract, at stake in that work, and hopefully embodied
in students’ productions. A fundamental role of the teacher is to manage those exchanges. This
management includes, first, enabling and supporting mathematical work; and second,
interpreting the proceeds of this work, exchanging it for the knowledge at stake, acting on behalf
of the discipline as well as of other stakeholders. Evidently, the hypothesis of a didactical
contract only says that a contract exists that has those characteristics; the hypothesis means to
describe any mathematics teaching inside an educational institution. But it is also obvious that

Brosnan, P., Erchick, D. B., & Flevares, L. (Eds.). (2010). Proceedings of the 32™ annual meeting of the North
American Chapter of the International Group for the Psychology of Mathematics Education. Columbus, OH: The
Ohio Sate University.



Plenary Sessions Volumn VI, Page 50

the teacher and student roles and responsibilities are under-described by that hypothesis: There
are many ways in which the didactical contract could be enacted to have at least those
characteristics; contracts could be quite different from each other not the least because the
mathematics at stake could be very different from course to course and thus require very
different forms of work to be learned. Even for the same course of studies, say high school
geometry, different contracts could further stipulate the roles and responsibilities of teacher and
student differently. In classes that work under a contract for teaching through problems (Lampert,
2001), where students’ work on problems enabled them to come across and use the geometric
propositions in the curriculum, students might have a responsibility for recognizing new
knowledge. It is not expected that they do so in the usual geometry course, where students only
use in problems those propositions that have been previously installed in class.

While some research has endeavored to conceptualize, enact, and study the characteristics of
alternative contracts (e.g., Chazan, 2000; Yackel & Cobb, 1996), in my work | have been
interested in using a variety of approaches to study the usual high school geometry contract and
the practical rationality behind the teachers” work managing the exchanges enabled by that
contract. The reason for that has been the thought that durable change in instruction will need not
only to provide new and better resources but also to be able to deal with the inertia and possible
reactions from established practice. Knowing how instruction usually works and what rationality
underpins its usual operations is key for designing reforms that are viable and sustainable.
Furthermore, knowledge of how usual instruction works can encourage piecemeal, incremental
changes that don’t throw the proverbial baby with the bathwater.

“Doing proofs” has been a useful starting point in that research agenda. With my research
group we have studied “doing proofs” in high school geometry using several approaches:
looking at intact geometry classrooms (Herbst, 2002a; Herbst et al., 2009), historical textbooks
and documents (Herbst, 2002b; Gonzélez & Herbst, 2006), geometry lessons that accommodate
alternative proving work (Herbst, 2003, 2006), students’ responses to different tasks that might
involve proving (Herbst & Brach, 2006) and geometry teachers’ responses to problematic
scenarios of geometry instruction (Nachlieli & Herbst, 2009; Weiss, Herbst, & Chen, 2009). The
historical analysis has showed how the general skill “how to do proofs” became an object of
study in and of itself, leaving behind the important role that proofs played in the construction of
specific concepts, theorems, and theories that result from mathematizing a field of experience
(Boero, 2007). The work that students do has also evolved. When students “do proofs” what
matters is not (anymore) what they can prove given what they avail themselves of but just
whether and how well they prove whatever they prove. In exchange for a claim on that
knowledge students are to show that they can connect a “given” with a “prove” by making a
sequence of statements justified on prior knowledge. | argue that this exchange is facilitated by a
specialized set of norms that elaborate how the didactical contract applies.

From observing work in geometry classrooms we have noted that implicit expectations of
who is to do what and when vary depending on the specifics of the object of study. In relation to
diagrams, for example, the extent to which students can draw objects into a diagram or draw
observations from a diagram varies according to whether the work is framed as a construction, an
exploration, or a proof. While a contract for a course may have some general norms that
differentiate it from a different contract, there is also differentiation in the more specific norms
within the course, depending again on what is at stake. Much of those rules are cued in
classroom interaction through the use of selected words such as prove, construct, or conjecture.
These words frame classroom interaction by summoning special, mutual expectations, or norms,

Brosnan, P., Erchick, D. B., & Flevares, L. (Eds.). (2010). Proceedings of the 32™ annual meeting of the North
American Chapter of the International Group for the Psychology of Mathematics Education. Columbus, OH: The
Ohio Sate University.



Plenary Sessions Volumn VI, Page 51

of who can do what and when. I have used the expression instructional situation to refer to each
of those frames. Instructional situations are specialized, local versions of the didactical contract
that frame particular exchanges of work for knowledge, obviating the need to negotiate how the
contract applies for a specific chunk of work. “Doing proofs” is an example of an instructional
situation in high school geometry; “solving equations” is an example of an instructional situation
in algebra | ( Chazan & Lueke, 2009). We contend that these frames for classroom interaction,
these instructional situations, are defaults for classroom interaction, tacit knowledge of what to
do that the classroom as an organization has (Cook & Brown, 1999), perpetuated through
socialization (and with the aid of textbooks and colleagues) that, in particular, provide cues for
the teacher on what to do and what to expect the student to do. Instructional situations are social
units of analysis; they organize joint action with content. Of course explaining causally their
empirical realization (and the chances for deliberate alteration through teacher development)
requires some use of psychological constructs to understand precisely how individuals come to
recognize that they are indeed in an instructional situation or how they come to perceive
alternatives for action in an instructional situation. Our work has not progressed that far. Thus far
we have created models of those situations that consist of arrays of norms that describe each
situation in terms of who has to do what and when. Those models facilitate research on the
content of practical rationality.

Practical rationality is a container whose content includes the categories of perception and
appreciation that are viable within the profession of mathematics teaching to warrant (or indict)
courses of action. The notion of an instructional situation is the point of departure to study this
rationality empirically. We build on the ethnomethodological notions of breaching experiment
and repair strategy (Mehan & Wood, 1975) to propose, as a methodological hypothesis, that if
participants of an instructional situation are immersed in an instance of a situation where one of
its norms has been breached, they will engage in repair strategies that not only confirm the
existence of the norm but also elaborate on the role that the norm plays in the situation. Our
technique of data collection relies on representations of breached instances of instructional
situations—representations in video or comic strips, using real teachers and students or using
cartoon characters. We confront usual participants of such instructional situation with one such
breached representation. For example the classroom scenario narrated above is quite close in
content to an animated classroom story, “A proof about rectangles,” that we produced in order to
study with it the rationality behind the tacit norm that the teacher is in charge of spelling out the
givens and the prove. To find out about that rationality we attend to participants’ reactions to the
representation: Do they perceive the breach of the norm? Do they accept the situation in spite of
the breach? What do they identify as being at risk because of the breach? What opportunities, if
any, do they see being created or lost because of the breach? Our aim is not so much to
understand the participants themselves as it is to use the participants’ experience with the
situation to understand the situation better. In particular we want to understand what elements of
the practical rationality of mathematics teaching teachers can see as viable justifications of
breaches of situations that would arguably be desirable, say because they might create a more
authentic kind of mathematical work. In the case of the story narrated above our question
concretely would be on what account could a teacher justify (or indict) an action like the one Mr.
Jones took. Clearly, researchers might have some good reasons why what Mr. Jones did is
justifiable and I have tried to articulate that from a mathematical perspective above; but in spite
of the fact that some of us have had experience teaching we don’t know teaching now in the way
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practitioners do. By virtue of the role that they play they have to respond to specific obligations
that shape their decisions. This leads me to introduce the last element of the theory.

When teachers respond to a breach in an instructional situation, they may reject the situation.
For example teachers might say that Mr. Jones is leading students in an exploration rather than a
proof. But participants might also accept the situation as “doing proofs” and engage in repairs
that rehearse grounds for justifying the breach Mr. Jones made. One set of justifications of it
might address the nature of proof in mathematical practice. Participants might also repair by
rehearsing grounds for indicting the breach. For example they might note how the time taken in
having students state the givens precluded them from doing other proofs that day. In general, we
propose that four professional obligations can organize the justifications (or indictments) that
participants might give to actions that depart from a situational (or contractual) norm. We call
these obligations disciplinary, individual, interpersonal, and institutional (Herbst & Balacheff,
2009; see also Ball, 1993). The disciplinary obligation says that the mathematics teacher is
obligated to steward a valid representations of the discipline of mathematics. The individual
obligation says that a teacher is obligated to attend to the well being of the individual student.
The interpersonal obligation says to all members of the class that they are obligated to share and
steward their (physical, discursive) medium of interaction. And the institutional (schooling)
obligation says that the teacher is obligated to observe various aspects of the schooling regime
including policies, schedules, and such. We contend that those obligations can be present in
participants’ justifications or indictments of breaches of norms and that combined with the norms
of contracts and situations they span the practical rationality of mathematics teaching. Within
that rationality one can see specific contracts (high school geometry, algebra I) and their
instructional situations (doing proofs, solving equations) as sociohistorical constructions
dependent on elements of practical rationality; more importantly, one can see possibilities for
improved practices as subject to similar grounds for justification. Practices that are close to
existing instructional situations (as gauged by how many norms of a situation a practice breaches)
may be easier to justify than others. The theory also provides the means for the researcher to
anticipate how instruction may respond to new practices: A novel task such as “what is
something interesting that could be proved about the object in Figure 1 conjures up by
resemblance one or more instructional situations (e.g., “doing proofs” and “exploration”) as
possible frames for the work to be done. Models of those situations provide the researcher with a
baseline of norms that could be breached as the work proceeds. Researchers can then use the
obligations to anticipate what kinds of reactions the teacher may perceive in and from practice
that feedback and thus shape how they manage the work. This can be useful in examining the
potential derailments in the implementation of new practices in classrooms as well as the
examination of teachers’ responses to assessment or development interventions. Thus the theory
provides not only the basis for the design of probes for the rationality of teaching (Herbst &
Miyakawa, 2008) but also a framework for an analysis of the reactions of participants. Combined
with finer tools from discourse analysis (e.g., Halliday & Matthiessen, 2004) teachers’ responses
to representations of breaching (but arguably valuable) instances of an instructional situation can
help us understand not only what justifies teaching as it exists today but also how new practices
could be justified in ways that practitioners find compelling. The psychology of mathematics
teachers may still be useful to inform what enables and motivates individual teachers to do things,
but the logic of action in mathematics teaching addressed by practical rationality may help us
understand why some of those actions can be viable and sustainable.
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Endnotes
1. The work described in this paper has been developed with support of NSF through grants
REC-0133619, ESI-0353285, and DRL- 0918425. All opinions are those of the author and don’t
necessarily reflect the views of NSF. The author acknowledges many fruitful conversations with
Dan Chazan that helped develop these ideas, and valuable comments to an earlier draft by Dan
Chazan, Vilma Mesa, Wendy Aaron, and Ander Erickson.
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A Critique and Reaction to

PRACTICAL RATIONALITY ASA FRAMEWORK
FOR MATHEMATICSTEACHING

Deborah Moore-Russo
University at Buffalo, State University of New York
dam29@buffalo.edu

Grossman and McDonald (2008) recently argued that the research community needs to move
its “attention beyond the cognitive demands of teaching ... to an expanded view of teaching that
focuses on teaching as a practice (p. 185).” Building on the work of Bourdieu (Bourdieu &
Wacquent, 1992; Bourdieu, 1985, 1998), Pat Herbst and colleagues (Herbst & Chazan, 2003,
2006) have written about mathematics teaching as a practice, just as law and medicine are
considered practices, in an attempt to better understand the rationality that produces, regulates,
and sustains mathematics instruction. This practical rationality is the commonly held system of
dispositions or the “feel for the game” (Bourdieu, 1998, p. 25) that influences practitioners as to
those actions that are appropriate in the classroom. It is practical rationality that:

...not only enables practices to reproduce themsel ves over time as the people who
are the practitioners change, but also regulates how instances of the practice are
produced and what makes them count as instances (Herbst & Chazan, 2003, p. 2).

To better understand the practice of mathematics teaching, whether to communicate or
improve it, one must understand the practical rationality that guides it. However, practical
rationality often “erases its own tracks” (Herbst & Chazan, 2003, p. 2) so that its practitioners
come to view these practices as being natural. Because this rationality provides the regulatory
framework that socializes its current and future practitioners into ways of thinking and acting
that conform to expectations, it is important to bring to the forefront a deliberate, conscious
understanding of the rationality that drives the practice of mathematics teaching.

While practical rationality allows for a certain amount of diversity in its similarity, it is
driven by norms. These norms provide the persistent continuity of the practice. Before future
teachers ever enroll in education courses, they have ideas about schools in general and
mathematics instruction in particular (Ball, 1988). Through an apprenticeship of observation,
they develop deep-seated ideas about mathematics and its teaching and learning (Lortie, 1975).
These ideas often form the foundation on which they will eventually build their own practice of
mathematics teaching (Millsaps, 2000; Skott, 2001).

Herbst has suggested four obligations of teachers that frame instruction and that have the
potential to organize a departure from normative practice: disciplinary, individual, interpersonal,
and institutional obligations. Of the four, | would like to focus on the disciplinary obligation.
What is taken as:

Mathematically normative in a classroom is constrained by the current goals, beliefs,
suppositions, and assumptions of the classroom participants. At the same time these
goals and largely implicit under standings are themsel ves influenced by what is
legitimized as acceptable mathematical activity (Yackel & Cobb, 1996, p. 460).
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This raised an initial series of questions in my mind. First, what is “acceptable mathematical
activity” in the words of Yackel and Cobb? Is it the same as “authentic mathematical work”
using the words of Herbst? Next, what role does authentic mathematics work” play in the
practice of mathematics teaching as well as in the practice of mathematics teacher education?

Herbst’s plenary paper encouraged me to ponder if the rationality that often drives the
teaching of mathematics (or more specifically the teaching of geometry) overlaps with the
rationality associated with doing mathematics. While | confess to having studied neither
systematically, the following assumptions and questions are based on my experiences® and seem
to be supported by the work of Michael Weiss (2009), one of Herbst’s students®.
Mathematicians, those whose goals are to generate new and refine existing mathematical ideas
and methods (Weiss, 2009), are more than just proficient at mathematics. While they
demonstrate exactly those qualities and competencies that have been identified by the National
Research Council (2001) as goals of mathematics learning (namely conceptual understanding,
procedural fluency, strategic competence, adaptive reasoning, and productive disposition),
mathematicians also demonstrate a certain mathematical wonder and an appreciation of
mathematics that extends past their professional careers into their personal lives. They often
tweak problems; at times this is done out of curiosity, other times to make the problem more
accessible. To what extent do the activities commonly seen in classrooms nurture authentic
mathematical work? Do current norms in mathematics instruction promote either mathematical
proficiency or curiosity? Does the rationality that drives mathematics teaching help encourage an
appreciation of mathematics?

Herbst has drawn our attention to the practice of geometry instruction. He has provided a
scenario and suggestions that should provoke thought as to the norms surrounding the teaching
of proof, but what about other key components of geometry courses? For example, definitions
play a critical role in geometry. What norms exist for the teaching of definitions in geometry?
Are students presented with finalized definitions or are they given opportunities to create, reflect
on, and compare definitions (de Villiers, 1998)?

What rationality underpins other aspects of geometry instruction? What is normative in
regards to the introduction and use of the diagrammatic register often seen only in geometry
classes? What rationality guides teachers’ and students’ expectations in regard to the role of
perception in the reading of geometric diagrams? What norms influence the teaching of subtle,
yet key, concepts of geometry like existence and uniqueness? Are students given impossible
problems” as a means to discover existence? Are students allowed to explore situations that
demonstrate uniqueness?°

While the above questions are particular to geometry, others apply to the many branches of
mathematics. Is it normative to encourage students to tweak existing problems or to introduce
their own assumptions when solving problems? How often are students encouraged to pose their
own problems? Are they taught strategies like Brown and Walters’ (2004) “what-if-not” strategy
as a relatively simple means to generate new problems?°

Unfortunately, a large number of teachers view mathematics “as a discipline with a priori
rules and procedures that ... students have to learn by rote” (Handal, 2003, p. 54). For many
teachers in the U.S. “knowing” mathematics is taken to mean being efficient and skillful in
performing rule-bound procedures and manipulating symbols (Thompson, 1992). As a
consequence, mathematics students are “not expected to develop mathematical meanings and
they are not expected to use meanings in their thinking” (Thompson, 2008, p. 45).
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Herbst has suggested that it is crucial to recognize how instruction typically works,
understanding the practical rationality that underpins teaching, if we are to design reforms that
are viable and sustainable. He has claimed that through incremental changes that recognize
current practice permanent transformation is most likely to occur, but how might incremental
changes be introduced? What form might such changes take?

One method that has been shown to have a profound, transformative effect on future teachers
beliefs about the nature of mathematics and its teaching and learning is through experiences with
mathematical discovery (Liljedahl, 2005). Through engagement in authentic mathematical
activities, teachers might come to view mathematics differently. If they come to view
mathematics differently, the disciplinary obligation that frames their instruction could lead to
changes in what they deem valid representations of mathematics.

Undergraduate mathematics courses should not be the only opportunities for future teachers
to experience mathematics. Mathematics teacher educators need to realize that they “have the
dual responsibility of preparing teachers, both mathematically and pedagogically (Liljedahl,
Chernoff, & Zazkis, 2007, p. 239).” Besides providing future and current teachers opportunities
to engage in authentic mathematical activities during their mathematics education courses,
teacher educators should also provide opportunities for teachers to witness authentic
mathematical work in secondary classrooms through episodes of instruction such as written and
video cases (much like the scenario of Mr. Jones’ class that Herbst presented). Such experiences
would provide teacher educators a first-hand experience of teachers’ reactions to breaches in
normative practice. Moreover, such experiences might even transform teachers’ views of the
nature of mathematics and its teaching and learning, possibly influencing the rationality that
underpins their instruction.

While Herbst made a strong case for the use of practical rationality as a lens for research, |
conclude by challenging those of us in mathematics and mathematics education to use this same
lens as a means to look introspectively at our practice. What is the rationality that undergirds the
way we represent doing and teaching mathematics in our own courses? Do our normative
practices include opportunities for authentic mathematical work?

Endnotes

1. Here I assume that “authentic mathematical work” would correspond to the work of
mathematicians.

2. This experience includes sixteen years of full-time university teaching including nine
years in a Department of Mathematics and seven years in a Graduate School of Education.

3. After reading Herbst’s plenary paper, | used my familiarity with his work to pen a draft
of my response. To be sure that Herbst’s ideas were accurately represented, | reviewed his work
including that of some of his students. | was struck when 1 first read Weiss’ dissertation at how
much my response overlapped with his study. While the final version of this paper has not
changed much from the draft, I would encourage anyone who is interested in the issues | have
raised to read Weiss’ dissertation, which develops the idea of mathematical sensibility and
attempts to answer some of the questions that | have presented.

4. Existence is involved in relatively simple, yet impossible, activities like: Form a triangle
with sides of lengths 2 cm, 3 cm and 10 cm. It is also involved in more complicated problems
like: Find a circle tangent to two non-equidistant points from the vertex of an angle, such that
one point lies on one ray of the angle and the second point lies on the other ray of the angle. This
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second problem is shown as a part of an instructional episode modeled in the ThEMaT (Thought
Experiments in Mathematics Teaching) animations found at http:grip.umich.edu/themat.

5. An obvious example of allowing students to consider uniqueness would involve the SSA
case of triangles.

6. For example of a what-if-not application, consider how a compass and straightedge are
used to construct a perpendicular bisector for a given line segment. Applying the “what-if-not”
strategy could lead to the following questions. What if you wanted to construct a bisector that
was not perpendicular to the line segment? How could you construct a perpendicular that did not
bisect the segment?
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REPRESENTATIONS OF LEARNING FOR TEACHING: LEARNING
PROGRESSIONS, LEARNING TRAJECTORIES, AND LEVELSOF
SOPHISTICATION

Michael T. Battista
The Ohio State University
Battista.23@osu.edu

Learning progressions (LP) are playing an increasingly important role in mathematics and
science education (NRC, 2001, 2007; Smith, Wiser, Anderson, & Krajcik, 2006). They are
strongly suggested for use in assessment, standards, and teaching. In thisarticle, | discussthe
nature of learning progressions and related concepts, and | illustrate issuesin their construction
and use. | also highlight the different ways that LP represent learning for teaching.

Definitions and Constructs

According to the National Research Council, “Learning progressions are descriptions of the
successively more sophisticated ways of thinking about a topic that can follow one another as
children learn about and investigate a topic” (2007, p. 214). A similar description of LP is given
by Smith et al. who define a LP “as a sequence of successively more complex ways of thinking
about an idea that might reasonably follow one another in a student’s learning” (2006, pp. 5-6).
Unlike Piaget's stages, but similar to van Hiele's levels, it is assumed that progress in LP is not
"developmentally inevitable" but depends on instruction (Smith et al., 2006, pp. 5-6).

Common Characteristics of the LP Construct
In the research literature, LP possess several commonalities and differences. The
characteristics most common to descriptions of LP are as follows:

e LP "are based on research syntheses and conceptual analyses” (Smith et al., 2006, p. 1);
"Learning progressions should make systematic use of current research on children’s learning
" (NRC, 2007, p. 219).

e LP "are anchored on one end by what is known about the concepts and reasoning of
students [entering the period covered by the LP]. ... At the other end, learning progressions
are anchored by societal expectations. ... [LP also] propose the intermediate understandings
between these anchor points that " (NRC, 2007, p. 220).

e LP focus on how core ideas, conceptual knowledge, and connected procedural knowledge
(not just skills) develop. LP organize "conceptual knowledge around core ideas” (NRC,
2007, p. 220).

e LP recognize that not all students will follow one general sequence (NRC, 2007).
Differencesin LP Construct

There are several differences in how the LP construct is used in the literature.

e LP differ in the time spans they describe. Some progressions describe the development
of students' thinking over a span of years; others describe the progression of thinking through
a particular topic or instructional unit.
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e LP differ in the grain size of their descriptions. Some are appropriate for describing
minute-to-minute changes in students' development of thought, while others better describe
more global progressions through school curricula.

e LP differ in the audience for which they are written. Some LP are written for researchers,
some for standards writers, some for assessment developers (formative and summative), and
some for teachers.

e LP differ in the research foundation on which they are built. Some LP are syntheses of
extant research; some synthesize extant research then perform additional research that
elaborates the syntheses (the additional research may be cross-sectional or longitudinal).

e LP differ in how they describe student learning. Some numerically "measure" student
progress, while others describe the nature or categories of students' cognitive structures.

Learning Trajectories(LT)

A construct that is similar to, different from, and importantly related to, LP is that of a
"learning trajectory.” | define a LT as a detailed description of the sequence of thoughts, ways of
reasoning, and strategies that a student employs while involved in learning the topic, including
specification of how the student deals with all instructional tasks and social interactions during
this sequence. There are two types of LT, hypothetical and actual. Simon (1995) proposed that a
" hypothetical learning trajectory is made up of three components: the learning goal that defines
the direction, the learning activities, and the hypothetical learning process—a prediction of how
the students’ thinking and understanding will evolve in the context of the learning activities™ (p.
136). In contrast, descriptions of actual learning trajectories can be specified only during and
after a student has progressed through such a learning path. Steffe described an actual LT as "a
model of [children's] initial concepts and operations, an account of the observable changes in
those concepts and operations as a result of the children's interactive mathematical activity in the
situations of learning, and an account of the mathematical interactions that were involved in the
changes. Such a learning trajectory of children is constructed during and after the experience in
intensively interacting with children™ (2004, p. 131). Clements and Sarama's (2004) view of LT
emphasizes the relationship between levels in the LP and the sequence of tasks in which this
progression occurs.

One critical difference between my definitions of LP and LT is that trajectories include
descriptions of instruction but that progressions do not. One of the most difficult issues facing
researchers who are constructing hypothetical LT for curriculum development is determining
how instructional variation affects trajectories. That is, how specific is the trajectory to the
instructional sequence that accompanies it? How do trajectories vary with curricula? How
similar are trajectories for the same concept within similar and different curricula? If one
constructs a prototypical hypothetical LT for a particular topic, how do the actual LT for
individual students vary about this prototypical path? One might think of a prototypical
trajectory as a "mean" of the actual student pathways, so the "standard deviation" of the
distribution of actual trajectories is also relevant.

Purpose: Fixedness versus Reactivity

A major difference between LP and LT arises from the purposes for which they are
developed. If one is developing curricula, one is more likely to develop a LT, with a fixed
sequence of learning tasks. If, in contrast, one is focusing on formative assessment, one is more
likely to develop LP (with associated assessment and instructional tasks), arranged in ways that
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allow the flexibility and reactivity needed in day-to-day and moment-to-moment teaching.
Indeed, if one is taking a constructivist approach to teaching, flexibility and reactivity are key.
For instance, Simon argues that hypothetical LT should help teachers with (a) "advanced
planning and spontaneous decision making,” and (b) making instructional decisions based on
their "best guess of how learning might proceed” (Simon, 1995, p. 135). | believe, however, that
LP can accomplish the same thing for expert users who use their understanding of LP and
underlying learning mechanisms to generate local hypothetical LT "on-the-fly." Thus, from the
constructivist perspective, hypothetical LT and LP must help teachers understand, plan, and react
instructionally, on a moment-to-moment basis, to students' developing reasoning.

Theoretical Frameworksfor Learning Progressions
LP can also be differentiated by examining their theoretical frameworks. For instance, van
Hiele related progress through his levels to his phases of instruction. In contrast, Battista used
constructivist constructs such as levels of abstraction to describe students' progress through the
van Hiele levels (see also Pegg & Davey, 1998).

The Nature of Levels

A critical component of LP is the notion of "levels” of sophistication in student reasoning.
Because the concept of level is not straightforward, and because how one defines levels
determines how one views (and measures) level attainment, | examine this concept in more detail,
using the van Hiele levels as an example. The issues discussed in the van Hiele context are
critical because any attempt to develop, assess, and use levels in LP must address these same
issues.

Levels, Sages, and Hierarchies

Clements and Battista (1992) differentiated researchers' use of the terms stage and level. A
stage is a substantive period of time in which a particular type of cognition occurs across a
variety of domains (as with Piagetian stages). A level is a period of time in which a distinct type
of cognition occurs for a specific domain (the size of the domain is an issue).

Types of Hierarchies

Hierarchies of levels in LP come in two types. A "weak" hierarchy is a set of levels that are
ranked in order of sophistication, one above another, with no class inclusion relationship
between the levels. A "strong" hierarchy is a set of levels ranked in order of sophistication, one
above another, with class inclusion relationships between the levels; that is, students who are at
level nare assumed to have progressed through levels 1, 2, ... (n-1). The van Hiele levels were
originally hypothesized to form a strong hierarchy (which is generally supported by the research),
while Battista's length levels (discussed below) form a weak hierarchy.

Being "At" a Level

What, precisely, does it mean to be "at" a level? Battista (2007) argued that students are at a
van Hiele level when their overall cognitive structures and processing causes them to be disposed
to and capable of thinking about a topic in a particular way. So students are "at" van Hiele Level
1 when their overall cognitive organization and processing disposes them to think about
geometric shapes in terms of visual wholes; they are at Level 2 when their overall cognitive
organization disposes and enables them to think about shapes in terms of their properties. Also
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in this view, when students move from familiar content to unfamiliar content, their level of
thinking might decrease temporarily; but because students are disposed to operate at the higher
level, they look to use that level on the new material, and quickly become capable of using that
level (Battista, 2007). However, even if we develop an adequate definition for what it means to
be "at" a level, the periods of time when students meet the strict requirement for being at levels
may be short, with students spending much time "in transition."

A Different Approach: Vectorsand Overlapping Waves.

Some studies indicate that people exhibit behaviors indicative of different van Hiele levels on
different subtopics of geometry, or even on different kinds of tasks (Clements & Battista, 2001).
So an alternate view of the development of geometric reasoning is that students develop several
van Hiele levels simultaneously. Consistent with this view, Gutiérrez et al. (1991) used a vector
to indicate the degrees of acquisition of each van Hiele level. Similar to the vector approach,
several researchers have posited that different types of reasoning characteristic of the van Hiele
levels develop simultaneously at different rates with overlapping waves of acquisition, and that
at different periods of development, different types of reasoning are dominant (Clements &
Battista, 2001; Lehrer et al., 1998).

Although these alternate models of the van Hiele theory have merit, they both face an
important issue—intermingling of type of reasoning from level of reasoning. That is, sometimes
the term visual-holistic is used to refer to a type of reasoning that is strictly visual in nature, and
sometimes it is used to refer to a period of development of geometric thinking when an
individual’s thinking is dominated and characterized by visual-holistic thinking.

Level Determination

Empirical determination of individual students' levels of thinking is a major issue in LP. For
instance, consider some of the different ways that researchers have determined van Hiele levels.
Gutiérrez and Jaime (1998) defined four mental processes that were used in each van Hiele level
then used these processes as indicators of a student’s level of reasoning. In a collaborative effort,
Battista, Clements, and Lehrer developed a triad sorting task, that, with variations, was used in
separate research efforts (Battista, 2007). Students were presented with three polygons, such as
those in Figure 1, and were asked, “Which two are most alike? Why?”

AN

A B C
Figure 1. Triad polygon sorting task.

Lehrer et al. (1998) construed each triad as an indicator of type of reasoning. So students’
use of different types of reasoning on different triads was taken as evidence of jumps in levels.
In contrast, Clements and Battista (2001) used a set of 9 triad items as an indicator of student
levels. To be classified at a given level, a student had to give at least 5 responses at that level. If
a student gave 5 responses at one level and at least 3 at a higher level, the student was considered
to be in transition to the next higher level.

Another difference between these researchers’ approaches is that Lehrer et al. (1998)
classified student responses solely on the basis of type of reasoning, while Clements and Battista
(2001) also accounted for the “quality” of reasoning—each reason for choosing a pair in a triad
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was assessed to see if it correctly discriminated the pair that was chosen from the third item in
the triad. The van Hiele levels for students were determined using a complicated algorithm that
accounted for both type of reasoning and discrimination score’.

Cognition Based Assessment (CBA): Levels, Progressions, Trajectories, and Profiles
I now describe my work on CBA to illustrate the relationship between LP, LT, and levels of
sophistication as representations of learning for teaching®.

The CBA View of Learning and Instruction

According to the "psychological constructivist” view of learning with under standing, the way
students construct, interpret, think about, and make sense of mathematical ideas is determined by
the elements and organization of the relevant mental structures that the students are currently
using to process their mathematical worlds (e.g., Battista, 2004). A major component of
psychological constructivist research is its attention to students' construction of meaning for
specific mathematical topics. For numerous topics, researchers have found that students'
development of conceptualizations and reasoning can be characterized in terms of "levels of
sophistication” (Battista, 2001). These levels lie at the heart of the CBA conceptual framework
for understanding and building upon students' learning progress. Selecting/creating instructional
tasks, adapting instruction to students' needs, and assessing students' learning progress require
detailed, cognition-based knowledge of how students construct meanings for the specific
mathematical topics targeted by instruction.

CBA Assessment and Instruction

To implement mathematics instruction that genuinely and effectively supports students'
construction of mathematical meaning and competence, teachers must not only understand
cognition-based research on students' learning of particular topics, they must be able to use that
knowledge to determine and monitor the development of their own students' reasoning. CBA
supports these activities with four critical components.
1. Descriptions of core mathematical ideas and reasoning processes that form the foundation
for students' sense making and understanding of elementary school mathematics.
2. For each core idea, research-based descriptions of levels of sophistication (LP) in the
development of students’ understanding of and reasoning about the idea.
3. For each core idea, coherent sets of assessment tasks that enable teachers to investigate
their students' mathematical thinking and precisely locate students' positions in the cognitive
terrain for learning that idea.
4. For each core idea, descriptions of instructional activities specifically targeted for
students at various levels to help them move to the next higher level.

Learning Progressions and Trajectories for Length

The CBA levels of sophistication, or LP, for a topic (a) start with the informal, pre-
instructional reasoning typically possessed by students; (b) end with the formal mathematical
concepts targeted by instruction; and (c) indicate cognitive plateaus reached by students in
moving from (a) to (b). As an example, the table below outlines the CBA LP for length.
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Non-M easur ement Reasoning M easur ement Reasoning

NO: Student Compares Objects’
Lengths in Vague Visual
Ways

N1: Student Correctly
Compares Whole Objects’
Lengths Directly or
Indirectly

N2: Student Compares Objects’
Lengths by Systematically
Manipulating or Matching
Their Parts

N2.1. Rearranging Partsto
Directly Compare Whole
Shapes

N2.2. One-to-One Matching of
Parts

N3: Student Compares Objects’
Lengths Using Geometric
Properties

MO: Student Uses Numbers in Ways Unconnected to
Iteration of Unit-Lengths

M1: Student Iterates Units Incorrectly

M1.1: Iterates Non-Length Units (e.g., Squares, Cubes,
Dots) and Gets Incorrect Count of Unit-Lengths

M1.2: Iterates Unit-Lengths but Gets Incorrect Count

M2. Student Correctly Iterates ALL Unit-Lengths One-by-
One

M2.1: Iterates Non-Length Units (e.g., Squares, Cubes)
and Gets Correct Count of Unit-Lengths for Straight
Paths

M2.2: Iterates Non-Length Units (e.g., Squares, Cubes) To
Correctly Count Unit-Lengths for Non-Straight Paths

M2.3: Explicitly Iterates Unit-Lengths and Gets Correct
Counts for Sraight and Non-Straight Paths

M3: Student Correctly Operates on Composites of Visible
Unit-Lengths

M4: Student Correctly and Meaningfully Determines

Length Using only Numbers—No Visible Units or

Iteration

Student Understands and Uses Procedures/Formulas

for Perimeter Formulas for Non-Rectangular Shapes

M5:

The CBA LP for length is graphically depicted in Figure 2a. Also shown, are an ideal
hypothetical LT (solid path) and a typical actual LT for students (dotted path). The CBA LP
represents the "cognitive terrain” that students must ascend during an actual LT.

Ideal LT (solid)
NO,N1,N2.1,N2.2, M2.3, M3, N3, M4, M5
Typical LT (dotted)

e

.,

NO,MO,N1,M1.1,M1.2,N2.1, M2.1, M2.3, M3, M4'[procedural]

Figure 2a.

CBA Levelsof Sophistication Plateausand LT

Figure 2b.
A portion of RC'sactual LT

A CBA LP for a topic describes not only cognitive plateaus, but what students can and
cannot do, students’ conceptualizations and reasoning, cognitive obstacles that obstruct learning
progress, and mental processes needed both for functioning at a level and for progressing to
higher levels. The levels are derived from analysis of both the mathematics to be learned and
empirical research on students' learning of the topic. The jumps in the ascending plateau
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structure of a CBA levels-model represent cognitive restructurings evidenced by observable
increases in sophistication in students' reasoning about a topic. A CBA LP indicates jumps in
sophistication that are small enough to fall within students “zones of construction.” That is, a
student should be able to accomplish the jump from conceptualizing and reasoning at Level N to
conceptualizing and reasoning at Level N+1 by making a significant abstraction, in a particular
context, while working to solve an appropriate problem or set of problems.

Because the levels are compilations of empirical observations of the thinking of many
students, and because students' learning backgrounds and mental processing differ, a particular
student might not pass through every level for a topic; he or she might skip some levels or pass
through them so quickly that the passage is difficult to detect. Even with this variability,
however, the levels still describe the plateaus that students achieve in their development of
reasoning about a topic. They indicate major landmarks that research has shown students often
pass through in "constructive itineraries™" or LT for these topics.

Delving Deeper into LP/LT Representations

The LT depicted in Figure 2a are simplifications of actual LT traversed by individual
students. To illustrate, | describe one portion of the actual LT of fifth grader, RC, who was
having great difficulty with the concept of length (the trajectories of other students were usually
much simpler). Figure 2b shows RC's LT for 34 consecutive length items (starting with the
white circle, end with the black circle). This actual LT is extremely complex because it contains
so much back-and-forth movement between levels.

Figure 3 provides a better representation of this complicated portion of RC's LT. The period
shown starts with RC's levels on initial assessment items, moves to his responses during an
instructional intervention, and ends with his reasoning on reassessment items.

But even Figure 3 does not adequately portray RC's actual LT in enough detail to be
maximally useful for instruction. We need to return to the data to develop a summary
characterization of RC's reasoning in terms of the CBA conceptual framework for length.
Although space does not permit showing the data, I carefully re-examined the critical period of
instructional intervention in which RC made progress (see the three starred items in Figure 3).

&
"!'2?9??8‘??? 3'&9%!5?85%2&5%8&?5&8

Figure3
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Given the data on RC's reasoning, how should we represent his current knowledge structure
with respect to length in a way that is most helpful for instruction? Rather than using an actual
LT, the CBA approach is to construct a "profile” of RC's reasoning. To see what this profile
looks like, the data indicate that on problems like Item 23, in which the "wires" could be
stretched using actual inch rods, RC saw empirically that counting unit lengths could predict
which was longer. So, for these problems, he adopted the scheme of comparing wires by
counting unit lengths in them. At first, he checked his answers by physically straightening a set
of inch rods for each wire; but he curtailed this physical check on the last problem. We can
conclude that in this context, RC had abstracted a particular reasoning scheme. However, in the
different contexts used in the reassessment, where dots and squares were salient, RC did not
apply his new scheme (but he also did not apply his original MO scheme).

So, in future instruction, we need to help RC reconnect to the scheme he abstracted for Item
23. To broaden his scheme to these new contexts, RC needs to iterate inch rods (M2.3) and
connect this iteration to straightening paths (N2.1). For instance, in problems in which the
lengths of paths appearing on square-inch grids had to be compared, we would encourage RC to
use inch rods to check his answers. [Using this type of intervention, many students constructed
more generally applicable schemes, overcoming the fixation on the visually salient squares.]

Importantly, the best instruction for RC is determined not by knowing the predominant level
number of RC's reasoning, but by using the constructs of the CBA LP to analyze and
characterize RC's reasoning. It is this conceptual profile that enables us to appropriately
characterize and diagnose RC's reasoning.

Qualitative versus Quantitative Approaches to Developing L P

| believe that both qualitative and quantitative methods are equally rigorous and "scientific"
for developing LP. Generally, both approaches involve (a) synthesizing, integrating, and
extending previous research to develop conceptual models of the development of student
reasoning about a topic (hypothesized LP); (b) developing and iteratively testing assessment
tasks; (c) conducting several rounds of student interviews in support of steps (a) and (b); and (d)
iteratively refining LP levels. In qualitative approaches, the cycle of iteration, testing, and
revising eventually "stabilizes" into final levels, as determined by current levels being used to
reliably code all data. Quantitative methods compare observed data to statistical model
predictions (often with mathematical iteration) to adjust assessment item sets and levels.

Rash Rush to Rasch? |ssueswith Quantitative Methods
There have been numerous recommendations to use quantitative techniques to develop LP
(e.g., NRC, 2001), with a hint that using non-quantitative techniques is less "scientific." For
example, Stacey and Steinle state that there have been "repeated suggestions made by colleagues
over the years, which implied that we had been remiss in not using this Rasch analysis with our
data" (2006, p. 89). However, using Rasch and other IRT approaches raises serious issues that
are often ignored.

First, Rasch/IRT models are "measurement"” models. For instance, Masters and Mislevy
state that "The probabilistic partial credit model ... enables measures of achievement to be
constructed" [italics added] (1991, p. 16). Wilson describes Saltus as an example of
"psychometric models suitable for the analysis of data from assessments of cognitive
development™ (1989, p. 276). However, the whole enterprise of "measuring” in psychological
research has been criticized, with less than compelling rebuttals (Michell, 2008).
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Second, many of the assumptions of numerical models do not seem to fit our understanding
of the process of learning and reasoning in mathematics. For instance, the Saltus model
"assumes that each member of group h applies the strategies typical of that level consistently
across all items™ (Wilson, 1989, p. 278). Or, "The Saltus model assumes that all persons in class
c answer all items in a manner consistent with membership in that class.... This means that a
child in, say, the concrete operational stage is always in that stage, and answers all items
accordingly. The child does not show formal operational development for some items and
concrete operational development for others” (Draney & Wilson, 2007, p. 121). But LP levels
do not necessarily form a strong hierarchy, making quantitative models problematic:

When [ situations in which students appear to reason systematically] arise, evidence
about student under standing can be summarized by [ numerical] learning progression
level diagnoses, and educators can draw valid inferences about students' current states
of understanding. Unfortunately, inconsistent responding across problem contexts poses
challenges to locating students at a single learning progression level and makes it
unclear how to interpret students’ diagnostic scores. For example, how should one
interpret a score of 2.6? A student with this score could be reasoning with a mixture of
ideas fromlevels 2 and 3, but the student could also be reasoning with a mixture of ideas
fromlevels 1, 2, 3, and 4 (Steedle & Shavelson, 2009, p. 704).

Thus, use of Rasch-like models to examine cognitive development, such as Wilson's Saltus
model or latent class analysis, assumes that students are "at a level,” which returns us to the
problem discussed earlier about a student being at a level. Research on learning suggests that
quite often, the state of student learning is not neatly characterized as "being at a specified level,"
which causes problems for interpretation of model results: "Students cannot always be located at
a single level ... Consequently, learning progression level diagnoses resulting from item
response patterns cannot always be interpreted validly" (Steedle & Shavelson, 2009, p. 713).

Third, Rasch/IRT models are based on measures of “item difficulty,” which might not
capture critical aspects of the nature of student reasoning, as Stacey and Steinle argue:

Being correct on an item for the wrong reason characterises DCT2 [their decimal
knowledge assessment] . It is one of the reasons why the DCT2 data do not fit the Rasch
model, because these items break with the normal assumption that correctness on an item
indicates an advance in knowledge (or ability) that will not be ‘lost’ as the student further
advances. ... A student’ s total score on thistest might increase or decrease depending on
the particular misconception and the mix of itemsin the test. This does not fit the property
of Rasch scaling ... that 'the number right score contains all the information regarding an
examinee's proficiency level, that is, two examinees who have the same number correct
score have the same proficiency level' ... Neither the total score ... nor Rasch measurement
estimates provides a felicitous summary of student performance (2006, pp. 87-88).

Indeed, Stacey and Steinle further state that, "Conceptual learning may not always be able to
be measured on a scale, which is an essential feature of the Rasch approach. Instead, students
move between categories of interpretations, which do not necessarily provide more correct
answers even when they are based on an improved understanding of fundamental principles”
(2006, p. 77). They concluded that there is nothing to gain in applying the Rasch approach to
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their study and many others. "Learning as revealed by answers to test items is not always of the
type that is best regarded as ‘measurable’, but instead learning may be better mapped across a
landscape of conceptions and misconceptions” (2006, p. 89)°. Even more, how to place rote
performance on items becomes extremely problematic in such models. For instance, in
Noelting's hierarchy for proportional reasoning, in the formal operational stage the "child learns
to deal formally with fractions, ratios, and percentages” (Draney & Wilson, 123). But using a
formal procedure rotely is not a valid indication of formal operational reasoning.

Methodsfor Collecting Data on Students Levelsin Learning Progressions

The most accurate way to determine students' levels in LP (once the framework has been
developed) is administering individual interviews, which are then coded by experts, using the LP
levels framework. Many teachers can learn to make such determinations, both with individual
interviews and during class discussions. However, the difficulty with this approach is that it is
time consuming. Another way to gather such data is using open-ended questions. Again,
students' written responses must be coded, and many students do not write enough—far less than
they say in interviews—for proper coding.

An alternate, less time-consuming, way to gather data is through multiple choice items that
have distracters that are generated from interviews and that correspond to specific levels (Briggs
et al., 2006, have labeled this format "Ordered Multiple-Choice [OMC]"). CBA has also
experimented with having students orally describe their reasoning to a teacher or a classroom
volunteer, who then chooses an option on a multiple-choice-like coding sheet. However, beyond
convenience, there are several issues that one must consider when using these alternate formats.
For instance, how accurate are Open-Ended and OMC tasks in revealing students' thinking (e.g.,
Alonzo & Steedle, 2008; Briggs & Alonzo, 2009; Steedle & Shavelson, 2009)*? For example,
students may not recognize which OMC choice matches the strategy they used to solve a
problem even when a researcher-generated description of their strategy is one of the choices.

When assessments are used summatively, taking a numerical approach can be both practical
and useful. However, to use numerical data for instructional guidance, teachers must consult the
theoretical model on learning that underlies the levels framework.

Summary

When using quantitative methods to develop levels in LP, the validity and usefulness of
interpretations of results depends on (a) the adequacy of the underlying conceptual model of
learning, (b) the fit between the statistical model (including its assumptions) and the conceptual
model of learning, and (c) the fit between the data and the statistical model's predictions.
Unfortunately, use of quantitative methods often ignores (b). For example, adopting the Saltus
model might cause one to neglect explicit consideration of the critical issue of what it means to
be at a level. Also, although many users of quantitative approaches argue that implementing
such approaches enables them to test their models, too often, these tests are restricted to factor
(c). Researchers in mathematics education need to resist external pressures to apply quantitative
techniques without deeply questioning their validity, because such adoptions result in the
techniques being applied in ways that we would call in other contexts instrumental or rote
procedural. Instead, researchers must investigate much more carefully the conceptual
foundations of these techniques, reconciling them with our research on learning (a daunting task,
given the statistical/mathematical complexity underlying the procedures)’.
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Endnotes

1. Quantitative methods for determining levels face many of the same issues as qualitative
methods. For instance, with Saltus there can be many students who cannot be clearly placed at a
level (e.g., Draney & Wilson, 2007).

2. Much of the work described in this paper was supported by the National Science
Foundation under Grant Nos. ESI 0099047and 0352898, DRL 0554470 and 0838137. Opinions,
findings, conclusions, or recommendations, however, are those of the author and do not
necessarily reflect the views of the National Science Foundation.

3. Proponents of Rasch-like methods might argue that the PCM model is more appropriate in
the Stacey and Steinle study. Debate on this issue should carefully examine the match between
the model's assumptions and the learning theory it proposes to model.

4. Also at issue is whether Rasch techniques appropriately model OMC tasks (Briggs &
Alonzo, 2009).

5. Also at issue is whether Rasch techniques appropriately model OMC tasks (Briggs &
Alonzo, 2009). One way to investigate the conceptual foundations of the approaches is to apply
both to the same sets of data.
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A Critique and Reaction to

REPRESENTATIONS OF LEARNING FOR TEACHING: LEARNING
PROGRESSIONS, LEARNING TRAJECTORIES, AND LEVELSOF
SOPHISTICATION

OPTIMIZING RESEARCH ON LEARNING TRAJECTORIES

Susan B. Empson
The University of Texas at Austin
empson@mail.utexas.edu

As | was thinking about my response to Michael Battista’s informative overview of learning
trajectories (this volume), I wondered what it was about learning trajectories that was new and
helpful. After all, have we not been involved in studying learning since the inception of our field?
I thought about Piaget and his colleagues and their careful analyses of the development of
children’s domain-specific thinking (Piaget et al., 1960, for example). I thought about chains of
inquiry that had stretched over decades. There was Glenadine Gibbs’s (1956) study of students’
thinking about subtraction word problems, which helped to pave the way for later researchers
such as Carpenter and Moser (1984) to create frameworks portraying the development of
children’s thinking about addition and subtraction; and Les Steffe’s and John Olive’s recent
(2010) book on Children’s Fractional Knowledge, which detailed the evolution of children’s
conceptual schemes for operating on fractions. | even thought about Robert Gagné (1962), whose
task analyses represented a topic as a hierarchy of discrete tasks learnable through stimulus-
response associations. It seemed that the idea of learning trajectories was not new at all.

Yet the term has only recently become popular in research on thinking and learning and is
regarded as a new construct. It seems to be making an impact. There have been special journal
issues (Clements & Sarama, 2004; Duncan & Hmelo-Silver, 2009) devoted to learning
trajectories in mathematics and science and it, or its cousin learning progressions, has shown up
in prominent policy documents, such as the recently released Common Core Standardsin
Mathematics (CCSM) (2010), whose authors asserted that the “Development of these Standards
began with research-based learning progressions detailing what is known today about how
students’ mathematical knowledge, skill, and understanding develop over time” (p. 4).
Researchers, curriculum designers, and standards writers are turning their attention to learning
trajectories as a way to bring coherence to how we think about learning and the curriculum.

As | continued to think about Battista’s paper, | was drawn to reread Marty Simon’s
influential 1995 paper on Hypothetical Learning Trajectories. It was the first instance | could
recall of the use of the term learning trajectory in mathematics education. The most important
things | noticed were that a) a learning trajectory did not exist for Simon in the absence of an
agent and a purpose and b) the term was introduced in the context of a theory about teaching. A
hypothetical learning trajectory is a teaching construct — something a teacher conjectures as a
way to make sense of where students are and where the teacher might take them. In Simon’s
framework, teachers are agents who hypothesize learning trajectories for the purposes of
planning tasks that connect students’ current thinking activity with possible future thinking
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activity. A teacher might ask, “What does this student understand? What could this student learn
next and how could they learn it?” and create a hypothetical learning trajectory as a way to
prospectively grapple with these questions.

This musing led me to think more critically about what learning trajectories were and what
their potential for us as researchers and educators could be. They are complex constructions that
include, according to Clements and Sarama (2004), “the simultaneous consideration of
mathematics goals, models of children’s thinking, teachers’ and researchers’ models of
children’s thinking, sequences of instructional tasks, and the interaction of these at a detailed
level of analysis of processes” (p. 87), Yet, because the term is almost faddish in its popularity,
the idea is frequently simplified as “a sequence of successively more complex ways of thinking
about an idea” (Smith et al, 2006, cited in Battista).

Spurred by reading Battista’s paper, then, I pose three talking points for us to consider as we
continue to conduct research on learning trajectories:

1) Learning trajectories do not exist independently of tasks and learners’ interactions around

tasks. And especially, they do not exist independently of teaching.

2) Learning trajectories tend to focus on content and leave out disciplinary practices.

3) Learning trajectories need to be useful for teachers and teaching to survive and flourish in

the ecology of the classroom.

Learning Trajectories Do Not Exist Independently of Tasks and Teaching

I’ve noticed that when we talk about learning trajectories, it’s easy to forget that they exist
only in relationship to other education constructs. For example, Battista reminded us, the
National Research Council (2007) described learning progressions as “successively more
sophisticated ways of thinking about a topic that can follow one another as children learn about
and investigate a topic” (p. 214). This characterization ignores the significance of tasks and
teaching to the development of students’ thinking and implies that students’ thinking unfolds
following a natural, singular path.

Many researchers point to the fact that how students think about a topic depends upon the
types of tasks in which they have been asked to engage. Take fractions, a topic that teachers
often find difficult to teach. Many typical misconceptions could be avoided if teachers used tasks
that supported reasoning about fraction relationships, instead of using all-too-common tasks that
reduce children’s fraction reasoning to counting parts. For example, Equal Sharing problems
create the need for students to partition units that they have previously conceptualized as
“one”(Empson & Levi, in press; Streefland, 1991). Measurement problems create the need for
students to iterate subunits of measure (of their own creation) to account for measures that are
between whole-number measures (Brousseau, Brousseau, & Warfield, 2004; Davydov
&Tsvetkovich, 1991). Simon and Tzur (2004) underscored the necessary relationship between
tasks and student thinking in learning trajectories when they said, “the selection of learning tasks
and the hypotheses about the process of student learning are interdependent” (p. 93).

Beyond tasks, students’ mathematical thinking and its development also interacts with
teaching. This fact may be more difficult to take into account in learning trajectories. Design
experiments are one solution to this problem. They allow researchers to see the possible
interactions between teaching and learning under conditions that are conducive to optimizing
student learning. Often the teachers are researchers themselves. But then there is the question of
how student learning and its interaction with teaching are represented. The easiest and most
common solution is to represent the development of students’ thinking as snapshots at different
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levels, developmentally arranged. The teaching is essentially not represented; it is treated as a
condition to produce student learning but not represented as integral to student development.
More complex solutions would include representing teaching in terms of mechanisms of learning
or its relationship to significant changes in students’ thinking.

Battista noted that “One of the most difficult issues facing researchers ... is determining how
instructional variation affects trajectories.” This variation is a product of tasks, as many
researchers recognize, and to a profound extent, teaching. What would it mean for researchers to
not only be cognizant of the possible interaction of teaching with trajectories of learning but to
incorporate it in a meaningful way?

Learning Trajectories Tend to Focus on Content Over Disciplinary Practices

Usually, when we talk about what we want students to learn in mathematics it involves a
complex and integrated set of content understanding and disciplinary practices (e.g., Kilpatrick,
Swafford, and Findell, 2001; National Council of Teachers of Mathematics, 2000). Not only do
we want students to understand the major concepts of a given domain, we also want them to be
able to solve problems, construct models, and make arguments. One of the ways that researchers
have made the study of mathematics learning more tractable is by focusing narrowly, such as on
conceptual development in a specific content domain. Steffe and Olive’s (2010) research on the
development of fraction concepts and Battista’s research on children’s understanding of
measurement are examples of such an approach. This work, like a great deal of the research in
mathematics education including my own, is informed by a Piagetian-like view of learning, if not
in its emphasis on levels, then certainly in its emphasis on a conceptual trajectory, in which less
sophisticated concepts give way to more sophisticated concepts. We have learned a lot about
children’s learning in this way.

However, only part of what we value as a field about mathematics is represented in this kind
of trajectory. Research on students’ mathematical argumentation and modeling (Lehrer &
Schauble, 2007; Lesh & Doerr, 2003), for example, highlights some of the practices that are just
as critical to a well developed capacity to think mathematically but are less amenable to analysis
in terms of sequences of development. One difficulty for researchers may be that students
engaged in these practices draw on multiple content domains. Another may be that these
practices, ideally, involve several students engaged in a complex task that has many possible
resolutions (e.g., Stroup, Ares, & Hurford, 2005).

Our challenge as a field is to integrate research on learning the content and practices of
mathematics, in order to better understand learning and to better inform teaching and the design
of curriculum. When the CCSM first appeared, | was pleased to see a focus on mathematical
practices, which included standards such as “make sense of problems and persevere in solving
them,” “construct viable arguments and critique the reasoning of others,” and “model with
mathematics” (pp. 6-7). But in the body of the document, these practices were just listed in a box
at each grade level, isolated from the content standards, which were elaborated in detail (e.g., see
pp. 10 & 53). There are no guidelines in the CCSM for integrating the learning of mathematics
content and practices and the risk is that, in practice, educators will focus on content standards
with a quick nod to the practice standards.

Some researchers have cautioned that representations of learning as progressive sequences of
content understanding could lead teachers to funnel students through the sequences at the
expense of allowing students to “express, test, and revise their own ways of thinking” (Lesh &
Yoon, 2004, p. 206; see also Sikorski & Hammer, 2010). A focus on integrating mathematical
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content and practices in our representations of learning may lead us away from the notion of a
trajectory, in the sense of a sequenced development or pathway.

Learning Trajectories Need to Be Useful for Teachers and Teaching

I agree whole heartedly with Battista when he writes that one purpose of learning trajectories
is to help teachers “understand, plan, and react instructionally, on a moment-to-moment basis, to
students' developing reasoning.” | believe that a critical part of our mission as researchers is to
produce something that is of use to the field and serves as a resource for teachers and curriculum
designers to optimize student learning. But what makes a learning trajectory useful?

We may find some guidance for answering this question in emerging research on teacher
noticing (Sherin, Jacobs, & Philipp, in press). Useful representations of learning trajectories
would draw teachers’ attention to specific aspects of students’ mathematical thinking activity,
such as solving problems or making arguments, and help teachers to interpret them and respond
to them instructionally. What is a reasonable unit of students’ mathematical activity for teachers
to notice? If a unit is too small or requires a great deal of inference (e.g., a mental operation),
then teachers in their moment-to-moment decision-making may not be able to detect it and
respond to it; likewise if a unit is too broad, or stretches over too long a period of time (e.g.,
“abstract thinking”). The most productive kinds of units of mathematical activity would allow
teachers to see, or notice, clearly defined instances of student’s thinking during instruction and to
gather information about students’ progress relative to instructional goals. For example, in
research in elementary arithmetic, strategies and types of reasoning are productive units because
we know that teachers can learn to differentiate students’ strategies and use what they learn
about students’ thinking to successfully guide instruction (e.g., Fennema, et al., 1996). Battista’s
work on creating assessment for teachers to use that are informed by research on learning
trajectories appears to be another promising route.

Conclusion

The idea that students progress in some way as a result of instruction is at the very heart of
the enterprise of mathematics education in which we are engaged. Research on learning
trajectories has the potential to move the field forward. Yet the notion of learning trajectories is
not a panacea to the many difficulties that we face in educational research and practice. In this
paper | have raised some issues and posed some challenges.

Learning trajectories are essentially provisional. We can think of them as the provisional
creation of teachers who are deliberating about how to support students’ learning and we can
think of them as the provisional creation of researchers attempting to understand students’
learning and to represent it in a way that is useful for teachers.

I urge researchers to continue to create, test, and refine empirically based representations of
students’ learning for teachers to use in professional decision-making and, further, to investigate
ways to support teachers’ decision-making without stripping teachers of the agency needed to
hypothesize learning trajectories for individual children as they teach. This focus would add new
layers of complexity to our research on learning. Instead of researching children’s learning alone,
we would be researching how teachers incorporate knowledge of children’s learning into their
purposeful decision-making to support children’s learning in classrooms. | do not know if
research on learning trajectories can or should be optimized. But I do know that it is worth
thinking hard about what learning trajectories are and how they can be used by teachers and in
teaching to optimize the development of students’ capacities to think mathematically.
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COLLEGE STUDENTS REFLECTIVE ACTIVITY INADVANCED MATHEMATICS

Kyeong Hah Roh
Arizona State University
khroh@math.asu.edu

This study explores how an instructional intervention, called the e-strip activity, would help
students under stand the meaning of the convergence of sequences in advanced mathematics. The
subjects of this study were under graduate mathematics studentsin a real analysis class. Dewey's
theory of reflective thinking was used as a theoretical framework to characterize students
activity in the class. Results show that the students initially felt perplexed and confused due to
uncertainty about the meaning of convergence. However, the students devel oped their

conception of convergence compatible with the e-N definition as they engaged to the e-Strip
activity. The students continued reflecting on the e-strip activity when they worked on subsequent
problems related to the conver gence of sequences.

Introduction

The ¢-N definition of the convergence of sequencesis fundamental in studying advanced
mathematics, such as advanced calculus and real analysis; however, many students experience
difficulty understanding it. Research related to students’ conceptions of limit and convergence
has been well developed by mathematics education researchers (e.g., Cornu, 1991; Williams,
1991). Students’ difficulties with the e-N definition are, on one hand, influenced by their images
of limit, which is not compatible with the ¢-N definition (Davis & Vinner, 1986; Roh, 2008); on
the other hand, these difficulties are related to their confusion over multiple quantifiersin the ¢-
N definition (Duran-Guerrier & Arsac, 2005; Roh, 2010).

An aim of this paper isto explore how an instructional intervention would help students
understand the limit of a sequence. This study suggests the ¢-strip activity as the instructional
intervention and examines how students induce an image of limit that is compatible with the e-N
definition of convergence. This study also explores how the e-strip activity promotes the students
reflective thinking in the case of the limit of a sequence.

Theoretical Framework

In this study, Dewey’ s theory of reflective thinking is used to analyze students’ activitiesin
understanding the limit of a sequence. According to Dewey (1933), reflective thinking consists
of (1) the pre-reflective situation, “a perplexed, troubled, or confused situation” (p. 106); (2) the
reflective situation, “an act of searching, hunting, inquiring” (p. 12) as an effort to resolve the
perplexity; and (3) the post-reflective situation, “a cleared-up, unified, resolved situation” (p.
106). This study relates these three situations of reflective thinking to the development of student
understanding by (1) experiences of perplexed feeling or confusion, (2) reasoning and (mental)
actions to figure out the problem, and (3) experiences of mastery and enjoyment, respectively. A
powerful instructional intervention for students’ reflective activity should create a situation that
givesrise to intellectual problems, fosters mathematical reasoning to figure out the problem, and
represents fundamental underlying ideas in the context. This paper aims to illuminate how the &-
strip activity plays arole, as an instructional intervention, in promoting students’ reflective
thinking in the case of the limit of a sequence.

Brosnan, P., Erchick, D. B., & Flevares, L. (Eds.). (2010). Proceedings of the 32™ annual meeting of the North
American Chapter of the International Group for the Psychology of Mathematics Education. Columbus, OH: The
Ohio Sate University.


mailto:khroh@math.asu.edu�

Chapter 1: Advanced Mathematical Thinking Volume VI, Page 81

Resear ch M ethodology

This study was conducted as part of alarger study from a semester-long design experiment
(Cobb et a., 2003) at a southwestern public university in the USA. The author of this paper, as
the instructor of the course, conducted a series of teaching sessions with 22 studentsin areal
analysis course. The students were mathematics students or preservice/inservice secondary
mathematics teachers, and they had already completed cal culus and a transition-to-proof course.
During the entire semester, the class worked in small groups, each of which consisted of 4t0 5
students.

In the days of this study, the students in groups first determined the convergence of a
sequence by exploring the existence of limits of sequences viatheir own conceptions of limit.
The sequences that the instructor suggested to the class included monotone, constant, and
oscillating sequences. The students then examined whether or not their conception of
convergence could be regarded as proper to determine the limit of a sequence.

Second, the e-strips were then introduced to the class as follows: “The e-strips are made of
translucent paper of arectangular shape. Y ou may imagine each ¢-strip as a strip with indefinite
length and constant width. The center of each e-strip is marked with ared line, and half of the
width of ane-stripiscaled ‘e’.” The students were then asked to put e-strips of different widths
on the same graph of a sequence to cover apossible limit value of the sequence. They were also
asked to determine how many points on the graph of the sequence are outside/inside each e-strip.
After providing enough opportunities to work with the graphs of the sequences and the &-strips,
the instructor introduced two statements (called e-strip definitions A and B) to students as
follows: “(e-strip definition A) A certain value L isalimit of a sequence when for any e-strip
centered at L, infinitely many points on the graph of the sequence are inside the e-strip; (e-strip
definition B) A certain value L isalimit of a sequence when for any ¢-strip centered at L, only
finitely many points on the graph of the sequence are outside the e-strip.” Afterwards, the
students applied e-strip definitions to particular sequences and eval uated whether or not the -
strip definitions gave the correct answers to the sequences.

Third, the instructor induced the e-N definition from ¢-strip definition B. Also, the instructor
asked the class to evaluate ¢-strip definitions A and B, to compare e-strip definition B with the e-
N definition; and to construct proofs of properties about convergence, for instance, “the sequence

{1/n} ", does not convergeto 1/10,” and " every convergent sequence is a Cauchy sequence.”

Results
Pre-Reflective Stuation: Students Feel Frustrated, Perplexed, and Confused
Although the students took calculus and learned the limit of a sequencein their previous
calculus classes, most of them did not seem to feel confident on the topic.

Steve:  Oh, Jesus! | haven't seen these [ sequences] since | was a senior [in high schooal].
Sean: | hated sequences.

Stan: | like them...Aah, heck yea. Tell us about thing, geometric [series].

Susie: | don't even really remember being that far. [Laughs]

As shown above, the students also felt perplexed and frustrated in talking about the notion of
sequences, which is a characteristic of the pre-reflective situation.
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Reflective Stuation: Suggestion and Intellectualization

The students then suggested some ideas about the meaning of convergence to each other,
seeking a proper justification to their claim. Some of their initial suggestions for the convergence
of sequences were not accepted by other students. For instance, Sean asked to his group if a
sequence should decrease or increase toward avalue in order for it to be convergent. Thisidea
was declined by Steve, who suggested a counterexample of a sequence that does not decrease but
oscillates and converges to 0. However, Steve' s idea was not accepted by Susie because,
according to her conception of convergence, an oscillating sequence does not have alimit and
Steve' s example was an oscillating sequence. At this moment, none of the students in the group
agreed upon the meaning of oscillating sequences. Steve seemed to agree with Susie; however,
he believed his sequence is not oscillating because his sequence is not asine or cosine function.
Sean was then against Steve's conception of oscillating sequences and believed that Steve's
sequence wasin fact “aversion of sine or cosine” function.

Sean:  Doesn'tit, for it to converge, wouldn't it have to— every succeeding—every
succeeding point have to be either decreasing or increasing towards a value?

Steve:  No, you can have something like this. Or like, if you have agrid, if you have a
graph that goes like this [drawing a graph of an oscillating convergent sequence]
and it goes back and forth across as it [n] goesinfinity. And that [ sequence]
convergesto 0.

Susie: | thought that [the limit of Steve's sequence] didn’t exist becauseit is now
oscillating.

Stan: No, that's aternating series.

Steve:  No, an oscillating would be like sine or cosine.

Sean:  But that’'saversion of asine or cosine. That's oscillating.

On the other hand, when Stan examined the convergence of the sequence {(-1)"/n} ., hein
fact thought of a p-series Z:’:l(l/ n)® with p=1, and hence he believed it to be divergent.

However, at the same time, he aso believed that the sequence would have alimit. Then he got
frustrated by the fact that the sequence is divergent but has alimit.

Stan:  Sothat’s, it would be like something like &, = (-1)"/n. Well, | think that
converges. You could, you could... No, it doesn’t though, doesit? Because it's not a

p-serie...
Sean: | don’'t remember what the definition of it [p-series] is.
Stan: | can’t remember. Well, p-seriesis where your variable and numerator, umm,

denominator, when the exponent [of the denominator] is greater than, or greater
than 1, strictly greater than 1, then it converges. But thisis 1/n, so | don’t know if
that converges. Umm .... | don’t think it comes fast enough, but it still has alimit
though. So it doesn't converge. Convergence and diverging is different than alimit,
huh?

As shown above, the students were unable to properly account for the meaning of the
convergence of sequences. From this moment, the students own conceptions of convergent
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sequences became a true intellectual problem to them, which is another characteristic of the
reflective situation.

Reflective Stuation: Sudents Continue Conjecturing, Reasoning, and Testing the Ideas

After the students realized that their conceptions of the convergence of sequences were
inaccurate to account for the convergence and the limit of a sequence, the instructor suggested &-
strip definitions A and B. The students then discussed whether e-strip definitions would properly
describe the notion of convergence. Their first conjecture was that only ¢-strip definition A
would be proper for adescription of the limit of a sequence. It should be noted that the students
instantly accepted ¢-strip definition A without seeking for ajustification. On the other hand, it
took awhile for the students to understand the meaning of ¢-strip definition B. In fact, the
students seemed not to recognize that the convergence of a sequence is equivalent to the
finiteness of the number of terms outside any given error bound. Instead, they seemed to think
that an infinite number of points clustered around a point would be essential for the convergence.
When Sean pointed out that e-strip definition B does not describe the points inside e-strips, Steve
and Susie rejected ¢-strip definition B for a proper description of the limit of a sequence.

Sean: Ithink A, I likeA so far. I’'m gonna get to B.

Group: [silence]

Stan: So they [B]’re saying that the when...

Sean:  Sothe pointsthat aren’t covered are finite.

Susie.  Yeah.

Stan: The points that aren’t covered arefinite.

Sean:  But it [B] doesn’t say anything about the points covered being infinite.

Susie:  Yeah, that's true.

Steve: It [B] doesn’t say anything about the points covered being infinite. So that would
incorrectly describe alimit.

Susie.  Right.

Now the students tested their conjecture, which is another characteristic of the reflective
situation. In particular, Sean suggested that his group should look for some examples of
sequences and check the number of points inside and outside the e-strips. The sequence he chose
first was a sequence whose odd terms were defined as 1 and even terms were defined in the form
of 1/n. The students then observed that for some e-strip, when it was centered at y=1, infinitely
many points of the sequence are inside the e-strip. Therefore, accepting e-strip definition A would
force them to determine 1 as alimit of the sequence, which contradicted their belief of the
divergence of the sequence.

Sean: [...] Let'slook for examples. We have the graphs, we have two...Where's those—
where's those graphs at? [ Choosing the sequence a, =1 whennisodd; and a =1/n
when n is even; then placing an e-strip on y=1 so that all points on the x-axis are
outside the e-strip] So if we could cover finite or infinite ....can we?

Susie:  But that one [the sequence] doesn’'t have alimit to begin with.

Sean: WA, | know, that’s what I'm trying to say. I’ m trying—, I’ m saying we' re setting
an e-strip here [y=1], and we're covering an infinite amount.

Susie.  Right.
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Sean:  [pointing to the dots on y=0] And we' re not covering in it, an infinite amount too.
So, but it doesn’t have alimit— | don’t know.

Stan:  Wall...

Steve:  Hmm....

Group: [silence]

After realizing that e-strip definition A would not work for the sequence, the students seemed
to deliberate making a change in their conjecture. Sean proposed ¢-strip definition B to bea
better description for the convergence, whereas Susie suggested combining e-strip definition A
with e-strip definition B. Since accepting the combination of e-strip definitions A and B would
force them to describe both pointsinside and outside the e-strip, the students seemed to consider
Susi€’ s idea more informative than Sean’s idea. Consequently, they followed Susie€' sidea at this
moment.

Sean:  Bisbetter.

Group: [silence]

Susiee  Maybeit’'s a combination of both.

Sean:  Yeah.

Susiee  The number of pointsin the strip hasto beinfinite, and the number of points not
covered by the strips has to be finite.

Steve:  Isn't that what A was saying?

Sean:  No.

Susie.  No.

Sean:  They only talk about only one or the other, so we can combine them. Let’s go with
that. That's right. That's aright thing for now.

Susie:.  Okay.

Although the group seemed to be satisfied with combining e-strip definitions A and B for a
description of the convergence, Sean wondered why e-strip definition B itself
would not be proper for a description of the convergence.

Group: [silence]
Sean:  So, | haven’t thought of any argument against why B can’t just be.

The instructor moved to the whole class discussion by collecting students' conjectures on the
e-strip definitions. This group insisted on combining e-strip definitions A and B, whereas another
group said e-strip definition B itself would be enough for a proper description of the convergence.
The instructor then asked if ¢-strip definition A would imply e-strip definition B, or vice versa.
The class tested the implications by putting particular e-strips on various sequences as well as by
imagining the compliment of an infinite set. The students then realized that e-strip definition B
would imply e-strip definition A, but its converse would not always be true. From that moment,
the class agreed that ¢-strip definition B itself would be proper for a description of the
convergence of sequences.
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Post-Reflective Stuation: Sudents Experience Their Confusion Cleared Up and Resolved

Once the students accepted ¢-strip definition B as a proper description for the convergence of
sequences, they developed their conception of convergence compatible with the e-N definition.
Moreover, the students continued reflecting on the e-strip activity whenever they worked on
subsequent problems related to convergence of sequences. For instance, when the instructor

asked them to discuss how they could tell the sequence {1/}, does not converge to 1/10, the

students attempted to show it viae-strips. To be more precise, Susie aligned an e-strip on y=1/10
and pointed out that only afinite number of points were inside the e-strip. Since the rest of the
points would then be outside the ¢-strip, there should be infinitely many points outside the ¢-strip.
Sean agreed with Susie, but pointed out the necessity of specifying “what your ¢ is” in order to
show that infinitely many points would be outside. Steve then suggested 0.05 as an appropriate
valuefor such ane.

Susie.  ...Well, okay. So thisis saying that L shouldn’t be 1/10. If we say let L =1/10, it has
afinite number of points [inside the e-strip].

Sean:  But then we have to discuss what your ¢ is gonna be first, because you can have e
equals this [using two fingers to illustrate an e-strip, a wider one than Susie’s e-strip,
that would cover the x-axisg], that would cover it [0].

Susie:  Oh, right!

Sean:  That’'swhy | was saying we need to find & that’s less, so that we can [Susie: | see.]
include the finite portion and exclude the infinite portion.

Sean (or Steve?): Sowe'll let, first let L equal .1 and ¢ hasto be <.1. We could just declare
it first, ... Should we talk about it for all valuesof ¢ is[lessthan] .1 or just &
being .05? '‘Cause we just have to find it for any &, so we just have to disprove it for
onee.

Stan: Yeah.

Steve:  So we should just use .05.

Sean:  So ¢ equas .05, sort of.

Next, the group explored how to show there would be only finitely many pointsinside a
0.05-strip. Sean suggested that by checking “the entry point and exit” point to the e-strip, they
would show there would be only finitely many points inside the e-strip, which would then imply
infinitely many points outside the e-strip. The problem now became to solve an equation
1/n=0.1+0.05 for the entry point and an equation 1/ n=0.1-0.05for the exit point, and they
were able to solve these equations successfully.

Sean: ... So, would you have to say, would you have to find the, the two spots where you
have your finite, like your first your entry point and your exit? And then that would
show that you have finite numbers [inside the e-strip] and then...

Susiee  Yeah, | likethat.

Stan: That’s cool. That would be the intersection of the e-strip across uh... And we were
just talking about sets, too, if these are sets, the intersection of sets.

Sean:  Sowe'd haveto solve for 1/n equals .15 and 1/n equals .05 [Susie agrees] and that
would be these two points. So [the entering] n = 1/.15 and [the exit] n = 1/.05.
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Post-Reflective Stuation: Sean’s Attempt to Prove “ Every Convergent Sequence of Real
Numbersis a Cauchy Sequence” via e-Strip

The following episode illustrates another example of the post-reflective situation, in which
Sean reflected on the e-strip activity to prove that every convergent sequence is a Cauchy
sequence. First, he and his group members tried to make sense of the definition of Cauchy
sequences by comparing differences in symbols between the e-N definition of convergence and
the definition of Cauchy sequences. They then set up their proof by assuming that a sequenceis
convergent. Accordingly, they imagined that for any e-strip, every point but a finite number of
points, N, of the sequence is contained in the e-strip. In particular, Sean drew a graph of a

sequence that was oscillating but converged to 0 (He seemed to draw the graph of {(-1)"/n} ).

He then marked N in the x-axis and drew two lines, each of which was parallel to and had the
same distance from the x-axis; thereafter, every term whose index was greater than N was
contained in the e-strip. In fact, the region bounded by these two linesis the interior of an e-strip,
and hence Sean called such aregion an e-strip. He also chose two values on the x-axis, each of
which was greater than N, and marked them asm and n.

Sean:  Soyou havelike, here'sthebig N that satisfiesit. Let's say thisis going like this,
and so your e-strip is such that everything in here is contained past that N. And you

choose two values n and mregardless of where, like... Let'ssay thisone[4,] is

here and thisone[ &,,] ishere ....Thisdistance [| &, — 0[] here has to be less than
this distance [¢] here, right?

Since mand n were greater than N, students in his group could see that both &, and @, were
within the e-strip, and hence each of |@,—0] and |a, — 0| wasless than ¢. Sean then redlized
that based on his reasoning, he could argue that the distance between &,and &, islessthan 2¢,
i.e, |a,—a, < 2¢. However, Sean was unable to conclude |, — 8, < ¢ because he knew that ¢
was positive, and hence 2¢ > & . Although Sean also checked |8, — @, K ¢inthe case of a
monotone convergent sequence by drawing agraph of {1/ n},_,, he believed that finding an

example of a sequence satisfying theinequality |8,,— @, |< & does not mean that such an
inequality would always be true for any sequence.

Sean: ... it would befor surethat this distance[ |8, — &, |] here would be less than 2e,
because 2¢ is this whole thing. But how can you be sure that this distance
[|a,—a,|] isgoing to belessthan asingle ¢? | mean that's just in the special case, |

mean other cases like, where it's just that and there's your e-strip and your two
values; obviously this distance here... [isless than ¢].

The instructor moved to the whole class discussion by collecting students’ ideas of proving
the given theorem: Every convergent sequence is a Cauchy sequence. Sean, on the other hand,
was off task and continued his thinking to figure out how to fill the gap between what his group
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had so far and what to prove at the end. The aha-moment came to him when he realized that the
value of N in the definition of Cauchy sequences does not have to be the same as the value of N
in the ¢ -N definition that he assumed in the beginning of his proof, although the same symbol N
was used in each definition. He explained to his group that by choosing an index N in the
definition of Cauchy sequences “farther down” than theindex N in the ¢ -N definition of

convergence, the difference between the two terms 4, and @, would belessthan e.

Sean:  [whispering] Let me check thisout. ...

[Instructor talking to class]

Sean:  [whispering] Oh wait!

[Instructor talking to class]

Sean:  Yeah, thisN [in the definition of Cauchy sequences] isn’t doing the same thing as it
was doing before [in the &-N definition of convergence].

Steve:  Yeah, exactly.

Sean:  So this could be farther down here, and this could be an N whereit’s right here.

Steve:  Aslongas...

Sean:  It'sfarther down.

Steve: ... small mand small n are greater than [N]... yeah.

Sean:  Yeah.

It isworth noting that Sean was no longer in the status of just comparing symbolsin thee -N
definition of convergent sequences and the definition of Cauchy sequences. Rather, he realized
that although the symbol N is used in both definitions, it does not mean their values are the same.
In fact, he came to consider the symbol N in the definitions as a bound variable. Such ashiftin
understanding the role of the variable in the definitions seemsto resolve the group’s obstaclein

showing the inequality |&,—a, K €. Sean and his group members also found that the instructor

used the same oscillating convergent sequence with ¢-strips to make sense of the theorem, and
therefore they convinced themselves that their ideas would lead a proof to the theorem.

Discussion

This paper illustrates how the e-strip activity plays arolein promoting students’ reflective
thinking in the case of the limit of a sequence. Brousseau (1997), Cornu (1991), and Fischbein
(1987) have proposed the necessity of creating alearning environment in which students are
made aware of difficulties and given the opportunity to reflect on their own ideas. Concerning
instructional treatment to help students reflect on their conception of convergence, it isworth
noting that the ¢ -strip activity was effectively used in this class. The students were initialy
situated in such away that they felt perplexed, frustrated, and confused due to the impreciseness
of their conceptions of convergent sequences. Students' preconceived notion of convergence
became atrue intellectual problem to them. Students then suggested one idea after another,
seeking a possible way to properly describe the convergence sequences, and tested their
hypotheses by (mental) actions with e-strips. It is aso worth noting that after the e-strip activity,
the students continued reflecting on their new conception of convergence and utilized it to make
sense of other properties of convergent sequences by using the e-strips.
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From the per spective of developmental research, this study completed a research cycle of a new
instrument, the Mathematical Processing Instrument for Calculus (MPIC), to examine calculus
students' mathematical performances and preferences for visual or analytic thinking regarding
derivative and antiderivative tasks presented graphically. It extends previous studies by
investigating factors meditating cal culus students' mathematical performances and their
preferred modes of thinking. Data were collected from 183 Advanced Placement calculus
students. Sudents' performances on the MPIC were not influenced by gender or visual
preference. There was no significant difference between the two sexes, but AP high- and low-
performing students differed in terms of visuality Thus, the results suggest stronger preference
for visual thinking was associated with higher mathematical performances.

Introduction

Past studies analyzing factors of differences in mathematical performance have generated
inconclusive findings. We hypothesized that preferred mode of thinking might underlie
differences in mathematics learning and designed a new instrument, the Mathematical Processing
Instrument for Calculus ([MPIC], Haciomeroglu, Aspinwall, Presmeg, Chicken, & Bu, 2009), to
determine students' mathematical performances and preferences for visual or analytic thinking
regarding derivative and antiderivative tasks presented graphically. This study sought to
investigate factors meditating calculus students’ mathematical performances and their preferred
modes of thinking.

Interest in the relationships between gender, spatial ability, and mathematical performance
has existed for decades, and spatial ability and its various definitions constitute a long-standing
topic of discussion within the mathematics education community (e.g., Clements, 1979; Bishop,
1980; Lohman, 1988). Many researchers have used diverse definitions to examine components of
gpatia ability (e.g., Guay & McDaniel, 1977; Lohman, 1979; McGee, 1979; Bishop, 1983; Linn
& Petersen, 1985; Tartre, 1990).

The problems associated with working with multiple, and at times divergent, definitions are
exacerbated by several issues that have been reported in literature. Spatial tests may be
complicated by analytic strategies (Bodner & Guay, 1997), or students with spatial ability may
prefer not to use visual methods (Krutetskii, 1976; Clements, 1984, Presmeg, 2006). Moreover,
gpatial tests with inconsistent correl ations measure various components of spatial ability, and
these tests often measure different abilities as they relate to individual differencesin solution
strategies (Guay, McDanidl, & Angelo, 1978; Lohman, 1979). Generally spatial tests use visual
or pictorial tasks, but visual strategies can be used for visua or non-visual tasksin any content
area of mathematics (Bishop, 1983). Bishop (1989) contends that the psychometric approach
might not be appropriate for studying the visualization process due to students' idiosyncratic
approaches to solving spatial tasks. Since research conclusions are varied, this study omits
gpatial tests and instead investigates the relationship between students’ solution strategies
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determined by the MPIC and their mathematical performances based on the number of correct
answers on the MPIC.

There is extensive research relating differences in mathematical performance to solution
strategies. Halpern and Collaer’ s (2005) extensive literature in this field suggests that gender
differences in mathematical performance may be related to strategies males and females use to
solve visual or spatial tasks. Fennema and Tartre (1985) reported a study in which students in
grades 6, 7, and 8 were classified as either high or low in spatial visualization and verbal skills.
They found that boys with low spatial visualization and high verbal skills had the highest
mathematics achievement scores compared to boys with high spatial and high verbal, girlswith
low spatial and high verbal, or girls with high spatial and high verbal. Moreover, high spatial/low
verbal and low spatial/high verbal students differed in their strategies, but not in their ability to
solve problems. Thisis consonant with Battista' s (1990) observation that logical reasoning was
an important factor in geometry achievement and geometric problem solving and that low
achieving geometry students used more visual solutions than analytic. Linn and Petersen (1985,
p. 1492) attributed gender differences on spatial tasks to the selection of efficient strategies: “The
pattern of sex differences could result from a propensity of females to select and consistently use
less efficient or |ess accurate strategies for these tasks.” In alongitudinal study with elementary
students, Fennema, Carpenter, Jacobs, Franke, and Levi (1998) concluded that there were no
gender differencesin solving problems but strategies used to solve problems were different
throughout the study. Gallagher and De Lisi (1994) examined solution strategies of high-ability
students with high mathematics scores on the Scholastic Aptitude Test (SAT— M) on routine and
non-routine SAT-M problems and found differences in performances on routine problems
favoring females and on non-routine problems favoring males. Gallagher and De Lisi attributed
the results to gender differences in solution strategies, suggesting that the use of conventional
and unconventional strategies were significantly high for female and male students respectively.

Krutetskii (1969, 1976) went so far asto exclude visual thinking from essential components
of mathematical abilities. In his studies, Krutetskii identified types of mathematical giftedness
based on students' preferences for analytic (or verbal-logical) or visual (visua-pictorial) thinking.
According to Krutetskii, the ability to visualize abstract mathematical relationships and the
ability for spatial geometric concepts are not essential components of mathematical abilities; that
is, the level of mathematical abilities is determined by the strength of the analytic component of
thinking, and the visual component, which is not considered to be of the components of
mathematica giftedness, determined the type (though not the extent) of mathematical giftedness.
Lean and Clements (1981) reported a similar finding: spatial ability and knowledge of spatial
conventions were not factors significantly affecting mathematical performance of engineering
students, and that the students who preferred analytic thinking outperformed those who preferred
visual thinking on both spatial and mathematical tests. Moses (1977) and Suwarsono (1982)
analyzed students' solutions strategies to determine their visuality and conlcuded that visuality
and problem solving performance did not correlate significantly. Presmeg’ s (1985, 1986) study
confirmed Krutetskii’ s findings and reinforced the roles of differences in preferred mode of
thinking in learning mathematics. Other studies (e.g., Clements, 1984; Habre, 2001; Presmeg,
2006; Haciomeroglu, Aspinwall, & Presmeg, 2010) have also shown that students who have the
ability to visualize may prefer not to do so. Ben-Chaim, Lappan, and Houang (1989) investigated
the effect of instruction on middle school students’ preferences for visua or analytic solutions
and performance in solving spatia tasks. Before the instruction, boys and girls did not differ in
their preferences and performances. After the instruction, there were significant differences
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between the two sexes in the preference of solutions but not in solving the tasks. Girls preferred
mixed and visual solutions, whereas boys demonstrated strong preference for visual solutions.

The work of Lean and Clements (1981), Moses (1977), Suwarsono (1982), Presmeg (1985),
Ben-Chaim et a. (1989), and Lowrie and Kay (2001) stands apart from other research on
students' mental processes because they identified students' thinking processes based on their
preferences for visual or analytic solutions and compared their mathematical performancein
their preferred mode of thinking. We have seen a relationship between preferences and
mathematics learning, and preferred mode of thinking might underlie differences in mathematics
learning. In our review of existing literature, we have found a dearth of research studies
examining mathematical performances of students with different preferences. Our students have
developed a preferences to think visually or analytically, and their preferences can be different
from their abilities to think visually and analytically (Haciomeroglu et al., 2009). Differencesin
students' mathematical performances may arise from their preferences and not necessarily from
their abilities. We believe this suggests research studies focusing on students' preferences, and
that a distinction has to be made between studies focusing on mathematical ability testing and
studies focusing on students’ preferences.

The primary goal our study was to examine possible factors contributing to cal culus students
mathematical performances and preferences. In the present study, the following research
guestions were investigated in high schools:

1. Differences in Performance. Do gender, visual preference, and AP performance affect
mathematical performance on the derivative and antiderivative tasks of the MPIC?

2. Differencesin visual preference. Do males and females and high- and low-performing
students differ in preferences for visual thinking?

Methods and Data Collection Procedures

Sample

We visited ten classrooms in five high schoolsin two school districts in North Floridain the
United States and collected datafrom 188 Advanced Placement (AP) cal culus students with
seven teachers. The students were enrolled in five AB and five BC calculus courses. All 188
students in the ten classes agreed to participate in the study. Five students who failed to take both
the derivative and the antiderivative test were excluded from the data. There were 103 (56%)
studentsin AB and 80 (44%) students in BC cal culus courses. Eighty-two (45%) of the
participants were female, and 101 (55%) of the participants were male. Of the 183 students who
completed the MPIC, we were able to collect 174 students scores on AP calculus test at the end
of the year. Therefore, results are based on the most available data in this study.

The Mathematical Processing Instrument for Calculus (MPIC)

In the study, we have administered the MPIC whose reliability and validity are well
established (see Haciomeroglu et a., 2009). The MPIC is designed to determine students
mathematical performances and preferences for visual or analytic thinking as they attempt to
sketch derivative and antiderivative graphs. The MPIC consists of graphical tasks because
research (e.g., Eisenberg & Dreyfus, 1991) has shown that most cal culus students tend to use
analytic strategies to compute derivatives and integrals, and this tendency makes it more difficult
to infer students’ visual strategies when they are solving procedural tasks.

The MPIC consists of two main sections — Derivative and Antiderivative — and each
section consists of five graphical tasks requiring students to draw derivative (see Figure 1)
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orantiderivative graphs (see Figure 2) of basic
functions. Every graphical task has at |east two
possible ways of obtaining a solution because we
think that visual students prefer to work directly
from graphical information, and anal ytic students
prefer to trandate to an algebraic representation
when this option is available. We use the terms
visual and analytic to mean graphical and algebraic
solutions respectively. We will use the terms
interchangeably and think thisis an advantage for
the analysis of students’ methods of solutions.
Graphical solutions such as estimating slopes are
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-1

-z
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considered as visual solutions. Algebraic solutions
such as estimating equations are considered to be
analytic solutions. One task from each section of the
MPIC isillustrated in Figures 1 and 2. We
considered a solution to be analytic if the student 2
estimated and integrated the equation of the graph to
draw its derivative or antiderivative graph. We

Figure 1. Derivative task

¥

considered a solution to be visual if the student .

estimated the slopes of tangent lines at various points

on the graph of the function and used this to draw 1

the graph of the derivative or antiderivative. Upon )
completion of the Derivative or the Antiderivative -4 -z z 2
section of the instrument, students were given the -1

Method part, a questionnaire, consisting of an
analytic and avisual solution method for each task,

and asked to choose for each task a method of -z
solution that most closely described how they
sketched their graphs. -

Figure 2. Antiderivative task

Variables

To further explore the students’ preferences for derivative and antiderivative tasks presented
graphicaly, we administered the MPIC, which yielded two scores for each student: 1) a score of
mathematical performance determined by the number of correct responses, and 2) a score of
visua preference. There were two mathematical performance variables: AP calculus test scores
(AP) and Antiderivative/Derivative scores on the MPIC (AD).

On the MPIC, to determine the students’ visual preference scores, Vd (Derivative), Va
(Antiderivative), and VdVa (Derivative/Antiderivative),for the derivative and antiderivative tasks
presented graphically, they were given a score of 0 for each analytic solution and 1 point for each
visua solution regardless of whether their answers were correct or incorrect. When determining
preference on the MPIC, the primary goal wasto identify the students’ methods as visual or
analytic; whether their answers were correct or incorrect mattered |less than their method(s) in
determining preference. In assessing students’ understanding of the calculus derivative or
antiderivative graphs, the students were given a score of 0 for each incorrect answer and 1 point
for each correct answer. Thus, for each of the two sections, the total possible score isfive points.
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For instance, in the derivative section
consisting of five tasks, for avisual
preference score of 0 (Vd) and a
derivative score of 5 (D), we can say
that the student solves al the tasks
correctly and has a strong preference
for analytic thinking. In the
antiderivative section consisting of five
tasks, avisual preference score of 5 (Va)
and an antiderivative score of 0 (A)
indicate a strong preference for visua
thinking and an incompl ete
understanding of the antiderivative
graphs.

In our analyses, we made use of
V.alpha based on the best combination
of the visual preference scores, Va
(Derivative) and Vd (Antiderivative),
from the MPIC (V.alpha = 0.23* Va +
0.77 * Vd). Moreover, logistic
regression (see Figure 3) was used to
model the probability of being visual
(or analytic), given a student’ s score on
the MPIC. Figure 3 illustrates the
likelihood that a student’s solution will
be O (analytic preference) or 1 (visual
preference) given avisual preference
score of the student on the MPIC. Since
it isthe lowest on the left, and the
highest on the right, and the steepest in
the middle, V.alpha, the visua
preference score of the derivative and
antiderivative tasks, is the best model
(see Figure 3).

To compare visua and analytic
students' performances on the MPIC,
we used their visual preference scores,
V.alpha, to distinguish between visual
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Figure 3. Logistic regression

T
0.0

AP Low-petforming

I
1.0
AP High-performing
AP

Figure 4. Modeling AD scores on AP performance

and Visual preference

and analytic preferences. If a student has a V.alpha score greater than 0.5, then the student has a
visua preference. If the student has a V.alpha score less than 0.5, then the student has an analytic
preference. We also divided the students into subgroups based on their scores on the AP tests.
The students with AP scores of 4 or 5 were considered as high-performing and those with AP
scores of 1 or 2 as low-performing. The students with aV.alpha score of 0.5 or an AP score of 3
were excluded from these analyses. All students could be classified as visual or anayticin
preference since no students had a V.alpha score of 0.5.
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Results
Differencesin Performance

We used Antiderivative/Derivative (AD) as the measure of mathematical performance on the
MPIC, and the students were divided into subgroups according to their gender, visual preference,
and AP performance. A three-way analysis of variance (ANOV A) was conducted to explore the
effects of visual preference, gender, and AP performance on AD.

The overall F-test showed that there was a difference in the AD means due to the factors (p <
0.001). Asexpected, the ANOVA showed there was a significant effect due to AP performance
(p< 0.001). The mean AD score for the high-performing AP students was 0.77, while the mean
AD score for the low—performing AP students was 0.56. Additionally, there was a significant
effect due to the interaction of AP performance with visual preference (p = 0.02). There were no
significant effects for gender (p = 0.80) or any of the other interaction terms. Figure 4 shows the
mean AD scores on the vertical axis and AP scores on the horizontal axis. Visua and analytic
students are denoted by the dashed and solid lines respectively. If these students are divided into
subgroups according to their preferences for visual or analytic thinking (see Figure 4), the
increase for the analytic studentsis not as large as the increase for the visual students.

Differencesin Preferences for Visual Thinking

We used V.alpha, the continuous measure of student visual preference, to determine whether
the subgroups (i.e., males and females; high- and low-AP-performing students) differed in terms
of visua preference scores. The two-way ANOV A was borderline significant (p = 0.06).
However, from the two-way ANOVA analysis, there was significant effect on V.alpha due to the
AP score (p = 0.035), but no significant effects on V.alpha due to gender or the interaction of
gender and AP score. The high-performing students had a mean V.alpha score of 0.59, while the
mean V.alpha score for low-performing students was 0.46.

Conclusions

In the present study, we investigated contributing factors to calculus students' mathematical
performances and preferences. Our results suggest that gender and visual preference were not
significant factors influencing the students performances on the derivative and antiderivative
tasks presented graphically on the MPIC. There was a significant difference in scores for high-
and low-performing students. Moreover, the interaction between visual preference and AP
performancein their effect on MPIC scores was significant, and thus there was a difference in
scores over AP performance for the visual and analytic students. Students' gender did not have a
significant influence on their preferences for visual or analytic thinking, which isin agreement
with the findings reported by Ben-Chaim, Lappan, and Houang (1989). Statistically significant
differencesin visual preference scores were found among high- and low-performing students.
The high performing students had significantly higher visual preference scores than the low-
performing students. Thus, the results suggest that stronger preference for visual thinking (or
solutions) was associated with higher mathematical performances. Our results are not consistent
with the results of the study by Lean and Clement (1981) and do not support Battista's (1990)
contention that low achieving students used more visual methods.

Our work with AP cal culus students and the Mathematical Processing Instrument for
Calculus has generated new information about cal culus students’ mathematical performances and
preferences. Considering students' differing and idiosyncratic methods, we suggest that
differences in mathematics learning can be explained by students' preferences to think visually

Brosnan, P., Erchick, D. B., & Flevares, L. (Eds.). (2010). Proceedings of the 32™ annual meeting of the North
American Chapter of the International Group for the Psychology of Mathematics Education. Columbus, OH: The
Ohio Sate University.



Chapter 1: Advanced Mathematical Thinking Volume VI, Page 95

or analytically, not necessarily by their ability to think visually or analytically. Our field tests
confirm the potential for use by researchers and teachers to identify students' preferences and to
understand students' comprehension of derivative and antiderivative graphs and difficulties
associated with their preferences. We think these are topics worthy of continued study and
additional research cycles with the MPIC in calculus classrooms.
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PART /WHOLE METAPHOR FOR THE CONCEPT OF
CONVERGENCE OF TAYLOR SERIES
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During a detailed analysis of interviews conducted with university calculus, real analysis, and
numerical analysis students concer ning the convergence of Taylor series, we discovered that
several students consistently relied on a single metaphor throughout several tasks. In this paper
we characterize one such metaphor based on Part / Whol e relationships. We provide a detailed
illustration of one student’s commitment to this metaphor (emphasis) and the degree to which it
influenced his reasoning (resonance).

Introduction

Taylor series are frequently used in physics and engineering to simplify complicated
mathematical models and play afoundational role in the theory of complex analysis. In
introductory-level calculus sequences, Taylor series are typically developed in four or fewer
sections of the textbook emphasi zing computation and al gebraic manipulations (e.g., Hass, Waeir,
& Thomas, 2007; Larson, Edwards, & Hostetler, 2005; Stewart, 2008). Students are likely to
revisit Taylor seriesin more theoretical or applied depth in courses such as differential equations,
introductory analysis, numerical analysis, complex anaysis, modern physics or physical
chemistry, or avariety of engineering courses. We ask the question, what images guide students
reasoning about the convergence of Taylor series as they establish their initial conceptual
foundation?

Background

Portions of this paper are part of an initial study conducted in partial fulfillment for a degree
of Doctor of Philosophy in Mathematics (Martin, 2009). The initial study sought to analyze and
describe expert and novice conceptualizations of the convergence of Taylor series by identifying
and categorizing particular reasoning patterns while accounting for different levels of exposure
to series. To address this goal, data were collected from 131 undergraduate students, 10 graduate
students, and 6 faculty from a mid-size four-year university and from aregional community
college. To help better account for the effect of the amount of exposure undergraduate
participants had with Taylor series and with seriesin general, undergraduate student participants
were selected from calculus, real anaysis, and numerical analysis classes after having prior
exposure to Taylor series. All 131 students completed an in-depth questionnaire about their
understanding of Taylor series, and eight of these students subsequently participated in no more
than two face-to-face, task-based, individua interviews. Martin (2009) categorized some of the
different ways in which these experts and novices conceptualized Taylor series using the
construct of concept images developed by Tall and Vinner (1981), as well as other influential
work on Taylor series and limitsin general (e.g., Alcock & Simpson, 2004, 2005; Kidron, 2004;
Kidron and Zehavi, 2002; Oehrtman, 2002; Williams, 1991).

For the purposes of the study represented in this paper we focused our attention primarily on
undergraduate student participants, and attempted to identify patterns of metaphorical reasoning
employed by individual students.
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Theoretical Framework

We anayzed interview data for student reasoning employing atheoretical perspective of
conceptual metaphor based on Max Black’s (1962, 1977) interaction theory and as used by
Oehrtman (2002, 2009). In general, metaphorical reasoning involves conceiving of unfamiliar
aspects of atarget domain in terms of similar aspects of a more immediately understood
metaphorical domain. Black distinguished emphasis and resonance as hecessary characteristics
of strong metaphors, those that have the potential to be ontologically creative for the user.
Emphasisis the degree to which the user is committed to applying the chosen metaphorical
domain and resonance is the degree to which the metaphor can support “elaborative implication,”
the development of additional inferences not contained within the original metaphor. According
to Black (1977) strong metaphors require an active response in the conceptualization of the
metaphorical domain as well as projection of aspects to the target domain. The resulting dialectic
allows for conceptual innovation that far exceeds what is possible by reasoning entirely within
either domain.

Results

Some of the metaphors that emerged from our analysis of calculus and analysis students
reasoning about convergence of Taylor series include the approximation, collapse, and proximity
metaphors as previously described in Oehrtman (2002, 2009). An additional metaphor based on
part / whole rel ationships emerged as distinct from those already observed by Oehrtman. In this
metaphor partial sums are seen as “part” of a bigger whole (the infinite series) and convergence
may be viewed as being accomplished through a*“massing” of points from the whole that
contributes to a preponderance of evidence for convergence.

In this section we will highlight one student, Brian's, use of such a“part / whole” metaphor
when discussing tasks related to Taylor series convergence and the influence of this metaphor on
his understanding of Taylor series. In the following excerpt, one can see Brian hinting toward an
idea of alarge number of points yielding aresulting limit.

6

Interview Task 3: What is meant by the“="in “ cosx:l—ix2+lx4—éx +--- when

2! 4!
x isany rea number?’
Brian: I’'m thinking it has something to do with like a Riemann sum. That’s just what
comesto mind. Uh, if | add up, if | wereto add up all of theseit would give me a
definite point.

In this excerpt Brian appeared to cue off of his prior notion of Riemann sums. Even though it
isunclear what “these” was for Brian (he did not explicitly say that “these” meant the terms of
the Taylor series), the effect of adding up “al” of them yielded a* definite point.” Brian will
eventually refer to this effect as a“massing” of points.

Following his comments in the first excerpt, Brian was asked to el aborate about the meaning
behind his reference to “Riemann sum.” In response, Brian initially took note of the order of the
terms in the series and then appeared to notice that the denominators of each term in the Taylor
series were going up by multiples of two. In the next excerpt, Brian detailed some of the
meaning behind his reference to “ Riemann sum” and continued to alude to the effect of al
points “massing”.
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I’m thinking that because these are all fractions [pointing to the terms of the series] of |
guess cosine curve or function, it's gonna give me one single point. Um, kinda of a sum-,
it’sgonna, it's gonna give me a summary more or lessiswhat I'm thinking sinceit’s all
these little points adding up to one point. I’'m thinking it’s gonna converge into something.

It appears very possible that the “fractions’ that Brian was referring to were the coefficients
of x in the expanded Taylor series. Alternatively, he may have imagined plugging in a number
for x in each term of the Taylor series obtaining “fractions’ to be added up. In either case, Brian
conceived of “all fractions’ as giving “one single point” that may be a“summary” of the larger
whole. Again in this same excerpt, Brian alluded to “all these little points’ that add up to “one
point.” Subsequently in the interview, Brian was asked what he meant by his reference to
“converge into something” found at the end of the above excerpt, and Brian reiterated that he
meant that “it’s going to cometo apoint” and that this point was a specific number.

Later in the same interview, when asked “How would you go about estimating
sin(103)?’ Brian responded by saying the following:

WEell, I'm thinking that if we did go, just for arguments sake, to 103, | mean that would be
any-every number from 1 to 103. So just, I'm thinking the summation of all those
numbers would probably get me that one number that we're looking for.

Although Brian clearly exhibited confusion in this excerpt, it isimportant to note that in the
first three excerpts Brian persisted in his referencesto “al’s’, whether the all be composed of
terms of a Riemann sum, fractions of a Taylor series, a collection of little points, or numbers,
that through some limiting process, like an “add up” process, yield asingle result, usually in the
form of a point or anumber that is sought after. In these cases, the“al’s’ may be seen asthe
“whole” which has a characteristic of “massing” around a single point. The following excerpts
will reveal further entailments of Brian’s “part / whole” metaphor and the emerging role of
“massing”. Consider hisresponse to Interview Task 4:

Task 4: What ismeant by the (-1,1)” in, “I/(1- X) = 1 + x+ X’ + X+ L when xisin the
interva (-11)?

Brian: Well it uh. | didn't really look at it there. Um, I’'m guessing those are the parameters.
| mean, it’s gonnago, if | wereto set up an integral, you know, it would be from one to
negative one, any infinite amount of numbers between negative one and one. Um, let’s
see, | know it can't be, well I'm thinking it can't be one for this particular function
[pointing to 1/(1— x)] just because it doesn't exist.

I: Okay.

Brian: Negative one would be two, so I'm thinking it might be equal to a negative one and
just up to one. So, just any infinite amount of numbersin between there.

As Brian was attempting to make sense of the interval of convergence of this Taylor series,
he first appeared to focus on theinterval (—1,1) and referred to setting up adefinite integral using
—1 and 1 as “parameters’ for the limits of integration. Based on his response to the previous task
found in the first excerpt in which he referred to the Taylor series of cosine as having “something
to do with like a Riemann sum”, it appears possible that the definite integral may have been
triggered in Brian’s mind because of its relationship to Riemann sums. The generating function
1/(1—- x) gained Brian’s attention as he pointed to the function and commented that it does not
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exist at 1 and thevalueis 2 when x=—1 (seemingly referring to the value of the denominator).
Twice Brian talked about the infinite amount of numbers between —1 and 1, prompting the
interviewer to ask his next question.

I: Okay, and what can we do with this infinite amount of numbers between there?

Brian: Well, like in number 3, I'm thinking in these infinite amount of numbers you're
going to find some type of mass. | mean it's gonnabe... If | wereto add up all of
them, it would somehow equal one finite number [holds both hand up asiif holding
something between] as opposed to all these infinite numbers [moves both hands away
from each other]. | mean, it's gonnabe just around this number consist-consistently.

This excerpt illustrates Brian’s use of “mass’ in which an infinite amount of numbers are
“around” some “number consistently.” He then appears to have nearly duplicated his response to
Task 3when he said “If | were to add up al of them, it would somehow equal one finite number
[holds both hand up as if holding something between]”. Based on his previous responses it
appearsthat “all of them” may have referred to the infinite amount of numbersin the interval
[-11). Although mathematically imprecise in hislanguage, his usage of “al” and how it can be
“added up” to yield one “finite number” is consistent with his prior usage of “all” found in his
preceding excerpts.

When discussing how to estimate sine using its Taylor series, Brian said,
WEell, it's called an estimate because it's not exactly that specific number that it's, uh,
revolving around. It’s just gonna be somewhere in the ball park of that specific number.

Following these comments, Brian alluded to plugging in numbers whose numerical
representation contained several “9's” following the decimal, and then concluded

If I wereto think of a[holds both hands up with palms facing each other], just a number
line, you know, I'm coming from the left hand side [moves | eft hand inward], I'm coming
from the right hand side [moves right hand inward], and this is the number it's gonna stop
at [moves both hands very close to each other]. It's an estimate, it's not exactly reaching it,
but it's the best we can do.

“Estimates coming “Ball park" “Estimates coming
hom the left” from the right”

= i “-Wr
\ % Massmg “Part” j

“Whole” < “Infinite Amount of Numbers™ < “All of them”

Figurel. Brian's" Part / Whole" Metaphor on a Number Line
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In the previous two excerpts, Brian revealed a variation of his*“part / whole” metaphor.
Previously, he spoke of a specific number or point that may be sought after
using some limiting process applied to the “all”, but in these excerpts, he addressed the role of
estimation and concluded that an estimation is *not exactly” but in the “ball park” of the sought
after specific number. The estimation is seen as dynamic in that it may be “revolving around” the
“specific number”, and when being viewed as a“ number ling”, estimates “ come from the left”,
“come from theright”, and “stop”. Taken together, all excerpts indicate an iconic representation
of convergence on a number line in which points “mass’ around a sought after specific number
(see Figurel).

The next excerpts will illustrate the roles of the “part” and “whole” in Brian's “part / whole”
metaphor. Brian begins with a spontaneous analogy using Google Maps.

Interview Task 8: What is meant by the “approximation” symbol in
“sin(x) = x—x*/3! = aTaylor polynomial for sinewhen x is near 07’

Brian: Just because it says approximation and nothing else, I'm, I'm guessing it's gonna
equal only a portion of what the whole Taylor series would equal. It's not gonna equal
the whole answer, it's just gonna get me one little section of it [holds up left hand
with thumb and index finger extended close together]. So-like it may be close to
divergence, but it's not gonna be-it's ailmost like Google Maps. I'm gonna show, you
know, [holds up left hand with thumb and index finger extended close together] this
one little section, but if I, if | pan out or whatever, gonna show me [circular motion
with left hand] exactly everything. | think the Taylor seriesis like the whole view
[holds up both hands extended across body with palms facing each other]. And any
time | show an approximation [pointing to the Taylor polynomial in Interview Task
8], it'sjust gonna give me that [holds up right hand with thumb and index finger
extended close together] little piece.

“Part”

AN

yad N

Taylor polynomial of first » terms | + Terms after the n---

~
“Whole”

Figure2. Brian's" Part / Whole" Metaphor for Taylor Series

In the above excerpt, Brian viewed the third degree Taylor polynomial x—x*/3! as equaling
a“portion of the whole Taylor series’ that does not equal the “whole answer” but merely a“little
section” of the “whole answer”. Furthermore, the “little section” of the Taylor series“may be
closeto divergence.” He then proceeded to reason by analogy in which a“little section” of
Google Maps was equated with the Taylor series “approximation” by Taylor polynomials and
the “panned out” view of Google Maps corresponded to the “whole view” of Taylor series. Itis
also worth noting that when talking about the “little section” of Google Maps and the
“approximation” using Taylor series, he used the exact same gesture of extending an index finger
and thumb asif grasping the “little section” or “approximation” between these two small
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appendages. In contrast to this small gesture, when “panning out” on Google Maps or discussing
the whole view of the Taylor series his gestures embodied alarger scale. These utterances and
gestures reveal a structure of the “part / whole” metaphor for Taylor seriesillustrated in Figure 2.
In the next excerpt, Brian describes a portion of the whole Taylor series, a Taylor polynomial,
as an approximation that can be made more accurate by using more terms from the Taylor series.

How can we get a better approximation for sinethan using x—x*/3!7?

Brian: I'm thinking that if we were to keep with the Taylor series we'd go, we'd keep
going on, you know, with more of the actual equation. So x, you know, equals five
over five factorial, and x equals seven. | mean-

I: Uh-huh.

Brian: -sorry, x to the fifth over five factorial, and then x to the seven over seven factorial.
| think that would give a better approximation.

Even though, Brian alluded to increasing accuracy by increasing the degree of the Taylor
polynomial, the extent to which Brian understood this increasing accuracy relative to the degrees
of the Taylor polynomialsis unclear in the above excerpt. For example, Brian made no reference
to the graphical effect of adding more terms to the Taylor polynomial. Therefore, the interviewer
asked Brian what adding more termsto the Taylor polynomial did “graphically”?

Graphically | think it just, it gives us more, it gives us more numbers to consider when
trying to find the absolute number, like the number that we're looking for as far as
converging or diverging. If it'sto converge, | think the more numbers that you have, you
know, the better feel you get for what type of convergent it's going to go to. It'slike, it's
like agrading scale, you know, you can have two tests in one semester and if you, you
know, if both are, if one€'san F and one'san A, you're not going to know which one the
student was. If you got a couple more, you know, well maybe this student's more of an A
student and that one F was just afluke. I'm thinking if this one little piece of the Taylor
series [pointing to the Taylor polynomial] shows, just this one little piece [holds right
hand up with thumb and index fingers extended close together], it's not going to give as
much as opposed to maybe, you know, these other numbers are around that but it's going
to zero in [points hands at each other with palms facing toward body] or homein on

[ points hands at each other with palms facing toward body] something more definite.

Brian initially equated adding more terms with giving “more numbers to consider” for
finding the “number that we're looking for.” He then stated that “more numbers’ yield a* better
feel” for the sought after cluster point. He then extended his analogy to a student’s gradesin
which knowing only a couple of grades were not enough to correctly determine the student’s
overal grade. Only more grades will better reveal the student’s actual grade and allow the
teacher to determineif the F wasjust a“fluke”. Here, the idea of looking at only a couple of
grades which only give a small, potentially misleading piece of the student’ s actual grade was
equated with the Taylor polynomial which only gives “onelittle piece” of the Taylor series
which is not “much” compared to when more terms are added. Just as more grades can better
reveal astudent’s overall grade, “other numbers’ can “zero in or home in on something more
definite.” When later asked what the Taylor polynomial approximation gave, Brian elaborated on
hisreferenceto it not giving “much” found above. At first he simply restated that the Taylor
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polynomial gave an “approximation”, he then added that it gives what the Taylor series “might
be” and “could be” in the form of an “estimate” and a“guess’ that is “just one piece of the
puzzle.”

Discussion

Throughout the entire questionnaire and subsequent interviews Brian never revealed aformal
graphica understanding of Taylor series convergence. He was unable to draw Taylor
polynomials when given agraph of a generating function and was unsuccessful in stating any
relationship to Taylor series when given graphs of Taylor polynomials. As the previous excerpt
illustrates, even when presented directly with task of describing graphically the effect of adding
more termsto a Taylor polynomial, Brian responded in non-graphical language. Therefore, his
reference to “little pieces” of Taylor series and accompanying gestures with thumb and index
finger extended, should not be interpreted as suggesting intervals but “pieces’ of formulas of
expanded Taylor series. On other occasions, his gestures suggest a graphical understanding of
convergence restricted to a number line. For example, in one of the previous excerpts Brian
gestured by moving his hands inward when approaching a number from the left and right and
later he pointed his hands at each other for “zeroing in or homing in” on anumber. Thus, one
should not view Brian as having no graphical understanding of Taylor series convergence, but
instead, like many students encountering Taylor series for the first time, he has an emerging
graphical notion of Taylor series convergence that has not yet clearly distinguished itself from
prior graphical notions of convergence, such as convergence on a number line.

Even though Brian’s understanding of Taylor series may be less than desirable, all of these
excerpts point to asimilar structure used to reason about convergence across various contexts.
We call this structure the “part / whole” metaphor. Evidence of this structure is not only seenin
his consistency of language across the different contexts, but in his consistency of gestures.
Depending on the context, the “part” may be composed of some points on a number line, the first
few terms of a Taylor series, a“little section” zoomed in on amap, or a couple of grades. It was
embodied as minimalist gestures, such as “thumb and index finger extended close together” or
“moving both hands very close to each other with palms facing each other.” The “whole” isall
the points on the number ling, al the terms of the Taylor series, a*“panned out” view of amap, or
al the grades. It was embodied as global gestures, such as “moving both hands away from each
other” or “circular motion with left hand.” The “part” was consistently viewed as an insufficient
portion of the “whole’ that could potentially lead to a misleading estimation of the “whole”.
The”part” can give one a“better feel” for the “whole” as more “ pieces of the puzzle” are added
to the “part.” Once all the pieces arein placeto yield the “whole,” a sought after convergent can
be clearly determined. In the context of the number line, this determination is achieved by
noticing where points “mass.” The implications of the “part / whole” metaphor el aborated above
gave Brian afacility to discuss convergence in multiple contexts, and thus, demonstrated the
high degree of the metaphor’s resonance within Brian. His commitment to this metaphor
throughout the interview tasks and his omission of other metaphors indicate the high degree of
emphasis that Brian placed on the “part / whole” metaphor.

What separates this metaphor from other metaphors previously identified (see Oehrtman,
2002, 2009) lies in the entailments of the metaphor. For example, the approximation metaphor,
which is commonly used by students engaging in Taylor series activities, contains entailments
referencing the remainder. However, the “part / whol€” metaphor contains no direct entailments
to the remainder because in this metaphor, thereis only the “part” and the “whole’ and the
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difference between the two isignored. The insights gained by understanding this metaphor can
help instructors recognize students utilizing this metaphor and engage them in a productive
discourse that reveals the metaphor’ s potential pitfalls and devel ops scientific reasoning.
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THE IMPLIED READER IN CALCULUSTEXTBOOKS

Aaron Weinberg
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Textbooks have the potential to be powerful toolsto help students learn mathematics. However,
many students struggle to read in a meaningful way. This paper presents a framework to analyze
the implied reader of a mathematics textbook; thisidea is adapted fromthe field of reader-
oriented theory and enables us to identify the skills and understandings that are required of a
student to learn mathematics by reading a textbook.

Introduction

Textbooks are an integral part of most undergraduate cal culus courses. They serve many
purposes, acting as a compendium of homework problems and examples, areference for
definitions and theorems, and a*“road map” through the course content. In addition, most
calculus textbooks are designed to be read by students, as evidenced by their detailed exposition
of calculus concepts. Educators have suggested many ways to encourage their students to read
their calculus textbook (e.g. Boelkins & Ratliff, 2001). However, students often have difficulty
using their textbook as atool for learning mathematics. For example, consider the excerpt from a
widely used calculus textbook in Figure 1.

—12.7 | DERIVATIVES AND RATES OF CHANGE

The problem of finding the tangent line to a curve and the problem of finding the velocity
of an object both involve finding the same type of limit, as we saw in Section 2.1. This spe-
cial type of limit is called a derivative and we will see that it can be interpreted as a rate
of change in any of the sciences or engineering.

TANGENTS

If a curve C has equation y = f(x) and we want to find the tangent line to C at the point
P(a, f(a)), then we consider a nearby point Q(x, f(x)), where x # a, and compute the slope
of the secant line PQ:

f(x) — fla)

X —d

Figure 1. Excerpt from Stewart (2007, p. 143)

Mpo =

Many instructors would have little difficulty interpreting this excerpt in a meaningful way:
they could tell that the authors are formally defining the concept of “tangent” and connecting this
to the concepts of slope, secant, velocity, and function. However, students often complain that
explanations such as this one are difficult to understand: they describe the textbook as
simultaneously “too chatty” and “too technical.” For example, the following is an excerpt from
an interview with an undergraduate cal culus student:

Interviewer: Are there some [parts of the textbook] that you look at more than others?
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Student: | think with the textbook 1'm using now, | kind of skip to the definitions and the
highlighted parts, especialy if I'minahurry.... A lot of times| just feel like they're
just kind of rambling or reiterating things.

Interviewer: Do you think your books do a good job presenting... the “big ideas’ in the
chapter? Or... you [were] talking about how sometimes they seem to ramble on a
little bit and maybe aren't particularly clear at expressing those big ideas?

Student: | feel like the big ideas are there, but when | start to break it down, sometimes
the terminology or the wording they use, you can tell it makes perfect sense to them,
I'm trying to decipher it and | have to read a few sentences over a couple of timesin
order to get it straight in my head

In order to help students view reading their textbook as a useful way to learn mathematics,
instructors need to understand what skills and characteristics a student needs to successfully read
their textbook. This paper presents a framework that enables us to describe these characteristics
and explain why students struggle to read meaningfully. Although the framework will be specific
to calculus textbooks', it can be easily adapter to describe other mathematics textbooks. After
describing the framework, we will present an example of how it may be used and discuss
implications for pedagogy.

Implied Reader Framework

In order to explain why students express these difficulties with reading their textbooks, we
will usetheidea of the implied reader, which is a concept that originated in the field of reader-
oriented theory. Much like the way modern theories of learning posit that students actively create
their own understanding of mathematics, reader-oriented theory conceives of readers as actively
constructing the meaning of atext as they read (Rosenblatt, 1938). When reading a textbook,
each person uses their own ideas and experiences to construct an interpretation of the textbook
that they find personally meaningful: as Morgan (1996) notes, “the meanings constructed from a
text by its readers will vary with the resources of individual readers and with the discourse(s)
within which the text isread” (p. 3).

Although the idea of the implied reader was created to describe aspects of literary texts (e.g.
Wilson, 1981), Weinberg and Wiesner (In-press) extended the definition to apply to technical
texts such as textbooks: they define the implied reader of a mathematics textbook to be “the
embodiment of the behaviors, codes, and competencies that are required for an empirical reader
to respond to the text in away that is both meaningful and accurate.” These aspects are
determined by the text itself, as opposed to being determined by the author. (In contrast to the
implied reader, the author’ simage of the reader is called the intended reader; the person who
actually reads the textbook is called the empirical reader).

Codes

Based on ideas from semiotics (e.g. Eco, 1976), a code isaway of ascribing meaning to
symbols, words, and other elementsin atext. A reader’s codes enable him or her to interpret the
textbook. While there are multiple ways to interpret an element of the text, there are only a
handful of interpretations that will be valid and meaningful. Consequently, the implied reader of
the textbook possesses a specific collection of codes. In addition to the codes that are required to
interpret “regular” literary works, the implied reader of a calculus textbook has codes for
interpreting the formatting, language, and symbols that are specific to these texts.
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Formatting codes
Love and Pimm (1996) note that the formatting in the text—such as font size or color—
imbues the words with particular significance. In Figure 1, the implied reader interprets the
italicized words derivative and tangent as terms that are being defined. In contrast, interpreting
these words as simply being emphasized would not allow the reader to understand their true
significance. Similarly, the formatting of the phrases “ Derivatives and Rates of Change” and
“Tangents’ indicate that they are describing the main idea of the section; this allows the reader to
connect the ideas within the section back to this main idea. If an empirical reader does not
possess these codes, they may interpret the formatting as simply a cue to begin and end reading.
Formatting codes can be categorized in the following ways:
o Typeface (e.g. font, boldface, italics, color)
e Pagelayout (e.g. indentation, positioning of figures)
e Deélimiters (e.g. text boxes or background colors)

Language codes

Words and phrases that are used in mathematical writing often have particular meanings that
go beyond their everyday usage. These can be classified into four categories. mathematical
words, definitions, logical statements, personal pronouns, and imperative verbs.

There are many words that have specific meanings when used in mathematical contexts. The
implied reader interprets mathematical words such as “approach,” “point,” and “curve” as having
specific meanings in amathematical context. If the empirical reader lacks these codes, he or she
will not be able to think about the mathematical objects and ideas in appropriate ways. These
mathematical words can be divided into four categories. words that have been formally defined
for the reader in amathematical context (e.g. “limit” or “equation”); words that are not formally
defined (e.g. “let” or “exist”); metaphorical use of words (e.g. “nearby” and “approach” rely on a
metaphor of position); and terms from other domains (e.g. “velocity” and “displacement”).

The implied reader has codes to recognize and interpret definitions of terms, definitions of
notation, and basic logical statements. For example, phrases such as“acurve C” and “the point
P(a, f(a))” indicate both that a mathematical object is being created and that it is being connected
with the notation and that a mathematical object is being created. Statements such as“If acurve
C... then we consider...” create alogical relationship between the two clauses. The implied
reader to mentally creates a*“curve’ and then responds to the imperative in the second clause. If
the empirical reader lacks this code, he or she will not see the important conceptual relationship.

The use of the personal pronoun “we” is pervasive in mathematics textbooks. Morgan (1996)
notes that there are two ways it is used: to invoke the authority of the community of
mathematicians or to include the reader as an active participant in the mathematical activity (p.
5). The implied reader of a calculus textbook distinguishes between these two uses and thinks of
their relationship with the textbook in the corresponding way.

Textbooks contain numerous i mper ative verbs, some of which appear as part of “we...”
statements (such as “we consider” and “we... compute”’). Rotman (2006) describes two basic
functions of these verbs: inclusive verbsinvite the reader to “ establish a shared domain, ...
introduce a standard, mutually agreed upon ensemble of signs,” and “share some specific argued
conviction about an item in such aworld” (p. 104); examples of inclusive verbs are “consider,”
“define,” and “prove.” In contrast, exclusive verbs “dictate that certain operations meaningful in
an already shared world be executed” (p. 104); examples of exclusive verbsinclude “integrate”,
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“count”, and “compute”. The implied reader distinguishes between inclusive and exclusive forms
to determine how they must interact with the ideas in the textbook.

Codes for mathematical symbols and pictures

In addition to words, calculus textbooks typically contain many printed symbols and pictures.
For example, in the symbol string “P(a, f(a)),” the implied reader of the textbook interprets this
string of symbolsin a mathematical context as opposed to aliterary context. Then the implied
reader recognizes the symbol P as the name of a point and the outer parentheses as delimiting the
point’s coordinates; the a isinterpreted as a specific (but undetermined) val ue of the independent
variable and the f (a) isinterpreted as the corresponding value of the dependent variable (using
the previously-defined equation y=f (x)).

The symbols used in cal culus textbooks are primarily algebraic; these are most frequently
used to represent numbers, variables, functions, infinitesimals (e.g. dx), arithmetic operations,
limits, and operators (such as derivatives and integrals). In addition to these symbols, calculus
textbooks frequently include Cartesian graphs, pictures (such as adepiction of afalling object)
and other diagrams. The implied reader has codes to interpret the common features of graphs
(e.g. axes, units, points, lines, curves, intervals/distances). The codes that are required to interpret
other pictures and diagrams vary widely. For example, consider the graph in Figure 2 (which
appears in the textbook after the excerpt in Figure 1). In addition to the “standard” codes for a
Cartesian graph, the implied reader also has codes to interpret the three points labeled Q as
depicting multiple stepsin alimiting process in which secant lines approach the tangent line at P.

il ‘. If-"’

Figure 2. A graph/picturefrom Stewart (2007, p. 144)

Competencies

While codes enable readers to interpret symbols, words, and phrases, competencies enable
readers to work within the established context. These competencies are comprised of the reader’s
mathematical knowledge, skills, and understandings, their knowledge and understanding of real-
world concepts, and their ability to “objectify” mathematical idess.

For example, in the excerpt in Figure 1, the implied reader knows that a function is arelationship
between inputs (x) and outputs (y and f (X)), has a graphical representation (a“curve’), and is
comprised of coordinate pairs; the implied reader also knows how to compute the slope between
any two points. In terms of real-world concepts, the implied reader knows what “velocity of an
object” and “rate of change” are, how position can be thought of as afunction, and how velocity
can be computed by finding the slope between two points. If the empirical reader lacks these
competencies, they will be unable to understand functions in a meaningful way or connect and
use the abstract ideas in other contexts.

There are many concepts in algebraand calculus that must be thought of as having both
process- and object-like properties. For example, areader might think of the symbols P(a, f (a))
or Q(x, f (X)) as representing the process of picking an x-coordinate and computing the value of
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f(a). However, to correctly work with the concept that is described by the phrase “then we let Q
approach P,” theimplied reader thinks of P and Q as “objects’ that can be manipulated and can
themselves act by “approaching” one another. Morgan (1996) described this transformation of
processes into objects as “nominalization” and other researchers have described similar
transformations (e.g. Sfard, 2000).

Behaviors

Behaviors are sequences of actions (either physical or mental) that the implied reader
performsin order to understand the textbook. Cal culus textbooks contain both structurally
embedded behaviors and directives.

Structural embeddings
Calculus textbooks are “linear” in that each chapter, section, sub-section, paragraph, and
sentence in the textbook “ presumes that the functions and tasks assigned explicitly or implicitly
to the reader have been carried out satisfactorily” (Love and Pimm, 1996, p. 381). Consequently,
the implied reader develops ideas, vocabulary, and symbolism in the same order as the book
presents them.

Directives

In Figure 1, phrases such as “we consider” and “compute” require that the implied reader
imagines the appropriate point or thinks about computing the slope; these imperative statements
are examples of explicit directives. After interpreting the directive, the implied reader undertakes
various actions such as following a procedure or engaging in more complicated mental behaviors

In addition to these explicit directives, the implied reader also responds to requests that are
not made explicit. For example, the opening clause—"The problem of finding the tangent line to
a curve”—prompts the implied reader to recall the “problem” that the text previously described.
Similarly, when the implied reader sees the expression x£a, they imbue this with meaning by
referring back to the definitions of these symbols. These are examples of implicit directives
The behaviors undertaken by the implied reader in response to these imperatives and directives
can be classified in the following way:

e Make aconnection with the ideas, symbols, or definitions in another text section

Make a connection to an external idea (from red life)
Generalize important mathematical ideas from examples
Follow a procedure (e.g. follow and replicate the steps of an example)
Engage in other mental behaviors

Applying the framework
The method for identifying the implied reader of a calculus textbook isfor an expert reader to
read and recognize what he or she must know, understand, or do in order to generate a correct
interpretation. The excerpt in Figure 1 is analyzed here; al of the numbers referenced in the
analysisrefer to the corresponding numbered boxes in the figures.

Analysis of Codes

First we can investigate the language codes in Figure 3. The personal pronouns (L6, L8, L12
and L17) serveto include the reader as an active participant by inviting them to share the goals
and mathematical activity of the author. For the same reason, the imperativesin L12 and L17 are
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inclusive: they ask the reader to seek motivation for defining the “tangent line,” examine the
“nearby point,” interact with the points “Q” and “P,” and name and construct the concept of
“tangent line.”

- Fl

1 —

1 27 |'—!:)EF“VATNES AND RATES OF CHANGE = ——— @ ‘ 2.7| DERIVATIVES AND|RATES OF CHANGE
:md the problem of finding the [velocity

The problem of finding lhu 0 ol
of an abject both involve finding the same type offlimi] “‘i" Section 2.1. This spe- of an object both involve finding the same type of limit, as we saw in £
et “inod|is called a derivarive]and[we will sel]that it &g be interpreted as a rate cial type of limit is called a
of change in any of the sciences or engineering

The problem of finding the tangent line to a curve and the problem of

ind we will see that it can be

of change in any of the sciences or Bugineering.

_E\_':!G.ENT. @D -

If a curve|C |has equation y = f(x)/and we want to find the tangent |

@ Pla, f(a))] then we consider a nearby poing Q(x, f(x)) \\hcm:n
of the secant line[PQ] 4 @
@ flx) = fla)
Mpo
X a

ancents @10 @) @D G
:I clu'\"c/('llm.\J equation y = fl,\]‘zmdluc \\:ml‘tu he tangent line to

Pla, f(a)).|then|we consider[alnearby|point Q(x, f(x)), where x # a, and

of the[sccant e PQ:
'@ Sfx) = fla)
Mpy = —————————

X

‘Figure3. Analysis of codes

In contrast, L19 requires the reader to produce a new mathematical object by operating in an
aready-established semiotic space. There are numerous mathematica words that the implied
reader interprets, some of which have been defined (L1, L5, L11, L20, L21) and others that may
not have been defined (L2, L10, L15). There is areference to a physical concept (L4) and several
places in which the implied reader applies a metaphor of physical position (L13, L14, L18). The
implied reader recognizes that L7 is connecting a term with its definition, while L10, L11, L15,
and L21 are defining notation. In addition, the reader must interpret the logical connection in the
“if... then” pair (L9 and L16) as described previoudly.

Next, we can investigate the formatting and symbol codes in Figure 3. The italics indicate that
“derivative’ isbeing defined (F3) and also that the letters represent mathematical entities (e.g. F4,
F5). The position and typeface of words in F1 mark the beginning of the section and also
describe its main idea; the indentation (F2) indicates that the subsequent text is an elaboration on
thisidea. The symbol groups S1, S3, $4, and S6 indicate that a mathematical object isbeing
named, with S1 representing an object with one component and the others representing objects
with two coordinates or endpoints. In S2, S3, $4, S5, and S7, the x and a are interpreted as a
variable and an undetermined value of the variable, which are connected to the concept of a
coordinate pair by equating y and f(x). The equals signsin S2 represents an identity between two
different types of objects; in S5 it shows the (non-)identity of the same type of object, whilein
S7 it serves to define notation.

Analysis of Competencies

Figure 4 shows the competencies of the implied reader. The implied reader knows that a
curve is a geometric representation of an algebraic relationship (1, 5, and 7) and thinks of it as an
object that possesses properties (6). The implied reader knows that the curve is comprised of
points (9), each of which has coordinates (10, 12) that are linked by the underlying function,
which can be expressed algebraically (7). The implied reader understands the concept of slope
(14), how it is computed (16), that two points (11, 13) can be connected to form a secant line (15)
which approximates atangent line at a point (1, 8) through alimiting process (3) which
generalizes the idea of slope. The implied reader understands and is fluent with the algebraic
notation (e.g. 13, 16), interprets the notation as an algebraic generalization, thinks of the notation
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as representing an object (16), and connects all of these ideas to their understanding of real-world
concepts of rate and velocity (2, 4).
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Figure 4. Analysis of competencies

Analysis of Behaviors

Figure 5 shows the behaviors of the implied reader. The structurally embedded behavior
means that the implied reader will have read previous sections of the textbook prior to the section
in the excerpt; the implied reader also reads all of the numbered boxesin order.
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Figure 5. Analysisof behaviors

There are three explicit directives (8, 9, and 10) that the reader follows. There are also
numerous implicit directives. In 1 and 2, the implied reader makes a connection to the previous
text sections in which the indicated “ problems” were first described. In 3, the implied reader
connects these two problems and then connects the problems to the concept of “type of limit” in
4, referencing the previous section in the text as necessary in 5. In 6, the implied reader connects
these ideas to the real-world concept of “rate of change”. In 7, the implied reader assigns
meaning to the symbol “C” and associates this definition with the concept and symbolism of the
“eguation” (this behavior is replicated when the symbols P, Q, PQ, and meq are defined). After
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the implied reader assigns meaning to the individual symbolsin 11, they mentally perform the
indicated arithmetic operations and think of the result as a new mathematical object.

Analysis

The concept of the implied reader enables us to describe what an empirical reader must
understand and do in order to read a mathematics textbook meaningfully. In the analysis of the
implied reader, we see that the reader must perform awide range of mental activities, that each
text element may have multiple associated codes, competencies, and behaviors, and that there
can be many of these “components’ in avery short space.

The analysis of the textbook excerpt (Figure 1) sheds light on why instructors may view a
textbook as a useful source of explanations but students may find it difficult to read. Instructors
are more likely than students to possess the codes, competencies, and behaviors of the implied
reader, which enables them to construct correct mathematical meaning while reading.

The students’ difficulties can be explained by the characteristics of the codes, competencies,
and behaviors of the implied reader as well as the density of these components. If the
components are similar to those that students already possess, then students should be successful
at constructing knowledge from reading their textbook; if the implied reader’ s codes,
competencies, and behaviors are closer to those of amathematician, or if they are too densely
packed, students will struggle to interpret the text correctly. As aresult, students might view a
textbook as “rambling” when they do not possess the correct codes to understand the underlying
meaning, and they may see it as “too technical” when many components occur close together.

Analyzing the implied reader of atextbook can be useful for instructors, who play an
important role by mediating the way students interact with the textbook (Luke, de Castell &
Luke, 1989); that is, instructors choose the textbook, decide which parts of the book to use, and
encourage particular uses of the textbook. In order to help students use a textbook as an effective
tool for learning mathematics, instructors need to identify the codes, competencies, and
behaviors of the implied reader and then help their students devel op these characteristics.
However, instructors must take care to not solely focus on “translating” specialized mathematical
vocabulary, syntax, and symbolism. The theoretical foundation of the idea of the implied reader
rests on the notion that the reader actively constructs the meaning of the text. Consequently,
instructors must help their students build the codes, competencies, and behaviors of the implied
reader in away that enhances their ability to generate meaning as they read. This use of the
textbook isin contrast to atypical perspective of the use of mathematics textbooks, in which
reading is seen as “only... anecessary kind of ability in order to become active in situations
where learning can take place (i.e. solving given tasks)” (Osterholm, 2006, p. 326).

The idea of theimplied reader aso has consequences for authors of textbooks. Specificaly,
calculus textbook authors should analyze their own writing to identify the codes, competencies,
and behaviors that will be required of their reader. Even though some textbooks claim to be
written in “plain English”, the implied reader may still possess sophisticated aspects that will
make the reading process difficult for undergraduate mathematics students.

Endnotes
1. Each type of mathematics textbook requires specific types of knowledge and
interpretations. For example, an undergraduate abstract al gebra textbook typically follows a
“theorem-proof-example’ format and requires the student to understand particular types of
logical arguments; thisis very different from a college algebra or a calculus textbook.
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CALCULUSSTUDENTS CONCEPT IMAGESOF ASYMPTOTES, LIMITS, AND
CONTINUITY OF RATIONAL FUNCTIONS

GirgiaNair-Hart
University of Cincinnati Clermont College
nairhaga@ucmail.uc.edu

This study was designed to investigate college students' concept images of rational functions,
asymptotes, limits and continuity beyond the algorithmic knowledge. A two-hour long problem
solving interview was conducted by the use of CORI, the problem solving instrument. Nineteen
students taking a university calculus course participated in the video taped one-to-one interview.

Introduction

During the past few years, | was confronted with high school and college students
incompl ete conceptions regarding asymptotes of rational functions. Inconsi stent conceptions
often interfere with students’ learning of mathematical concepts. The identification of
asymptotes plays a central rolein the study of rational functions and its limit properties. The
study of asymptotes and the exploration of rational functions are based on algebraic
manipulations of expressions. Students don’'t aways fully understand the concept. They still
move on to calculus courses. There, they are introduced to the concepts of limits and continuity.
They do not fully understand them either. During the instruction of limits, asymptotes are
touched upon again. The formal definition of continuity is presented again in terms of limits and
students struggle with this definition too. May be the concepts of asymptotes, limits, and
continuity together could be emphasized so that students' understanding of all of these concepts
could be enriched. Before doing that, it isimportant to find out student notions of these concepts
beyond the algorithmic level.

Theoretical Framework

According to Piaget (1970), students do not come to our classes as blank slates. They might
have encountered certain aspects of a concept before that concept was formally introduced to
them. Therefore, at times, their prior experiences with a certain concept could interfere with the
newly introduced aspects of the concept. In this case, learners will need to modify their pre-
existing internal schemes of the concept in accordance with the new conceptual input. According
to Piaget, schema stands for a person’s internal conceptual configurations. Similar to Piaget’s
view Tall and Vinner (1981) stated that mathematical concepts that students learn informally are
often incomplete. They referred to students’ interpretations of the concept definition, which were
influenced by their pre-existing notions of the concept, as concept images. Misconceptions or
incompl ete conceptions occurred as a result of students viewing the concept definition through
the lens of pre-exiting concept images that are at odds with the formal concept definition.
For example, before formally learning the concept of limits, students are familiar with the
terminology limit in daily life. The meaning of thisword isinterpreted differently by different
people. For example, when referred to an off limits situation, the meaning of limit cannot be
attained isimplied while in another situation such as age limit 5, the implication is that the limit
cannot be surpassed. Due to this confusion, students acquire different meanings and
interpretations while dealing with the concept of limits. One such dilemma causes uncertainty in
students whether limit can be obtained, or can be surpassed. Students’ incomplete conceptions
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could be analyzed from the perspectives of the innate nature of mathematical truth (Moru, 2006;
Cornu, 1991; Grey & Tall, 1994), the limitations of instruction and instructional resources
(Clement, 2001; Sajka, 2003; Zaslavsky, 1997), and students’ beliefs and attitudes regarding the
nature of mathematics knowledge and the goals of mathematics instruction (Szydlik, 2000).

Resear ch Questions
1. What are student notions of rationa functions?
2. What conceptions do students possess regarding asymptotes, in particular the horizontal
and vertical asymptotes of rationa functions?
3. What connections do students make between the concepts of asymptotes, continuity, and
limits of rationa functions?

M ethodology

Qualitative methodol ogy was used to conduct this research. Nineteen Calculus 2 students
from alarge midwestern university participated in the study. Participants were freshmen students
among which, 15 of them were engineering majors, one a mathematics major; one a psychology
major, and two geology majors. Student conceptions regarding rational functions, asymptotes,
limits, and continuity were assessed using the Concept Organizer Response Instrument (CORI).
Interview questions were semi-structured and were designed to gather information on students
thinking. The goal of the interview was to gain an in-depth understanding of students’ thinking
processes while solving problems. Students were asked to solve problems on the test bookl et
while talking aloud explaining their thought processes. In addition, the researcher asked probing
guestions of students to help further clarify the reasoning behind the work they performed.

The interviews were video taped. The video tape analysis was conducted and common traits
in student responses were compiled. Students' written work was examined to further clarify
researcher’ s interpretations of students’ explanations of the problems solved.

Results
Students’ incomplete concept images of rational functions fell mainly into three categories:
the rational number image, the fraction image, and the discontinuity image. Students who
possessed the rational number image described that the graphs of rational functions are “nice,”
“whole,” “even,” and “symmetric.” They further clarified that the graphs of rational functions
looked like that of linear and quadratic functions and that they were “one-piece,” “continuous,”
and “without any complications.” Some students specified that like rational numbers, such as

J4 and \/§ these functions were “whole.” These students concept image of rational numbers

were restricted to that of numbers like V4 and\/§ . Therational number conception was the
most prevalent conception that students held of rational functions.

Some students believed that rational functions assumed fraction forms with no variable in the
denominator. According to this conception, like fractions, rational functions could only have
constants in the denominator. Those students who held the discontinuity image believed that all
rational functions had variables in the denominator, and therefore were discontinuous- they came
in several pieces, and had vertical asymptotes.

Student notions about asymptotes in general fell in to the categories of the three-piece graph
image, the invisible line image, and the no-concurrency image. The three-piece graph image
reflects graphs with two vertical asymptotes and one horizontal asymptote that were symmetric
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with respect to the Y -axis. Three-piece graphs were aso comprised of graphs with two vertical
asymptotes and no horizontal asymptote and were symmetric about the origin. Students also
believed that asymptotes were dotted lines the graph approached but never reached. The no-
concurrency images held by students lead them to believe that a graph must never be concurrent
with any of its asymptotes.

Regarding particularly on vertical and horizontal asymptotes, students held a variety of
notions. All students associated vertical asymptotes in connection with multiple views of
undefinedness. Most students stated that vertical asymptotes occurred at points were the function
was undefined. However, several students did not know when arational function, such as

f(x) = ;X _é became undefined. Some believed that all functions including functions of the
X +
form g(x) =—; 1 had a vertical asymptote since there was a variable in the denominator.
X+

While 4 students knew about the possibility of having either a hole or avertical asymptotes at the
points were the rational function was undefined, two students believed that both ahole and a
vertical asymptote occurred simultaneously at points were arational function was undefined.
Such cases were described as point asymptotes by one student. In addition, the belief that vertical
asymptotes could occur at jump discontinuities was a so noted.

Among the students who knew about the possibility of having either ahole or avertical
asymptote at the points were the rational function was undefined, the majority of the students
were unable to distinguish between the conditions under which a hole occurred for arationa
function. Even though students had seen graphs with holes and have realized that the function
would be undefined there, many of them were unable to differentiate between the function
behavior around holes and around vertical asymptotes. The confusion between holes and vertical

asymptotes seems to have stemmed from noticing no distinction between the % and %,b #0

forms.

In many ways, student notions of horizontal asymptotes were similar to that of vertical
asymptotes. Some dilemmas were centered on the inability to find the equation of the horizontal
asymptote, and the belief that a graph cannot be concurrent with its horizontal asymptote. Other
problems seem to have stemmed from not knowing the function behavior around its horizontal
asymptote, and the inability to identify horizontal asymptote from the limit form. The inability to
use appropriate terminology while describing horizontal asymptotes and the failure to write the
function term corresponding to a specified horizontal asymptote was also a problem. In addition
students believed that horizontal asymptotes occurred at cusps.

In regards to the concept of limits, students experienced problems with the correct usage of
terminology. While referring to limits, in regards to terminology, instead of stating “as x
approached a, f(x) approached L,” the roles of x and y and x and f(x) were often interchanged, or
instead of stating X, or f(x), or y, the word it was used. Other difficulties included problems with
computing limits, and problems with connecting limits with asymptotic behaviors of functions.
While computing limits students used direct substitution when there was no graphing cal cul ator
available. In some instances, students substituted infinity directly in place of x and wrote, co/o0 =
o0, oo/oo = (), oo/oo = undefined. They were unable to compute infinite limits and limit at infinity.
While dealing with forms such asb/0, b#0, 2, 2, students gave up and stated that limit

o0 (e 8] 0.0)

(not necessarily in the finite sense) cannot be found, or did not exist.

Brosnan, P., Erchick, D. B., & Flevares, L. (Eds.). (2010). Proceedings of the 32™ annual meeting of the North
American Chapter of the International Group for the Psychology of Mathematics Education. Columbus, OH: The
Ohio Sate University.



Chapter 1: Advanced Mathematical Thinking Volume VI, Page 117

In addition, they were unable to recognize function limits from their graphs. Identification of
limit from function graphs posed challenges for many students. Some students believed that no
limit existed at a point if the function was undefined at that point. In some instances, students
stated that if f(x) had a hole at the point (2, -7), as x approached 2, the limit of the function would
be-7. However, if the function f(x) had aremovable discontinuity at (2, -7) such that f(2) = 3,
then as x approached 2, f(x) would approach 3. Some students, while computing limits stated that

in cases such aslingl—l7 , which produced the %1 form, the function limit would be 11. In this
X— X_

student’s view, since %was undefined and therefore cannot be attained by the function, the limit

of the function should be 11 the attainable part of %1 :

Regarding continuity, some students believed that a function was discontinuous at sharp
corners and a function was continuous everywhere in its domain if the domain was all real
numbers. They also believed that both jump and removable, discontinuities produced vertical
asymptotes at the points of discontinuity. Some others believed that whenever the left hand limit
was equal to the right hand limit, the function was continuous at that point.

It must be noted that the mgjority of students demonstrated correct understanding of the
concept of continuity by specifying that in order for the function f(x) to be continuous at a point,
say, X = g, Iin; f (x) must exist and must also be equal to f (a) . While answering the question

whether a function with all real number domains should always be continuous, severa students
immediately answered yes, but, as soon as they started sketching a function, they recanted their
answer by creating a hole on the curve and placing a point that indicated aremovable
discontinuity. It should be noted that these students did not display a function with jump
discontinuity as a counter example. Understandably, it would be alot easier to alter a continuous
function to one that had a removable discontinuity rather that altering it into a function with a
jump discontinuity.

Conclusion

Nineteen Calculus Il students' concept images of asymptotes, limits, and continuity were
investigated by the use of a problem solving interview. The instrument for thisinterview, CORI,
was devel oped to solicit student intuitions by the use of atypical problems that required thinking
out of the box. Each interview lasted about two hours. | was particularly interested in students
incompl ete concept images so that | could try to employ instructional methods that would help
students reconfigure their inconsistent concept images.

Students generally possessed a process-oriented view towards mathematics problem solving.
While holding numerous incompl ete conceptions regarding rational functions, their asymptotes,
limits and continuity, students failed to establish connections between these highly related
concepts. Students were unable to explain the behavior of functions around its asymptotes and
they were unable to relate the asymptotic properties of functions in terms of limits. Without
being able to relate to the ways in which function behavior was affected by its asymptotes,
students were unable to find limit at infinity and infinite limit without a graphing calculator.
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Endnotes
1. This paper is apart of my dissertation, College Students' Concept Images of Asymptotes,
Limits, and Continuity of Rational Functions, completed under the direction of Dr. Douglas T.
Owens; Professor, College of Teaching and Learning, The Ohio State University, Columbus,
Ohio.
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CALCULUSSTUDENTS, FUNCTION COMPOSITION, AND THE CHAIN RULE
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This study focused on cal culus students' routines of function composition while working on chain
rule tasks. The functions used in these tasks are functions with which they are familiar,
somewhat familiar and not familiar. Previous research on the chain rule has indicated that
function composition is an important concept for understanding the chain rule. The significance
of function composition to the chain rule, provided a useful context in which to study function
composition. Sfard’s (2008) commognitive framework was used to analyze transcript data and
identify these routines. The results identify nine different routines across the different types of
functions.

Introduction
Although the teaching and learning of the function concept has received much attention in
the research literature (Ferrini-Mundy & Graham, 1991; Harel & Dubinsky, 1992; Monk, 1994,
Oehrtman, Carlson, & Thompson, 2008; Vinner & Dreyfus, 1989) there have been few studies
that have focused on student learning and/or understanding of function composition (Engelke,
Oehrtman, & Carlson, 2005). That limited research has noted that students experience difficulties
with the notation used for composite functions as well as the representation (algebraic, tabular,

graphical) that they use. Medl (1999) noted that students interpreted both (f < g)(x) and f (g(x))
notations as function multiplication resulting with either (f (x)- g(x))- x or f(x)- g(x). Hassani
(1998) and Engelke, et al. both reported that students were more successful in tasks using
algebraic representation than in either graphical or tabular representation. Engelke, et a. studied
precal culus students at the end of their course and documented that these students answered
function composition tasks correctly 94%, 43%, and 41% of the time algebraically, graphicaly,
and tabularly, respectively. Similarly, Hassani performed a teaching experiment on calculus
students. Students' performance on function composition tasks on pre-review and post-review
tests were al lower than those reported by Engelke, et al. for each representation. Hassani’s
study, however, did not end there. Following the post-review test, the students were instructed
on the chain rule. After thisinstruction, students’ performance improved remarkably and
correctly answered function composition tasks 84% of the time graphically and 63% tabularly.
She concluded that studying the chain rule improved students understanding of function
composition. Additionally, she reported that this prior lack of function composition knowledge
did not have asignificant rolein students’ understanding of the chain rule rather that the
knowledge needed to be “gained by the time they apply the chain rule” (p. 193). She concluded
that there seemed to be a relationship between the chain rule and function composition that
improves the understanding of each.

Research on the learning of the chain rule has highlighted the importance of function
composition to the chain rule concept (Clark, et a., 1997; Cotrill, 1999; Hassani, 1998; Webster,
1978). Using ateaching experiment Webster (1978) concluded that there was no significant
difference on the chain rule post-test between the groups receiving extrainstruction on function
composition and those that did not. In contrast, Clark et a. (1997) using the APOS framework
(see Asida, et al., 1996) “came to the conclusion that the [students’] difficulties with the chain
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rule...could be attributed to student difficultiesin dealing with the composition and
decomposition of functions’ (p. 360). Cottrill (1999) completed afollow-up study to the Clark’s
et a. study. Cottrill’s findings were inconclusive whether “understanding of composition of
functionsis fundamental to understanding the chain rule” (p. 58). Cottrill further suggested that
anew study that collected data from interviews instead of awritten questionnaire was needed to
address thisissue.

These mixed findings and conclusions about the relationship between the chain rule and
function composition illustrate the need for both a clear research focus and good task design.
Each of these studies were either broad or had purposes other than or in addition to studying
function composition. These studies acknowledged that function composition played arolein
understanding the chain rule, but its role was elusive to studies which had different foci. One
major change in my study isthat | am reversing the emphasis. Instead of studying the chain rule
as the object of study and using function composition as alens, function composition is the
object of interest and the chain ruleis being used as the lens.

Using chain rule tasks as a window to study function composition enables this concept to be
observed in arich context. As noted above function composition is an integral part of the chain
rule. Furthermore, this extends the existing research beyond simply asking students to find

f(g(4)) or (f °g)(4) agebraically, graphically, and/or tabularly. In the chain rule context they

must create a composite function from two given functions, take the derivative of the composite
function which may involve function composition, and then evaluate the derivative function
which again may involve function composition. Thus, the chain rule has the potential to create
multi-step function composition tasks and students' use of function composition concepts can be
tracked across each step as well as the whole problem. This can give awider and richer view of
students’ use of function composition.

Theoretical Framework

This study utilized Sfard’s (2008) commognitive framework. As the term commognition
suggests, this perspective combines communication with cognition. In this perspective thinking
isaform of communicating. Thus thinking and communicating are merely “different
(intrapersonal and interpersona) manifestations of the same phenomenon” (Sfard, 2008, p. 296).
Thus, observable words (and nonverbal forms of communication) are till just words and are
studied as such. Thisisin contrast to a strictly cognitive perspective which considers observable
words as pointers that are used to study and make claims about unobservabl e phenomena that
exists inside the head.

The focus of this study will be on students' routines. From the commognitive perspective a
routineis aset of rules “that repeats itself in certain types of situations’ (Sfard, 2008, p. 301).
This means that it must happen a minimum of two times otherwise it does not satisfy the
repetition requirement of aroutine. A routine has three partsto it. First is the applicability
condition. Thisisthe set of rules that evokes or conjures up the need to start an action. The
action itself is called the course of action or procedure of the routine (e.g., an algorithm). At
some point the procedure comes to an end. These ending rules are called the closure or the
indication to stop the course of action. The applicability condition and closure are part of the
when of aroutine, while the course of action is the how of aroutine.

The when of aroutineis difficult to identify. Two routines may differ only by the when of
the routine. For example a mathematics student may learn the steps of an algorithm and does
them the same way that his or her instructor doesit. On a subsequent homework assignment or
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test the student encounters a problem that he or she is unable to solve. While the teacher
considers this new problem as needing the algorithm discussed in class, the student did not have
the same conditions that would evoke the need to apply the algorithm. Even though the course
of action was the same for both the student and the teacher, the applicability conditions were
different. Not only can the applicability conditions be different with the same course of action,
but the closure can aso be different between individuals. For example two individuals solving a
system of linear equations may stop at different points. One person may stop when he or she
comes to the statement x = 5 (or some number). Another may not stop until the equations are
evaluated at x = 5 to check for consistency. All three parts are essential components of a routine.

Research Methods

While the focus of this study was on students' routines, given the difficulty of identifying
applicability conditions and closure, most of the findings are about students' course of action(s).
The specific question that guided this research was: What are calculus students’ routines of
function composition in chain rule problems? Specifically, what do students do with functions
with which they are familiar, somewhat familiar, and not familiar? The familiarity level of a
function was determined by when students typically encounter each type of function (calculus,
precalculus, never). For example, polynomial and trigonometric functions were classified as
Familiar because students experience them in many calculus contexts including the chain rule.
Transcendental functions were classified as Somewhat Familiar because students encountered
them in precalculus, but at the time of this study they had not encountered them in any calculus
context. A third task called the Flowers-Colors Task was classified as Not Familiar. It was
expected that students had not come across functions like the ones used in this task. It involved
functions with the names of flowers and colors. Figure 1 contains the Flowers-Colors task.

Flowers — Colors Task:
Suppose roses(x), violets(x), red(x), and blue(x) are all differentiable functions and

have the following derivatives:

%(rO%(X)): red(x) %(viol et(x)) = blue(x)
d d 3X+1
&(red(x)) = red(x) &(bl ue(x)) = 2

1. f(x)=roses(violets(x))
a Find f'(x)

2. Find the derivative of h(x)= f (g(x)) where f(x)=blue(x)and g(x) = violets(x)
a Find f'(x) and g’(x)
b. Find h'(x)

3. Find the derivative of h(x) = (f [g)Xx) Where f(x)=roses(x)and g(x) =red(x)
a Find f'(x) and g’'(x)
b. Find h'(x)

Figurel. Flowers-ColorsTask
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The Flowers-Colors Task needed to explain that these were names of functions and that these
functions were differentiable. Thistask was modified from atask created by Webster (1978).
Modifications included adding the derivatives of the functions red(x) and blue(x). These were
added for two reasons.

First, so that it could be determined where students would stop multiplying by the derivative.
Instructors of calculusinformally consulted prior to data collection mentioned that students may
answer part aby claiming that f(x) = red(violets(x))- blue(x)- blue(x) with the extra-blue/(x)

in the answer. By including dibl ue(x) in the problem statement, students that apply the chain
X

rule in this manner would not be affected by this information being absent.

Second, the derivatives of the colors were made to be similar to transcendental functions.
Thus red(x) is similar to exponentia functions and blue(x)is similar to the natural logarithmic
function in that the derivative is arational expression. In a pilot study it was difficult to
determine if and what kind of effect the rationa expression in the derivative statement of Inx
had on students’ answers. This second rational expression was included to learn more about its
effect.

Participants & Data Collection

Ten first-year calculus students enrolled at alarge Midwestern university during the summer
semester volunteered to participate in this study. The textbook being used for the course was
Thomas' Calculus 11e. Each participant was interviewed individually for approximately one
hour. The task-based interviews took place after the students had been tested over the chapter
that covered the chain rule (Chapter 3) and before any in-class instruction on differentiation
techniques for transcendental functions (Chapter 7). Each interview was both audio- and video-
taped. Additionally all written work of the participants was collected for analysis.

Data Analysis

The data was analyzed in multiple ways. First, transcripts were also made following the
interviews detailing what was said and what was done. The relationship between what was said
and what was done was also included on the transcript. Participants pointing helped to make
clear the meaning of words like “this,” “that,” “here,” and “there.” Pointing also helped to
identify what participants were considering when they were silently thinking.

The written work and transcript data was first evaluated for the correctness. Categories were
then made that described the students’ solution methods. These categories came out of the data
and were not decided upon prior to data anaysis. Due to the complexity of the tasks, asingle
category could not appropriately or adequately describe students' solution methods or course of

action. For example given the functions f (x) = 5x+ 7, g(x) = x* + 3x, and h(x) =(f ¢ g)(x), one
participant stated that h(x) = f (x)- g(x) or h(x) = (5x +7)- (x* + 3x) and that

h'(x) = f/(X) + g(X) or h'(x) =5+ (2x+3). Sincederiving aformulafor h(x) involved
multiplication and deriving aformulafor h'(x) involved something that appeared similar to the

addition rule, amore complex categorical system was needed.

Thiswas achieved by dividing the tasks into two parts and each part receiving its own
categorization. Thefirst part was the participants’ solution methods to derive aformulafor the
composite function h(x). The three categories from this part of the task were Composition,
Multiplication, and Addition. The Composition category involved the participant using
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h(x) = f(g(x)) while the Multiplication and Addition categories involved h(x) = f (x)- g(x)
and h(x) = f(x) + g(x), respectively. The remaining part of atask was the solution methods
participants used to find aformulafor h'(x) . Eight categories emerged from this part of the data.
Half of these were actual rules of differentiation which included the power rule, the product rule,
the addition rule, and the chain rule. The remaining four categoriesincluded aterations to these
rules. These categories were Composition & No Chain Rule, Multiply Derivatives, Chain
Adding, and Chain Times-ing which involved h'(x) = f'(g(x)), () = f'(x)- g(x),

h(x) = f'(X)+ g(x) + g'(x), h'(X) = f'(X)- g(x)- g'(x), respectively. For example if

f(x) =sinx and g(x) = x, then Composition & No Chain Rule would be h'(x) = cosx?,
Multiply Derivatives would be h'(x) = (cosx)(2x), Chain Adding would be

h'(x) = (cosx)+ (x?)+ (2x), and Chain Times-ing would be h(x) = (cosx) (x*) (2x). Further
illustrations are included in the next section for each of these categories.

Since aroutine is something that is repeated, a solution method was not categorized as a
course of action until it appeared a minimum of two times. This minimal requirement could be
satisfied in two ways. (a) a single participant doing the same solution method on two different
tasks or (b) at least two different participants doing the same method on any of the tasks. If two
different participants did the same method on different tasks, then the two times requirement was
satisfied.

Results
This section is organized according the familiarity level of the functionsin the tasks. The
findings of familiarity tasks will be presented starting with familiar, then somewhat familiar, and
ending with not familiar.

Familiar Tasks

The familiar tasks included the polynomial functions f (x) =5x+7 andg(x)=x"+3x . All ten
participants found f'(x) and g’(x) by using the regular Power Rule and Constant Rule. These
were described as multiplying the coefficient by the exponent and subtract one from the
exponent to form anew exponent and zero, respectively. The second part of this task defined
h(x) =(f ° g)(x), the composition of f(x) and g(x) . The specific task was to find the derivative of
h(x) at x = 3. All ten participants first derived aformulafor h(x) before proceeding to the
derivative. To deriveh(x), six were categorized as Composition, three as Multiplication, and
one as Addition. After deriving aformulafor h(x) the participants proceeded to find the formula
for h'(x) . Six participants used the Power Rule, one used the Product Rule, two used the

Addition Rule, and the remaining one used Chain Adding. After each participant derived a
formulafor h'(x), al ten evaluated that formula at three in the same manner, which wasto “plug

inthreefor x.”

Somewhat Familiar Tasks

The Somewhat Familiar Tasks involved the natural logarithmic function. The first task
defined the composite function g(x) = In(—x*)with theinstructionsto find g’(2) . The
participants first derived aformulafor g’(x) and then evaluated g'(2) . Nine of the ten
participants completed this task. The remaining participant focused on properties of logarithmic
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functions (e.g., Inx* = 2Inx) and decided that she could not do this problem because she could
not remember all of the properties. All nine participants that completed this task derived a
formulafor g’(x) and then, as occurred in the Familiar task, plugged in 2 to evaluate his or her

function. Five participants solutions were categorized as Composition & Chain Rule, three as
Composition & No Chain Rule, and one as Composition & Chain Adding. For thistask these

1 , 1
5 —3X ,—3,and

Each of these methods was similar in that they entailed composition. The —x* term of g(x)
was “plugged into” the x in the statement of the derivative of In x. The only difference between
these categories was the way in which the chain rule was applied. The participants classified in
the Composition & Chain Rule category multiplied the rational term by the derivative of — x?,
those in the Composition & No Chain Rule category left off the derivative of — x* completely,
while Mark, of the Composition & Chain Adding category added the derivative of — x°.

The second and third Somewhat Familiar Tasksinvolved f (x) =In(x) and g(x) = x*+1. The

second task defined h(x) =(f » g)(x), while the third task defined s(x) =(g *f)(x),. The

categorizations of these tasks were similar. The second task included one as Product Rule, one as
Addition Rule, five as Composition & Chain Rule, one as Composition & No Chain Rule, one as
Composition & Chain Adding, and one as Multiplying Derivatives. The only difference for the
third task was two as Product Rule and none for Composition & No Chain Rule.

In summary, the Somewhat Familiar tasks that were not pre-composed had more variability
in the methods to derive aformulafor the derivative than those that were already composed.
Both pre-composed and non-pre-composed tasks used the methods Composition & Chain Rule,
Composition & No Chain Rule, and Composition & Chain Adding. Additionally participants
used the methods Product Rule, Multiply Derivatives, and Addition Rule for non-pre-composed
tasks. Similar to the Familiar tasks, evaluating a derivative function at a specified value was
always done by plugging in that value for the x’ s in the formula.

LI —3x?, respectively.

categories took the form of 3

Not Familiar Tasks

The Flowers-Colors Task was the final task related to the function familiarity research
guestion. In it participants answered one question with afunction already composed. The first
Not Familiar Task used a function that was already in composed form. Seven of the participants
used the Chain Rule to determine f'(x) and all of the participants used methods that have been
discussed in previous sections. Table 1 shows these methods and how they compare to the other
Not Familiar tasks and the previous tasks. Two additional techniques occurred on thistask. Three
students decomposed the function into two parts (e.g., f(u) and u = violets(x) ) and another
student attempted to solve a similar task with a function more familiar to him (e.g., In(3x)) and
that had similar features to the function in this task. After seeing how the more familiar function
behaved, he then applied the same principle, the chain rule, to the unfamiliar function. He
explained the common features of his problem and the task in the following episode.

In the second Not Familiar Task the function was not pre-composed. All ten participants
derived aformulafor h(x) first and nine of them did so using the Composition method. More

variability occurred when deriving aformulafor h'(x) (see Table 1). Thisisthe only task where
the Chain Times-ing category appeared. This category is similar to Chain Adding in that it
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contains all of the components of the chain rule only with different operations. In thistask Chain
3x+1, .
v (violets(x)) - blue(x)

The third Not Familiar task defined h(x) as(f ° g)(x),. Similar to other tasks, nine of the ten
participants derived aformulafor h(x) beforefindingh'(x). Again Table 1 lists the methods
used to derive h'(x). Additionally, similar to the first Not Familiar Task one participant
performed decomposed the h(x) that was just derived and another student solved a similar task
with amore familiar function.

Times-ing appeared as h'(x) =

Table 1. Distribution of the methods used to solve different types of Familiarity tasks

Category Familiar Somewhat Familiar Not Familiar
task 1 | task2 | task 3 [task 1| task 2 | task 3

Power Rule 6

Product Rule 1 1 2 1 1 1

Addition Rule 2 1 1

Chain Adding 1 1 1 1

Composition & Chain Rule 5 5 5 7 6 6

Composition & No Chain Rule 3 1

Composition & Chain Adding 1 1 1 1

Multiplying Derivatives 1 1 2

Chain Times-ing 2

Discussion

One of the driving questions of this study was: What are students’ routines with functions
with which they are familiar, somewhat familiar, and not familiar? Based on the findings, there
was less variety in these students' methods to solve tasks which contained familiar functions.
The somewhat familiar functions created the largest number of methods. Thislarge number of
methods may have been due to previous (potentially negative) experiences with logarithmic
functions whereas the not familiar functions may not have come with the same kind of anxiety.

Also shown was that students used different operations (composition, addition, or
multiplication) when finding the derivative h'(x) than they did for finding the original function

h(x) =(f ° g)(x). A mgjority of the students used the “plug g into f” method to find h(x), but up to

half of the participants used other operations for the remaining portion of the task.

These resfults have implications for the teaching and learning of the chain rule. The
participants that were the most successful in attaining the correct answer were those that were
flexible in their use of function composition. They were able to see a composite function and
create another one similar to it. They could compose and decompose functionsin multiple
notations (e.g., function and Leibniz or circle and parentheses). Thus, mnemonics or other
teaching tricks to remember the chain rule may not be as effective as encouraging deeper
understanding of composing and decomposing. For example the Outside-Inside rule currently
found in many the chain rule section of calculus textbooks could be related to composing and
decomposing functions as opposed to simply away to perform the chain rule.

Additionally this study has shown the usefulness of commognitive research. By paying close
attention to what the participant says and does, oneis able to see what is correct as well as what
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iswrong. For example the Chain Adding method would typically be quickly dismissed as
completely incorrect once the plus sign appeared. Whereas it has been shown here that the three
pieces of the chainrulef’, g, and g’ are all there and that it was only the operation that was
incorrect. Thus, students might not be closer to the correct answer than one might suspect.

Future studies could include an exponential function or another somewhat familiar function.
It would be interesting to see if the relationships between familiar, somewhat familiar, and not
familiar seen in this study hold with other functions. Additionally, determining afunction with
which students are not familiar but is more mathematical than the Flowers-Colors task could be
useful. Tasks involving multiple representations could be designed to study the consistency of
routines in different representations.
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CHARACTERISTICSOF FIVE INTERNATIONAL MATHEMATICAL OLYMPIAD
WINNERS BASED ON KRUTETSKII'SFRAMEWORK
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A lack in fundamental understanding of the gifted is one of the causes that hinder blooming their
potential. To attain better understanding of them this study investigated attributes of five former
Olympians. A series of interviews with these individual s is used as the method of the research.
The five elements of “ readiness for an activity” presented by Krutetskii (1976) were used to
indentify characteristics of the five Olympians including four general psychological conditionsin
addition to natural ability. All five Olympians displayed combinations of five elements of the
readiness for an activity. Findings of the study suggested that the mathematically gifted without
numerical evidences or of early ages may be identified be careful observations by their
caretakers.

Introduction

Thereisno single strategy or formulato develop all students' abilitiesto their fullest,
especially those who are highly gifted (Gallagher, 2006; Muratori, Stanley, Ng, Ng, Gross, Tao,
& Tan, 2006). To serve these students successfully, first, proper identification should be
conducted so that appropriate educational practices and environments can be created to develop
students’ potential to their fullest.

Although the use of multiple identification methods is strongly suggested (Coleman & Cross,
2003), common numerical methods such as standardized test scores, which may not reveal
students’ full potential, are still considered highly because of their convenience. Approaches to
identify characteristics, not solely relying on test scores, of the gifted are imminently needed so
that both students with manifested giftedness and those with latent potentials can be recognized.
Krutetskii (1976) hypothesized and later confirmed that a child’ s successful mathematical
development derives from a combination of qualities, including a positive attitude toward
mathematics; characteristic traits such as diligence, persistence, and self-discipline; a favorable
mental condition to itsimplementation; a definite fund of knowledge, skill, and habit; and ability
as demonstrated in Figure 1.

While schools and gifted programs vary in how they identify and admit students, common
admissions criteriainclude standardized test scores, teacher recommendations, school grades,
and interviews. Another criterion is performance from competitions. In fact, performancesin
Olympiads are widely used to indicate a young person’s potential, with the International
Mathematical Olympiad (IMO) considered the most prestigious competition for mathematically
gifted secondary students (Evered & Nayer, 2000; Karp & Vogeli, 2003). It istrue that
Olympians are very selective group of the mathematically gifted, however, their examples stand
“as abenchmark for al gifted students’ (Subotnik, Miserandino, & Olszewski-Kubilius, 1996).

Historically, Asian countries are among the top performersin international competitions. For
instance, Korean teams have consistently demonstrated highly successful accomplishmentsin the
IMOs, achieving 4™, 3", 3%, and 5™ places between 2005 and 2008, respectively. Other Asian
countries such as China, Thailand, North Korea, and Japan have been among the top 10 countries
in recent years. Therefore, to better understand the attributes of and influences on highly gifted
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students, this study investigates factors that helped in shaping these students’ success so that
more adequately devel oped systems of identification that take characteristics of mathematically
gifted students into consideration can be created.

an activity

Readiness
(suitability) of

General
psychological Ability =5=
conditions

Positive attitude c a positive .
e P Cha razt;; Traits "Mental State" Kn?q\;’kl:,ei.tgseéztms‘
activity <1> <3>

Figure 1. Suitability or Readinessfor an Activity

Historically, Asian countries are among the top performersin international competitions. For
instance, Korean teams have consistently demonstrated highly successful accomplishmentsin the
IMOs, achieving 4™, 39, 3", and 5™ places between 2005 and 2008, respectively. Other Asian
countries such as China, Thailand, North Korea, and Japan have been among the top 10 countries
in recent years. Therefore, to better understand the attributes of and influences on highly gifted
students, this study investigates factors that helped in shaping these students’ success so that
more adequately developed systems of identification that take characteristics of mathematically
gifted students into consideration can be created.

Several practical implications are expected from this study. First, an analysis of former IMO
winners characteristics based on Krutetskii’s (1976) study will reinforce understanding of the
mathematically gifted and provide resources to educators, school personnel, and parents. Second,
educatorsin the fields of mathematics education and gifted education will be able to explore
unigue characteristics of former IMO winners and ascertain whether characteristics that
Krutetskii outlined are also present in the Korean context in spite of cultural and educational
differences. Third, the selection processes that specialized schools and programs are using (e.g.,
teacher recommendation, the use of achievement scores, and previous achievements) to identify
and admit students will be diversified. Lastly, parents and teachers who are interested in their
child’s mathematical development will benefit in understanding such characteristics even if their
child’ s achievement score does not reflect ahigh level.

Purpose of the Study

The purpose of this study isto examine characteristics of highly gifted individuals, in
particular, Korean students who have participated in IMOs in the past. School administrators,
mathematics educators, and parents can employ these findings to assist in the development of
mathematical potential of their students and children and for early identification of their
mathematical giftedness. This study will answer the research question: What are characteristics
of Korean mathematically gifted IMO winners based on Krutetskii’s (1976) readiness for an
activity?
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Theoretical Framework

Quite afew researchers have uncovered various characteristics of gifted individuals. Among
them, this study is following models of three studies. First, Krutetskii’s characterization of
psychological conditions was the model to categorize what former IMO winners possess and
exhibited. Krutetskii studied individual children through qualitative methods such as interviews
and observation, and, in this study, the interview is the method of research. Secondly, a study of
two mathematicians, ‘former greatest child prodigies asthe article calls, to reveaed that various
distinctive characteristics and influential factors were closely associated with their talent
developments (Muratori et al., 2006). In-depth interviews with four individuals — two
mathematicians and their fathers — enriched the understanding of their different persona qualities
and environmental factors. The last model that this study follows is Karp’s (2003) study tracking
former Olympians especialy on the side to understand their perception in Olympiad experiences.

Krutetskii’ s report (1976) on ‘readiness for an activity’ organizes characteristics of the
mathematically gifted into four general psychological conditionsin addition to ability, which
covers most other classifications of characteristics of this specia population. He examined the
development of children’sinclination and interests; attitudes toward school subjects, especially
in mathematics; and their character traits. After 12 years of experimental and non-experimental
studies with 201 gifted children, he concluded that a student’ s success was derived from the
combination of five characteristics (p. 74): (1) an active, positive attitude toward the activity and
an interest in and an inclination to study it, which becomes passionate enthusiasm at a high level
of development; (2) character traits that primarily include diligence, self-discipline,
independence, clearness of purpose, persistence, as well as stable intellectual feelings (afeeling
of satisfaction from intense mental work, joy in creation and discovery); (3) apositive mental
condition toward its implementation such as winning for competitions or high achievement in
assessments; (4) a definite collection of knowledge, skill, and habits in the appropriate field; and
(5) ability, that is, specific individual psychological characteristics (Figure 1). The combination
of these attributes determines the suitability or readiness for an activity.

Krutetskii (1976) separated ability from the other four general psychological conditions.
According to Krutetskii, mathematical ability consists of three components: obtaining,
processing, and retaining mathematical information. Remarking on the importance of these three
components in building giftedness, Krutetskii stated, “ These components are closely interrelated,
influencing one another and forming in their aggregate a single integral system, adistinctive
syndrome of mathematical giftedness, the mathematical cast of mind” (p. 351).

Resear ch Method

To answer the research question, a series of interviews was conducted with five IMO
participants and their parents. This study used a qualitative case study approach. Participants
were selected through Snowball sampling (Gay & Airasian, 2003) started from existing
information provided on the official IMO website (http://www.imo-official .org).

According to the IMO official website, there werel20 Korean participants (some participants
are counted more than once) since 1988, the first year of Korean team’s appearance to IMO. Past
participants’ names taken from the IMO website were searched on web engines with a purpose to
obtain their contact information. Initially, the email addresses of three Olympians were obtained.
When the first contact was made with the three individual s explaining the purposes and
description of the study, all three agreed to participate in the study. Through correspondences
with these former Olympians by email, two other fellow Olympians were contacted and agreed
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to beinvolved in the study. Eventually, the sample consisted of these five former Olympians
(Table 1). Moreover, three of the five participants agreed to have their parents contacted by the
researcher and provided phone numbers. Contact was immediately made with all three parents,
who were willing to spare time to be interviewed.

Table 1. Demographic Information of Participants

A | B | C | D | E
Age From 25 to 27 at the time of interviews
Gender Three females and two males
Graduate All in well-known graduate schools/ Four in mathematics and one in
School/Major non-mathematics
Undergraduate All entered Seoul National University (SNU) and four graduated
School/Major from SNU and one transferred to a collegein the U.S.
High School Type | Four attended science high schools and one public high school
IMO participation Y ears from 1998 to 2001. Six Golds, one Silver, and one Bronze*
and awards
Other One competed at Putnam Mathematical competition

Before the interview, the participants were asked to provide basic information about
themselves and their educational background to prepare individualized interview questions. At
the beginning of theinitial meeting for the interview, each interviewee was informed about the
intent of the study and signed the consent form. Interview questions were partially structured
with open-ended questions and their order of presentation was determined, however, follow-up
guestions were asked during the interview, if necessary. Interviewees' responses were audio
taped and immediately transcribed verbatim.

Three one-hour interviews were planned and conducted in Korea with each Olympian, with
additional interviews scheduled if needed. During the first session, each interviewee was asked
guestions about their general background, such as educational and family experiences. After the
initial meeting when the researcher and the interviewee became familiar with each other, the
researcher posed more personal and in-depth questionsin the following sessions. Additional
interviews after theinitial three hours were made with four of the five interviewees to gather all
of the desired information. Further questions were asked depending on the circumstance to
explore more detailed experiences of the interviewees. Several post-interview email
corresponding were made to confirm and refine information gathered during interview sessions.

Parents were interviewed twice — the first time, on the phone, and the second, in-person —to
verify or append the Olympians' statements and provide anecdotal evidences. A consent form
was signed by each at the beginning of the interview as well. For further questions that might
arise during analysis of their responses, all parents agreed to be contacted by phone or email to
elaborate on their responses.

Interviews with atotal of eight people (five IMO winners and three parents) took place in
various |locations of their convenience. Each interviewee consented for the interview to be audio
recorded. Interviews were immediately transcribed in Korean. The transcripts were translated
into English except for technical remarks such as names of schools they attended, time and
places that interviews took place. Then, two independent coders analyzed the translated
transcripts sentence by sentence with keywords noted. Next, statements related to themes based
on keywords were selected across the interviews. Notes about facial and emotional expressions
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during the interviews were a so reviewed so the feelings and emotions expressed by the
interviewees would not be lost.

In reviewing the transcripts, each interviewee' s responses were categorized based on
Krutetskii’ s characteristics. Next, their responses were categorized into themes. In thisway, the
constant comparison approach was carried out, where interpretation focuses on patterns and
perspectives of the participants. Each interviewee' s response was coded based on each
component/key word of Krutetskii’s characteristics until there is no more new ideas to what were
already found about a category, its properties, and its relationship to the core category. Next,
their responses were categorized into themes, where interpretation focuses on the patterns and
perspectives of the participants.

Credibility of findings and interpretation depends on “ careful attention to establishing
trustworthiness” (Glesne, 1999, p.151). To ensure trustworthiness of a study, one must spend
sufficient time in the field and make detailed observations (Lincoln & Guba, 1995). In this study,
both factors were successfully executed. First, three one-hour interviews with each IMO winner
were conducted. By meeting multiple times with the researcher, the interviewees became
comfortable and provided personal thoughts and experiences. Also, by corresponding via email
for additional information enabled the researcher to gather and explore more the datain more
detail. Moreover, parent participation authenticated information provided by the Olympians,
making the findings more trustworthy. Second, the transcripts were reviewed multiple times on
separate occasions with two independent coders that increased the reliability of the findings.
Transcript data were carefully and continuously reviewed when they were re-organized by
keywords and themes.

Results
Indications of Natural Intellectual Abilities
It was apparent that all five former Olympians displayed the presence of ability not limited to
mathematics from early ages. Some of them showed the presence of abilities through
accomplishments from mathematics contests, while others were through episodes that were
provided by their parents.

Indications of Krutetskii’s Psychological Conditions (Characteristics)

Genera psychological conditions or readiness for an activity that contribute to a student’s
success include characteristic traits (i.e., persistence, motivated and self-disciplined behaviors), a
positive attitude toward the activity, a positive mental condition, knowledge, skills, study habits
in the field, and the presence of ability (Krutetskii, 1976). Interviews with the five participants
reveal ed the presence of combinations of these psychological conditions, which are described
below.

Characteristics traits that Krutetskii presented were revealed through self-asserted,
disciplined, goal-oriented, competitive, confidence and acquisitive behaviors of the five former
Olympians. All five Olympians clearly displayed some of these traits through their lives. Despite
of parental advices and observing what professions in pure science would be like, remaining firm
in pursuing mathematics showed independence, clearness of purpose, and persistence in one
Olympian. Being self-motivated and competitive was also evident in two Olympians when they
were clear about their goals. Studying and preparing mathematics Olympiads was not easy when
resources are scarce for many former Olympians, however, their self-disciplined nature, afeeling
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of satisfaction from intense mental work, and joy in creation and discovery were found to
encourage and sustain them to reach the goal to win atlMO.

Knowledge, skills and good study habits were found among all five Olympians aswell. In
various occasions, these Olympians knowledge shined through their school works,
accomplishments and while hel ping others. Study habits and skills contributed to individuals
learning experiences and devel oping mathematical and academic advancement. Many Olympians
not only enjoyed learning advanced mathematics but also looked for additional resourcesto learn
more and loved reading them on their own.

Positive attitude toward mathematics and an interest in and an inclination to study
mathematics, which becomes passionate enthusiasm at a higher level of development, was
displayed by al five Olympians. Some of instances that uncovered positive attitudes toward
mathematics were overcoming obstacles such as parental objection to study further in pure
mathematics, reading and completing mathematics books for older pupils, returning back to
mathematical competition after participating in science competitions, and completing
assignments in an unexpectedly shorter period of time than older peers, and a presence of natural
fondness in solving challenging problems. Fondness in mathematics of one Olympian was
nourished through exploration of various academic fields such as computer science, philosophy,
and others.

The fourth psychological condition, the positive mental condition favorableto its
implementation was imbedded in four Olympians. Achievements from competitions served as a
main implementation in these people. Also, tuition-exemption policies motivated some
individuals to work harder. In general, goals or incentives were types of implementations that
allowed these students to drive themselves to achieve highly.

Discussion and Conclusions

To create and provide an environment that gifted students are able to develop their potential
to the maximum, it isvital to understand characteristics that they possess. Characteristics not
only tell us how to identify such individuals, but also guide us to ways in how to educate and
encourage them in away that they respond to. Results from this study confirm that the five
Korean IMO winners possess combinations of characteristics that Krutetskii (1976) found in
mathematically gifted children in Russia. Thus, it will be a good guidance for educators to
recognize hidden giftedness of a child without numerical indicators even though they werein
different cultural contexts.

All of the former IMO winners hold characteristic attributes that Krutetskii (1976) found in
his own study participants. Although each individual revealed different traits, all five former
Olympians displayed persistence, self-discipline, self-assertiveness, competitiveness, confidence,
and diligence throughout their life course. These characteristics are indicators of mathematical
giftedness that teachers and parents can detect from careful observation and without holding
expertise. Only when these traits are accuratel y recognized as a sign of mathematica giftedness,
will underachieving mathematically gifted students be correctly identified.

First, all five participants displayed knowledge, skills, and good study habits, that are another
strong gauge of mathematical giftedness. Krutetskii (1976) asserted that without having
minimum knowledge, skills, and habits, a person might not be suited for mathematical activities
no matter how great the person’s mathematical ability may be. Undoubtedly, these former
Olympians have shown their mathematical knowledge in their accomplishments in competitions
and as reflected in their GPAs. Two participants referred to themselves as lucky to have
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possessed certain knowledge, which is extremely scarce to happen, in encountering familiar
problems in competitions. Taking into consideration the small number of problemsin these
competitive exams (e.g., there are only six problems on the IMO and Final Korean M athematical
Olympiad), their so-called “luck” actually is reflective of their tremendous preparation and depth
of knowledge.

Second, habits of learning and studying are another factor that distinguishes some of the
Olympians from their peers. One interviewee with extreme anxiety in taking high-stake
situations coped with it by being perfectly prepared, which helped build her confidence, and
acquire adefinite fund of knowledge so that she would not experience “bad luck” in forgetting
what she had previously studied. Another Olympian aso exhibited good study habits through
hard work and effort. He showed high achievement in all subjects and significant mathematical
knowledge by spending a large portion of histime after school studying mathematics. Therefore,
teachers' and parents observations of a child’s study habits and its consequences (e.g.,
knowledge acquisition) should not be disregarded simply as a personality trait but as a possible
indicator of giftedness.

Third, a positive attitude towards mathematics or its achievement also points to mathematical
giftedness. Some were fascinated by the “beauty” of mathematics and indulged in it by spending
hoursin solving challenging problems. For others, the goal was to do well in competitions and
participate in summer camps where they could spend time with other similarly gifted peers, to
enter prestigious colleges, to pursue free tuition programs, or to beat their own records they set
previously. They invested time and energy, which they could have spent elsewhere, studying
mathematics and relishing in it. Consequently, parents need to learn to recognize whether their
child enjoys or dislikes studying mathematics because a successful test score does not
necessarily indicate mathematical giftednessif the individual presents negative attributesin
doingit.

Prevailing among all five Olympians was a display of mathematical ability from early ages.
Some grasped mathematics information more quickly than others, including older peers and
siblings. Others processed mathematical knowledge easily, reading mathematics books, solving
higher level mathematics problems, and displaying quick calculation skills. Retaining
mathematical information well was another aspect of their ability. While learning advanced
mathematics at an early age, these students used what they previously learned as a stepping stone
to learn at the next level. Without the retention of mathematical facts or concepts, it would be
impossible for them to move on to the next advanced level of mathematics.
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Although research has demonstrated the effectiveness of representational technologiesin
mathematics education, there have been barriers to broad use. Across multiple projects, we have
refined an approach to curriculum development that lowers the barriersto the use of
representational technologies—specifically through a dynamic math approach to mathematics
lear ning—while ensuring that students can benefit from their unique affordances. In this paper
we describe a set of principles for the design of units using a dynamic-math approach and
discuss how they were applied to two different middle school units.

Introduction

Research has shown the effectiveness of using representational technologies in mathematics
to scaffold and support student learning (Marzano, 1998; Mayer, 2005). However, there have
been barriers to broad use, such as the perception that technology is too difficult to implement in
diverse classrooms (Becker, 2000), and inconsistent findings on the benefits of educational
technology in mathematics (Dynarski et al., 2007; National Mathematics Advisory Panel, 2008).

In this paper we describe our approach to curriculum development to help overcome these
barriers and best ensure benefits to students who use the materials. We derive design principles
based on lessons learned across multiple projects that relied extensively on representational
technologies. We focus on two units using two different kinds of dynamic mathematics software
and curricular approaches, both of which support student learning through use of technol ogy-
based representations: SimCalc Mathworlds™ and Geometer’s Sketchpad™ (GSP). In designing
the units we incorporated the perspectives of different stakeholders—students, teachers, and
school districts— to minimize barriers to implementation and increase the chance of having the
intervention be successful with avariety of teachers. We addressed teacher and district concerns
about current policy demands (e.g., NCLB and accountability testing) and the need to meet local
standards. We considered multiple teaching styles and designed materials so teachers with awide
variety of mathematical and technological backgrounds could use them. Through
representational technologies and scaffolded curriculum, we met the cognitive, linguistic, and
socia needs of adiverse student population. At the heart of this approach is arefinement in our
conceptualization of the use of innovative technology in the classroom.

Per spective
For more than 15 years, research in dynamic math in general and the SimCalc project in
particular has had the goal of ensuring that all learners have the opportunity to learn complex and
important mathematics. For SimCalc, thisis expressed in the mission statement “democratizing
access to the mathematics of change and variation” (Kaput, 1994). A foundationa belief of the
dynamic math movement is that reconceptualizing middle and high school mathematics can yield
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amore coherent and fruitful mathematical experience for all learners, including those who have
not traditionally been successful in mathematics (Kaput & Roschelle, 1997). Our work continues
this tradition and attempts to remain faithful to the core principles of the tradition while
incorporating new principlesto allow for broader impacts in awider variety of contexts.

Resultsfrom the Use of Our Dynamic Math Materials

A series of studies found our SimCalc unit to be successful in meeting the needs of adiverse
set of students and teachers. Ninety-five seventh-grade teachers and their students across varying
regionsin Texas participated in arandomized controlled experiment in which they implemented
a SimCal c-based 3-week replacement unit. An analysis of the results showed alarge and
significant main effect with an effect size of .8 (Roschelle et a., 2007; Roschelle et al. in review).
This effect was robust across a diverse set of student demographics. Students who used the
SimCalc materials outperformed studentsin the control condition regardless of gender, ethnicity”,
teacher-rated prior achievement, and poverty level? (Figure 1 below). In addition, an
implementation study in Florida, called the SunBay Digital Math project, used the same
materials but with no control group. The SunBay project replicated the gains found in the Texas
study (Figure 2 below), again with learning gains across a wide variety of teachers and learners.
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Figure 1. Mean student learning gains by subpopulation group

SimCalc Unit Content

The SimCalc-based curriculum unit addressed core state standards and also included topics
that were more challenging than those in the standards. Beginning with simple analyses of
motion at a constant speed, the unit followed alearning progression that culminated in the more
complex topics. The unit addressed unit rate and proportional functions—topics from the
seventh-grade Texas standards that are also core to Florida standards—and ended with multirate
functions and the meaning of positive, negative, and zero slope, expressed informally. It
underwent minor revisions for use in Florida, but the core principles underlying the design
remained the same.

By combining paper materials with guiding questions and SimCalc MathWorlds software
files, the units provided a structured exploration of algebraic representations through their
connections to real-world topics. The students had opportunities to use various motions and other
“accumulation” contexts (distance is accumulated as a runner moves along; money is
accumulated when added at a given rate). The unit presented soccer players running races and
team buses traveling from one town to another, and students were to find speeds and write stories
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to explain patterns of motion. Non-motion contexts included saving money when buying
uniforms and predicting how much fuel vehicles would use, in miles per gallon. Knudsen (2010)
contains a more complete description of the content of this SimCalc unit.

Subscale
Iz Gain
54 W1 Gain

Total Gain
e

SimCalc / Contral SunBay
SimCalc / Treatment

Group

Figure 2. Florida SunBay results

Results

Many education research studies depend on curriculum as a vehicle for representing the
researchers’ ideas in the classroom. We note that the curriculum teachers use and how they useit
are influenced by factors that extend beyond the classroom, yet rarely is attention paid to design
principles that account for this wide range of factors. The design principles should allow a
faithful instantiation of the theories, ideas, and innovations of researchers while also resulting in
materials that are accessible to and easily usable by the studies' participants. The devel opers of
the curriculum, then, have to pay attention to a number of contextual factors when writing
curriculum and designing professional development.

Curriculum materials are used in settings with particular sets of people, conventions,
resources, and political considerations. The minimal set of people to include is teachers and
students. Teachers have awide range of subject matter knowledge, comfort with technology, and
teaching experiences. Students come to class with different languages and cultural traditions, as
well aswith levels of past success in mathematics. Conventions include the teaching practices
expected in local classrooms and the relationship between teachers and parents. Relevant
resources include available technology (or lack thereof), available support for the use of
technology, release time for professional development, and even how many electrical outlets are
in classrooms. The school, the district, the state, and the nation aso provide political
considerations that devel opers must take into account, including district policies and
accountability expectations.

People: Teachers and Sudents
For our materials to be usable by awide variety of teachers, they had to support a range of
teacher math knowledge and a range of pedagogical styles and preferences. In the origina Texas
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study, we addressed this variety in several ways, starting with the professional development (PD).
Simple pedagogical routines were introduced and reinforced in the materials and PD, so that
beginning teachers could simply establish the routine, and veterans could use it as a platform
from which to improvise. The PD addressed basic and advanced content knowledge by having
teachers study the math of the unit, the math that was prerequisite to the unit, and the math
beyond the unit.

To support teachers as they were teaching the unit, we created the student workbook so that it
could be used as a substitute lesson plan. This was based on our experience that most current
teachers no longer create written lesson plans and typically teach from the student materials. In
our materials, teachers could rely on the questions written in the student workbook as atemplate
of key question and activities. The workbook, however, was not a prescriptive script.
Experienced and knowledgeabl e teachers could easily use their own questions or use the teachers’
notes to create their own lesson plan. For additional support, the teacher notes provided an
outline of the activity flow for each lesson, extra questions to ask students, and sample student
responses. To meet teachers accountability needs, alist of standards addressed in each lesson
was included. A suggested pacing chart was provided, and teachers al so received forms they
could use to write their own lesson plans.

These choices instantiate two key design principles. The first is that student materials meet
teacher as well as student needs. The second is to design teacher notes to meet teacher needs
without providing an overwhelming amount of information. For the SimCalc study, this meant
including only what was necessary in the teacher notes. Today’ s teachers rarely have the luxury
of significant planning time and so, by definition, do not spend much time reading teacher notes.
Bulleted, highly relevant information is most likely to be read and used.

Teachers may have been the first audience for the SimCalc materials, but students were the
primary audience. Features of the units were designed to address the needs of awide variety of
students. Each unit’s theme provided continuity across the real-world contexts represented in the
software simulations. Numbers used in these contexts were for the most part realistic, so that
students could use their knowledge of speed and prices to gauge the correctness of their answers.
The text used simple sentence structure and consistent vocabulary, never going beyond afifth-
grade reading level, in order to accommodate those with low-level reading skills and those
learning English. The workbook used graphical conventions to indicate various kinds of
activities and content; for example, definitions and other critical information appeared inside
boxes on the page. The amount of white space provided with a question indicated the type and
length of an expected answer. Even the fact that the workbook contained all the student activities
physically bound together provided another organizational aid to students. Last, the workbooks
were printed with as much color as the budget would allow to appeal to media-savvy students.

These choices instantiate the design principle that materials need to account for more than
just mathematics content. This means adopting methods from special educators, from expertsin
second language acquisition, and others—as well as considering popular culture. Our units have
been (and will continue to be) successively refined as we learn more about student needs and
analyze student work with our materials.

Conventions

The SimCalc unit included a lesson on slope, connecting the lessons on steepness of lines
guantified as rate to this highly related topic. Asit turned out, teaching slope in the seventh grade
was not conventional in Texas. The developers had mistakenly understood the opposite: that it
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was important to introduce slope connected to rate. Fewer teachers used this activity than any of
the other activitiesin the unit. We inferred adesign principle to be used in the future: Pay
attention to local conventions while at the same time retaining all the topics important to the
research project.

Access to Resour ces

Access to resources is always a concern when creating a dynamic math curriculum. Almost
by definition, dynamic math activities are technol ogy-based activities—where the technology
could be computers, calculators, or even electronic whiteboards. Where these resources are
scarce, the curriculum can compensate by providing plenty of activities not dependent on
technology. It is essential, however, to ensure that non-technology activities contribute to the
progression of content and are not just filler. We addressed this problem in two waysin the
SimCalc unit: We created activities that |everaged technology where necessary, and we created
practice materials that did not require technology. Whereas our learning activities supported
student use of computers (and we strongly advocated student access to computers), we wrote our
curriculum to be flexible enough to support learning in awide variety of technical contexts,
including one-to-one computer classrooms, classrooms in which members of a small group share
a computer, and even where only the teacher had the opportunity to drive the technology using
one computer at the front of the class.

The Political Context

Curriculum isused in apolitical context—at local, state, and national levels. At the national
level, No Child Left Behind and other federal policies set atone that encourages a less open-
ended curriculum than had been popular in the previous decade. Current national policy requires
that school-wide test scoresincrease at arapid rate, and these scores are based on tests designed
at the state level, so state-level standards become acritical influence on the curriculum. At the
building level, political “with asmall p” considerations can include a teacher’ s need to comply
with school policies by both producing good test scores and by keeping afairly quiet classroom
atmosphere.

The SimCalc unit was shaped by these political influences in several ways but most
importantly by state standards. Not only did standards and standardized tests determine what was
taught in the classroom, but also many teachers followed the pacing guides telling them what to
teach each day, to make sure that they covered all the standards. These teachers needed special
assistance to match their guides with the suggested timeline in the unit, and they were
accommodated during training. The first part of the unit addressed content directly from the
standards, focusing on rate as a proportional linear function. The second part of the unit went
beyond state standards. A demarcation was clear in the materials and in the training. The
beyond-standards content was vetted with expertsin state and local policy to ensure that teachers
would still be willing to use the materials, given pressures at the school level.

The general design principle to be derived hereisto be aware of and respond to political
considerations a all levels. Design decisions made in response to federal policy might support
teachers at the school level—or not. The consequences need to be thoroughly considered. For
example, some teachers may be monitored by district officials to make sure that their teaching
methods are in line with local expectations. Replacing an activity that would require students
walking about the classroom with one that accomplishes the same goa with studentsin their
seats could help teachers stay in line with local policies and classroom behavior norms.
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Applying Principles to and Deriving Principles from a Dynamic Geometry Unit

On the basis of the success of the SimCalc unit, we have designed and are in the process of
implementing a geometry unit that uses Geometer’ s Sketchpad. This unit is of a shorter duration
(1 week) than the SimCalc unit, is designed to be used in Florida, and covers different
mathematical content. Despite these differences, however, it is based on the same design
principles discussed above.

Content. Asin the SimCalc unit, the content of the geometry unit was designed to address
core standards while also including topics more challenging than those in the standards. We
determined that the most appropriate focus of the geometry unit would be geometric similarity,
an aspect of proportionality that isin the Florida standards but was not addressed in the SimCalc
unit. We again began with simple analyses and moved to more complex topics. In this case, we
started with informal notions of similarity and followed a progression that ended in formal
definitions of similarity that applied to all figures.

We again combined paper materials with guiding questions and different contexts. Early in
the unit, students analyze images of the Statue of Liberty to investigate how nonsimilar images
look warped or distorted. Later in the unit, they analyze images of currency (all are rectangular
bills) and again determine which images are distorted and which are scaled proportionally. As a
result of this activity, they are introduced to the notion that similar rectangles have the same
height to width ratio. Students are presented with quadrilaterals with corresponding sides with
equivalent ratios but without congruent corresponding angles. Students then are guided to revise
their working definition of similarity to address polygons' angles. Finally, students are presented
with an activity to consider non-polygonal figures and introduced to a definition of similarity
using dilation.

Design principles. people. The new unit is designed to meet particular needs of teachers and
students. Teachers can use the student materials as a substitute lesson plan. Asin our previous
materials, the student guide provides atemplate for student activities and teacher questioning.
We have also included teacher notes that contain additional questions for students and expected
student answers. To meet the needs of students, we again use realistic contexts and numbers
whenever possible and use the same formatting rules as in the SimCal c-based unit.

Design principles. conventions Dynamic geometry software and curriculum afford students
with opportunities to make geometric constructions, creating and modifying software files.
During the implementations of the SimCalc unit in Florida, however, we found that many
teachers were uncomfortable with students altering software files. The local convention seemed
to be more of a plug-and-play model of using the software. When our analysis of existing GSP
lessons on similarity revealed that the lessons assumed a high degree of student fluency with the
software, we knew that we would need to design new activities where students could explore the
mathematical representations without requiring the fluency required to build such representations
on their own.

Design principles: access to resources. Asin our SimCalc unit, we again use technol ogy
judiciously to exploit the unique affordances of representational technology. As aresult, about
half our activities require technology, and half do not. In addition, we have found a significant
difference in those resources available in the Texas SimCalc study and those now available in the
SunBay study: the introduction of small-screen NetBooks. To ensure that our materials work
with the resources available to our teachers, we are now creating new file sets that work on the
smaller screens on NetBooks.
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Design principles: politics and standards. We found that our SimCalc unit, which was
originally created for Texas, only required a small number of changes to meet key Florida
standards. In particular, our SimCalc unit was aigned with Florida' s Next Generation Sunshine
State Standards’ Big Idea 1: Develop an understanding of and apply proportionality, including
similarity. Although several possible Florida standards would have been appropriate to address
using GSP, we determined that the most effective use of GSP was to continue to address Big
Idea 1 and specifically the topic of geometric similarity. In so doing we created a set of materials
with a consistent goal and that focus on one core aspect of Florida' s standards. On the other hand,
the expectations within the standards focus on the application of similarity to find missing
numbers, while our unit hel ps students devise increasingly sophisticated versions of the
definition of similarity. Thisled usto pose the unit as a supplementary unit, to be used after the
state tests are administered and to be used in addition to textbook chapters on similarity, rather
than to replace them. Thisis an example of fulfilling local political requirements while still
staying true to dynamic math ideas.

Conclusion

This paper described severa aspects of the curriculum used in two experiments using a
dynamic math approach with awide variety of teachers and students. Paper materials and
software served to guide students in an exploration of real-world contexts and associated
mathematics representations, focusing in one unit on rate, proportionality, and linear function
and in another on definitions of similarity. Developers of the unit took into account not only the
mathematics that could be learned using a SimCal ¢ approach, but also a set of other constraints
on the curriculum. The devel opers addressed then-current political and social considerations,
mostly about the dominant influence of state standards and assessments on instruction. Teachers
were supported in their classroom use of the materials through a set of teacher notes and
professional development that focused on teachers' mathematics learning and effective
implementation of the unit. Special considerations were made for the needs of teachers and
students, including meeting local conventions.

Endnotes
1. This paper is based on work supported by the National Science Foundation (Grant number

0455868), by the Helios Education Foundation, Pinellas Country Schools, and by the Pinellas
Education Foundation. Any opinions, findings, and conclusions or recommendations expressed
in this paper are those of the authors and do not necessarily reflect the views of the National
Science Foundation, the Helios Education Foundation, Pinellas Country Schools, or the Pinellas
Education Foundation.

2. We focus on Hispanic students because they consisted of a mgjority of our student sample,
numbers of other minority groups in the study were negligible, and Hispanic students have
traditionally underperformed in measures of mathematics achievement (Education Trust, 2003).

3. Wetake as our measure of poverty the percentage of the campus eligibility for the free
and reduced-price lunch program.
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THE KILLER PROBLEM

Matthew Pascal Joshua Bernstein
West Virginia University Chatham University
matt.pascal @math.wvu.edu jbernstein@chatham.edu

In the spirit of a series of studies by Selden and other collaborators (Selden, Mason & Selden,
1989, Selden, Selden & Mason, 1994, and Selden, Selden, Hauk & Mason, 2000), an analysis of
student performance on a simple trigonometry problem shows it to be void of predictability and
trends. We extend the analysis given by Selden et al to explain the phenomenon.

Introduction

In traditional pre-calculus courses like trigonometry and algebra, teachers must assess their
students and, in doing so, it may be in their standard practice to develop problems that
incorporate a variety of conceptual tasks. The number and the type of conceptual tasks involved
in solving a problem will generally contribute to its perceived difficulty, and the most difficult
problems will involve a number of these tasks which would be considered to be abstract. More
abstract problems might come later in a course (and course of study), whereas those with fewer,
less abstract concepts would come on assessments earlier in these courses. In Math 128:
Trigonometry at West Virginia University, four regular midterm examinations are given
throughout the term. The problems on the first examination largely review agebraic concepts
and test the basic, simple concepts of trigonometry. By the second examination, students have
been exposed to the unit circle— as we refer to it, the sines and cosines of the special angles
between 0 and 2x radians — and have been using this information in problems for several weeks.

By the time of the second examination of the semester, the unit circle information is used
regularly in lecture, appears regularly on the daily homework assignments, is referred to
regularly in laboratory experiences, and, as expected, is embedded into many of the examination
problems. Because of thislevel of exposure to unit circle information, performance on a problem
that involves nothing more than recalling the basi ¢ tenets of unit circle trigonometry, combined
with simple algebraic simplification, would be expected to be quite good. Contrary to this
expectation, data collected from severa terms of math 128 that includes more than 4500 attempts
at one such problem shows uniformly poor performance. At WV U, we refer to this problem as
the “killer problem”. This report begins an attempt to explain the killer problem phenomenon.

History

By 2006, math 128 at WV U had become deeply entrenched within the framework of a subset
of the mathematics department known internally as the Institute of Math Learning (IML). The
mission of the IML incorporates many components with regard to teaching, research and service,
but on the surface, students of an IML course can expect to see amyriad of technological
advances like appl et-based interactive labs, online assessments, and the electronic personal
response system, all of which are intended to supplement the teaching of coursesin large lectures.
In the case of math 128, every one of these technologies had aready been in place, and so the
maximum enrollment is generally equal to the capacity of the auditorium in which the courseis
held. In recent semesters that capacity has been on the order of 225 students.

With online assessments comes the vast archival of assessment data, and trends typically
noted and perhaps discussed in classroom building hallways can be explored and analyzed. Such
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isthe case with the killer problem, an online problem embedded in the bank of examination
problems used over several years. The killer problem involves little actual trigonometry and
some basic algebraic ssimplification and so it is often expected that students will do generaly
well onit. Y et, the problem has produced uniformly poor results from students, hence its
moniker and reputation. In every case between the fall semester of 2007 and the fall semester of
2009, the classes of students exposed to their first attempt at the killer problem earned less than
68% of the total points available to them, and this statistic is routinely on the order of 30% to
50%. In atally of al 4583 online attempts at the killer problem over this period, only 53.2% of
the points available to students were awarded.

Solving the killer problem involves an understanding of basic unit circle information and
algebraic manipulation but the skills and knowledge required to solve it are essential. Because of
this and the generally dismal results, the problem deserves to be examined. Is the killer problem
phenomenon an issue that students have with algebra? Is the issue trigonometry? Or, istherea
deeper explanation?

TheKiller Problem

Because of its poor results, the killer problem isregularly assigned to several course
examinations in any given term. It made twenty-three appearances on exams between the fall
2007 and fall 2009 terms. The counter-intuitive results have stood the test of time and variability.
Four different instructors have taught the course at various timesin this period in 6—and 15—
week terms with anumber of different textbooks using severa formats of online and traditional
homework platforms. Aside from one changein format in the killer problem itself which we
discuss later, the correct solution to the killer problem has consistently proved to be elusive to
students.

The actual title of the killer problem is Linear Combination of Trigs, and at least five
versions of the problem exist in the bank of online assessment problems. For the sake of efficient
communication, we focus on one of those versions, which looks like this:

Smplify4sin& —8sinZ so that it is expressed in the form A+ B+y/C, where A, B, and C
are all integers (NO DECIMALYS).

What isA?

What isB?

WhatisC?

The format of the killer problem is what makesit unique. If the original author (who is
unknown) of the problem was interested in knowing only whether a student can use a calcul ator
to compute4Sin4- —8sinZ | then the problem would simply ask, “What is 4Sin#-—-8sinZ 7" In
that case, asingle solution field would have been sufficient and students would typein a
numerical solution. Thisis because a student equipped with a calculator in radian measure mode
can type in the expression 4* sin(2* pi/3)-8* sin(pi/6) and get the decimal approximation, —0.5359.
Instead, the killer problem’ s unorthodox method of reporting its solution eliminates the
usefulness of al but afew advanced calculators without prohibiting their use for the assessment

at large. Because of the format of the problem, a student must know thatsin4- = @ , that

Sin% = %and then be able to algebraically simplify the expression, arriving ultimately at2\/§ -4,
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If the problem had asked for a single numerical solution, then students with very little
understanding at all can arrive at the correct solution. The killer problem intends to assess
knowledge beyond this.

Tucker (1996) reports that calculators had been widely used in introductory undergraduate
mathematics courses by the mid 1990’ s. Regarding precal culus courses such as trigonometry,
Quesada & Maxwell (1994) confirmed their merit by showing that students who were taught
precal culus with the use of a graphing calculator scored higher on a comprehensive final exam
than their counterparts who did not. Thus, the IML’s mission promotes the role of technology
and, in particular, the use of graphing calculators. Still, many are concerned that technology can
interfere with conceptual understanding and so this tactic of eliminating the usefulness of the
calculator isimplemented often in math 128 to span the dichotomy.

Thekiller problem asks for three numbers and so partial credit is given for any correct value
reported. For example, in the version given above, the solutionsare A= —-4,B=2,and C = 3,
and so each of these values is worth one-third of the number of points allotted for the killer
problem on the examination on which it occurs. For example, if the problem was given aweight
of 12 points for an examination, then a student giving the solution A= 4, B = 2, and C = 3 would
receive 8 points for getting B and C correct. Partial credit for each blank in the problem is binary;
students are either given the points for avalue or they are not.

Data and Evolution

The data below show the success rates for students on the killer problem in the terms for
which datais available. For any particular term, the number in the column on the right gives the
portion of the total points awarded for al attempts made at the problem (the number of points
awarded for the killer problem varies by exam and term, and so portions must be used for
comparisons). The statistic in the last column corresponds to two different point distributions. As
an example, if al students got one of the three numbersin the killer problem correct and two
incorrect, the percentage would be 33.3%. Alternatively, if one-third of the students got full
credit and two-thirds of the students got no credit at al, the percentage in this case would also be
33.3%. Obviously both distributions are at work in these data.

In Table 1, amajor change in the killer problem goes unnoticed. Because of the poor student
performance, a hand-holding measure was introduced in the spring 2009 term. In the original
version of the problem, many students failed to enter integers and instead entered non-integer
numbers like 3.5 or irrational or nonsensical responses such as the syntactical “sqrt(3)” and so it
appeared that failing to accurately follow instructions may have been responsible for a portion of
the incorrect responses. This happened despite clear language in the problem specifying that all
values should be integers. Those responses are clearly wrong and indicate meaningful
information to the instructor, but in order to assist our students, the problem was reformatted to
eliminate this type of incorrect response. The actual problem did not change, but the response
format did. Instead of three blanks in which students could type anything, three drop-down
menus appeared so that the student was presented with a limited number of options, from which
they were to choose A, B, and C. Now, the problem looked like this:

4sinZ —8sinZ = A+ B+/C . SHect A, B and C from the menus below.

Al [
Bl [
Cl [
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Table 1. Descriptive Statistics on the Killer Problem, 2007 — 2009
Average of total

Term Examination N points awarded on
the Killer Problem
Fall 2007 Exam 2 318 30.1%
Fall 2007 Final Exam 282 60.5%
Spring 2008 Exam 2 294 29.4%
Spring 2008 Final Exam 270 54.1%
Summer 2008 — | Exam 2 41 30.1%
Summer 2008 — | Final Exam 37 71.2%
Summer 2008 — | Exam 2 45 54.8%
Summer 2008 — 1 Final Exam 44 53.0%
Fall 2008 Exam 2 318 38.9%
Fall 2008 Final Exam 292 44.1%
Spring 2009 Exam 1 282" 66.8%
Spring 2009 Exam 2 420 36.0%
Spring 2009 Final Exam 403 74.7%
Summer 2009 — | Exam 2 108~ 67.6%
Summer 2009 — | Exam 3 54 59.3%
Summer 2009 — | Final Exam 54 92.0%
Summer 2009 — I Exam 2 80" 51.25%
Summer 2009 — 1| Exam 3 40 55.00%
Summer 2009 — I Final Exam 40 84.17%
Fall 2009 Exam 3 402 49.8%
Fall 2009 Exam 4 381 6.12%
Fall 2009 Final Exam 378 78.8%

F.I.T.B. = “Fill in the blank”
For Exam 1 in the Spring 2009 term, an ambiguity was discovered in a
new version of the problem and so data for that version has been removed

for analysis.

" In both summer 2009 terms, two versions appeared on each student’s

Exam 2 assessment.

The new format of the killer problem gave the same drop-down menu options for each of A,

B, and C: the integers from -10 to 10. By doing this, students were now at least forced to follow
the instructions of the problem. Integers were the only options, and this new format was scribed
in time for spring 2009 examinations.

Pigeonholed by the drop-down menus, students did the best ever on an initial attempt (67.6%)
at the newly formatted killer problem only to do dramatically worse (36.0%) on the next attempt
in the same semester. From there, the killer problem continued to live up to its name with poor
results. The chart below shows the success rates reported in table 1 with a vertical line separating
the fill-in-the-blank format and the new drop-down format. It is clear that the new format had
little, if any, effect.
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The Killer Problem, Fall 2007 - Fall 2009
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Motivation

In their famous series of studies, Selden et a studied the phenomenon of non-routine
problems in calculus courses and came to the conclusion that students who pass cal culus (those
who earned the grades A, B, or C) are generally unable to solve these problems (Selden, Mason
& Selden, 1989, Selden, Selden & Mason, 1994, and Selden, Selden, Hauk & Mason, 2000). A
non-routine problem, as defined by the researchers, is defined to be one “for which they had not
been taught a method of solution” (1994, p. 19).

A student’sfirst attempt at the killer problem fits the definition the Selden studies use for
non-routine problem because the problem does not appear on any prior assessments, is not taught
in class, and had not been attempted by the student until that time. There are several reasons that
it is not seen prior to the examination on which it first appears. First, the unorthodox format is
not necessary outside an electronic testing environment. Secondly, there are too many different
types of problemsto cover them all asin-class examples. After the killer problem’s first
appearance, there are typically questions about it by students which then may lead to an in-class
algorithmic explanation, disqualifying latter attempts from fitting Selden’ s definition of non-
routine. For this reason, intuition borne out of the Selden studies would indicate that the results
seen on the first attempt of the killer problem should in fact be expected. And, asit turns out, this
intuition is accurate.

To see this more convincingly, it is helpful to separate the first attempts at the killer problem
from latter attempts. Success rates, even at their best, are lower than one might expect given the
simple nature of the problem. This view does, however, illuminate that some increase in student
performance occurred after the change in format, but the overall successrateis still under 70% in
all cases.

The Killer Problem, First Attempts, Fall 2007 - Spring 2009
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A Deeper Look
A few basic questions are essential to understanding students' difficulties when confronted

with the killer problem or any non-routine problem. Primarily, it isimportant to know whether
students are fluent with the arithmetic and algebrai c operations underlying the simplification of

(1) 4sin?--8sin%.
Would students have faired similarly well if the problem examined here had asked for A, B, and
Cin

() 4(2)-8()= A+BVC?
One would imagine that a majority of studentsin trigonometry can correctly solve (2) because
they either passed or were placed above algebra. Secondarily, isit that students' difficulties with
the killer problem pertain to knowledge of trigonometry? Mathematically, the only difference

between the expressionsin (1) and (2) is the conversion of S n%” and Sin% to their exact values,
and so a natural step isto assess a specific sample group of students, asking them to simplify
4(£)-8(2) and to transform S N2 and SiNZ in separate problems. Student performance upon

these tasks may expose deficiencies in Quantitative Knowledge (Gq) (Horn & Noll, 1997,
McGrew, 2005, 2009) related to trigonometry or in algebra. The subset of students of specific
interest to thisinquiry are those who possess the Gq to simplify the algebraic expression and the
ability to transform the transcendental expressions but who fail to solve thekiller problemin its
initial form, regardless of those abilities.

To be clear, solving (1) demands that students first recognize the necessity of performing two
simple transformations using unit circle information and then to make those transformations,

which are sin% =2 andsinZ=1. (Notethat forSiN%", students are likely to implement a two-
step process by first computing the sine of the reference angle and then assessing its sign —
positive or negative.) Thus, the difference between solving 4(@)— 8(3) and solving

4sin%-8sinZ (from amathematical perspective) is solely confined to the concepts of the unit

circle and leads to an important conclusion about the solver’s trigonometric knowledge.

If resolving (1) is not a matter of Gq pertaining to the trigonometric or algebraic functions,
then is the issue not one of mathematics at al? The deficit these students are manifesting may
not be related to their core understanding of the basic principles of unit circle trigonometry.
Rather, a more plausible explanation in the face of any accumulated evidence is that the observed
functional deficiency is related to students Quantitative Reasoning (Gr) ability rather than Gq. Gr
isasub-domain of Fluid Reasoning (Gf) (Horn & Noll, 1997; McGrew, 2005, 2009). Fluid
Reasoning is a higher order cognitive function referring to the ability to execute deductive and
inductive thinking. Reasoning inductively means employing strategies that work from the part to
the whole, from the specific to the general, or from the individual instance to the universa
principle. Reasoning deductively is the opposite; conclusions are derived from the general or
universal to the specific.

Based upon the understandings of the cognitive processes at play, a reasonable explanation of
students’ failure to resolve (1) isthat the Gr process breakdown occursin relation to the
inductive rather than deductive aspects of reasoning. When students are confronted with parts of
this multi-step problem they are unable to reason from the parts to grasp the universal principle.

Brosnan, P., Erchick, D. B., & Flevares, L. (Eds.). (2010). Proceedings of the 32™ annual meeting of the North
American Chapter of the International Group for the Psychology of Mathematics Education. Columbus, OH: The
Ohio Sate University.



Chapter 1: Advanced Mathematical Thinking Volume VI, Page 150

Thisinductive failure requires additional explanation. As discussed above, the targeted defect
isunlikely to be one of Gq. In other words, if cued we imagine these students will be capabl e of
correctly recalling from their memory stores (Glr) (Horn & Noll, 1997; McGrew, 2005, 2009)
the appropriate algorithm to execute a transformation of atrigonometric expression (in Piagetian
(1928) terms the Gq could be thought of as a scheme or in Selden’ s terminology a problem
situation image). In genera this seems to be the case based upon examination problems that
specifically ask problemslike sinZ = +¥X andsinZ = +% . The components that comprise the
ability to make an inductive leap include

1. therecognition of the need to apply a specific element of Gq (the correct scheme),
2. fluent recall of the Gqg, and
3. the Gqitself.

So the question remains, what is involved in recognizing the need to apply a specific Gq
strategy? Or to restate the question, how isit that from the parts of (1) a student could perceive
the expression in a context whereby the process of solving the killer problem is evident? To
apprehend that a particular solution avenue is correct necessitates a glimpse of the big picture (an
inductive process). The successful student executes this inductive leap perhaps because they can
read the meaning in visual-spatial terms; they can quite literally see what is being asked.

The implied requisite cognitive abilities then include inductive Quantitative Reasoning (Gr),
visua-spatial thinking (Gv), and long term memory (Glr). Though it may seem counter intuitive
we hypothesize that working memory (Gsm) contributes little to no variance predicting the
difference between those students who can and those who cannot solve the killer problem.

In away, the killer problem in its simplicity presents a scenario that in the future can be more
easily targeted by the assessment of cognitive functions than those used by Selden et al. Despite
subtle differences, the fact remains that the killer problem presents to students a basic problem
that they cannot reliably solve.

We conjecture that the analysis taken by Selden is robust enough to be applicable to abasic
problem such as the killer problem but that the cognitive explanation offered by Selden et al
should be extended. The problem situation image is defined in the third Selden report (2000)
with the following statement. “When a problem situation is recognized, most of the featuresin its
image do not immediately come to mind. i.e. into consciousness. Rather they seem to be partly
activated” (p. 145). Our reading of the idea that “the featuresin itsimage do not immediately
come to mind... they seemto be partly activated” is consistent with our suggestion that students
failure to solve (1) isafailure of inductive Gr. The similarities between our account of the
cognitive process involved and Selden’ s account pertain to the inability of students to appreciate
the problem’ s gestalt though the differences are related to our various understandings of the
cognitive origin of that failure. Selden seems to understand the students' deficienciesin recall of
long term memory stores by suggesting that students' difficulties are attributable to an inability
to sufficiently activate retrieval of Gg. Rather than a problem with long term memory, we
suggest that neither the language of Baddeley’s (1996) central executive nor of Norman and
Shallice’'s (1986) Supervisory Attentional System accurately portrays the cognitive failure at
work for these students. Theissuein our view is not ssmply a problem of retrieval of aGq
scheme from long term memory, but rather a problem of interpreting and understand the
semantic meaning of the expression (1) in a context whereby the process of solving the killer
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problem is conducted in avisual-spatial framework so asto trigger or cue (activate) retrieval of
the appropriate Gq scheme.

As in non-routine problems, the killer problem strays from a student’ s knowledge base due to
its format and the fact that alinear combination of basic trigonometric expressions may not have
been introduced before. Continuing with Selden’s argument, it is reasonabl e to suggest that
students reach into this knowledge base for tentative solution starts, or “tentative general ideas
for beginning the process of finding a solution” (2000, p. 145). Only an analysis of the work
done in student attempts of the killer problem can confirm this suggestion. Unfortunately,
because the killer problem is completed online, no archived data exists aside from the response
given by each student. Future research might incorporate hard copy work done in attempting the
killer problem, perhaps along with interview protocols to more specificaly retrieve information.

To articulate a summary, we offer asimplifying analogy. Selden’s analysis suggests that
students are for some reason or another unable to access the “folder” that contains the knowledge
necessary to solve the killer problem, going to afiling cabinet of familiar mathematical facts and
algorithms and rifling through them. We suggest that the students do not initially go to the filing
cabinet; they look at the problem for something to tell them which folder to go to. The students
are missing the appropriate cues that tell them, "it'sin thisfolder."

One important difference between the killer problem and Selden’ s non-routine problems lies
in the subsequent attempts that were made by the students. If a problem is no longer non-routine
after it has been seen by a student, then the consistently poor performance on later attempts of
the killer problem remains unexplained. Future analysis may discern these attempts, find trends,
and uncover why, after repeated attempts, students cannot solve the killer problem.
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AN EXPLORATION OF FACTORS THAT INFLUENCE STUDENT ACHIEVEMENT
IN DIFFERENTIAL EQUATIONS

Jennifer Czocher
The Ohio State University
czocher.1@osu.edu

This study is part of alarger curriculum comparison between two versions of a service course
for engineering and physical science majors on differential equations (Baker, n.d. Boyce &
DiPrima, 2009). The research questions stem from attempts to revise differential equations
courses, and service courses in general, to be more relevant to non-math majors and to bein
better alignment with the expectations of client departments. Thus, this investigation was
oriented toward discovering what nonmajor students and faculty consider relevant. Of particular
interest is whether the students, and their engineering professors perceive the content of their
mathematics classes as related to the content in their chosen majors (Schoenfeld, 1989): (1) How
do students in these courses perceive the role of mathematics, and the utility of differential
equationsin particular, in their majors? (2) How do engineering faculty characterize their own
goalsfor acourse on differential equations?

The study involved two lectures of engineering and physical science mgors. The most
common majors enrolled in the courses were Mechanical Engineering and Electrical/Computer
Engineering and thus chosen as the target majors. Engineering faculty were invited to participate
in semi-structured interviews to elicit their views the role of differential equationsin their
classrooms. The following data were collected: (1) a Likert-type questionnaire administered to
ascertain student attitudes toward the utility of differential equations, and (2) interviews
conducted with engineering faculty to assess the needs of the client departments and their
expectations for the mathematics instruction of their students (Bingolbali & Monaghan, 2008).
Questionnaires were administered to students at the beginning of the course and interviews with
engineering faculty were conducted throughout the quarter. The questionnaires were analyzed
using quantitative methods while the faculty interview transcripts were analyzed through the
method of constant comparison.
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CREATING MEANING FOR VECTOR EQUATIONS: SYMBOLIZING IN A
CLASSROOM COMMUNITY OF PRACTICE

George Franklin Sweeney
San Diego State University
georgefsweeney@gmail.com

Symbolizing in mathematics is an important part of learning to do mathematics and isan
important focus of analysis for mathematics education researchers (Arcavi, 1994; Duval, 2008).
In the context of linear algebra, researchers have analyzed how students think about various
symbolic representations involved in understanding systems of linear equations and vector
equations (Sierpinska, 2001; Stewart & Thomas, 2007). These studies have focused on how
individual students interpret the formal symbolic systems of linear agebra. Extending this work
on how individuals construe meaning for symbolic systems, | focus on how a classroom
community negotiates meaning for the symbolic forms of vectors and vector equations. As
emphasized by Wenger (1998) the production of knowledge is a process of developing a
collective experience of an object of scrutiny. In this particular case, the objects of scrutiny are
vectors and vector equations. The presentation will discuss data collected from arecently
completed classroom teaching experiment (Cobb, 2000) in linear algebra. Specifically, | focus
on how the classroom community interpreted vectors and vector equations in relation to the
central ideas of span, linear dependence /independence, and eigen-theory. In addition, | examine
how the classroom negotiated between the geometric representations, systems of equations, and
equationsin vector form. The analysis considers verbal argumentation, gesture, and symbolizing
that are prevaent in the classroom community. The significance of thiswork isthat it
illuminates the diversity of meanings that can be produced by a classroom community.
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GUIDING STUDENTSTO AN UNDERSTANDING OF
THE FORMAL DEFINITION OF LIMIT

Beth Corey Kenneth W. Smith
Sam Houston State University Sam Houston State University
blcO06@shsu.edu kenwsmith54@gmail.com

While limits are foundational to the central concepts of calculus, our experiences with
students as well as educational research abound with examples of students' aternative
conceptions about limits and infinity. Furthermore, most students struggle to make sense of the
formal e-N definition of the limit of a sequence. For the purposes of this study, we designed a
series of lessons and a collection of dynamic sketches using The Geometer’ s Sketchpad which
we hoped would enable Calculus | students to value the formal limit concept and to construct the
formal syY mbolic definition on their own. Rather than presenting students with the definition of
limit at the outset, we used Heid' s (1988) approach of allowing concepts to develop first then
attaching the symbolic definitions to the experiences of the students' investigations. The lessons
began by having students brainstorm about the colloquia meanings of the word “limit.” Students
then investigated dynamic sketches of eight carefully-chosen sequences, using their intuitive
ideas to decide if each sequence appeared to have alimit or not. After an in-depth class
discussion, students were asked to evaluate the adequacy of possible informal definitions for the
limit of a sequence. As students played the e-N game using dynamic sketches of a variety of
sequences, students attempted expressing the formal limit concept using both their own words
and using formal symbolism.

We examined 17 college-level Calculus| students' initia intuitive conceptions of limit and
then investigated how their conceptions changed over the course of the lessons. Data were
collected through a pre-test evaluating students’ initial understanding of limits, students’ written
work, recordings of class discussion and individual interviews with six specific students, and a
post-test. Analysis was conducted within the framework of conceptual change theory (Smith et
a., 1993). Studentsinitialy held alternative conceptions of limit cited in the literature, such as
the limit as unreachabl e conception, the limit as boundary conception, the notion that a constant
sequence does not have alimit, or the idea that a sequence has alast term. Interestingly, intuitive
ideas about cluster points and subsequences also arose. As the study progressed, students' mental
repertoire of sequences enlarged, thus alowing students to recognize the unproductiveness of
certain conceptions in certain contexts. By the end of the study, many students could successfully
explain the e-N game in their own words, could express the formal concept symbolically, and
could apply the formal limit concept graphically to conjecture if a sequence had alimit.
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INDIVIDUAL AND COLLECTIVE ANALYSESOF THE GENESIS OF STUDENT
REASONING REGARDING THE INVERTIBLE MATRIX THEOREM

Megan Wawro
San Diego State University
meganski 110@hotmail.com

This poster presentation will be a summary of my dissertation, which has two aspects:

(a) research into the learning and teaching of linear algebra, and (b) research into analyzing the
development of mathematical meaning for both students and the classroom over time.
Specificaly, | analyzed how students—both individually and collectivel y—reasoned about and
with the Invertible Matrix Theorem (IMT) over time. The IMT consists of over seventeen
equivaent statements for n x n matrices, and these statements encapsul ate the fundamental ideas
of linear algebrathat are developed over the duration of the course. Of methodological interest, |
developed away to coordinate the anal ytical tools of adjacency matrices and Toulmin’s (1969)
model of argumentation at given instances during the semester as well as over time. Synthesis
and elaboration of these analyses was facilitated by the notion of microgenetic and ontogenetic
anaysis (Saxe, 2002) and an approach for documenting classroom mathematics practices
(Rasmussen & Stephan, 2008). Finally, a coordination of both the microgenetic and ontogenetic
progressions documented by adjacency matrices and Toulmin was carried out in order to
illuminate the strengths and limitations of utilizing both of these analytical toolsin parallel on
the given data set.

The datafor this study came from a semester-long classroom teaching experiment conducted
in an inquiry-oriented linear algebra course at alarge university in the southwestern United
States. The main data sources were video and transcript of whole class and small group
discussion, aswell asindividual interviews with the five focus students for the individual
component. My analysis revealed rich depictions of the ways in which students reasoned about
and with the IMT that was not apparent through use of only one of the analytical tools.
Adjacency matrices proved an effective ana ytical tool on arguments consisting of multiple
connections that were for explanation, whereas Toulmin models proved illuminating for
arguments with complex structure for the purposes of conviction. These and other results, as well
as my methodological approach, will be discussed in the poster presentation.
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REAL NUMBERSAND MATHEMATICAL THINKING

Robert Michael Baldwin
VirginiaTech
rbaldwin@vt.edu

Although it is universally agreed upon that a solid understanding of rational numbersis
necessary for quantitative literacy (QL), little attention has been paid to the continuum both in
school mathematics and in the research. Although, irrational numbers may not be necessary for
the advancement of QL directly, amore complete understanding of the real numbersisimportant
to the extent that incomplete knowledge of same may have some impact on the learners
understanding of the rational numbers. The goal of this study istherefore, to explore pre-service
teacher understanding and or misunderstanding of the real numbers. The motivation for this
study may be attributed to work by Fischbein, Jehiam and Cohen (1995), involving the
exploration of learner formal knowledge of the real numbers, real number hierarchy, definitions,
and the location of various real numbers relative to the real line. With these conceptsin mind a
guestionnaire was devel oped and administered to 26 undergraduate pre-service math teachers at
alarge university situated in the eastern United States. Drawing from this questionnaire, the
focus was on four items:

1. Circleall theirrational numbersin the given set of numbers:

1 1 /2
0, V5, 32)/7, 0.123152687943, L 3i+5 13, =/=
2 16 2/ 3

2. lIrrational numbers are a subset of the rational numbers.
3. Rational numbers are a subset of the irrational numbers.
4. Can the exact location of V7 be found on the real number line?

The findings of this study demonstrate that participants had either incompl ete knowledge,
uncertainty, or both, relative to the real numbers. For example, with respect to item 1, 88% of the
sample correctly identified /5 asirrational but only 46% circled only V5. 54% of the sample
identified rationals asirrational or mistook 3i + 5 as being irrational. With respect to item 4, 46%
of the sample believed that it was not possible to find the exact location of V7 on the real number
line.
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THE EFFECTS OF A NON-TRADITIONAL TEACHING METHOD OF THE CHAIN
RULE ON MATHEMATICAL ACHIEVEMENT

Emily A. Price
Ohio University
ep311508@ohio.edu

In the wake of calculus reform, a number of interactive approaches have been proposed to
better cal culus teaching generally, and the chain rule in particular. Some use computer algebra
systems and have found that students scored higher on tests of conceptua knowledge as a result
(Palmiter, 1991). Students difficulties with the chain rule are symptomatic of a broader difficulty
with functions, evidenced by Clark et a.’s (1997) finding that poor understanding of function
compositions inhibits understanding of the chain rule, and Vinner and Tall’ s (2004) description
of how conceptual difficulties with topics such as the chain rule arise when a student’ s concept
image and/or concept definition are not the same as the formal mathematical definition.

The present study used a quasi-experimental approach with two freshman-level college
calculus classrooms to explore the question: does a self-guided activity approach to teaching the
chain rule increase student knowledge when compared to atraditional lecture approach?

The 120 participants were primarily engineering majors who were taught by the same
instructor. The control group received atraditional teaching method grounded in a composition-
of-functions approach while the treatment group engaged in a self-guided activity during which
the instructor monitored progress, answered questions, and used the terms “inside” and “ outside
functions” in place of “composition” vocabulary. Students in the treatment group graphed
functions and their derivatives on a handheld calculator while answering questions designed to
probe the relationship between the two. The operating theory guiding the activity was that
technology could promote conceptual reflection beyond procedural mimicry.

Pre- and post-test item comparisons showed no statistically significant gains in student
knowledge resulting from the treatment. However, the treatment produced modest improvements
in student understanding of the chain rule. An unanticipated outcome was the instructor’s
satisfaction with the treatment activity and proposal to use the same activity in future classes.
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TRIGONOMETRY AND DYNAMIC SITUATIONS: GESTURES, GRAPHS AND CO-
VARIANT RELATIONSHIPS

George Sweeney
San Diego State University
georgefsweeney@gmail.com

A small group teaching experiment was conducted using an applet of a double Ferris-whesl.
Three groups, with two students in each group, were videotaped solving a series of problems
intended to help them symbolize the vertical movement versus time of arider on the whesl.
These students were part of a class for prospective teachers that examined topics in high school
mathematics. Each set of problem-solving sessions lasted approximately 2.5 hours and was
spread over two sessions. In this study, three episodes from two students’, Andrew and Oscar’s,
interview demonstrate how these students made sense of the problem situation and the
symbolization, and in turn used the symbolization to clarify and €l ucidate the dynamic system.

The theoretical perspective that this research takes extends from Freudenthal’ s assertion that
mathematics is a human activity. Freudenthal calls this activity mathematizing, which involves
transforming realistic problems into mathematical symbols and then utilizing those symbolsin
order to derive greater understanding of the problem and the mathematics involved. Specificaly,
horizontal mathematizing is the development of informal ways of speaking, symbolizing and
reasoning that students use in order to make sense of problem situations (Gravemeijer, 1999).

The analysis demonstrates how the two students made sense of the dynamic system through a
process of horizontal mathematizing. Consistent with Rasmussen, et a. (2005) the students used
their previous knowledge of trigonometry and algebra to symbolize the height versus time of the
rider. Intheir creation of agraph of the height versus time of the rider on the double Ferris-
wheel, they coordinated their gesturing of the movement of the wheel with their drawing of the
graph. Thisled to a discontinuity between how they perceived the movement of the wheels (as
each having constant vel ocity) with the inflection points on the graph. This argument cameto a
head in their symbolization of the angular velocity of each of the separate wheels. Asthey began
to interpret their symbolization and make sense of the various co-varying quantities that had been
symbolized, the students recruited the use of their gestures and body movement in conjunction
with their argumentation in order to clarify how their symbolic function and graph fit their
perception of the movement of the rider on the whesl.
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RE-THINKING ALGEBRA IN MIDDLE GRADES: MATHEMATICAL THINKING VS.
MATHEMATICAL TOOLS
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Pingping Zhang Ravi Somayajulu
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Using a mathematical problem solving test, we documented approaches used by thirty 8" grade
students who had either completed or were enrolled in an Algebra | course at the time of data
collection. In solving the problems, students could use and show their knowledge of linear
eguations and graphing. These topics were included since their mastery is considered the core
goal of Algebra | curriculum. Resultsindicated that only 3 of the participants used algebraic
techniques to solve problems. Prominent problem solving heuristics used included guess and
check and setting tables. When children attempted to use algebra to solve problems they were
not successful. Justifying and explaining results was problematic for all participants.

Introduction

The movement towards requiring an algebra course in the middle grades is widespread.
More and more school districts across the country, particularly in urban communities, are now
offering Algebrato 7" and 8" gradersin hopes to increase enrollment in more advanced
mathematics courses in high school. As aresult of this push, in the past decade the number of
students taking algebra and more advanced courses in 8" grade has increased by 30% (Loveless,
2009). Anincreasein the size of population taking Algebra however, can't be interpreted as
success in preparation (Smith, 1996). Opponents of the “pushing algebra down” movement have
argued that while honorable in intention this push may not lead to desired results. Some
empirical dataindicate that these concerns are legitimate (Loveless, 2009). Political push for
requiring Algebrain middle grades persists regardless, appealing it to be a civil right (Moses,
1996). Debates surrounding what middle school children may or may not gain, conceptually,
from aformal coursein Algebraremain prominent in the field (Silver, 2002). Many maintain
that middle grades should be treated as a bridge between the informal and formal worlds of
mathematics (Steen, 1996); hence study of symbolic Algebra should be delayed. Instead,
students are better served if middle grades curriculum is focused on Algebra as multiple
representations (Kaput, 1989) or ways in which it may be used to model real life contexts
(NCTM, 2000). While aformal course focused on symbolic Algebra might be beneficial to a
handful of students, timeis better invested if middle grades children areimmersed in activities
that build their mathematical thinking and problem solving skills (Silver, 1997).

The purpose of the study we report here was twofold. First, we aimed to document how 8"
grade children who had either completed or enrolled in aformal course in Algebral would go
about solving problems that utilized algebraic skills and techniques. Second, we wished to
identify the problem solving heuristics that the participants commonly used. This study is a part
of alongitudinal research project in which we trace devel opment of mathematical thinking of
approximately 80 students from grades 7 through 9 as the result of exposure to an after school

Brosnan, P., Erchick, D. B., & Flevares, L. (Eds.). (2010). Proceedings of the 32™ annual meeting of the North
American Chapter of the International Group for the Psychology of Mathematics Education. Columbus, OH: The
Ohio Sate University.


mailto:Manouchehri.1@osu.edu�
mailto:gilchrist.42@buckeyemail.osu.edu�
mailto:zhang.726@buckeyemail.osu.edu�

Chapter 2: Algebraic Thinking and Reasoning Volumn VI, Page 163

enrichment program. The data used for analysisin this paper was collected at the beginning of
year | of the project and prior to program implementation.

Context

Algebrafor al children wasinitiated in 1994 and motivated by a number of educational,
political and social forces (Steen, 1999). The worthwhile goa attached to the agendais allowing
access to advanced mathematics courses in high school and ultimately increasing participation in
STEM areas. National dataindicate that the push for early algebrahas in fact been successful.
Not only more children are taking Algebrain Middle Grades, but also more students are taking
courses in calculus and geometry in high schools. While the reported statistics speak positively
to the enrollment of children in mathematics courses, a careful examination of students
performance on achievement exams paints a grim picture of the conceptual gains resulting from
this movement (Loveless, 2009). For instance, results of NAEP indicated that alarge percentage
of these students who scored in the lowest 10% of the eighth grade exam had either completed a
course in Algebraor were enrolled in one at the time of testing. Further, many of the students
who took Algebraor higher remairkintellectually and conceptually at alow achievement level.
Indeed, Loveless (2009) found that an increasing number of lowest-performing students were
those that were pushed into algebrain 8" grade The results of the 2005 NAEP scores of different
student groups highlighted that the low performing eighth graders in advanced classes scored
even below the average fourth grade students. Additionally, among the lowest-scoring 10% of
children in the sample, nearly 29% were taking advanced math, showed skillstypical of second-
graders. According to Loveless (2009) Misplaced Students need to be helped to first develop
knowledge needed for entry into advanced and abstract mathematical work. He concluded that
delaying a course in Algebra until basis arithmetic skills are mastered might be necessary.
Supporting or challenging Loveless' conclusion is not of particular concern to our inquiry;
neither isit central to the discourse that concerns what mathematics might be of value to children
in middle grades or what students might gain from aformal coursein Algebra. Several questions
persist: Would courses in Algebrathen be beneficia if students have indeed mastered the basic
computational skills? What do middle grade children gain from acourse in Algebral after
completing the course with honorable grades and suitable ranking on the standardized
achievement exams? Would these students be able to access their knowledge of algebra when
solving problems? The need to address these questions motivated our study.

In this work, we hoped to document how a group of successful 8" graders performed on
problem solving tasks that drew on central concepts from Algebra. In particular, we sought to
seek evidence of whether efficiency of algebraic techniques was internalized by the participants
as demonstrated in their work. Our goa was not to record gaps in computational skills but to
identify ways in which they solved problems.

Setting

The study reported hereis a part of alongitudinal research project in which we trace
development of mathematical thinking and problem solving of approximately 80 middle grades
children as the result of exposure to an after school mathematics enrichment program.
Participants are of minority heritage and come from various urban schools and communities.
The enrichment program provides opportunities for students to work on authentic tasks and
explorations using technology and inquiry methods. The current study was conducted as an
effort to document algebraic and problem solving skills of 8" graders at the time of their entry
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into the enrichment program with the intent to develop appropriate curricular materias that could
enhance their existing knowledge.

Participants and Methods

The sample for the study consisted of 30 8" graders from urban communities. Three of the
participants were of Hispanic, two of Caucasian and all others of African American heritage. All
children had earned or maintaining either aletter Grade of A or A- intheir Algebral class.

At the time of data collection eighteen of the children were enrolled in either aregular or an
Honors Geometry course, having completed an Algebra | coursein 7" grade. Among this group
12 reported having been studying trigonometry in school at the time of data collection. The
remaining six were studying either similarity and congruence criteria (proving triangles being
similar using two column proofs) or constructions using compass and straight edge. The twelve
students enrolled in Algebra | were studying either FOIL method or solving system of linear
equations.

Data collection and analysis

All children initially completed a Personal Inventory Survey (PIS) consisting of 12
guestions. The survey consisted of three parts. On the first part of the survey the children
reported their feeling towards mathematics; and ranked their ability to make sense of
mathematical ideas as well astheir confidence in their ability to think mathematicaly. On the
second part of the survey the children identified mathematical areas in which they felt most and
least successful. The last portion of the survey dicited information from children on two issues:
(1) what they considered to be features of a person with a mathematical mind and; (2) skills they
felt were needed to be successful in mathematics. The last portion of survey asked students to
state what they believed the study of Algebrawas about and its major ideas and concepts.

Tablel. Student performance

Task Geometry (n=18) Algebral (n=12) t-tests

Problem1a M=2 M=2
SD=0 SD=0

1b M=0.88 M=0.86 0.93

SD=0.78 SD=0.69

Problem 2 M=0.44 M=0 0.13*
SD=1

Problem 3 M=1.44 M=1.14 0.46
SD=0.88 SD=0.69

Problem 4 M=1.6 M=1.51
SD=0.41 SD=0.5

Upon completion of PIS, al children were administered atest of mathematical problem
solving consisting of four questions (See table 1). The questions could be solved using a variety
of different approaches and techniques and concerned topics traditionally covered in Algebrall
curriculum. Selection of problems was guided by both theoretical and practical considerations.
On atheoretical level, in line with Schoenfeld' s (1994) characterization of mathematical
thinking, we opted to use tasks that provided opportunities for children to show their competence
in solving novel problems. Additionally, we aimed to use contexts that alowed children to use
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the tools of the trade (Schoenfeld, 1994) with which they felt most comfortable (including
algebraic tools) and using them to solve problems. Further, in line with Cobb et a.’s perspective
(1991) we agreed that the purpose for engaging in problem solving is not just to solve specific
problems using pre-defined tools, but to encourage and €licit the interiorization and
reorganization of the schemes as aresult of the activity. Thetest items were piloted among
children in grades 5 through 7 in the previous to assure various approaches could be used to
solve them. Theitemsdid not restrict students to the use of specific Algebraic tools. Therefore,
they had the potential to elicit “natural” mathematical behaviors on the part of learners. On a
practical level, in choosing specific content pieces to be addressed in the test, we focused on
linear relationships since mastery of thistopic isthe central goal of Algebral curriculum.
Students were asked to solve each of the problems using any method they wished. They were
also asked to explain why they felt their answer was correct in each case.

1. Consider the two pay options: $300 aweek or $7.50 an hour. A) What factors will
affect you're your choice of option to take. (B) Draw a graph that compares the two pay
options, alowing the reader to determine which option might be best for them to take.

2. Water lilies are growing on alake. The water lilies grow rapidly, so that the amount of
water surface covered by lilies doubles every 24 hours. On thefirst day of summer, there
was just one water lily. On the 90" day of summer, the lake was entirely covered. On what
day was the lake half covered?

3. Karim lends $104 to 3 friends. He gives the second one twice as much as the first one
and the third friend 5 times as much as the first one, how much did he give to each friend?
4. In acrowd of horses and people we see 18 heads and 52 legs. How many humans and
how many horses were in the crowd?

Data analysis followed two stages. At thefirst level, students responses were analyzed
along four criteria: (a) Appropriate representation of the problem, (b) appropriate implementation
of procedure for solving the problem, (c) completion of response and, (d) adequacy of
justification. Each question was scored on a scale of 0-2 (0O=No/wrong response; 1= some error;
2=complete response). Descriptive datawas compiled for each item for the group. T-tests were
conducted to see whether significant differences existed among the group according to the course
in which they were enrolled at the time of data collection.

Second, reviewing students' responses to each question, we identified and tallied the
various problem solving heuristics children had used on each problem. Common difficulties
children had seemingly encountered on each task were also recorded. In particular, we noted
where students had used Algebraic techniques for solving problems and whether they were
successful in their effort. Inferences concerning ways in which Algebra could have enhanced or
impeded students problem solving were then made.

Results
The participants' responses were analyzed using both qualitative and quantitative means.
Each response was scored on ascale of 0to 2. A score of 2 was assigned to a response where
correct procedure was used and correct answer was obtained. A score of 1 was assigned to each
response when either an incorrect answer was obtained using a correct procedure, or a correct
answer was reported without showing work. A score of zero was assigned with either no
response was provided or the answer was incorrect or irrelevant to the question. A second
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review of each item was completed with attention focused on the justifications provided on each
response by the participants.

Overall results according to different groups

Table 1 summarizes the performance of children on each task. Note that while some
differences existed among the overall scores of each group on items 1b, 2, and 3, the only
statistically significant difference appeared on the second problem.

Common Approaches to tasks

Graphing. Drawing and interpreting graphs, representing data graphically, and
communicating information and relationships using graphs are among the most important skills
children are expected to develop in Algebra | curriculum (NCTM 2000). In response to part a of
problem 1 all students successfully identified that the number of hours worked per week should
influence the choice of job option, indicating an understanding of dependent and independent
variables (Note that three students also identified location of the job and health benefits as
critical considerations when deciding on ajob). Part b of the problem asked students to illustrate
the relationship between two job options graphically, capturing all necessary data that could
assist an individual make a decision regarding each option. Among 30 students only one student
successfully produced a “Pay vs. Hours Worked” graph for the two options, highlighting “40” as
the point of intersection of the two lines. Other responses produced fell under four different
categories: (1) documentation of instances of pay vs. hours without realization of aneed for
continuity in representation; (2) Separate graphs representing a cumulative count of pay for
different weeks; (3) Two distinct bar graphs representing each of the options using different
scales for amount of pay in each case, and (4) Cumulative “Pay vs Week” graphs of options with
(0,0) as the common point (point of intersection of the two lines).

Wate Lily problem. The water Lilly problem was designed and used so to determine
children’sfacility with the use of working backward heuristic. The problem highlighted the
negative influence of algebra on students’ problem solving process. All but one of the
participants approached solving the task by setting up atable of values, assuming 1 water lily on
day one and doubling the value each time (representing growth in days). Among the 29 who
used this approach, 12 students seemingly stopped computations after approximately 10 levels
and wrote 45 (90/2) asthe answer. Five of the students crossed out the table they had set
initially and reported 89 as the answer. Neither one of these groups students explained how they
had reached the final solution or whether they were certain of the accuracy of their answer. Five
students noted 30 as the answer, stating that 30 was the square root of 90. Only one student had
tried to represent the problem pictorially (See Figure WL1). This approach did not lead to an
answer.
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FigureWL1. Drawingapicture
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Lending Money problem. The lending money problem is arguably the most typical of
problems used in Algebral curriculum. As such, we had hypothesized that a mgjority of the
students would use an agebraic approach for solving the problem. However, only three students
attempted to represent the rel ationships algebraically and only one of them was successful in
establishing aformulato solve the problem. Figure LM 1 isillustrative of the unsuccessful
efforts used by children to solve the problem algebraically. Among the remaining 27 students,
15 first attempted to equalize the amount among the three individual s and used the established
initial value as away to determine the amount of money borrowed by each of the three friends.
These individuals reached incorrect answers by rounding up and rounding down answers (see
Figure LM2) without attention to the context. No student in this group attempted to check the
results for accuracy. Twelve students used a guess and check strategy with an equal number of
students using either systemic (educated first guesses and refining the guess to reach the final
answer) (See Figure LM 3) or un-systemic approach (beginning randomly with one extremely
low or extremely high initial guess) (See Figure LM4). Five of the 6 students who used a
systemic approach for solving the problem answered the question correctly. Among those who
had used an un-systemic guess and check approach, four abandoned the problem after 10
numerical trials. Only one student in this group correctly answered the question.
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Horses and People problem. Figures HP1-3 illustrate the most commonly used problem
solving strategies by children when solving Horses and People problem. Among the thirty
participants only two of them used a gebraic techniques (solving the problem using a system of
linear equations). In case of one of these students, due to an un-noticed arithmetic error, an
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incorrect answer was obtained. Other approaches used by children included: drawing a picture
(n=12)(See Figure HP1), guess and check (n=10) (See Figure HP2), and repeated subtraction
(n=5)(See Figure HP3).

O

Figure HP1. DraWing apicture/Counting
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Figure HP2. Guess and Check Figure HP3. Repeated subtraction
Discussion

Algebrafor All is certainly an honorable educational goal. Requiring Algebrain middle
grades, however, may not be wise if a serious consideration is not given to how and what
children are taught in previous years. Increasing participation in advanced mathematical
coursework isamajor concern to the discipline. However, success in such courses rests on
students’ ability to reason, think mathematically, use mathematical tools to solve problems, and
communicate ideas in writing. Our dataindicate that an early course in Algebra did not appear
to have led to development of either efficient problem solving skills or agebraic approaches
among the participants. Indeed, anong the thirty participants only 3 tried to solve problems
using algebra. More importantly, only one of these individuals was successful in this effort.
Problem solving heuristics used by children included the use of guess and check and setting up
table of values without evidence of thoughtful consideration of efficiency of the methods they
used. Considering that the thirty participantsin this study were from 24 different classroomsin
10 different schools, the results are of particular importance.

Success in advanced mathematical coursework and continued participation in pursuing such
courses beyond high school depend largely on the ability to think mathematically. Thinking
mathematically has more to do with using the tools of trade to solve problems (Schoenfeld,

Brosnan, P., Erchick, D. B., & Flevares, L. (Eds.). (2010). Proceedings of the 32™ annual meeting of the North
American Chapter of the International Group for the Psychology of Mathematics Education. Columbus, OH: The
Ohio Sate University.



Chapter 2: Algebraic Thinking and Reasoning Volumn VI, Page 169

1994) and less with the ability to recall or accumulate these tools. Algebra coursesin their
current form and content share several major shortcomings. First, they focus on mastery of a
narrow range of skills for solving equations and inequalities, graphing, and simplifying
expressions. As such, they remove context from learning and emphasize manipulation of
symbols to the point of hindering the devel opment of algebraic reasoning and mathematical
thinking skills among children. Second, they tend to be prescriptive in terms of what students
are expected to do as they complete exercises and tasks. An early emphasis on Algebra courses
that focuses on mechanical mastery neglect the importance of helping children develop an
understanding of Algebra as alanguage for communication and prediction. Children need to
learn to answer questions about quantitative patterns and relationship and should be provided a
chance to realize how algebra may empower them to engage in such activities. Thereis
consensus that mathematical power consists of the ability to work with mathematics flexibly and
in different contexts. Thereis aso consensus that a mgjor educationa goal for al childrenisto
assist the development of their mathematical power. We argue, based on the data we presented
in this paper, that requiring aformal course in Algebra may not be an appropriate pathway
towards reaching the goal of making mathematics children.
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In this paper, we examine classroom norms and teacher moves that support the equitable
participation and growth of all studentsin a third-grade inclusion classroom during a routine
focusing on relational thinking. Analysis of classroom video supports findings that a highly
conceptual approach like relational thinking can be used successfully with an inclusion
classroom.

I ntroduction

In this study, we focus on one teacher’ s implementation of an algebraic routine in athird-
grade inclusion classroom. Student participation is an issue of equity and achievement; students
who participate more generally learn more from the lesson, and low rates of participation can
predict low achievement in the early grades (Cohen, 1984; Finn & Cox, 1992). The paper speaks
directly to the conference theme of Optimizing Student Understanding in Mathematics, as we
examine how establishing classroom norms and assigning competence to low-status students
promoted the participation of all students, including those students with Individual Education
Plans (IEPS).

Theoretical Perspectives

The work of Carpenter, Franke, and Levi (2003) around relational thinking examines the use
of number sentences (equations) designed to develop concepts of equality and relational
thinking. These include two types of number sentences. One type is complete number sentences
about which the question is asked as to whether they are true or false. Examples of these are:
2=2; 3+0=3; 5=1+4. These number sentences are used to challenge children’ s notions of the
meaning of the equal sign. As Carpenter and colleagues (2003) note, children often reject the
previous three examples (and others) as being equal because respectively (a) thereisno
operation; (b) adding zero is not really adding anything so it isn’t allowed; and (c) the order is
wrong. A second type of number sentence is one where an unknown is present such as 3+10+7.
Children who believe the equal sign indicates that the answer comes next will predict that 13 is
the correct response for the unknown (Falkner, Levi, & Carpenter, 1999). Challenging children’s
naive or emergent understanding of the equal sign is one aspect of supporting them in developing
relational (or algebraic) reasoning.

A second aspect of supporting children is developing the capacity to use relational strategies
instead of computational strategies when solving for an unknown (Carpenter et a., 2003).
Through working on series of number sentences containing unknowns and carefully selected
values for the given numbers, children begin to see that it can be easier NOT to compute to find
an unknown value. For example, in the case of judging the truth or falseness of the number
sentence 27+37= 25+39, instead of computing to find that the value for each side of the equation
is 64, children will begin to use relational strategies to determine whether the expression is true.
The will, for example decompose 27 into 25+2 and 39 into 37+2 resulting in an expression that
now is clearly equal: 25+2+37=25+2+37.
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In order to understand the teacher moves that supported the achievement of all the students,
we situate the discussion of mathematical content and strategies within alarger sociocultural
framework, in which the co-constructed norms of a classroom community shape the learning of
the students (Y ackel & Cobb, 1996). Establishing norms such as the necessity of (@) explaining
one' s thinking around a solution to a problem, and (b) carefully attending to the presentation of
thinking by classmates, helpsto create an atmosphere in the classroom where everyone is
expected to engage in and explain substantive mathematical thinking and everyone is respected
for hisor her contribution. We analyze these norms developed over time in this classroom,
through particular teacher moves in interaction with students. In other words, this teacher
invested in creating norms that would support learning, including the learning of students with
|EPS.

Next, we draw on the work of Cohen and her colleagues (Cohen, 1997; Cohen & Lotan,
1995; Cohen, Lotan, Scarloss, & Arellano, 1999) around complex instruction in heterogenous
classrooms. Among other things such as using rich and worthwhile mathematical tasks, complex
instruction involves teachers explicitly assigning competence to low-status students by making
comments that are public, specific to mathematics, and valid. It isthis aspect of complex
instruction that we focus on in this study. Children with low-status (social and academic) are
often reluctant to participate in mathematical discussions and thus defer to their higher status
classmates. Assigning competence by explicitly noticing and calling public attention to work of
lower status students challenges the notion that students have that there are those who are good
and competent with mathematics and others who are not.

Aswe are particularly concerned with the inclusion of low-achieving students in conceptual
mathematical practices such asthe relational thinking routine, we also draw on Empson (2003),
who specifically analyzes the mathematical participation of low-achieving studentsin a
discussion based classroom. Research has documented the unequal participation of low
achieving students in discussion-based classrooms, including lack of participation and less
mathematical contributions than their high performing peers (Baxter, Woodward & Olsen, 2001).
Empson (2003) found many different strategies used by low-achieving students, such as reading
teacher cues and attempting to avoid work. After days, months and years of limited participation,
low achieving students are less likely to take up opportunities to learn, such as making
presentations in class. Our study analyzes how one teacher sought to interrupt this cycle. Empson
(2003) uses socio-interactional linguistics to determine participant frameworks, or a unit of
activity in which relationships, roles, and domain-specific content affect classroom interactions
(Goffman, 1981). These frameworks are particularly useful to understand the relationship
between the learners, teacher, and the mathematical content asit is constructed within classroom
discussion. In our study, we focus on the whole group discussion of relational thinking problems,
asindividua student present their solutions. We look, then, to see how the participants,
especially low-achieving students, are positioned into particular roles.

In order to understand the representations that students used to solve problems like the ones
described above, we draw on earlier work of Carpenter and colleagues (Carpenter, Fennema,
Franke, Levi, & Empson, 1999). We extend aframework (direct modeling, counting, and
numeric strategies) previously used to analyze solution paths to contextualized problems to work
done around relational thinking. Direct modeling involves modeling each value in a problem
with concrete materials. In the original framework for example, a child might use direct
modeling with cubes or other manipulatives to solve the following problem: | have 3 pencils. |
pick up 4 more pencils from the classroom floor. How many pencils do | now have? Following
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the action of the problem, the child might lay out three cubes, representing the initial number of
pencils, add four more cubes to represent the pencils found on the floor, and then count the entire
number of cubes to find the solution of seven pencils. A child using a counting strategy might
solve by counting on from four, saying 4, 5, 6, 7 to arrive at the solution. A child using anumeric
strategy might know the math fact 4+3=7 or might derive the fact thinking: | know 3+3=6 and so
one more will be 7. This framework supports our analysis that children with poor numeric
strategies (often in our case, children with IEPs) were able to display relational thinking through
the use of concrete materials.

For afinal note, we are taking a social constructivist view of competence and disability in
this paper. Within this study we are considering the label of students with IEPs, not as an
inherent and static determinant of individual ability, but as a school-based designation which
reflects and recreates differential ability within the classroom (Dudley-Marling, 2004;
McDermott, Goldman & Varenne, 2006). Because of the importance of this designation in the
culture of schools, we choose to use this classification to focus attention on how the teacher
successfully managed a discussion-based classroom that included all students.

Resear ch Question
The goals of the research reported in this paper were to examine the teacher moves and
classroom norms that supported the development of relational thinking (Carpenter et a., 2003)
with particular attention to the participation of students with IEPs. Our data collection and
analysis processes were guided by one question: What are the norms and teacher moves that
support the equitable participation and growth of all studentsin an inclusion classroom during a
routine focusing on relational thinking?

M ethodology

During the course of one school year, ateacher in athird grade inclusion classroom
employed aweekly routine focused on developing children's competency with relational thinking
(Carpenter et a., 2003). Once aweek for approximately 30-45 minutes, the teacher presented the
class with number sentences to solve. These were either (a) complete number sentences to be
judged true or false, or (b) number sentences that had to be solved for an unknown. Number
sentences had already been written on the board when the children entered the classroom. They
were encouraged to get to work quickly on solving the problems. After 20-30 minutes of
independent work, students were asked to present their thinking to the class. It was these
presentations that were video-taped. A total of 25 of the presentation portions of these weekly
sessions were video-taped and comprise the data set.

There were 12 participants, seven boys and five girls. Seven students were African
American, five were White. Four students had 1EPs; all of these were African American. These
12 participants are the students who were enrolled in this class for the majority of the school year
and who participated in the routine; there was one student with Downs Syndrome who was in the
classfor the entire year but did not participate in the routine.

For analysis, the video was segmented by student presentation so that one student presenting
his/her solution path to a given problem on a given day constituted one unit. For each unit, a
detailed narrative description of the student solution path, including interactions with the teacher,
was constructed. These solution paths were then coded for relational or computational thinking
(Carpenter et al., 2003). Following thisinitial coding, a second pass was taken through the data.
At this time the solution paths were coded as to what type of representation was used: direct
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modeling, counting, or numeric (Carpenter et al., 1999). For each unit, teacher moves were then
identified. In addition we catalogued which participants presented their thinking at each session
S0 as to examine to what extent all students (particularly those with IEPS) were supported in
participating in this portion of the activity.

Results

The teacher was able to create a classroom in which students with IEPs were not isolated, but
were contributing, devel oping members of the classroom mathematics community. She did this
in two ways: (a) by developing and consistently employing classroom norms that applied to all
students and (b) by using several strategies for assigning competence to students with IEPs
(Cohen & Lotan, 1997). After discussing the classroom norms that the teacher established, we
turn to an extended example of the work of one student with an |EP, although this student is not
an isolated example. By the end of the year, there was significantly greater participation in the
routine by students with 1EPs.

Classroom Norms

From our analysis of the data, it seems clear that the teacher created a supportive
environment for al students to learn complex concepts. While at the beginning of the year,
higher-achieving students were the ones that presented their thinking most often, by the middie
of the year, students with and without |EPs made presentations of their thinking and contributed
to the ensuing discussions asimilar percentage of time. Some of the norms that supported student
success included:

« Every student was expected to explain his/her thinking out loud at the board.

« Students were allowed to use notebooks to scaffold their presentation without |oss of
status.

« Every student was expected to attend carefully to the presentations, and encouraged to
compare the strategies that they used and the strategies of the presenter.

» Emerging strategies were named after children who used them; thiswas as likely to be a
student with as a student without an IEP.

» When a atudent struggled to present his’her ideas, the teacher asked questions and re-
voiced statements, but only after allowing considerable wait time, often at several points
throughout the student’ s presentation.

« Students were encouraged to use manipulatives to solve problems without loss of status.

» Teacher focused attention on thinking, not on correctness of answer.

« Teacher had high expectations that all students would move from computational to
relational thinking strategies.

Most of these norms were enacted in a strikingly consistent way for all students. This
consistency, along with the continually high expectations that the teacher held for all students,
were key factorsin creating a supportive environment for al students including those with IEPs
and others who struggled to think relationally. In what follows, we present an example that
demonstrates the development of one student (with an IEP) over the course of the school year
with respect to the enactment of several of these norms. In the example, thisincludes (a) the
student explaining his thinking, (b) the use of teacher scaffolding, (c) the use of manipulatives
for direct modeling, and (d) movement from computational to relational thinking. The example
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of this one student is meant to be indicative more generaly of the ways in which the teacher
managed the classroom to support the mathematical performance and participation of all
students.

In one exchange, early in the fal, the teacher asked Caleb, a student with an IEP (all names
are pseudonyms), to present his solution for the problem: 8+7=15+1, True or False? The teacher
began the exchange by attempting to relate his presentation to the strategies of other students,
“Do you want to do it the way Jacob did it or Serenadid it or Karen or Jessica? Is there
something about what they did that you would like to try?” Caleb did not answer, instead he
turned to the board and wrote 15 under 8+7, then wrote 16 under 15+1,.and circled false.
Although correct, the teacher did not accept this workas sufficient. She asked:

Teacher: Tell usin wordswhat you were thinking please?

Caeb:  (Noresponse, looks down)

Teacher: How did you know that this was a fal se equation, afalse number sentence?
Caeb:  (Looksdown)

Teacher: Look at the board please.

Caeb:  (Heturnsand looks at the board.)

Teacher: What is 8+7 equal to?

Caeb: 15
Teacher: What is 15 + 1 equal to?
Caeb: 16

Teacher: Is15 equal to 16?
Caeb:  (Under hisbreath, he repeats the question to himself.) No.
Teacher: No, so falseisthe correct answer.

The next time that Caleb presented a solution, for the problem 19+3=0+9+3, both teacher and
student had a different strategy. Caleb used a direct modeling strategy to solve the problem and
his teacher validated this strategy, simultaneously scaffolding his presentation. Caleb brought
connecting cubes to the board and began his presentation by meticulously arranging his cubes
into stacks of 10, 9, 3 and then 9 and 3.

Teacher: What number of cubes do you have, Caleb?

Caeb:  (Hedoesn't answer, but continues arranging his cubes.)

Teacher: Look. Here you’'ve got 10 and 9 and 3. And here | see 9 and 3. (Teacher looks
into his notebook). Well what did you do on this side, Caleb? (Indicating the 19
and 3.)

Caleb: | made19and 3.

Teacher: You started withthe 10. . .

Caeb:  Andthen| put the 9.

Teacher: And that made how much?

Caeb: 19

Teacher: You've got the 19+3 on this side (showing his cube representation). What about
this side of the equal sign?

Caleb: Onthissidel had 9 and 3.

Teacher: So what was missing here?

Cdeb:  Theten (showing his separated stack of ten cubes).
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In afinal example, in the spring of the year, Caleb was called on to quickly present a solution
from his seat. Here he did not need additional teacher scaffolding, and was able to present a
purely verbal solution. The teacher, focused on interrogating student understanding of the nature
of the “answer” in these problems, asked Caleb what the answer was in the problem 5+1+1=8.
When Caleb answered “False”, she responded with “Because why?”

Caeb:  False, becausethis (referring to the 5) would have to be a 6.
Teacher: What isthe answer?
Caleb: Fase

Discussion

In this classroom, the teacher positions all students as problem solvers and solution reporters
(Empson, 2003). Students with IEPs in mathematics are expected to present, just as high-
achieving students are. These roles, problem solver and solution reporter, were not immediately
taken on by Caleb or by other students with IEPs in the classroom. In fact, the teacher invested
considerable resources of time and scaffolding in students with I1EPs so that these students
became full participants in the classroom routine. The first exchange in the above example lasted
seven minutes, the second 11 minutes. Clearly, the amount of time invested in this student during
these class sessionsis significant.

The consistent application of aset of classroom norms resulted in a classroom that supported
the participation of all students. The remarkably consistent expectations of this teacher, resulted
in aclassroom that allowed all students to participate equitably. Mathematics classrooms are too
often focused on a single ability: executing procedures correctly (Boaler, 2006). One important
strategy used by this teacher in creating an equitable classroom was de-emphasizing procedures
and correct answers. Instead, as our example shows, the teacher consistently focused on student
thinking. In the first exchange, we can see the teacher attempted to position Caleb as a competent
solution reporter, even though he seemed to need considerable verbal scaffolding to present his
solution. Many teachers may have accepted Caleb’sinitia non-verbal presentation. This teacher
consistently expected all students to provide both avisual and averba explanation of their
solution. She did not let Caleb off the hook- and chose rather through direct questioning to
introduce language for a simple proof. We would argue that this approach allowed students to
feel safe taking risks, whether that attempt was at presenting an idea to the class or in trying the
strategy of another student

Astheresultsindicate, the teacher used several strategies for assigning competence to this
student with an IEP: valuing his problem solving methods; holding high expectations of the
justification in his presentations; and making positive comments that were specific and valid
about his thinking. Another critical aspect of teacher practice in promoting equity was allowing
solutions using direct modeling, or manipulatives, to have equal status with numerical solutions.
Most of the students who were struggling (those with IEPs) often used direct modeling with
linking cubesto arrive at their solutions. As we saw in the extended example, the teacher
encouraged the students to share this strategy during presentations, even asking them to
demonstrate how they used cubes to find the answer. In the second exchange, the teacher
continued to expect that Caleb would present his work both visually and verbally. Caleb needed
fewer prompts to explain his thinking than he had in the first exchange. The concrete
mani pul atives supported both his thinking, and the presentation of his strategy. The cubes
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allowed him to demonstrate the decomposition of 19 into 10 and 9, which was central to his
thinking relationally about the problem. The teacher attached status to the connecting cubes as a
strategy, here, by choosing Caleb to demonstrate this strategy. As the results demonstrate,
students who struggled significantly with computation were able to think relationally and
demonstrate this thinking using direct modeling.

More generally, the level of scaffolding provided by the teacher was based on whether or not
astudent was stalled in his or her presentation, not on his or her status within the classroom.
Thus, athough in this case, we see the teacher scaffolding a student with an IEP, both high and
low-status students gave presentations where the teacher provided significant scaffolding. In this
way, variations in scaffolding were evenly applied across all students regardless of classroom
status.

Our results show a student who began the year using computational strategies to solve
problems and who was a reluctant participant. By the end of the year, this student was more
confident in his participation as the last student-teacher exchange demonstrates. By the end of
the year, not only he, but most students, including those with IEPs, were solving problems
relationally a great majority of the time.

Conclusion

Through the analysis of Caleb’s participation in the classroom routine, we can see a
development of his algebraic thinking from computational to relational. This thinking was
scaffolded by his use of direct modeling to solve the problems. In addition, we can see the
development of his class participation in the community, from a student who was reluctant to
speak (first exchange), to a student who confidently engaged in the discussion from his seat
(final exchange). Thiswork, including and engaging the students with an |EP in mathematical
thinking, is hard work. It would be easier to let a shy, reluctant student like Caleb get away with
limited participation. Instead, this teacher made participation a requirement, and supported Caleb
through encouraging aternative strategies for solving problems that had equal statusin the
classroom, in this case direct modeling with connecting cubes.

In our work with teachers and students, we are frequently asked how to include al students
in high-level mathematical thinking. Teachers, faced with low-achieving students who may not
often participate in whole group discussion, assume that this kind of instruction is not for
“them.” As Empson (2003) suggests, teachers want to help students save face, and not to
embarrass those who are struggling. This classroom presents an equitable resolution to this
conflict. Through high expectations of participation, and a supportive community, all students
were able to present relational thinking to their classmates. We believe that the results of this
study are significant, as they demonstrate that a teacher can successfully use a highly conceptual
approach like relational thinking with an inclusion classroom.
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This paper compar es the nature of the transformational algebraic activities addressed in four
beginning algebra classes that used the same innovative algebra curriculum materials. Two
classes were taught by one teacher; the other two by another teacher. We devel oped categories
of transformation-related ideas and used them to analyze the transformational activities enacted
in each class. The analysis reveals that some ideas were addressed in all classes, whereas others
wer e addressed in only some of the classes. Moreover, in the case of one teacher,
transformation-related ideas were addressed similarly in her two classes, whereas major
differences were found between the two classes of the other teacher. The findings suggest that the
differences found between teachers and between classes of the same teacher arerelated to
complex interactions among the teachers, the curriculum, and the classes.

Introduction

By and large, meaning-making work in algebra has been mostly associated with generational
algebraic activities, i.e., with developing meaning for the objects of school algebra: expressions
and equations (Kieran, 2004). However, the construction of meaning in algebra need not be
related solely to generational activities, since constructing meaning for the concept of
equivaence and for using properties and axioms in the manipul ative processes occurs within
transformational algebraic activities (Ibid). Kieran (2007) pointed out a recent change in research
in the area of transformational algebraic activity, from emphasis on the manipulative processes
used in simplifying expressions and in solving equations, to attention to the theoretical
foundations of students' manipulative work. Thus, in recent years attention has been given to
studying the processes of learning the concept of equivalence and using meaningfully properties
and axioms in the manipulative processes. Similarly, in recent years amajor change has occurred
in the way transformational activity is treated in algebra curriculum materials. Algebra textbooks
have traditionally centered on the transformational aspects of algebraic activity, emphasizing rule
following and rote symbol manipulation, often without attention to conceptual understanding and
meaning (Kieran, 2004). However, innovative algebra curricula developed in recent years (e.g.,
Everybody Learns Mathematicsin Israel; Connected Mathematics Project (CMP) inthe USA)
often emphasize conceptual understanding of al gebraic processes, and devel oping meaning for
equivaence, and for the use of properties and axioms in the manipulative processes, thus, giving
meaning to algebraic manipulative processes.

Obvioudly, students that use different curriculum materials may be exposed in class to
different natures of transformational activity. For example, studying from a textbook that focuses
primarily on rule following and symbol manipulation would probably result in more emphasis on
rote transformational activities than in the case of using atextbook that focuses on conceptual
understanding and construction of meaning. But do students that use the same curriculum
materials experience the same nature of transformational activity? Accumulating research
suggests that the enacted curriculum is not identical to the written curriculum (e.g., Remillard et
al., 2009), and that different teachers use the same curriculum materials differently
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(Manouchehri & Goodman, 2000; Tirosh, Even & Robinson, 1998). Studying the same teacher
teaching in different classrooms has also recently begun to be the focus of research (e.g., Herbel-
Eisenmann, Lubienski, & 1d-Deen, 2006). Still, seldom did the teacher in such studies use the
same curriculum materiasin different classrooms. Furthermore, these studies focused mostly on
pedagogy — rarely did they examine the enacted mathematics.

Recently, as part of the Same Teacher — Different Classes research program (Even, 2008),
Eisenmann and Even (2009, in press) examined the enactment of the same algebra curriculum
materialsin four classes that used the same innovative algebra curriculum materials. Two classes
were taught by one teacher; the other two by another teacher. Eisenmann and Even'’s study,
which employed quantitative analysis that compared the distributions of three types of algebraic
activity — generational, transformational, and globa/meta-level —reveaded statistically significant
differences between the written and the enacted curricula, between the two participating teachers,
and between the two classes of each teacher. Our study builds on these quantitative finding