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ACADEMIC IDENTITIES OF GEOMETRY STUDENTS 
Wendy Rose Aaron1 

University of Michigan 
 

Geometry students are engaged in a balancing act. Simultaneously, they are 
responsible to act in ways that receive positive evaluation from their teacher and in 
ways that will deepen their understanding of geometric concepts. I view the geometry 
classroom as a place where the teacher and student come together to trade work 
done together for claims on the didactical contract (Herbst, 2006), that is, claims that 
they have, ‘covered’ part of the geometry curriculum. Though examining interviews 
with geometry students, I show that some students do classroom work with an eye 
towards receiving praise from the teacher, while other students do classroom work 
with an eye towards leaning mathematical content. 
WHO IS THE GEOMETRY STUDENT? 
This paper attempts to answer the questions, who is the geometry student? And 
how does the geometry student understand her place in the geometry classroom? 
I am interested in uncovering students’ understandings of what it is that a 
geometry student does and the ways that students make meaning of geometry 
instruction. 
This paper extends the work on ‘doing school’ (Chazan, 2000; Eckert, 1989; Herbst 
& Brach, 2006; Jackson, 1968; Lave, 1997; 2001; Powell, Farrar, & Cohen, 1985) by 
showing the different ways that students “do school” in geometry class and the 
obligations that students hold with respect to the geometry classroom. The academic 
identities discussed in this paper give a way of understanding what is meant by 
“doing school” in the particular context of the high school geometry classroom. 
Through these identities we understand what actions students see as available to them 
in instructional situations and what meanings they make of the tasks that are put 
before them. 
THEORIZING IDENTITY 
I will begin from two assumptions about the nature of identity with the aim of 
arriving at a conception of identity that will allow me to look at the ways that 
individuals’ dispositions and classroom context combine to create the academic 
identities of geometry students. Two aspects of identity that are essential to this 
study are: 

• Identities are experienced in practice 
• Identities are dynamic and vary with context 

                                                            
1 This work is supported by NSF grant REC-0133619 to P. Herbst. Opinions expressed are the author’s sole responsibility 
and don’t necessarily reflect the views of the Foundation. I would like to acknowledge and express my gratitude for 
help that I have received from Patricio Herbst while working on the project reported. 
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Below I will briefly expand on these two aspects of identity. 
Identities are Experienced in Practice  
Children are not born knowing how to be a student. Through their time in school they 
learn how to behave and what is expected of them. Students learn what they would 
like to get out of school and they learn what school would like to get out of them 
(Doyle, 1983). By the time students reach high school they are adept at reading their 
teachers and scanning the content offered to see what matches with their goals for the 
course. Each moment in a classroom serves to structure the next moment, so even 
events that feel novel are structured by every moment that came prior (Bourdieu, 
1990). 
Identities are Dynamic and Vary with Context  
A helpful construct for understanding dynamic identities is figured worlds. Holland et 
al (1998, p. 52) define figured worlds as: “A socially and culturally constructed realm 
of interpretation in which particular characters and actors are recognized, significance 
is assigned to certain acts, and particular outcomes are valued over others.” People 
acting within figured worlds act “as if” such-and-such a thing was true. For instance, 
in some classrooms, students and teachers act “as if” completing worksheets 
corresponded to mastery of a subject. Different students will take on different 
identities with different stances toward the ‘as if’ scenario. Because different students 
understand the figured world in different ways these students feel that different 
actions are appropriate when faced with a task. 
A consequence of this view of identity is that we need to have a clear picture of the 
context of the geometry classroom. One way that researchers have understood the 
context of the classrooms is to study students’ engagement in instructional tasks. 
These studies aim to understand how students make sense of the tasks they are given 
and how students attempt to complete these tasks. Students’ actions in response to a 
task, and the common meanings that students make of a task, show a membership in a 
figured world that understands tasks in a certain way. While this has proved fruitful 
in the past, it only takes into account one layer of interaction, that of the task. As 
described below, for this study it is even more fruitful to view instruction as 
consisting of three layers, the task, the situation, and the contract. 
INTERPRETATIONS OF INSTRUCTION IN MATHEMATICS CLASSROOM 
Economy of Symbolic Goods 
Bourdieu (1990; 1998) explains economies of symbolic goods through the example of 
gift exchange. In many cases, the giving of a gift is taken as a spontaneous act of good 
will on the behalf of the gift giver. In return, the gift receiver shows gratitude for the gift 
(whatever it might be), and the interaction appears to be complete.  
Bourdieu argues that the interaction is not complete, but a new cycle of giving has 
begun. The gift receiver is now obligated to take the role of the gift giver. But it is 
important for the reciprocal gift to not appear as a response to the initial gift, but as a 
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spontaneous act of good will. The second gift would lose its value if it were seen as 
fulfilling an obligation. 
This camouflaging of obligation is what Bourdieu refers to as “misrecognition.” For 
the economy of symbolic goods to function, both parties must “misrecognize” the gift 
exchange by acting as if each gift is a unique action (not one in a long string of gifts 
between the two), and that each gift is not part of an obligation that the two parties 
have to each other. The other side of “misrecognition” is recognition. To recognize 
the exchange would be to say that the gift is not valuable because it is not a unique 
action, but only the fulfillment of an obligation. 
Within the symbolic economy of the classroom, teachers and students are obliged to trade 
classroom work for claims on the didactical contract (described below). This economy 
gives a way to account for the work that the teachers and students do in classrooms. I 
claim that teachers and student act in a way that is similar to the gift exchange example 
above; teachers and students misrecognize the exchange by acting as if they are doing 
classroom work because of a spontaneous good will that they feel for each other and the 
mathematics. Students arrive in class with the intent to learn geometry, and teachers 
interpret students’ work as evidence that students are learning mathematics. To keep the 
economy functioning, teachers and students refrain from recognizing that they interact 
because they are obligated to. When the symbolic layer of the interaction is taken away, 
the work done by students is shown to be due to an assignment from the teacher, and the 
teacher evaluates students’ work because she is compelled to give grades. 
Both teachers and students are continuously balancing the tension of misrecognition 
and recognition. Just as there is a need to misrecognize the obligations, there is a need 
to recognize the constraints that these obligations entail. Students need to present their 
work in a way that is understood by the teacher (instead of say, only working through 
problems in their head) and the teacher must be clear in her expectations (so that say, 
students know that they are expected to present written proof their work). 
I hypothesize that some students are attuned to the misrecognition of their work as 
learning geometry, while other students are more attuned to the recognition of their 
work as actions performed in response to the teacher’s directions and subject to the 
teacher’s evaluation. 
Contract, Situation, Task 
This economy of symbolic goods is not complete without understanding more about 
the objects of the trade (classroom work and claims on the didactical contract) and 
the ‘marketplaces’ in which this trade occurs (instructional situations). See figure 1. 
Tasks, situations, and contract, as developed by Herbst (Herbst, 2003, 2006; Herbst & 
Brach, 2006) provide a frame for a three-tiered analysis of classroom interactions. 
Tasks are segments of classroom work comprised of problems or questions chosen by 
the teacher, along with the resources, material and cognitive, that students deploy to 
participate in those activities (Doyle, 1983, 1988). The doing and completion of tasks 
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also has value as regards the entitlement to claim that part of the contract has or has 
not been accomplished. To facilitate this exchange, tasks exist in instructional 
situations, such as reviewing homework, doing proofs, teaching theorems, etc. These 
situations frame the exchange that gives value to the work that the teacher and 
students are engaged in. The situation provides an answer to the question, “what are 
we doing?” and provides a frame for participants to understand what they are 
supposed to do and what they may lay claim on by doing it. 
 
 
 
 
 
 
 
 
 

Figure 1. Symbolic Economy of the Classroom. 
This economy reveals the need for students and teachers to simultaneously recognize 
and misrecognize the value of that work. The student profiles detailed below show 
how different students hold different implicit conceptions of the contract and 
economy that lead to students enacting different academic identities. 
DATA 
The data analyzed in this paper are interviews with 14 honors geometry students from 
two classes. The interviews asked students to think about how they would go about 
completing three tasks. The first task was a word problem titled the “antwalk 
problem” (see figure 2), the second task was a concise statement of a theorem that the 
students were asked to prove, and the third was a proof exercise as seen in the 
students’ textbook, with “given” and “prove” statements. After being shown a task 
the students were asked questions such as, “How likely is it that your teacher would 
assign this problem?” and “Would she expect a proof in response?” 
 

Imagine two ants walking around this triangle. 
Ant Jill goes AE, EF, FC, CD, DE, EB. 
Ant Jack goes BC, CA, AB. 
When they reach B, each of them argues to have walked more than the 
other one. Who is right and why? 

Figure 2. Antwalk Problem. 
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METHODS 
I analyzed the data using an open coding scheme to look for patterns in the responses 
that the students gave to the interview questions. A partial list of interview codes is 
given below (table 1). Due to space constraints only the analysis of the antwalk 
problem is given here. The complete analysis includes all three problems, as well as 
students’ understanding of why proof is part of the geometry class, students’ attitudes 
toward measurement, and students' interactions with diagrams. 
 

Topic Response Code Description of response 

Interpretati
on of 
“antwalk” 
problem 

See the theorem (1) The student quickly sees that the problem hinges on the fact 
that D, E, F are midpoints. 

Make it work (2) The student notices superficial traits of the task such as 
“you need to compare lengths.” The student attempts to 
interpret the task as one they would see in their class. 

Dismiss (3) The student does not believe that this problem is appropriate 
for a geometry class because it is not similar to other 
problems that they are given by their teacher. 

Table 1. Codes for responses to antwalk problem 
The codes were used to inspect the data to find implicit references to the economy of 
symbolic goods and the ways that students either recognize or misrecognize the value 
of their work.  
For each coding topic, numbers were assigned to the codes (1-3), these numbers 
correspond to the location of the response on the recognition/misrecognition 
continuum. The sum of the codes, which I refer to as ‘coding score,’ was found, and 
this was used as a way to numerically represent the students position along the 
continuum. A low score means that the student is attuned to the mathematics and a 
high score means that the student is attuned to the teacher’s evaluation. 
In addition to coding for stances with respect to the symbolic economy, for each 
interview I counted the number of times that the student referred to the teacher (that 
is, I counted the words ‘teacher,’ ‘Ms./ Mrs. X’ and ‘she,’ her,’ ‘they,’ when this 
pronouns pointed to the teacher). The number of occurrences of references to the 
teacher varied from 0 to 86. This number was divided into the total number of words 
in the analyzed text. This ratio, which I have called ‘teacher token’, is a measure of 
the extent of the teacher’s influence on students’ instructional decisions. The higher 
the ratio, the lower the number of times the student mentioned the teacher; the lower 
the ratio, the higher the number of times the student mentioned the teacher.  

student Max Marcus Cabe Andra Luke Yakim Craig Karen Erin Erie Yuri Jade Hamid Betsy 

teacher token >700 700 229 228 228 212 192 191 165 120 112 111 110 51 

coding score 4 3 4 4.5 9 5 7.5 7 6 9 7.5 6 9 7 

Table 2. Teacher tokens and coding score 
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From this table we can see that as the number of ‘teacher tokens’ increase in the 
interview transcript, the more students’ responses reflect a teacher centric view of 
classroom interaction. This continuum was used to cluster students and combine them 
to form profiles; each profile describes a kind of student who sees the system of 
exchange in a particular light. 
There are a few outliers, such as Luke, Jade and Karen, who do not fit well in the 
continuum, or whose interview responses did not fit into the coding scheme. These 
students were not included in making the profiles that are given in the results section. 
RESULTS 
In the following section I discuss differences among students’ academic identities. To 
highlight the differences between the student profiles, below is a comparison of 
reactions to the antwalk problem. The reactions showcase how different stances 
toward the didactical contract appear in student actions and interpretations. 
In general, students agreed that the antwalk problem is not they type of problem that 
they encounter in their geometry class. Matthew, representing the ‘misrecognition’ 
end of the continuum, sees the antwalk problem and immediately looks for the 
mathematical relations that exist in the problem. He notices that if the points on the 
sides of the triangle are midpoints then he would be able to add the number of 
segments that each antwalk and compare the result. 

Mathew:  I think a proof would probably work easiest to solve this problem 
Interviewer: How’s that, excuse me? 
Mathew:  Because you could, you could say like, if, you could find out if like EF were 

to, were the median or like F was midpoint of CB and D was the midpoint of 
CA and E was the midpoint of AB so you could find out the distance each one 
walked, of each segment and then add them up to see who would walk the 
farthest. 

The antwalk problem does not give enough information to answer the question that it 
poses; so Matthew notes that if he made an assumption then he would be able to 
answer the question. 
This is very different to the reaction of Peter, who represents the recognition end of 
the continuum. Peter also notices that the problem does not give enough information 
to solve the problem but instead of assuming the missing information he rejected the 
task as undoable. 

Peter:  Well, I’d probably think about knowing like, knowing that I can’t guesstimate, 
or estimate at least like what these lengths are, like I’d think well I’d know 
that’s approximately half but you don’t know if it’s perfectly made to match the 
answer so 

Peter first mentions that he cannot estimate the answer, even though he can 
approximate the relative lengths in the figure. Peter goes on to say that even if he did 
feel that he could estimate, it would not be prudent because his estimate might not 
match ‘the answer,’ presumably held by the teacher.  
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Students on the recognition end of the continuum also reject this problem for another 
reason. Peter does not believe that his teacher would give a word problem about ants. 

Peter:  I don’t think she would use it, cause she uses more geometry stuff, like she 
would probably use that but she would say more like AE plus EF plus FC plus 
CB plus DE plus EB is greater than or less than BC plus CA plus AB, she 
would put it in more geometry form 

This view of the problem is not based on mathematics like Matthew’s reason, but 
based instead on an understanding of the teacher and the problems that the teacher 
chooses for the class. Peter is disposed to only spend time on tasks that will have 
value in the eyes of the teacher. The antwalk problem is not one worth his time. 
June, a student in the middle of the continuum, is much less sure of her answers to the 
interview questions than her peers at either end. She is hesitant about whether or not 
the antwalk problem is one that she would be given. But, she says, if she were given 
the problem she would most likely be asked to produce a proof as an answer. 

Interviewer: Okay, how likely it is that if you would receive a problem like this, you 
would be expected that the answer would come in the form of a proof? 

June: Oh. Um…that’s…ahh…I guess that’s pretty likely actually if we were to get 
that. 

Interviewer: Okay. So even though it doesn’t say do a proof it doesn’t say do a proof 
you might be expected to do a proof 

June:  Exactly, cause that’s how we’re used to figuring stuff out 

June’s first response is very hesitant. She says that students would do a proof if they 
were given that problem. She doesn’t explicitly say that she would not receive the 
antwalk problem, but she will not endorse it either. Her response to the second 
question seems to be free from the context of the antwalk problem; no matter what 
problems students are given, students do a proof. 
These three profiles of Peter, June, and Matthew showcase three different ways 
that students can engage with proof tasks in the geometry classroom. This analysis 
shows three unique responses to the antwalk problems, depending on the student’s 
position along the recognition/misrecognition continuum. Depending on how the 
student is disposed to interpret the economy of symbolic goods of the geometry 
classroom she will be more or less likely to honor the value in her work based on 
the evaluation of the teacher, or based on the mathematics that she sees as 
available to learn. This analysis highlights three segments of the continuum 
between recognition and misrecognition and the actions of students who occupy 
that segment. 
CONCLUSION 
This paper highlights the different ways that students can experience the geometry 
classroom and the obligations that students hold to the classroom. The three students 
profiled show how different stances to the economy of symbolic goods manifest in 
students views of classroom work. 
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A key point to note is that for understanding the figured world of the geometry 
classroom, it does not matter if these students act in ways that are complementary 
with the views they express in these interviews. What we learn from these interviews 
is what stances that are available to students, regardless of whether or not students 
actually take up these stances. We learn what are the issues that one could take a 
stance on. We learn how students make sense of the figured world of the classroom –
even if that is not consistent with the meaning that a teacher an observer would make 
of the classroom. 
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DEVELOPING CRITICAL THINKING  
IN PROBABILITY SESSION 
Einav Aizikovitsh and Miriam Amit 
Ben Gurion University of the Negev 

 
This article presents a session on probability which incorporates elements of Critical 
Thinking (CT). This session is part of an in-depth study that comprises fifteen math 
sessions of similar constitution. The purpose of this research is to determine if 
teaching methods that encourage complex thinking can improve students’ CT, within 
the framework of probability session. This study involved fifty five subjects. Analysis 
of interviews conducted with the students and an analysis of their submitted work 
indicated that students’ analytical capabilities greatly improved. These results show 
that if teachers consistently and methodically encourage CT in their classes, by 
applying Mathematic theory to real-life problems, encouraging debates, and 
planning investigative sessions, the students are likely to develop critical and 
analytical thinking skills as a result. 
INTRODUCTION 
In the field of education, it is generally agreed upon that Critical Thinking (CT) 
capabilities are crucial to one’s success in the modern world, where making rational 
decisions is increasingly becoming a part of everyday life. Students must learn to test 
reliability, raise doubts, and investigate situations and alternatives, both in school and 
in everyday life. 
As will be discussed, as well as acquiring CT, it is important to assess students’ 
application of their CT in different contexts. Many studies investigate CT in general, 
or in fields other than Mathematics, but few discuss CT in Mathematics. This study 
will explore CT in the context of a probability session. 
THEORETICAL BACKGROUND  
This research is based on three key elements: CT taxonomy that includes CT skills 
(Ennis, 1987); The Learning unit "probability in daily life" (Liberman & Tversky 2002), 
The Infusion approach between subject matter and thinking skills (Swartz, 1992). 
Critical Thinking skills by Ennis (1987) 
Ennis defines CT as “reasonable reflective thinking focused on deciding what to 
believe or do.” In light of this definition, he developed a CT taxonomy that relates to 
skills that include not only the intellectual aspect but the behavioural aspect as well. 
In addition, Ennis's (1987) taxonomy includes skills, dispositions and abilities. Ennis 
claims that CT is a reflective (by critically thinking, one’s own thinking activity is 
examined) and practical activity aiming for a moderate action or belief. There are five 
key concepts and characteristics defining CT according to Ennis: practical, reflective, 
moderate, belief and action. 
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Learning unit "probability in the daily life" (Liberman and Tversky 2002) 
In this learning unit, which is a part of the formal syllabus of the Ministry of 
Education, the student is required to analyse problems, raise questions and think 
critically about the data and the information. The purpose of the learning unit is not to 
be satisfied with a numerical answer but to examine the data and its validity. In cases 
where there is no single numerical answer, the students are required to know what 
questions to ask and how to analyse the problem qualitatively, not only 
quantitatively. Along with being provided with statistical instruments, students are 
redirected to their intuitive mechanisms to help them estimate probabilities in daily 
life. Simultaneously, students examine the logical premises of these intuitions, along 
with misjudgements of their application. Here, the key concepts are: probability rules, 
conditional probability and Baye’s theorem, statistical relation, causal relation and 
judgment by representative. 
The Infusion approach (Swartz, 1992) 
There are two main approaches to fostering CT: the general skills approach which is 
characterized by designing special courses for instructing CT skills, and the infusion 
approach which is characterized by providing these skills through teaching the set 
learning material. According to Swartz, the Infusion approach aims for specific 
instruction of special CT skills during the course of different subjects. According to 
this approach there is a need to reprocess the set material in order to combine it with 
thinking skills. 
This report is a description of an initial study, a snap shot that focused on one session 
and demonstrates the entire study. In this report, we will show how the mathematical 
content of "probability in daily life” was combined with CT skills from Ennis' 
taxonomy, reprocessed the curriculum, tested different learning units and evaluated 
the subjects' CT skills. Moreover, one of the overall research purposes is to examine 
the effect of the Infusion approach on the development of critical thinking skills 
through probability sessions. The comprehensive research purpose will be to examine 
the effect of learning by the Infusion approach using the Cornell questioners (a 
quantitative test) and quantitative means.   
METHODOLOGY 
In this article we ask how can CT skills be incorporated into a structured 
Mathematics session, such as a probability one? 
Setting and population 
Fifty five children between the ages of fifteen and sixteen participated in extra 
curriculum program aimed to enhance students from different cultural backgrounds 
and socio-economical levels. An instructional experiment was conducted in which 
probability sessions were combined with CT skills. The experiment constituted 
fifteen sessions of 90 minutes each, during the course of an academic year, in which 
the teacher was also one of the researchers. 
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Data collection 
Data collection was conducted by way of triangulation: 

• Personal interviews - conducted randomly. Five students were interviewed at 
the end of a session and one week after. The personal interviews were 
conducted in order to reveal a change in the students' attitudes throughout 
the academic year.  

• The students' products were collected: exams, in-class papers and homework. 
• All sessions were documented and analysed -the sessions were recorded and 

transcribed. The teacher kept a journal (log) on every session. Data was 
processed by means of qualitative methods which enabled to follow the 
students' patterns of thinking and interpretation with regards to the learned 
materiel in different contexts.  

The teaching experiment 
A probability unit comprised of fifteen sessions of ninety minutes each was taught. 
The probability unit combines CT skills with the mathematical content of 
"probability in daily life". 
This new probability unit is a processed unit that includes questions taken from daily 
life situations, newspapers and surveys, and combines CT skills.  
Each of the fifteen sessions that comprise the probability unit has a fixed structure: A 
generic (general) question written on the blackboard; the student's reference to the 
question and a discussion over the question using probability and statistical 
instruments and; an open discussion that combines practicing the CT skills. Table 1 
depict an example for a session. 
The mathematical subjects learned during these fifteen sessions were: Introduction to set 
theory, probability rules, building a 3D table, conditional probability and Baye’s theorem, 
statistical relation and causal relation, Simpson's paradox, and judgment by representative. 
The following CT skills were incorporated in all fifteen sessions: A clear search for a 
thesis or question, the evaluation of reliable sources, identifying variables, “thinking 
out of the box,” and a search for alternatives. 
Case study 
Hereinafter a detailed description of a session, following the description, the session 
will be analysed by the following skills: referring to information sources, raising 
questions, identifying variables, suggesting alternatives and inference.  
The session subject was statistical relation and causal relation. The session's aim was 
to teach how to determine the existence of causal relation. 
Mathematical concepts used in the session: determining how a third factor can affect 
a statistical relation between two existing factors, including Simpson's paradox (the 
combination of A and B seeming to cause reversal of “success”). 
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CT skills practiced: evaluating source reliability, identifying variables, suggesting 
alternatives and inference. 
Session plan: 
Phase A - At the beginning of the session the teacher presented a short article about a 
research that indicates of a relation between calcium and vitamin D, and dental 
health. The research is taken from a daily Israeli newspaper that translated the article 
from "The American Journal of Medicine". The teacher writes a question on the 
blackboard. The students are requested to address the question; Phase B - Discussion 
in small groups about the article and the question. Phase C - Open class discussion. 
During the discussion the teacher asks the students different questions to foster the 
students’ thinking skills and curiosity and to encourage them to ask their own 
questions. Phase D - The teacher refers to the questions raised by the students and 
encourage CT while instilling new mathematical knowledge - the identification of 
and finding a causal relation by a third factor and finding a statistical relation 
between C, and A and B, Simpson's paradox. 

The discussion conducted in class The practiced skills 
The article presented with the class was 
"Calcium and vitamin D contribute to dental 
health" and claimed that the consumption of 
food additives of Calcium and vitamin D 
can help protecting the teeth. The data was 
taken from a research conducted in a 
dentistry school in a Boston university and 
published in "The American Journal of 
Madison". In this research one hundred and 
forty fife people participated, at the age of 
thirty five and above. Part of them took 
Calcium and vitamin D and the rest of them 
took placebo. 27% Of the placebo group lost 
at least 1 tooth in comparison to 13% of the 
Calcium and vitamin D group.   

The generic question on the blackboard was: 

Is calcium good for your teeth? 

In paragraph 1 we encounter skills such as 
"searching for the question"- a fundamental 
skill. First there is a need to clarify the 
starting point for the interaction with the 
student. We also need to clarify to ourselves 
what is the thesis and what is the main 
question before we approach decision 
making. The paragraph also demonstrates 
relevance to daily life. 

 

 

 

 

 

1. Teacher: Last week I visited a friend 
who is a dentist. When we set to the 
table she served a variety of cheese and 
told me she read in the newspaper 
calcium was good for our teeth and 
presented me with the article. What 
should I check before I decide whether 
I should increase the amount of 
calcium I consume? Should I eat 
Calcium or not? What do you think?* 

In paragraph 2 the students are taking a step 
back, we refer to "identifying information 
source and evaluating the source's 
reliability" skill. This step is crucial, as it 
helps us to assess the quality and the validity 
of the article discussed. This skill was 
practiced in past lessons. See paragraph that 
summarizes the article.  

 

Table 1. Classroom discussion over an article and the infusion of CT skills, Part 1 
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The discussion conducted in class The practiced skills 

2. Student 1: Where is the article taken from? 
Can we see the article for ourselves?* 

3. S2: Is the article's source reliable? How 
can we check it?* 

4. S3: Where is the article taken from? 
What is its source? 

5. S1: Should I answer the identification of 
the sources question? 

6. T: Not yet. We are focusing on searching 
for questions. Please think of other 
questions. 

7. S3: What relation does the article discuss? 
8. T: A very good question. Before you look 

for the relation, what do you need to do? 
9. S2: To identify the variables!!! 

10. T: Right. First, we ask what the variables 
are. Then we refer to the relation 
between them. 

11. S3: Do you mean a statistical connection? 
12. S4: What a silly question. It's obvious. 
13. S3: What’s so obvious? 
14. S4: The connection is obvious - 

statistical relation between the vitamin 
and healthy teeth.  

15. S3: How do you know? 
16. T: There are no silly ideas or silly 

questions in this class. In fact, student 3's 
question is excellent. Student 4, please 
try and think why student 3's question is 
a good one. Try to follow student 3's line 
of thought, remembering our discussion 
last week. 

17. S4: If there is a connection, then it must 
be a statistical relation, right? 

18. T: Did you calculate the existence of 
P(A/B) ≠P(A/B)? 

19. S4:  You can infer it from the title that 
suggests that a relation  exists between 
taking vitamins and healthy teeth. 

20. S3: According to the data from the 
article, you can find a statistical  relation  
(the student specifies the calculation).SF 

21. T: Very good. An excellent inference. I 
want you to keep thinking of other 
questions. 

22. S4: Can you give a reasonable 
explanation for the relation we found? 

 
 
 
 
 
 
 
 
In paragraph 6 we encounter "searching for 
the question" skill again. We will continue 
searching for the main question through 
practicing the "variables identification" skill. 
Raising the search for alternatives. Posing 
questions enables the practice of this skill.  
                   P(A)  ,  P(B),  N(S) 

Paragraph 10 deals with identifying the 
variables and understanding them by a 2D 
table and a conditional probability formula 
                         ( )( / )

( )
P A BP A B

P B
∩

= ⇒  

 
The mathematical part P(A/B)≠ P(A/B). 
Calculations according to sets and 
supplementary sets. 
 
In paragraph 16 the teacher builds the 
students' self esteem by encouraging them to 
express their ideas and opinions (even if they 
are not always correct or relevant). She 
prevents any intolerance of other students. 
The method of instruction that aims at 
fostering the confidence and the trust of the 
students in their CT abilities and skills is, 
according to Ennis "referring to other peoples 
points of view" and "being sensitive towards 
other peoples' feelings.” 
 
 

 

Table 1. Classroom discussion over an article and the infusion of CT skills, Part 2 
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The discussion conducted in class The practiced skills 

23. S2: I know! We can ask: suggest at least 
2 other factors that might cause the 
described effect. 

24. S5: The question is what causes what? 
25. S6: Does vitamin D contribute to healthy 

teeth? 
26. T: What do you think? 
27. S6: Vitamins contribute to healthy teeth. 
28. T: How can you be sure? 
29. S6:  Umm… 
30. S4:  Does deficiency in vitamin D cause 

damage to the teeth? 
31. S3: Are there other factors, such as 

genetics!?  
32. T: Very good. What did student 3 just do? 
33. S1: He suggested an alternative!! 
34. T: How can we check it? Do you have 

any suggestions? Can you make a 
connection between this problem and the 
material we have learned in the past few 
lessons? Can you offer an experiment 
that would solve the problem? 

35. S3: Of course. An observational 
experiment. 

In paragraph 23 the student is referring to 
other sets and finding the connection 
between them. 
 
 
 
 
 
 
 
 
 
Paragraph 31 depicts the skill of 
"Searching for alternatives". 
 
 
 
Paragraph 35 refers to a controlled 
experiment or an observational experiment. 
An additional grouping and finding the 
connection between the variables by Bayes 
theorem or a 2 dimensional table. 

Table 1. Classroom discussion over an article and the infusion of CT skills, Part 3 
Analysis according to CT skills 
With the Infusion approach, students practice their CT while acquiring technical 
probability skills. In this session, the following five skills are exercised:  
Raising questions - asking question about the article and probing on the main 
question about the connection between Calcium and vitamin D contribute to dental 
health (paragraph 1, see Table 1, Par 1).     
*Referring to information sources and evaluating the source's reliability - the article 
went through a number of interpretations. It was published in an Israeli newspaper, 
which translated it from an American journal, which, in turn, published a research 
that had been conducted in a dentistry school in a university located in Boston with 
its name unmentioned. All the above raised the students scepticism (paragraph 2, see 
Table 1, Par 1). 
Identification of variables - students identified the variables: Calcium, vitamin D, 
dental health (paragraph 6, see Table 1, Par 2). Following these skills, another skill, 
searching for alternatives (paragraph 31, see Table 1, Par 3), was presented.  
In class we spoke about suggesting alternatives, not taking things for granted but 
examining what had been said and suggesting other explanations. At this stage, we 
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combined the Mathematical aspect of the session - the connection reversal (a third 
factor that reverses the conclusion made before hand). We found the connection 
between the tree events (A, B and C). Another skill that was practiced is inference, in 
light of the alternatives suggested.    
Hence, the skills that were practiced in the described session are: raising questions, 
evaluating the source's reliability, identifying variables, suggesting alternatives and 
inference. 
In order to understand and monitor the student's attitudes toward CT as manifested by 
the skills specified above, interviews were conducted after the above session. In these 
interviews, the student expressed their acknowledgement regarding the importance of 
CT. Moreover, students are aware of the infusion of instructional strategies that 
advances CT skills. An example of two of the interviews is followed. 
Student 4 was interviewed and was asked to define CT. His answer was: 

I think CT is important when you study Mathematics, when you study other topics and when 
you read the paper, but it is most important when you deal with real life situations, and you 
need the right instruments in order to do so (deal with these situations). 

When student 2 was asked about important components during the last few classes 
and the present class, she answered: 

Now I understand 'variables identification' and it helps in everyday life. The issue of 
"intermediate factor" and the meaning of "reversing the connection" are also very important. 
Besides,” she added with a grin, “now I’m more skeptical about what they write in the paper. 

These initial findings suggest that infusion of CT into the formal curriculum in 
mathematics equips students with CT skills that are applicable to wider disciplines. 
CLOSING REMARKS 
The small scale research described here constitutes a small step in the direction of 
developing additional learning units within the traditional curriculum. Current 
research is exploring additional means of CT evaluation, including: the Cornell CT 
scale (Ennis, 1987), questionnaires of varied approaches, and a comprehensive test 
composed for future research. 
The general educational implications derived from this research can and should be 
used to lever the intellectual development of the student beyond the technical content 
of the course, by creating learning environments which foster CT, which will, in turn, 
encourage him to inquire the issue at hand, evaluate the information and react to it as 
a critical thinker. It is important to note, that in addition to the skills mentioned 
above, in the course of this session the students also gain intellectual skills such as 
conceptual thinking and class culture that (climate) foster CT. Students practice 
critical thinking by probability, while the presented article constitutes the basis for 
practicing critical thinking skills together with the subject of probability. In this 
session, the following skills are practiced: referring to information sources (paragraph 
2), encouraging open-mindedness and mental flexibility (all questions), a change in 
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attitude (paragraph 28, see Table 1, Par 3) and searching for alternatives (paragraph 
31, see Table 1, Par 3). A very important intellectual skill is the fostering of cognitive 
determination –to be able to express one's attitude and present an opinion that is 
supported by facts (paragraph 17-20, see Table 1, Par 2). In this session, students are 
shown to be searching for the truth, they are open minded and are self confident. In 
other words, they practice critical thinking skills. 
Research limitations 
This case study presents one session which is designed in a fixed pattern - a generic 
question, a discussion over the question, the practice of statistical relation, 
introduction to causal relation and experiencing the use of CT skills such as: raising 
questions, evaluating the source's reliability, identifying variables, suggesting 
alternatives and inference. On the basis of the interviews conducted and questioners 
that were qualitatively analyzed, it is unknown, at this stage, whether these skills had 
been acquired. Skill acquisition will be evaluated later on, using quantitative 
measures – the Cornell Critical Thinking Scale and the CCTDI scale. This case study 
raises encouraging evidence and a further investigation in this direction is needed.      
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This paper emerged from our attempts to help pre-service mathematics teachers 
integrate technology into their instruction. We are convinced of the usefulness of the 
idea of technological pedagogical content knowledge (TPCK), which, we argue, 
provides a framework to diagnose pre-service teachers’ difficulties and to identify the 
areas in need of development for a successful integration. We also argue that such 
diagnoses and identifications need to take the mathematical content into serious 
consideration, hence placing a strong emphasis on the content dimension of TPCK. 
These arguments are exemplified through the analysis of a pre-service mathematics 
teacher’s microteachings with and without the use of technology in the context of 
teaching derivative at a point.  
INTRODUCTION 
Recently, the question of what teachers of mathematics need to know in order to 
appropriately integrate technology into their teaching has received much attention 
(see e.g. ISTE (2000) as cited by Mishra & Koehler, 2006). ISTE (2000) proposes 
technology standards for teachers when integrating technology in various subjects. In 
the literature, a theoretical framework called ‘Technological Pedagogical Content 
Knowledge (TPCK)’ is proposed to investigate the nature of knowledge to be able to 
integrate technology into the instruction.  
This framework is crucial in the sense that merely knowing how to use technology is 
not the same as knowing how to teach with it. TPCK framework was originally 
derived from the idea of ‘Pedagogical Content Knowledge (PCK)’ which was 
proposed by Shulman (1986, 1987).  
Shulman (1987) emphasises that what is missing in describing teachers’ knowledge is 
the ‘subject matter for teaching’ and proposes PCK as an important domain of 
teachers’ knowledge. Shulman (1987) argues that pedagogical content knowledge is 
the category ‘most likely to distinguish the understanding of the content specialist 
from that of the pedagogue’ (p. 8).  
Given that technology has gained widespread use in learning and teaching, Pierson 
(2001) has added technology component to PCK framework and described TPCK as 
a combination of three types of knowledge: (a) content knowledge, (b) pedagogical 
knowledge, that is, the structure, organization, management, and teaching strategies 
for how particular subject matter is taught, (c) technological knowledge including the 
basic operational skills of technologies.  
                                                            
2 This study is part of a project (project number 107K531) funded by TUBITAK (The Scientific and Technological 
Research Council of Turkey). 
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Figure 1. Representation of TPCK. 

Mishra & Koehler (2006) illustrate TPCK as an intersection of these three knowledge 
categories: technological, pedagogical and content (see Figure1). They further define 
the intersection of pairs of different 
categories of knowledge: pedagogical 
content knowledge (PCK), 
technological content knowledge 
(TCK) and technological pedagogical 
knowledge (TPK). TCK is the 
knowledge of the relationship 
between technology and content e.g. 
understanding the kinds of 
representations that softwares offer 
for a concept. In that sense, “teachers 
need to know not just the subject 
matter they teach but also the manner in which the subject matter can be changed by 
the application of technology” (p. 1028). TPK is “the knowledge of pedagogical 
strategies and the ability to apply those strategies for use of technologies” (p. 1028) 
e.g. having students use Powerpoint to share their ideas with their peers where 
necessary.  
Up until now, only a few researchers (e.g. Pierson, 2001; Niess, 2005; Suharwoto, 
2006) have examined the components of TPCK who adopt Grossman’s (1990) four 
components of PCK to define the components of TPCK. Although they have 
provided a framework for TPCK, their works fall short in providing sufficient details 
regarding the content dimension of TPCK. In this paper, we aim to bring the content 
dimension into play and use the idea of TPCK as a framework to analyse the 
difficulties faced during teacher candidates’ integration of technology into the 
instruction and also identify the areas which need development for a successful 
integration. Hence we will argue that TPCK framework has the power of not only 
diagnosing these difficulties and the areas in need of improvement but also guiding 
the design of courses concerned with the integration of technology into instruction as 
part of mathematics teacher education programs. We exemplify our arguments with a 
pre-service teacher’s microteachings, in which concept of derivative at a point was 
delivered with and without the use of technology.  
As will be clear throughout the paper, content is central to PCK, TCK and hence 
TPCK, we begin with a consideration of the content itself, namely derivative at a 
point.  
THEORETICAL FRAMEWORK 
Derivative concept is a mathematical model of instantaneous rate of change which is 
the limit of the function that describes the average rate of change. A graphical 
interpretation of the idea of rate of change engenders another aspect: slope of the 
tangent at a point. Mathematical meaning of derivative leads us to the three aspects of 
derivative which have also been investigated in the literature as the areas of student 
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difficulties: derivative-rate of change relationship (Orton, 1983; Heid, 1988), 
derivative-slope relationship or so-called graphical interpretation (Amit & Vinner, 
1990) and derivative-limit relationship (Orton, 1983; Hähkiöniemi, 2005). 
When investigating the delivery of derivative at a point with the use of technology 
from the lenses of TPCK, we will focus on the content dimension considering these 
three aspects and will focus on TCK and PCK of derivative. We will also briefly 
analyse TPK since it might implicitly determine how the content is delivered using 
technology. In our framework TCK of derivative is defined as the knowledge of how 
the derivative concept (in three aspects described above) can be represented using the 
technological tools e.g. an understanding of how the idea of rate of change can be 
represented graphically and numerically by a technological tool. However, knowing 
how the derivative concept is represented using technological tools is one thing but 
using the technology for effective teaching is quite another. Teachers should also 
have PCK of derivative and combine it with general TPK. In terms of PCK, we will 
focus on only one of its components: knowledge of strategies and representations for 
teaching (Shulman, 1987; Grossman, 1990).  
In this paper, we will make an attempt to answer the research question: “How can 
pre-service teachers’ difficulties with technology integration be explained from the 
lenses of the components of TPCK framework, namely TPK, TCK, PCK?”. 
METHODOLOGY 
This case study is a part of a wider study which sets out to investigate the 
development of pre-service secondary mathematics teachers’ TPCK during a 
mathematics teacher education program in Turkey. The data was collected during the 
period of pre-service teachers’ micro-teaching activities in which the participants 
used technology as a tool for teaching. Twenty pre-service teachers taught various 
topics. Four pre-service teachers taught the concept of derivative at a point. This 
study will focus on one of these four pre-service teachers. After the first micro-
teaching sessions, a workshop was conducted in which a Turkish version of Graphic 
Calculus software was used and hands-on activities of technological content for 
various topics were practiced.  
The potential of the software in terms of providing multiple representations and links 
between them were discussed. After the workshop pre-service teachers taught the 
same topics again but this time using the software. Pre-service teachers’ content 
knowledge of derivative was assessed before and after the workshop by their written 
responses to questions on the three aspects of derivative described in the theoretical 
framework. Their PCK of derivative was investigated by analysing their lesson plans, 
teaching notes, observations of their teaching and interviews during which they 
reflected on their planning and teaching.  
In what follows, we present data from one pre-service teacher’s (called Sena) 
microteaching videos, lesson plans and interviews which will be examined with 
reference to the three components of the TPCK framework, namely PCK, TCK, TPK.  
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RESULTS 
As noted earlier content knowledge is central to TPCK, therefore we first consider 
Sena’s content knowledge of derivative. Then we analyse her micro-teachings from 
the perspectives of TPK, TCK and PCK.  
Content knowledge (CK) of derivative at a point 
Sena’s content knowledge of derivative for the three aspects was first assessed after 
her first micro-teaching experience just before the workshop. Second assessment of 
content knowledge was carried out after her second micro-teaching lesson during 
which she used the software. The analysis of her responses to the derivative questions 
indicated that Sena’s content knowledge of derivative was enriched after the second 
micro-teaching for all three aspects of derivative. For instance, before the first micro-
teaching she explained the role of the limit to define the derivative concept 
algebraically as in the formal definition. However, after her second micro-teaching, 
she made an intuitive explanation of the limiting process which she related to 
graphical meaning of derivative at a point. Similarly, her understanding of 
instantaneous rate of change improved. After the second micro-teaching, she 
correctly solved the questions which required interpretation of derivative as 
instantaneous rate of change in real-world contexts. She was able explain the 
graphical meaning of derivative which she could not before her second micro-
teaching. Despite this improvement in her understanding of three aspects of 
derivative, she could not relate these aspects in a coherent way. For instance, when 
explaining the graphical meaning of derivative she first assumed that the slope of the 
tangent gives the derivative at a point and then constructed the slope of the secants 
and took its limit. In other words, she did not use the idea of rate of change to 
conclude that the instantaneous rate of change gives the relationship between 
derivative at a point and slope of tangent at that point.  
Technological Pedagogical Knowledge (TPK) 
Although we focus on the content dimension of TPCK, TPK should not be dismissed 
since it might implicitly determine how the content is delivered using technology. 
Analysis of Sena’s reflections on her teaching provided insights into her TPK. For 
instance, in her micro-teaching, Sena used technology for only teacher-demonstration 
without having students to try and discover the ideas for themselves using their own 
computers. The reason for that, as she reported in the interview, is concerned with the 
role of the teacher in the classroom. She intentionally preferred this approach 
believing that technology should not weaken her authority as a teacher by providing 
the solutions for students. Coping with the changing roles of a teacher with the 
existence of a new media in the classroom is crucial in terms of TPK and that affects 
delivery of the content. She also reflected on the contributions of technology to her 
teaching and emphasised that one can focus on the more difficult questions with the 
availability of technology. That is why, as she stated, she used a function which has 
an asymptotic behaviour at a point at which she examined the derivative.  
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Technological Content Knowledge (TCK) of derivative at a point 
In this section, an analysis of Sena’s TCK of derivative will be reported. In terms of 
technological content, the software that was used provides graphical and numerical 
representations of derivative at a point which are dynamically linked as can be seen in 
Figure 2. An understanding of this 
technological content is required for 
the development of TCK, therefore 
TPCK. In the interview, Sena 
reported that she did not have any 
experience with using technology 
neither as a student nor as a teacher. 
During the interview, Sena was 
asked to perform the activities of 
software and explain three aspects 
of derivative and this revealed that 
she could explain these three aspects 
separately using the technology. However, analysis of her content knowledge as 
described above and her teaching as will be described in the next section indicated that 
she could not relate the notion of rate of change to graphical meaning of derivative. In 
the next sections, we will look at how this knowledge of TCK shapes her teaching.  
Pedagogical Content Knowledge (PCK) of derivative at a point 
Sena’s PCK was investigated by analysing her micro-teaching videos, lesson plans, 
teaching notes and interviews after her teaching. As described in the theoretical 
framework, we focus on only one component of PCK: knowledge of strategies and 
representations for teaching particular topics. In that sense, for Sena’s first micro-
teaching session her teaching strategy can be described as “introducing the concept 
by its formal definition followed by applications of definition with examples”. She 
did not address any of the three aspects of derivative. For instance, she did not 
explain why limiting process was required when defining derivative at a point. She 
explained neither the graphical meaning of derivative nor the notion of rate of 
change. In the interview she said that she did not know about rate of change, 
therefore did not consider it at all in her teaching. However, she said she deliberately 
ignored derivative-slope relationship:  

Sena: students might have difficulties with analytical geometry therefore they may not 
understand the geometrical meaning of derivative…it shouldn’t be given when 
introducing the concept. Students should first learn what the derivative means, 
that is how it is calculated (algebraically) 

As can be understood from her response, although she takes students’ difficulties 
with graphical meaning into account, she does not use any strategy to address this 
difficulty. This is not surprising considering that she does not know geometrical 
meaning of derivative herself. She strongly believes that the most important aspect of 
derivative for students is the algebraic rules of differentiation. 

Figure 2. Technology content for derivative.
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Analysis of the data indicated that Sena’s PCK was enriched after the workshop. 
Different from her first micro-teaching session, she followed a strategy which places 
the notion of rate of change into the centre. She started her lesson by explaining the 
notions of dependent and independent variables, and verbally described the notion of 
rate of change as the ratio of the change in the dependent variable over the change in 
the independent variable. Then she used the 
‘diagram of rate of change’ activity of the 
software which evaluates x

y
Δ

Δ  for the 

function xxxf += 2)(  (see Figure 3). She 
focused on values of rate of change 
around 2=x , first for [2,3] as shown in Figure 
3, then for [2,2.1], [2,2.01], [2,2.001] and 
found the values of rates of change as 6, 5.1, 
5.01 and 5.001. She mentioned that the values 
of rates of change approach to a number and 
this reveals the relationship between limit and 
derivative. She explained the derivative at 2 
as the number to which the values of x

y
Δ

Δ  
approach. However, she did not use the term 
‘instantaneous rate of change’. Up to this point, she did not explain the graphical 
meaning of rate of change by using the graphical representation of tangents 
approaching to the slope which dynamically progresses simultaneously with the table 
of values (see Figure 2).   
After writing the formal definitions of left and right derivative, she explained them 
with an example, |3|)( −= xxf , using the software. To explain why the left and right 
derivatives at 3 are different, she used the values of x

y
Δ

Δ  but she did not explain that 
the slopes of tangents from the left and right are different. When she was asked why 
she did not use the graphical representation of derivative to introduce the concept or 
to explain the left and right derivatives graphically, she stated that she planned to give 
the graphical meaning in the next lesson. She also stated that her students would have 
difficulties if she introduced the graphical meaning in the beginning.  
DISCUSSION 
The data of this study indicated that TPCK framework, without dismissing its content 
dimension, was useful in examining the difficulties faced during the integration of 
technology into instruction and also to identify the areas which need development for 
a successful integration.  
The analysis of data from the lenses of TPCK framework revealed Sena’s difficulties 
with technology integration in detailed and specific terms, namely as CK, PCK, TCK 
and TPK which all shaped her TPCK. The data also revealed the dynamics among 
these components; that is how they enrich or hinder the development of each other. In 

Figure 3. Rate of change activity. 
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terms of CK, Sena’s understanding of derivative in three aspects (derivative as limit, 
graphical meaning of derivative and derivative as rate of change) has enriched by her 
understanding of technological content, namely her TCK. However, her TCK falls 
short in relating the three aspects of derivative at a point in a coherent way. Sena’s 
TCK affected her PCK in the sense of strategies and representations used. In her first 
micro-teaching session she did not address any of the three aspects of derivative 
believing that the most important aspect of derivative for students is the algebraic 
rules of differentiation. In her second micro-teaching during which she used the 
software, she used a numerical approach to emphasise the notion of rate of change 
and make use of intuitive understanding of limit. However, she did not explain the 
graphical interpretation of derivative although she used the activity of the software 
which has a potential for addressing the relationship between graphical meaning and 
notion of rate of change by providing graphical representation of tangents 
approaching to the slope which dynamically progresses simultaneously with the table 
of values of rate of change (see Figure 2). Therefore, as the data suggests, TPCK of 
derivative is not just mere understanding of TCK of derivative. In fact, we believe 
that technological content has also pedagogical underpinnings e.g. the software Sena 
used relates three aspects of derivative by the way the table of values of rate of 
change which is connected to the notion of secants approaching the tangent to a point. 
For the development of TPCK, one should interpret this pedagogical idea behind the 
technological content and also combine his/her TCK with PCK and TPK. As the data 
indicated, Sena’s resistance to change her role as a teacher, as part of her TPK, is an 
obstacle for successful technology integration as she prefers her students not to use 
their computers since it might weaken her authority and control as a teacher. In 
summary, Sena needs to enrich her understanding of technological content and 
pedagogical idea behind this content which directly affects her TPCK for a successful 
integration of technology to teach derivative at a point.   
The analysis of data under TPCK framework provides some implications for 
mathematics teacher education. First of all, having the power of diagnosing pre-
service teachers’ difficulties with integration of technology into instruction and areas 
which need development for a successful integration, TPCK framework can guide the 
design of courses concerned with technology integration as a part of mathematics 
teacher education programs. Secondly, since many pre-service and in-service teachers 
might not have learnt their content with technology, school mathematics should be 
revisited using various technological tools aiming to develop TCK. Third, as data 
indicated in this paper, knowing merely the technological content is not enough for 
effective teaching. Teachers also need to develop technological pedagogical content 
knowledge. This paper analysed TPCK of derivative and future studies should 
investigate TPCK with a particular focus on the content dimension for other 
mathematical concepts. This kind of research could be useful for teacher educators 
concerning what to teach in terms of TPCK and how to monitor their development of 
TPCK especially during the courses such as ‘Instructional Technologies for 
Mathematics Teaching’ or in-service training for technology. Future studies should 
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also be conducted to investigate the development of TPCK considering the other 
components of PCK as described by Shulman (1987) and Grossman (1990).  We, in 
this study, looked at a pre-service teacher’s teaching using a single technological tool. 
Since the ability to choose a tool based on its fitness is an important aspect of TPCK 
(Mishra & Koehler, 2006), it would provide deeper insights to investigate TPCK in 
contexts where there is a wide repertory of technological tools available for teaching.  
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MEXICAN PRIMARY SCHOOL TEACHERS’ MISCONCEPTIONS 
ON DECIMAL NUMBERS 
Silvia Alatorre and Mariana Sáiz 
Universidad Pedagógica Nacional  

 
Using the methodology of Steinle and Stacey (2005) to detect and classify 
misconceptions on the order of decimal numbers, three workshops on decimal 
numbers were conducted with Mexican primary school in-service teachers. The 
results obtained are presented. Some teachers display some of the most common 
misconceptions: thinking that the shorter a decimal number is, the larger it is (thus 
0.6>0.73); other teachers seem to apply partial rules and analogies with money.  
BACKGROUND 
Teachers’ content knowledge 
This paper reports partial results of a research project related to in-service primary 
school teachers’ mathematical content knowledge as defined by Shulman (1986). 
Several authors have found that in- and pre-service teachers do not always master the 
mathematical contents they need to teach. Some authors who reviewed the PME 
Proceedings point out: 

Most of the studies over three decades of PME conferences, directly or indirectly, 
focused on the difficulties or deficiencies teachers exhibited for particular mathematics 
concepts or processes (Da Ponte & Chapman, 2006, p. 462). 

In Mexico, primary school teachers are mainly trained in special colleges called Escuelas 
Normales. To enter these schools 12 previous years of schooling are required and the 
studies’ program lasts four years.  The curriculum in these colleges includes subjects 
such as history of education, pedagogy, psychology and didactics of all the disciplines 
they will have to teach in primary schools. It is believed that when future teachers enter 
the Escuelas Normales they master most of the topics they have studied in those 12 years 
of schooling, particularly in the case of mathematics. But, as the results of national and 
international evaluations show, this is not so. Mexican outcomes in international 
assessments of children’s performance in mathematics are among the lowest (see e.g. 
OECD, 2002). Unfortunately, it has been detected that not only the students but also a 
fair amount Mexican in-service primary school teachers perform poorly in mathematics 
(see for example Sáiz, 2003), and other countries share this situation:  

Future and practicing teachers have become the object of much research. These studies 
may be categorized in three types. In the first type of study, teachers’ content knowledge 
(CK) is tested, often revealing alarming weaknesses (Verschaffel et al., 2006, p. 68). 

Our objective is to contribute in some way to overcome the low performance of 
Mexican pupils and their teachers, so we have designed a research project that 
attempts to answer the following questions: 
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• What mathematical concepts need to be reviewed in in-service primary 
school teacher’s courses?  

• Which tasks or problems may help to overcome common mathematical 
errors and misconceptions related to certain mathematical concepts? 

These issues require the recollection of information about teachers’ content 
knowledge. However, we believe, as other researchers (see for example Llinares, 
2002), that it is ethically incorrect just to gather information from the teachers, and 
that it is necessary to recompense in some way the teachers who participate in our 
research; this is done by organising activities directed to correct misconceptions 
and/or to reflect about the teaching of mathematical topics. A collection of workshops 
has been designed for primary school teachers; it is called TAMBA: Talleres de 
Matemáticas Básicas (Basic Mathematics Workshops). 
Research on Decimal Numbers 
One of the curricular contents in which students of all levels have many difficulties is 
decimal numbers (for instance see Resnick et al., 1989). We as teachers in different 
levels (including the university level) have observed so, and this experience is 
concurrent with international research conducted on the topic:  

Most of the work on rational numbers represented as decimals is framed in terms of 
misconceptions, many of which are attributed attempting to assimilate decimal fractions 
to their existing natural number knowledge […] (Verschaffel et al., 2006). 

In our research we have taken as a starting point the work by Stacey and Seinle 
(Steinle, V., Stacey, K., & Chambers, D., 2002; Steinle, 2004; Stacey, 2005; Steinle 
& Stacey, 2005). These authors have classified people’s answers when comparing 
two decimal numbers in four coarse categories: L, S, A and U, and some refinements: 

• Category L consists of considering for a variety of reasons that when 
comparing two decimal numbers the larger one is the longer. Thus, since 63 
is longer than 8, 4.63 is considered larger than 4.8. (L stands for long). Some 
refined categories are: L1 interprets decimal part of number as whole 
number of parts of unspecified size, and L2 is as L1, but knows the 0 in 4.08 
makes decimal part small, so that 4.7>4.08. 

• Category S (where S stands for short) consists of considering (again, for a 
variety of reasons) that the larger decimal number is the shorter. Thus, since 
6 is shorter than 83, 2.6 is considered larger than 2.83. Some refined 
categories are: S1 assumes any number of hundredths larger than any 
number of thousands, so 5.736<5.62, and S3 interprets decimal part as whole 
number and draws analogy with reciprocal or negative numbers, so 0.3>0.4, 
like 1/3 > 1/4 or –3>–4 (“reciprocal thinking”). 

• People in coarse code A are generally able to compare decimals. Within A, 
A2 people are correct on items with different initial decimal places; they 
may be following partial rules, drawing analogies with money, and having 
little understanding of place value.  



Alatorre and Sáiz 

PME 32 & PME-NA XXX 2008  2 - 27 

• Category U contains all remaining people. Within U, U2 can “correctly” 
order decimals, but reverses answers, so than all are incorrect (e.g., may 
believe decimals are less than zero) (Steinle & Stacey, 2005). 

Stacey’s plenary speach in PME 2005 addresses the issue of which of these kinds of 
reasoning is more persistent with time and schooling. Among her results we wish to 
stress the following: 

Whereas persistence in the L codes decreases with age […], persistence in the S and A2 
codes is higher amongst older students. This might be because the instruction that 
students receive is more successful in changing the naïve L ideas than S ideas but it is 
also likely to be because new learning and classroom practices in secondary schools 
incline students toward keeping S and A2 ideas […]. Whereas primary students in S 
codes have a better chance than L students to become experts, this is not the case in 
secondary school (Stacey, 2005, pp.29-31). 

METHODOLOGY 
In September 2005, October 2007 and November 2007 three workshops with in-
service primary school teachers were held respectively in the towns of Xochimilco (a 
semi-rural area at the south of Mexico City), Monterrey (a prosperous industrial city 
at the north of the country) and Guanajuato (an industrial city at the centre of the 
country). They had the following characteristics: 

• In Xochimilco, the workshop was organised by the head of the school district. 
The workshop was held for four hours (either in the morning or afternoon 
shift) during one monthly day when the children do not attend classes. The 
workshop that is reported here was compulsory for teachers of Grades 5 and 6 
and covered several topics of school mathematics, among them decimal 
numbers. A total of 36 teachers attended the workshop in its two shifts.  

• In Monterrey, a two-hour workshop on decimal numbers was held as a part 
of TAMBA and offered during the XL Annual Conference of the Mexican 
Mathematical Society (SMM). The Conferences of the SMM are customarily 
attended by many in- and pre-service teachers who receive a grant from the 
Ministry of Education; usually these grants are given to teachers who either 
ask for them or are have good results in exams designed for teachers 
(Carrera Magisterial. Once in the Conference, teachers can freely attend any 
of the sessions of the meeting, and within the session addressed to primary 
school teachers there are several simultaneous papers, courses and 
workshops from where to choose from. In 2007, a few teachers attended the 
Decimal Number Workshop. Data was gathered from 5 of them.  

• In Guanajuato, the workshop was organised by the National Pedagogical 
University in its local Centre, as a part of a Symposium on the Teaching of 
Mathematics. In-service primary school teachers of public schools of the 
zone attended the Symposium, mainly because they are interested in topics 
of mathematics teaching. This workshop consisted of two three-hour 
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sessions in which several school mathematics topics were covered, among 
them decimal numbers, and was attended by 11 teachers.  

In the three workshops, the time allotted for the decimal number topic was divided in 
three sections: a diagnostic test, whose results are the subject of this paper, a 
feedback on the test with explanation on the meaning of the decimal notation and the 
decimal-fraction link, and a reflection upon the difficulties of the teaching of the 
topic in primary school. 
The diagnostic test was Steinle & Stacey’s 30-item DCT3 (Steinle, 2005). It is shown 
in Figure 1. To the original test only reference letters were added. 

Instructions: For each pair of numbers, EITHER circle the larger number OR write = between them 

a 4.8 4.63 k 2.681 2.94 U 3.92 3.4813 

b 0.74 0.8 l 0.41 0.362 V 0.374 0.2165 

c 2.6 2.83 m 5.62 5.736 W 7.942 7.63 

d 0.6 0.73 n 0.426 0.37 X 0.62 0.827 

e 1.86 1.87 o 0.3 0.4 Y 2.4 2.3 

f 3.0 3 p 0.0 0 Z 0.8 0.80000 

g 4.08 4.7 q 3.72 3.073 Aa 0.3 0.03 

h 3.72 3.07 r 8.052 8.514 Ab 0.0004 0.4 

i 17.35 17.353 s 4.4502 4.45 Ac 0 0.6 

j 4.666 4.66 t 3.7 3.77777 Ad 0.7 0.00 

Figure 1. Steinle & Stacey’s decimal comparison test DCT3. 
The test sheets were marked and each mistake was classified according to Steinle & 
Stacey’s categories. Two parallel analyses were then conducted: 

• Item-wise: on each item, totals were obtained for each of four possible 
answers (left side larger, right side larger, equal numbers or blank: no 
answer). 

• Subject-wise: for each subject, totals were obtained for each of the possible 
categories. Then each teacher was classified in L, S, A or U with the 
following criterion: if the amount of correct answers was 27 or more, the 
teacher was classified as A. Otherwise, L or S were assigned when the great 
majority of mistakes corresponded to that category. U was assigned when a 
majority of mistakes were of the U kind or when there were both L and S 
mistakes in about the same proportion. 

RESULTS AND DISCUSSION 
In the item-wise analysis, the worse results (25 to 33 correct answers of the 52 
subjects) were obtained in items j, t, i, and s, where many teachers made either the 
mistake of choosing the shorter number as the larger one (S mistakes) or answered 
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that both numbers were equal: this is a mistake made by groups A2, S1 and S3, but 
not by L or A1. In a next group of items, items n, z, q, x, e, c, m, d, r, ac, o, u, w, and 
h obtained between 37 and 45 correct answers; the mistakes made in this group were 
mainly of the S coarse code. The best results (between 45 and 49 correct answers) 
were obtained in items aa, b, g, l, ab, f, k, a, p, v, y, and ad, where the mistakes were 
mainly of the L coarse code.  
Except for items o, w, l, and k, in all items there was at least one blank. These can be 
interpreted as doubts: teachers not answering a question because they were unsure of 
the correct response. The items with more blanks were x, u, p (4 blanks each), j, n (5 
each), and ac (6). Most noticeable in this group of items are items p (0.0 vs. 0) and ac 
(0 vs. 0.6); some teachers seem to wonder whether decimal numbers are per se 
smaller than whole numbers.  
Among the mistakes made by the teachers who attended the workshops, the most 
frequent ones were the ones of the coarse S code. L mistakes only add up to 18% of 
the total amount. This is shown in Figure 2. 
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Figure 2. Distribution of mistakes made in DCT3. 

However, this overall distribution changes when results are separated in the three 
workshops conducted. In order to be able to compare the three groups, the amount of 
mistakes in each category made by teachers of each workshop was divided by the 
number of teachers in the workshop, thus obtaining the quantity of mistakes of each 
kind per teacher in each group. The results are shown in Figure 3.  
Several issues can be interpreted from this graph. The teachers of Xochimilco made 
as much as 7.4 mistakes per teacher, which compared to the 2.1 mistakes in 
Guanajuato and the 0.2 in Monterrey is a very large number. This means as much as 
25% of mistaken answers in Xochimilco. Except for one, all of the blanks were in 
Xochimilco: teachers in this group seem to be the most unsure. Also noticeable is the 
fact that the larger percentage of S mistakes was obtained in Xochimilco (47%). In 
Guanajuato 61% of the mistakes were classified as “other”; they were the answer 
“both numbers are equal” in items j, t, i, and s: as commented above, this is a mistake 
made by groups A2, S1 and S3.  
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Figure 3. Mistakes per teacher in the three workshops.  

In another step of the subject-wise analysis, teachers were classified in one of the 
coarse categories. In Xochimilco 1 teacher was classified in the L category, 9 in S, 14 
in “other” and 12 were A. In Guanajuato there were no L or S subjects, 2 were 
classified as “other”, and 9 were A. Finally, all 5 subjects of the Monterrey workshop 
were A. It is interesting to compare these distributions with the results reported by 
Steinle et al. (2002) for Australian students in years 4-10 of primary and secondary 
school. Figure 4 shows this comparison. 
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Figure 4. Classification of subjects. Comparison between groups.  

Consistently with the results described above, the following results are noticeable: 

• In Xochimilco there was a very large amount (25%) of S teachers; no group 
of Australian students reach such a percentage in this category. This is also 
the case with the “other” teachers; however, the percentage of L subjects 
(3%) is lower than that of any group of Australian students. Finally, the 
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percentage of A subjects is barely larger to that of the Australian Grade 6 
children.  

• In Guanajuato and Monterrey, with no L or S subjects, the percentage of A 
subjects (respectively 82% and 100%) is significantly higher than the highest 
of all Australian students.  

The observed differences among the results obtained by the three groups of teachers 
can be attributed to several differences among the type of teachers who attended each 
workshop. The teachers in Xochimilco were the less urbanised (although Xochimilco 
is close to Mexico City), and the workshop they attended was compulsory, whereas in 
Guanajuato and even more so in Monterrey the teachers who attended the workshops 
did so in a voluntary fashion and surging from both a personal interest in 
mathematics and its teaching, and a high level performance in teacher exams. 
Unfortunately, our experience with Mexican teachers takes us to suspect that the 
majority resembles more the case in Xochimilco than the other two.  
Of course, the students of teachers who have so many misconceptions about decimal 
numbers are bound to repeat the misconceptions. As quoted above from Stacey 
(2005), the S and A2 misconceptions (as shown respectively by teachers in 
Xochimilco and Guanajuato) of primary school students tend to persist over time and 
schooling. It is unlikely that these children will overcome the misconceptions of their 
teachers. As for the teachers themselves, the frequency of S mistakes could be related 
to an incomplete learning in secondary school, and specially to a confusion originated 
in the learning of common fractions, negative numbers (reciprocal thinking) and 
rounding.  
These results are of course worrying. Although it serves no consolation purposes, 
these Mexican results are in no way unique: “While some adults might have difficulty 
with problems involving decimal numbers, the fact that pre-service elementary 
teachers, in particular, have difficulty is a great concern” (Steinle, 2004, p. 2). 
No single action can be taken to solve the problem. Educational authorities and 
curriculum designers should be aware of it, and emphasise the teaching of decimal 
numbers, not only in primary and secondary school but also in the Escuelas 
Normales. In-service teachers should be helped in as many ways as possible to be 
aware of the misconceptions and to overcome them.  
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From the detailed analysis of videotapes in an urban middle school classroom, taken as 
part of a larger study, we provide further interpretation of the notion of an “archetypal 
affective structure.” This is a psychological construct that emerged from the analysis of 
other mathematics classrooms in this study, proposed as a way of describing a complex 
behavioral/social/affective interaction that can enhance or hinder a student’s motivation to 
engage mathematically. We look closely at one such structure, labelled “Check This Out,” 
and tentatively identify the concurrent and subsequent affect-related behaviors of students. 

BACKGROUND AND THEORETICAL FRAMEWORK 
The research reported here is part of a larger study investigating the occurrence and 
development of powerful affect around conceptually challenging mathematics. Its 
focus is on urban middle school classrooms serving low-income, predominantly 
minority communities. It extends earlier research that values close attention to 
children’s mathematical thinking as they construct and justify their solutions (Davis 
& Maher, 1997), with the perspective that attending to issues of affect, context, social 
interactions, and culture in studying mathematical activity is essential to 
understanding how students gain confidence and motivation leading to success (Ball 
& Bass, 2003; Cobb & Yackel, 1998; Martin, 2000; Moschkovich, 2002). 
By “conceptually challenging mathematics,” we mean mathematical content that 
requires some development of new concepts or changes in existing ones. This 
frequently involves “figuring something out” within a problem situation that can be 
fraught with contextual distracters. Students may experience impasse (Schoenfeld, 
1992), and their problem-solving efforts are likely to evoke discussions, explorations, 
and challenges to individuals’ thinking. Research suggests that students may lose 
track of underlying mathematical concepts as they are caught up in surface 
characteristics of the problem, or as they become personally engaged in details of the 
context. According to Lubienski (2007), this phenomenon is particularly apparent 
among low SES students. Under such conditions, students may experience a variety 
of strong emotional feelings, leading to longer-term consequences for their 
engagement with mathematics. By the “affective domain,” we refer to emotional 
feelings, attitudes, beliefs, and values in relation to mathematics (DeBellis & Goldin, 
2006; Evans, Morgan, & Tsatsaroni, 2006; McLeod, 1994). “Powerful affect” refers 
to those patterns of affect and behavior that lead to interest, engagement, persistence, 
and mathematical success. It is not restricted to positive emotions, such as curiosity, 
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pleasure, and satisfaction, but includes the effective management and uses of feelings 
such as bewilderment and frustration. It involves affective structures such as 
mathematical integrity, intimacy, and self-efficacy. 
The earlier analysis of student affect, using data from classrooms included in the larger 
study, led to the detailed description of a construct called an archetypal affective 
structure (Epstein et al., 2007; Goldin, Epstein, & Schorr, 2007). As described in the 
latter reference, this is, “roughly speaking, a behavioral/affective/ social constellation 
within the individual.” Relevant structural characteristics for this study include: “(1) a 
characteristic pattern of behavior, beginning in response to particular circumstances in 
the social environment, and culminating in a characteristic behavioral outcome, (2) a 
characteristic sequence of emotional feelings, or affective pathway, (3) information or 
meanings that may be encoded by the emotional feelings… (5) characteristic problem-
solving strategies and heuristics for decision-making, (6) interactions with the 
individual’s systems of beliefs and values, (7) interactions with the individual’s 
structures of self-identity, integrity, and intimacy,” as well as, “(10) expressions from 
which affect may be inferred that are socioculturally-dependent as well as 
idiosyncratic, which can serve some communicative function ...” (p. 261).  
Several such structures were identified, with confirming evidence drawn from classroom 
videotapes, teachers’ observations, and retrospective interviews with individual children. 
One of these structures, called “Check This Out,” involves a student’s realizing that 
solving a mathematical problem or understanding another person’s solution strategy can 
have a payoff. Such a payoff might include the satisfaction of meeting the challenge of a 
complex mathematical task or investigating a situation that is relevant to the student’s 
experience. The present article is concerned with identifying alternative pathways that 
we call “branches,” the concurrent and subsequent affect-related behaviors of students 
when “Check This Out” was inferred to be operative.  
RESEARCH QUESTIONS AND METHODS 
In the exploratory sub-study on which this report is based, the guiding qualitative 
questions were as follows. (1) How, if at all, do the contexts of the problems posed in 
the lessons influence the students’ understandings of the intended mathematical 
concepts? (2) How, if at all, do the contexts of the problems influence the students’ 
engagement with the mathematical activity, in particular with regard to the “Check 
This Out” structure and its possible branches? (3) Can we construct a coherent 
“affective picture” of the class as a whole, including the observed impact of teacher 
interventions and descriptive information about individual students? This report 
focuses primarily on the second of these questions.  
The class is one of three urban, low-SES, middle school mathematics classes (in two 
different districts), that were studied in depth over the school year. The student 
population is predominantly African-American and Hispanic. Data were collected 
during five cycles. For each cycle, data included videotapes of two consecutive 
lessons, pre- and post-interviews with the teacher, and videotaped, stimulated-recall 
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interviews with four focus students. In addition, at least one videotaped interview was 
conducted with each of the other children in the class. Three cameras were used for 
each class session: two following the focus students, and the third stationary camera 
capturing an overall view of the class. Additional data included students’ written 
work, observers’ field notes and earlier analysis (Alston et al., 2007). The classroom 
and interview videotapes were transcribed. Each classroom tape, together with its 
transcription, was then analyzed using four different lenses, descriptive of: (a) the 
flow and development of mathematical ideas, (b) key affective events, where strong 
emotional feelings are inferred to occur, (c) social interactions among the students, 
and (d) significant interventions by the teacher. This analysis is still under way for the 
later cycles. The classroom teacher joined the research team subsequent to the school 
year and is participating in the analysis; he is a co-author of the present report. 
After the initial analyses, we sought to identify evidence indicative of archetypal 
affective structures, in particular the “Check This Out” structure and its branches. 
Four branches identified in earlier analysis were used to create a coding scheme for 
student (S) mathematical behavior during the transcribed episodes, as follows: (S1) 
comparing and integrating the ideas of others with the student’s own; (S2) moving 
toward the practical task of completing the activity; (S3) defending one’s own 
solution or that of a peer with little reference to the mathematics involved; and (S4) 
retaining one’s own solution, possibly passively, despite recognized logical 
contradictions in it. At this early stage in our research, we make no claim regarding 
the reliability of coding. Our results are preliminary and conjectural, though intended 
to lay the groundwork for future, larger-scale investigation. 
We report here on data from class sessions and interviews with students during the 
first cycle. The segments occurred in the final third of the first videotaped lesson. The 
students were working in small groups and engaged in whole-class discussion. The 
lesson was based on an investigation from “Variables and Patterns,” a unit of 
Connected Mathematics 2 (Lappan et al., 2006).  
RESULTS 
During these segments, the students were completing a series of questions based on 
their earlier investigation of three sets of data they had entered into a four-column 
table, representing distances travelled at 50, 55, and 60 mph after 0 through 6 hours. 
The data were to be represented graphically on a single coordinate grid.  
After discussing the graphs constructed by different students, the class appeared to 
agree that there should be three linear representations, with the steeper line 
representing the faster speed regardless of the scale that the student had established 
(See Figure 1). The teacher, Mr. P., asked the students to continue in their small groups 
to complete the next task in the investigation:  

C. Do the following for each of the three average speeds: 1. Look for patterns relating 
distance and time in the table and graph. Write a rule in words for calculating the distance 
traveled in any given time. 2. Write an equation for your rule, using letters to represent 
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Figure 1. Nammi’s table and graph, 
which the class agreed best 

represented the data. 

the variables. 3. Describe how the pattern of change shows up in the table, graph, and 
equation (Lappan et al., p. 51). 

The segments reported here illustrate the interaction of the four lenses of our analysis. 
The codes referring to the "Check This 
Out" branches are indicated in bold face 
type. As Segment 1 begins, three boys 
are responding to the task. Juan 
[students’ names are fictitious], a 
thoughtful Latino boy who has recently 
joined the class, is looking closely at the 
numbers in the table. Ryan, a soft-
spoken focus student whose family has 
emigrated from the Dominican Republic, 
appears to be trying to make sense of the 
task itself. Denzel, a somewhat volatile 
African-American boy assigned to 
special education but included in Mr. 
P.’s class at his mother’s request, seems 
to be struggling to comprehend. His 
questions suggest his need to follow the 
thinking of his partners. 
 

Segment 1  

In this segment, we observe students behaving as suggested by the “Check This Out” 
structure and two of its branches. This provides evidence of students’ interactions as 
they attempt to integrate each other’s ideas into their own (S2) and move towards the 
practical task of completing the activity (S1).  

(38:00)  
Juan: What are you trying to look for? Ryan: Let me see. C 1. Write a rule for 

calculating the distance at any given time.  
Denzel: What? Number what? C? C 1?  
Ryan: Yeah.  
Juan: Look for patterns?  
Denzel to Ryan: What did you write? What did you start writing?  
Juan (pointing to the three rows of the table that indicated speeds): It goes by 55. It goes 

by 50, 55, 60.  
Ryan:  They keep increasing. It says at any given time (S2).  
Juan:  Wait.  
Denzel: What? What happened? What happened? Ryan? What happened?  
Juan  (again tapping his pencil – this time horizontally along the first and second 
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rows): It goes by 5’s – then it goes by 10’s. Ryan: I get it – it increases!  
Juan:  This one …5, 10, 15, 20, 25, 30...  
Denzel: This one counts by …   
Juan:  It goes 50, 55, 60 and then 100, 110, 120 ... and then by 15 – 150, 165, 180 ... 

Then it goes up by 20 – 200, 220, 240.  
Ryan:  They keep increasing (S1)!  
Ryan’s written work includes: “That the rule if it’s in any time diagonly it skip 

counting/increasing (sic)” (S1,S2).  

Others in the class recognize and repeat the pattern noted by the boys. Mr. P. asks the 
class to explain why the increase is 15 in the 3rd row of data rather than 5, as in the 1st 
row. The responses of three girls: Tyanna, an assertive and enthusiastic African-
American focus student; Jana, a reserved African-American focus student; and Nammi, 
an assertive and confident African-American girl, provide another example of S1. 

(40:19)  
Tyanna (pointing to the data table on the overhead): Cover those zeroes! Then it’s 5, 10, 

15, 20, 25.  
Mr. P:  Why did you think it went up by 15 here instead of 5 here? And 10 here?  
Jana:  Because it’s going by 5’s!  
Nammi: Because you are timing the distance (for one hour) by the hours (S1). 

Analyses of the complete transcripts document the students’ mathematical focus shifting 
between surface characteristics of the table of values and the underlying concepts relating 
distance, time and speed. This shifting focus actually emerged in the first few minutes of 
the first session when, in answer to Mr. P.’s question about the topic, the first response 
was: “… multiples of 55, and 50 and 60 and you put them in the graph in the right way…” 
and the response of a second student was: “…miles per hour and the distance that you go.” 
Mr. P. summarizes the class discussion so far, eliciting explanations that might connect the 
horizontal pattern to vertical patterns that indicate distance travelled from 0 to 6 hours. 
Segment 2 
Interactions among the students in this segment; particularly Juan, Ryan and Nammi, 
provide further evidence of S1. Behaviors exhibited by Ken, a somewhat moody 
African-American boy, and Ryan also show evidence of S3, defending one’s own 
solution or that of a peer, and S4, retaining one’s own solution, despite recognized 
logical contradictions. When Mr. P asks the class how far one would go in 10 hours 
at 50 miles per hour, Ryan and Juan both raise their hands. 

(45:56)  
Juan:  It’s this right here… you would look for the one that is going up by 10s.  
Mr. P.: What’s going up by 10s (S1)?  
Ken: Look, 55 and 60, the third row, see how it’s 110 to 120 (S3).  
Mr. P.: Oh, so you’re looking at the pattern and which one goes up by 10s. Okay, so 

what about that?   
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Juan:  So because you keep going, and you go up to 10, you would get the answer…  
Ryan:  210. 210 - because if you skip counted by 50s 10 times it would give you 210 

(S1, S3).  
Mr. P.: Okay what do you guys think about that? 

Our analysis suggests that Ryan had counted by 10s horizontally, beginning with 120 
on the third row of the table and ending with 210 as the tenth number in the sequence. 
Several students shout out their disagreement. One student offers 550 as an 
alternative solution. Our analysis indicates that she multiplied 5 by 10, and then skip-
counted horizontally ten times to reach 550.  

(50:35)  
Nammi: Um, if you skip count 50 by ten times, it’s going to be 500.  
Ryan:  Oh – because now I see it but before I think 50 x 10 will give you 210 (S1, S3).  
Nammi: No, because 50 x 10 is the same as skip counting by 50s. Ryan: Oh (S4).  

Our analysis suggests the potential challenges to Ryan as an English language learner 
that perhaps contribute to his difficulty in articulating and defending his thinking, 
possibly explaining his passive retention of his own answer.   

(51:41)  
Juan (points to the chart to concur with Nammi): What I’m trying to say is 1 x 50 is 50, 

and then 2x50 is 100, and then 3x50 is 150, and then you keep going (S1).  
Ken (returning to the horizontal pattern): You know, like, you see where 50 miles, 

miles, (sigh) 55 and 60 are right? How it’s 220, 240? Like it’s 200, 220, 240, it 
skipped 20 (S3).  

When Mr. P asks Ken why he thinks this is the case, Ken turns away from the discussion 
and begins a conversation unrelated to the mathematics with his neighbor (S4). 

In this segment, we observe student behavior that we interpret as defending their 
solutions (S3) and/or retaining particular solutions despite contradictory information 
(S4). Although there was a high level of student involvement, at times this was not 
focused on the underlying mathematical concepts and occasionally it led to 
disengagement, such as that noted for Ken above. 
At the conclusion of the lesson, Mr. P. poses a “real-world” question, “What if I told 
you that I wanted to drive (at 50 miles per hour)… to Florida which takes around 20 
hours? How many miles…would I go?” The entire class becomes engaged in the 
discussion. Some noted the distance would be 50 x 20 or 1000. Denzel responds, 
describing an airplane trip to Las Vegas where he went 100 miles per hour. Several 
students note that 100 miles per hour would lead to a speeding ticket at which point 
Ken re-enters the discussion and explains that in Germany, where he was born, there 
were highways where you could legally go that fast. When Mr. P. brings the 
discussion back to the question, Nammi responds by stating, “Um, I figure it’s going 
to be the time times speed equals distance” (S1). Mr. P. concludes the class with the 
following homework assignment: “Write me a story about you going somewhere at a 
certain speed and tell me how long it’s going to take you and how far you go.” 
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The homework paper, eagerly submitted on Day 2 by Van, an African American, male 
focus student, evidences considerable work on his part. However, the task as he 
interpreted it, (confirmed during his interview) was to use the “Map Quest” function of 
the internet to obtain the estimated time and distance for his family trip to Myrtle Beach. 
He had written: “I got this information by looking at the 11 hours, 14 minutes, 
comparing them both and dividing 11 hours into 671.90 miles.” He had not, however, 
calculated this on his paper. When asked during the interview to complete the 
calculation, he first divided 671.90 into 11 and obtained .02. When prompted to divide 
11 into 671 by the interviewer, he agreed that 60 made more sense than .02 as his speed.  
Ryan, in his interview, said that he had only completed half of the assignment. When 
questioned further, he described a trip to the Dominican Republic: “… The flight was 
like 14 hours because we went there in the afternoon and we arrived there like the 
next day. And I woke up from my sleep and we deported from the plane to the 
Dominican airport. … I was waiting for a taxi for like 30 minutes.” There appeared to 
be no thought of mathematizing the situation, though Ryan responded willingly to 
direct questions from the interviewer about probable speed and the resulting distance. 
CONCLUSIONS AND IMPLICATIONS 
The classroom transcripts, along with the students’ work and retrospective 
interviews, provide considerable documentation of the affective structure “Check 
This Out.” The episodes presented in this paper, representative of the entire set of 
data for the cycle, document both the difficulty and the value of students’ 
constructing bridges between the exploration of obvious but superficial patterns, the 
real-life characteristics of problems, and the underlying mathematical ideas. We see 
instances of dialogue and expression that can be interpreted as evidence for the four 
branches of "Check This Out" identified earlier. Based on the current data, we 
suggest the value of incorporating a 5th branch into the coding: (S5) diversion from 
the mathematical task to focus on personal or surface characteristics of the situation.  
In our continuing analysis, we plan to systematically document and study occurrences 
of the “Check This Out” structure and other proposed archetypal affective structures 
in the complete data set from the larger study described above. Understanding of 
these preliminary findings would be enhanced by future studies replicating this 
research initiative in a wider variety of urban and other classroom contexts. 
This analysis also provides evidence of the Herculean task facing teachers as they 
support urban students in this endeavor, and the complexity of the interactions taking 
place. Continuing analysis includes the development of codes to document various 
characteristics of teacher interventions and their impact on the interplay of social 
interactions, affect, and mathematical thinking. 
Endnote 
1. This research is supported by the U.S. National Science Foundation (NSF), grant 
no. ESI-0333753 (MetroMath: The Center for Mathematics in America’s Cities). 
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The research results presented in this paper are only a small part of an action research 
performed with the main aim of improving student teachers’ understanding of mathematics. 
The re-teaching of mathematics was integrated with the teaching of pedagogy by asking 
student teachers (STs) to perform children’s activities which have the potential to develop 
conceptual understanding of the subject. This paper presents some results concerning STs’ 
difficulties in acquiring conceptual understanding and pedagogical knowledge of 
alternative and standard algorithms for operations with natural numbers. 
SOME RELATED LITERATURE 
According to Pimm (1995), there are four ways of performing calculations: (i) with 
the aid of concrete materials, (ii) mentally, (iii) with written symbols and (iv) with the 
aid of calculators. Each way presents both strengths and weaknesses and the more or 
less suitability of some of these ways depends on the numbers involved in the 
problem. Three types of written calculations for the four operations with natural 
numbers are described in the literature: standard, alternative and students’ invented 
algorithms (Schiro and Lawson, 2004). Even standard algorithms vary from one 
culture to another and from one generation to another (Leinhardt, 1988). Mathematics 
educators have debated which type of written algorithm should be the focus of school 
curricula, but the debate is not finished and research seems to be inconclusive (e.g., 
Laing and Meyer, 1982; Kamii and Dominick, 1997; and Schiro and Lawson, 2004). 
I remember being taught the “equal addition” algorithm for subtraction. However, as a 
teacher I taught the “decomposition or trading” algorithm (Schiro and Lawson, 2004, pp. 
204, 205). Yet I still use my own invented algorithm when solving my everyday 
subtraction problems. It involves reasoning that if I add what is left to what is taken away, 
the result is what I had before. That is, I transform any subtraction into an addition (e.g., if 
345 – 158 = X, then X + 158 = 345). In a subtraction such as 345 – 158, I start by 
searching for a number that added to 8 results 15. I check that it is 7 by mentally doing: 7 
+ 8 = 15. I record the 7 under the 8 (as in the equal addition algorithm) and record a small 
“carry one” near the digit 5. Then I search for a number that added to 6 (1+5) results in 14 
and so on. I never had to memorize any subtraction facts. I did all my subtraction sums 
well and my teachers never managed to notice that my algorithm was different from the 
ones they were teaching. It was only later, when I became a teacher, that I noticed that I 
was using a different method from the one provided by the textbooks. 
Teachers can not prevent students from inventing and using different algorithms from 
the ones they teach. Problems only happen when invented algorithms are faulty 
(Ashlock, 1982). Both Hart (1993) and Ball and Bass (2004) express the importance 
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of evaluating the validity of students’ methods. Hart (1993) points out that these 
methods “may be useful if a teacher has the time and sees the need to keep track of 
the child’s methods and to help the move to greater sophistication” (p. 21). Teaching 
alternative and standard algorithms in conceptual ways and monitoring students’ 
invented algorithms are complex tasks that demand great conceptual knowledge from 
teachers (Ball and Bass, 2004). It is also difficult for teachers to find the time to 
monitor different invented algorithms in classrooms with 30 to 40 students. With big 
classes, I prefer to work with several concrete and mental methods, but to focus on a 
single symbolic algorithm which can be the standard one or simpler versions which 
Ashlock (1982) calls low-stress algorithms. 
Orton (1994) hypothesises that some students resist using a procedure “unless they 
have in some way made it their own” (p. 36). He thinks that there is a greater 
possibility of incorporating a procedure which has also been conceptually understood 
than a procedure which has only been rote memorised. Students can be asked to 
compare their different ways of working with concrete materials and decide which is 
the quickest or the more economical method of finding and recording the solution and 
why. The classroom agreed quickest algorithm can be called the “common way”, 
adopted for whole classroom discussions and translated into a written algorithm. For 
natural numbers the quickest algorithms coincide with the actions behind the standard 
symbolic algorithms. Such reflections and comparisons seem to be a good way of 
helping students make certain standard algorithms “their own”. When solving 
problems students can be asked to try to find the solution by both using their own 
methods and the “common” method. In this manner students who have more 
problems in translating from concrete materials to symbols can at least rely on one 
effective written algorithm and answer the problems; and those who know more than 
one way can use one way to check the other. 
I take the view of Schiro and Lawson (2004) who think that standard algorithms are 
an important part of students cultural heritage and teachers “do not need to choose 
between teachers teaching algorithms and children inventing their own algorithms, 
but that these two activities can complement and enrich each other” (p. 97). Research 
tends to confirm this view. For example, Resnick and Ford (1981) found that 
instruction helped a student to connect her conceptual knowledge of place value with 
the procedural knowledge in a standard subtraction algorithm. The connection in turn 
helped the student to establish, mostly on her own, further place value connections 
and invent an alternative subtraction algorithm. 
Understanding of algebra algorithms are said to be dependent on the understanding of 
arithmetic algorithms (English and Halford, 1995). Mathematics is not only beautiful 
and useful in everyday life but it is also the language of science. Although the more 
informal and oral mathematics used by Brazilian street sellers (Carraher et al. 1989) 
is an important tool in everyday life, it is not enough to change their social status. The 
mastery of school written mathematics can help students to acquire the necessary 
conditions to progress in mathematics itself and in many other subjects. Whereas 
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success only “in the out-of-school mathematics will just assure the children of 
continuity in the low-status jobs they are already engaged in” (Abreu et al., 1997, p. 
238). It is teacher educators’ responsibility to help student teachers to acquire enough 
conceptual understanding and pedagogical knowledge to teach both alternative and 
standard algorithms and to evaluate students’ invented algorithms. Therefore, one 
particular research question related to the present study was: “In what ways can 
primary school STs be helped to acquire a more conceptual understanding and some 
pedagogical knowledge of the algorithms in the primary school curriculum?”. 
METHODOLOGY 
I carried out an action research at University of Brasília through a mathematics teaching 
course component in pre-service teacher education (Amato, 2004). The component 
consists of one semester (80 hours) in which both theory related to the teaching of 
mathematics and strategies for teaching the content in the primary school curriculum 
must be discussed. This is the only compulsory component related to mathematics 
offered to primary school STs at University of Brasília. There were two main action 
steps and each had the duration of one semester, thus each action step took place with a 
different cohort of STs. As the third and subsequent action steps were less formal in 
nature and involved less data collection, not many results will be reported from the latter. 
A new teaching programme was designed with the aims of improving STs’ 
conceptual understanding of the content they would be expected to teach in the 
future. In the action steps of the research, the re-teaching of mathematics was 
integrated with the teaching of pedagogical content knowledge by asking the STs to 
perform children’s activities which have the potential to develop conceptual 
understanding for most of the contents in the primary school curriculum. About 90% 
of the new teaching program became children’s activities. The children’s activities 
performed by the STs had four more specific aims in mind: (a) promote STs’ familiarity 
with multiple modes of representation for most concepts and operations in the primary 
school curriculum; (b) expose STs to several ways of performing operations with concrete 
materials; (c) help STs to construct relationships among concepts and operations through 
the use of versatile representations (Amato, 2006); and (d) facilitate STs’ transition from 
concrete to symbolic mathematics. A summary of the main activities in the teaching 
program can be found in Amato (2004). The sequence of activities performed by STs for 
alternative and standard algorithms for each operation with natural numbers in the first and 
second action steps of the research was: 

I. Practical work and discussion about different concrete algorithms. STs 
manipulate concrete materials on a special board called place value board (PVB) 
(Amato, 2006). There are two versions of the PVB: (i) students’ version and (ii) 
teacher’s version used for whole class discussions. At this stage no symbols are 
used. First I write on the blackboard a simple word problem, breaking the 
problem into parts that are connected to each line of the PVB. I also display loose 
straws and bundles of 10 straws on the appropriate places. Then the STs are asked 
to represent the initial amounts with concrete materials and to manipulate the 
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concrete materials to solve the problem. The STs are also asked to pretend to be 
children who do not know the sum. They have only to remember that 10 things 
can not be left for long in a place. The ten things have to be bundled together and 
displayed on the next place on the left. Finally some STs are asked to show the 
class how they have solved the problem using the teachers’ PVB. 

II. Comparing left-handed and right-handed concrete algorithms. STs simultaneously 
manipulate concrete materials and symbols (number cards) on the PVB with the 
aim of comparing two specific concrete algorithms for addition and division and 
decide which was the quickest way of finding and recording the solution and why: 
(i) starting from the tens (left-handed), or (ii) starting from the units (right-handed). 

III. Practical work and discussion about the standard algorithm. STs simultaneously 
manipulate concrete materials and symbols on the PVB with the aim of internalising 
the concrete and symbolic actions behind the standard algorithm. 

IV. Formalisation of the standard algorithm. Through systematic questions asked by me, 
STs are asked to look back at their previous actions with concrete materials and 
symbols in activity III and verbalise their past actions (e.g., What did you do next 
with the tens blocks?). The objective is to construct the symbolic standard algorithm 
separated from the concrete materials. Each step in the symbolic algorithm is 
written by me on the chalkboard after each question is answered by the class. 

V. Recording the concrete and symbolic actions behind the standard algorithm. STs are 
asked to record with pictures and symbols the actions they had previously 
performed in the third type of activity (III). The recording is done on specially 
designed sheets called “reports”. STs record the initial position of the concrete 
materials (the sum) on a first picture of the PVB. The next pictures of the PVB are 
for recording the sequence of actions in the standard algorithms. The reports are a 
way of organising STs’ recording and to save time as they do not have to draw 
pictures of PVBs as three (addition and multiplication) or four PVBs (subtraction 
and division) are printed for them on each sheet. 

VI. Recording different symbolic algorithms. I use the teachers’ PVB and concrete 
materials to perform the previous concrete algorithms manipulated by the STs in 
the first and second stage (I and II) and to perform other symbolic algorithms 
extracted from the literature. I record on the blackboard with symbols each 
concrete action performed by me on the teachers’ PVB. Finally, I provide STs 
with handouts summarising the symbolic algorithms presented in the class for 
each operation and ask them to use all algorithms to calculate the result of two 
new sums as a home assignment. 
The last two types of activities (V and VI) are considered teachers’ activities because it 
involves recording standard and alternative algorithms in iconic and symbolic ways. 

Four data collection instruments were used to monitor the effects of the strategic 
actions: (a) researcher’s daily diary; (b) middle and end of semester interviews; (c) 
beginning, middle and end of semester questionnaires; and (d) pre- and post-tests. 
The questions in the questionnaires and interviews focused on STs’ (i) perceptions 
about their own understanding of mathematics and their attitudes towards 
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mathematics before and after experiencing the activities in the teaching programme, 
and (ii) evaluation of the activities in the teaching programme. Much information was 
produced by the data collection instruments but, because of the limitations of space, 
only some STs’ responses related to their activities concerning alternative and 
standard algorithms for operations with natural numbers will be reported here. 
SOME RESULTS 
One of the teaching strategies used in the action steps of this research involved the 
use of activities which could help the STs to notice that there can be different ways of 
performing an operation. Some STs mentioned that the practical activities and 
discussions about different algorithms were useful to their understanding of 
operations and to their learning of pedagogical knowledge: 

Interview 11(3) ST140 ... The work with concrete materials inside the classroom. We did 
two processes on the PVB. First by starting from the loose ones [units] and then 
by starting from the big bundles [hundreds]. Then we divided the methods into 
stages and compared them. At the end we noticed that it was easier to start from 
the loose ones. Otherwise we would have to add another big bundle later. This 
practical aspect inside the classroom is very important for working with children. 

Interview 21(6) ST203 ... [she was already a primary school teacher who had done a 
vocational course at high school] I did not know there were other methods of 
doing addition and subtraction. I had a student who did subtraction in a different 
way. Her results were always correct but I never stopped to pay attention to 
how she did the sums. Seeing all those new methods [of performing an 
operation] opened my mind. 

Different algorithms in the concrete mode 
The work with different algorithms using concrete materials or with “concrete algorithms” 
was considered very successful in all semesters. Some STs were curious about why the 
process of doing an addition ‘from left to right’, that is, starting with the tens place, had 
not been adopted in the past. The comparisons made among the different concrete 
algorithms used by the class were helpful in the understanding of the standard algorithms: 

Questionnaire Pos-und (1)(b) ST136 I understood that it is possible to solve mathematical 
problems without being so rigid about using standard sums and that the standard [sums] 
corresponds to a historical construction. 

Similar comparisons were not possible for subtraction and multiplication because of 
lack of time, but the STs were advised to use similar comparisons for those 
operations with their future students. In the case of division, they could notice that 
division behaves in a different way from other operations as it is the only operation 
which is started from the left side in the standard algorithm. The work with different 
concrete algorithms was thought to be quite important to help the STs improve their 
conceptual understanding of operations and to become aware of the validity of 
different methods of carrying out an operation. 
In the first semester the initial addition of natural numbers with concrete materials 
was performed with two-digit numbers. Later there was a lively discussion with the 
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classroom divided into two views: (i) one group thinking that joining the tens first 
and then the units (left to right) was a quicker method and (ii) another group thinking 
that joining the units first and then the tens (right to left) was quicker.  
The STs took a long time to reach a conclusion because with two-digit numbers the 
economy is not great and so it did not seem to be perceived by some STs. So it was 
decided to repeat the activity in the next lecture with three-digit numbers and with the 
plane version of Dienes’ blocks instead of straws. Working with bigger numbers was 
thought to be better in making the processes and relationships involved clearer as STs 
are exposed to more place value ideas and trading actions. Therefore, most activities 
during the rest of the semester and in other semesters were performed with three-digit 
numbers. Apart from that, no major changes for the practical activities concerning 
concrete algorithms were proposed for the second and subsequent semesters. 
Different algorithms in the symbolic mode  
The work with different algorithms in the symbolic or written mode or “symbolic 
algorithms”, was considered interesting by some STs and in the case of ST234 it had 
helped to change her understanding of natural numbers: “Interview21(5)(b) To know 
the existence of other methods of performing sums.  
The standard ways were chosen because they were considered more practical”. On 
the other hand, some STs found the alternative symbolic algorithms difficult. ST222 
commented in the classroom that he found even the low stress algorithms for addition 
very confusing. According to Ashlock (1982), low stress algorithms are meant to help 
children by reducing the intermediate numbers that have to be committed to the 
memory while adding each column of digits. ST234 interrupted and said that she 
considered the ideas as an option for the teacher to work with children who are 
having difficulties with the standard way of adding. Then ST207 commented that he 
thought they were nothing more than the standard algorithm recorded in a different 
way. The class concluded that not many alternative symbolic algorithms should be 
presented to young students as they could cause confusion, but STs should know 
them for: 

• Helping their future students to learn the standard algorithms by using the 
low stress algorithms as ST207 and ST234 had noticed; 

• Using some alternative algorithms as a recreational activity with older 
children. Some children find it very interesting to know how the Egyptians 
did multiplication without having to memorise the times tables; and 

• Getting more flexibility in thinking about the operations at a more formal or 
symbolic level. That, in turn, could help them to: (i) understand different 
algorithms used by their students. They could have a student who studied for 
some time abroad or a student whose parents or other teacher have taught a 
different algorithm; and (ii) analyse the validity of their students’ invented 
algorithms. Some teachers cannot cope with anything different from their 
own reasoning. They simply cross the problem as wrong. 
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Many STs seemed to have enjoyed the handouts and learning about different 
symbolic algorithms. However, such work, even in the case of natural numbers, was 
thought to be difficult for some STs. Therefore, some changes were made during the 
first action steps of the research. Similar practical activities and handouts had been 
designed for rational numbers but they were not administered to the STs in any 
semester. In a single semester, STs had to accommodate the idea of representing 
alternative and standard algorithms for natural numbers with concrete materials. That 
was already considered a difficult step for some STs. 
The number of STs who complained in the questionnaires and interviews about their 
difficulties in learning about alternative symbolic algorithms for natural numbers 
increased from 1 in the first semester to 8 in the second semester. No major changes 
were made in the activities from the first to the second semester, so the increase of 
complaints may also have been due to the fact that more data was collected in the 
second semester. However, the standard symbolic algorithms they had memorised at 
school appeared to be interfering with the learning of new algorithms: 

Interview 21(6) ST216 ... You ask us to forget the procedures we learned at school, but 
it is very complicated to do that. The different methods of doing sums are very 
complicated for me. The sums had to be done in the standard way and that was 
all. There was no other way of doing them. Suddenly appears lots of methods 
for doing them. They are very difficult for us who are used to the standard 
methods. 

Even the work with symbolic alternative algorithms for natural numbers was excluded 
from the programme in the third and subsequent semesters. Only the Egyptian 
algorithm for multiplication was presented as a recreational activity. Helping the STs 
to understand different symbolic algorithms was thought to be too difficult for a single 
semester. Besides the STs suggested that more activities concerning fraction concepts 
and operations were needed (Amato, 2004). 
SOME CONCLUSIONS 
In order to deal with students’ invented algorithms, teachers must, themselves, be 
confident and fluent in performing algorithms in all four ways described by Pimm 
(1995) and in all modes of representation. Ideally, they should also have a good 
conceptual understanding to be able to discuss with children the reasoning behind 
different algorithms in symbolic form. Yet in a first course component about teaching 
mathematics it was thought to be more urgent to help STs to draw out connections 
between the standard and symbolic ways of operating natural numbers they had in their 
minds before starting the course and other more informal representations so that 
different representations could be incorporated in the same schema.  
Apart from improving their conceptual understanding, knowing well these connections 
could provide STs with the confidence they needed to start teaching conceptually with 
the use of concrete materials and be an important starting point for their future 
understanding of alternative and invented symbolic algorithms. Indeed the low stress 
algorithms involve only small variations of the standard algorithms. 
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On the other hand, certain standard algorithms appear unreasonable. One example is the 
algorithm of division of fractions that is transformed into multiplication and does not 
resemble the previous schema for division. In those cases it is not difficult to convince STs 
to learn and use an alternative algorithm. Besides extending the standard algorithms for 
operations with natural numbers to the operations with rational numbers (Amato, 2006) 
was thought to be quite important to STs' acquisition of conceptual knowledge as it 
involves relating new content to previous learned content and so to the acquisition of 
meaningful knowledge (Ausubel, 2000). If, however, more teaching time is provided in 
the future, the STs could benefit not only from learning about alternative symbolic 
algorithms for natural numbers, but also from learning about the history of algorithms, that 
is, learning how algorithms changed over time and progressed to the present day notation. 
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METHODS FOR THE GENERALIZATION OF NON-LINEAR 
PATTERNS USED BY TALENTED PRE-ALGEBRA STUDENTS  

Miriam Amit and Dorit Neria 
Ben Gurion University 

 
This study focuses on the generalization methods of mathematically talented middle-
school students in solving a quadric pattern task. A qualitative analysis of the 
solutions revealed two main approaches: an expansive recursive approach, either by 
drawing or by numerical means, and a visual-based approach. The latter was found 
to be the most efficient in achieving a global functional rule. The results of this study 
demonstrate the importance and value of challenging talented students with non-
linear patterns, as the cognitive demands of such tasks have the potential for 
providing rich mathematical experiences.  
THEORETICAL BACKGROUND 
The prominence of generalization in mathematics has been noted by numerous 
researchers (e.g. Doerfler, 1991; Kruteskii, 1976; Polya, 1957; Skemp, 1986). 
Pattern problems have been found to be efficient in developing and revealing the 
ability to generalize. Several studies have focused on generalizing patterns; they vary 
in types of patterns –numerical, pictorial or repeating patterns, and differ in 
population– from children to pre-service school teachers (e.g. Amit & Neria, 2008; 
Becker & Rivera, 2004; English & Warren, 1998; Ishida, 1997; Rivera, 2007; Stacy, 
1989; Zazkis & Lijendak, 2002).  
Concerning linear patterns, Stacey (1989) distinguishes between ‘near generalization’ 
tasks, in which finding the next pattern or elements can be achieved by counting, drawing 
or forming a table, and ‘far generalization’ tasks, in which finding a pattern requires an 
understanding of the general rule. Garcia-Cruz and Martinon (1998) referred to 
generalization strategies as local generalizations, based on recursive-additive approaches 
and global generalizations, based on searching for the functional relationship.  
Studies that address non-linear patterns (e.g. Ebersbach & Wilkening, 2007; Krebs, 
2003) have found additive strategies to be common and there was an evident 
tendency towards linearity, even when the patterns were clearly non-linear. 
Moreover, while in linear pattern problems using additive (expansive) strategies can 
lead to a global generalization (because the difference between each two successive 
patterns is constant, and more obvious to the solver), in non-linear patterns this 
approach can prevent them from seeing the global structure; a more productive 
approach involves using visual approaches (Amit & Neria, 2008; Krebs, 2003; 
Rivera, 2007; Steele & Johanning, 2004). 
In this study, we examined the generalization methods of talented middle-school 
students when solving quadric pattern problems.  
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METHODOLOGY  
Population 
Fifty mathematically talented middle-school students (age 12-14) who participate in 
"Kidumatica" - an after-school math club in the southern region of Israel.3 
The students participating in this study were new members in the club had no prior 
extra-curricular studies, just their school curriculum. 
Settings and Tools 
The research tool was a questionnaire comprised of six non-routine tasks that 
included the pattern task discussed here4 (Fig. 1).  
The questionnaire served as a pre-test aimed at investigating the abilities of the club’s 
new participants, prior to any mathematical activities in the club.  
The questionnaire was designed according to the cognitive abilities of mathematically 
talented students described by Kruteskii (1976), one of which is the ability to 
generalize. 
Although the students had sufficient background to meet the challenge, the problem 
was considered non-routine, requiring students to use their pre-existing knowledge in 
an unfamiliar way, thereby effectively reconstructing what they know. It provided an 
opportunity to use different strategies and representations. 
 The task held potential for the construction of new mathematical ideas and concepts 
– in this case, the potential for developing generalizations. The students were 
required to fully document and justify the solution process. 
The tasks' ‘givens’ consisted of a small finite set of figural patterns of a sequence, 
and included four questions based on previous research on generalization (Stacey, 
1989; English & Warren, 1998). 
Item a - finding the next pattern, in accordance to the theoretical ‘near 
generalization’. The item served as a “warm up” item that enabled the solvers to 
examine and investigate the pattern.  
Item b - finding the tenth pattern, in accordance with the theoretical term ‘far 
generalization’. A correct answer could be obtained by extending the pattern (using 
numbers or by drawing) or by finding the functional rule. 
Item c - the ‘intuitive generalization’ (informal generalization), enabling the students 
to represent the generalization in any form they felt comfortable with. For the 

                                                            
3 Kidumatica Math club was founded in 1988 in Ben-Gurion University of the Negev. Every year, around 400 students 
ranging from ages 10-16, from 60 schools, participate in the clubs' activities. The weekly activities increase their 
creative thinking and mathematical skills, through subjects such as game theory, logic, combinatorics, and algebra. 
Students are chosen for their high mathematical abilities and their interest in developing these talents. The activities are 
run by experienced educators, who have been specially trained to instruct gifted students. Since its establishment, the 
Kidumatica math club has become a prestigious program that draws a multitude of applicants. 
4 Adopted from Zareba (2003). 
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researchers, this item was an indicator of generalization abilities. It was based on 
prior research indicating that students find it easier to verbalize generalizations than 
to write them symbolically (English & Warren, 1998), and on the fact that the study 
population was comprised of pre-algebra students. 
Item d - the ‘formal generalization’, which contained an explicit requirement to 
represent a generalization in a formal mode, striving towards algebra. The aim of 
item D was to investigate how the students symbolize prior to formal studies in 
algebra.  
 

 
Figure 1. The quadric pattern task. 

 
Data analysis 
All students’ answers were analysed qualitatively according to their correctness and 
their generalization strategy.  
Based on previous studies, (English & Warren, 1998; Ishida, 1997; Lee, 1996), 
generalizations were categorized into recursive (local) strategies versus functional 
ones. Strategies for generalizing were divided into numerical - such as the use of 
finite differences in a table, drawing and counting or visual strategies (Becker & 
Rivera, 2004; English & Warren, 1998; Ishida, 1997; Krebs, 2003; Rivera, 2007). 
FINDINGS AND INTERPRETATION  
Two main strategies were found: additive strategies, either by expanding the pattern 
by drawings or by numerical means (tables or lists), and visual based approaches 
(Table 1). 

The following illustration presents the first three patterns in a sequence: 

 
a. How many tiles are needed to make the next pattern? 
b.  How many tiles are needed to make pattern 10?  
c. Suggest a method to calculate the number of tiles needed to make any 

pattern in this sequence. 
d. Suggest a method to calculate the number of tiles needed to make the 

nth pattern in this sequence 
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Strategy  Item A 
The next 
pattern 

Item B 
The 
10th  

pattern
Additive 
strategies 

Expansion by drawing (drawing and 
counting) 

31 7 

 Expansion by numerical means (tables, lists 
etc.) 

9 16 

Global strategies Of the pattern 5 14 
 Of the sequence of differences  4 
Unclear/ not 
coherent 

 5 5 

No answer  0 4 
Total  50 50 

Table 1. Distribution of solving strategies 

Expansion by drawing 
Of the fifty students who performed this task, 31 began solving it by drawing the next 
one or two patterns (Fig. 2). As noted by Lowrie and Kay (2001), using visual 
methods to complete complex or novel problems and in situations where the problem 
is not immediately understood is efficient in helping the solvers to organize and 
access relevant knowledge. Once students grasped the initial pattern, most of them 
turned to other approaches, and only 7 students continued to expand the pattern by 
drawing to find the tenth pattern. These students did not manage to find a global 
generalization. 
 

 
Figure 2. Expansion by drawing. 

 
Expansion by numerical means 
Sixteen students used number sequences. They adopted a recursive approach and 
achieved local generalization, as illustrated in Figure 3. Once the student counted the 
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squares in the givens, she abandoned the pictorial figures and concentrated on the 
numerical representation. Grasping the regularity, she linked between the number of 
a pattern (bottom line) and the number of tiles in this pattern (middle line). In the 
upper line she wrote the difference between the numbers of squares in successive 
patterns.  
 

 
Figure 3. Numerical approach. 

 
Though the students that carried out this approach formed correct lists, these lists and 
tables had no figurative meaning. Extending the list enabled them to achieve 
recursive generalizations, such as: “the difference between patterns 1 and 2 is 7, and 
between patterns 2 and 3 is 9; between patterns 3 and 4 it’s 11 and so on. The 
difference increases by 2 (from 1 to 2, from 2 to 3 etc.), and then you add the number 
of squares to the difference between the next and the previous.”    
These results are in line with Swafford and Langrall (2000), who found that although 
forming tables is useful in helping solvers make sense of a problem, it may also cause 
distraction from a more global view. This seems to be more prominent when solving 
non-linear patterns since the constant difference cannot be recognized straight away 
and the mathematical relationship between the listed numbers is not as obvious as in 
the case of linear patterns.  
In four cases in this study, the numerical representations distracted and misled the 
students into focusing and generalizing  the sequence of differences, which in this 
case was linear, and more noticeable than the non-linear pattern, a phenomenon 
described as an "irresistible tendency towards linearity" (De Bock, Van Dooren, 
Jansens & Verschaffel, 2002). 
Global visual-based approach  
Visual-based approaches were found to be more productive and led solvers to global 
generalizations. The fourteen students who generalized globally were those who 
divided the pattern into parts, whose areas had a constant relation to the pattern’s 
place in the sequence.  
In this case, what remained constant throughout the generalization process was the 
manner of division, and not the number of added squares. For example, in Figure 4, 
the student dismantled the given figure into a central rectangle whose sides are n and 
n+2, so the area is the multiplication of n by n+2, and then added two additional 
rectangles whose sides are 1 and n. He was able to find a global functional relation 
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between the squares of a pattern and the pattern location in the sequence and used an 
algebraic notation for representing the functional rule: “n ⋅ (n + 2) + n ⋅ 2”. 
 

 
Figure 4: Figurative approach. 

 
The students who were able to detect the variables (pattern number, dimensions) in 
the figural structure and differentiate them from the constants (shapes) achieved a 
correct global generalization. These findings are in accordance with former studies 
(Krebs, 2003; Rivera, 2007) that found that using visual approaches when 
generalizing non-linear patterns leads to success.   
DISCUSSION  
This study focused on the solving strategies of a quadric pictorial pattern task of 
mathematically promising students. The importance of pattern problems lies in their 
extensive mathematical potential. They not only encourage generalization, they also 
require students to pool their existing knowledge resources, rebuild and reconstruct 
them (e.g. Amit & Neria, 2008; English & Warren, 1998; Rivera, 2007).  
Most students are familiar with linear or proportional relations, but have difficulties 
in generalizing less familiar situations, such as non-linear relationships (De Bock et 
al, 2002). The cognitive demands of the non-linear pattern problems differ from those 
of linear ones. In linear patterns, a global generalization can be achieved either by 
visual means or by numerical means, since the difference between each two 
successive patterns is constant; in non-linear patterns, relying merely on numerical 
lists may help solvers to achieve local-recursive generalizations, but it may also 
prevent them from discovering the functional rule.  
In this study, only the students who visualized the growth in the pattern achieved a 
global generalization. In order to generalize productively, they divided the pattern 
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into parts whose areas had a constant relation to the pattern place in the sequence. In 
this case, what remained constant throughout the generalization process was the 
manner of division, and not the number of added squares (Amit & Neria, 2008).  
Previous studies have found a tendency toward linearity, even when the relationship 
is clearly non-linear. This phenomenon is explained by the extensive attention paid to 
linear and proportional relationships in elementary and secondary mathematical 
education, which may lead to a "fixation" on linear relationships (De Bock et al, 
2002). In this study, the tendency for linearity was negligible, and all but four 
students were not distracted by linearity. Although for most students in this study this 
was their first experience dealing with non-linear patterns, they recruited existing 
knowledge (from geometry and number sequences - two seemingly un-related 
subjects) and applied it in a new situation, revealing flexibility in applying solving 
strategies. 
In solving this task, the students demonstrated several of the characteristics of the 
mathematically talented – flexibility, persistence in problem solving, and the ability 
to generalize (Kruteskii, 1976; Wieczerkowski, Cropley, & Prado, 2000).  
The results of this study demonstrate the importance of exposing students, 
particularly mathematically promising ones, to non-linear patterns, since they 
increase the challenge of generalization, provide novel mathematical experiences, and 
have the potential to enhance mathematical development. 
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This work of inquiry, part of our doctorate research in finalization process, 
investigates the relationship between research and classroom in Mathematics 
Education with special attention to documenting processes related to the questions 
that fellow. What is the impact of Mathematics Education research in the classroom? 
How does research and researchers relate to the classroom? What do researchers 
have to say about the Mathematics classroom, and what has it shown them? More 
specifically, we present this paper a focus discussion of the study object, literature 
and theoretical background, methodology and data collection, some results, analysis 
and conclusion. We will show that the relation between research and classroom in 
Mathematics Education is a very complex and of multiple look phenomenon. 
INTRODUCTION AND JUSTIFICATION 
It seems to be a consensus among Mathematics educators that, on one hand, the 
scholastic failure of students in Mathematics and, on the other, the great importance 
of this discipline in the school curricula and in all the nations of the world have been 
main reasons to originate the field of mathematical education - a study area that, in a 
direct or indirect form, has always been involved with the Mathematics classroom. 
According to Kilpatrick (1992), "the mathematical education started to be developed 
as mathematicians and educators have turned their attention to how and what 
Mathematics is, or might be, taught and learned in school". However, it has been 
pointed out that the research and the researchers of this area are not relating 
themselves, in an efficient and coherent way, to the Mathematics classroom. These 
concerns have become stronger from the moment that we perceive that the data set 
disclosed in some research about the reality of the Mathematics classroom indicates 
that there is a mismatch between academic literature and the Mathematics classroom. 
That the research and the researchers have not related, in an efficient way, to the 
Mathematics classroom. Therefore, a systematic study on the relation between 
research and classroom in Mathematics Education is necessary, in order to point out 
more effective ways to change the Mathematics classroom and contribute towards a 
qualitative change in the relations between research and researchers and the 
Mathematics classroom. 
LITERATURE AND THEORETICAL BACKGROUND 
Theoretically, we have been working on this subject mostly with studies regarding to 
the theme research and practice and handbooks of Mathematics Education. 
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As an autonomous field of knowledge, Mathematics Education is recent and it is still 
being discussed, with frequency, what is Mathematics Education? What is the 
research in Mathematics Education? The expression "Mathematics Education" is still 
strange for many Mathematics teachers in Brazil and perhaps around the world. A 
historical synthesis of the research in Mathematics Education was published by 
Kilpatrick (1992) and a study of the Mathematics Education, as a field of academic 
study, was edited by Sierpinska & Kilpatrick (1998): "Mathematics Education as a 
research domain: a search for identity ", that argues, in great depth, questions of the 
type: Is the Mathematics Education a science? Is it a discipline? In what way? What 
is its role inside the other domains of research and academic discipline? What is its 
specificity? In it, the Mathematics Education researcher will find a broad range of 
possible answers to these questions, a variety of analyses of the direction of the 
research in Mathematics Education in different countries and a set of visions for the 
future of Mathematics Education. More recent publications like the Second 
International Handbook of Mathematics Education (Bishop, A. J. et al., 2003), the 
Handbook of International Research in Mathematics Education (English, 2003) and 
the "Second Handbook of Research on Mathematics Teaching and Learning (Lester, 
2007) has also deepened such debate. 
In the specific case of the researchers, there is also a concern over what is and how to 
do research in this area of knowledge. The objective of this is that the research in 
Mathematics Education reaches its own identity. Research in this area has been each 
and every time more molded by the research models in Education and in the Social 
Sciences. 
But, facing all these discussions we, constantly, question ourselves: And the 
Mathematics classroom, how does it stand? How the research and the researchers 
have been communicating/relating to the Mathematics classroom? How have they 
been speaking of it? How have they been looking at it? How have they been facing its 
dilemmas? How have they gotten there? What have been the results of such relations 
for the Mathematics classroom itself? In what have the research and the researchers 
contributed to change the Mathematics classroom? What have been their concerns, 
discourses and actions about the Mathematics classroom? How can they make more 
effective changes in the Mathematics classroom? And what the latter has to say to the 
researchers? 
These concerns became stronger when we came to realize that there is a 
misalignment between academic literature and the Mathematics classroom. That the 
research and the researchers have not been relating, in an efficient way, to the 
Mathematics classroom. Being, necessary a study on the relation between research 
practice and classroom practice. 
For example, in our master’s degree research (Andrade, 1998) and in Mathematics 
Education courses (from 1998 to 2007) that we have presented to Mathematics 
teachers in Brazil, specifically in the area of Problem Solving, we have verified that 
the academic literature on Problem Solving does not match what the teachers know 
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and practice in the Mathematics classroom. While in the research in Mathematics 
Education, Problem Solving is conceived as a teaching methodology, in school 
practice it is not even perceived as content application, but simply as technique 
application (recipes, drills...). In content such as fraction, for instance, teachers teach 
-separately and without any connection to what has been previously given- all the 
operation rules before teaching problems with fractions. This attitude is in accordance 
with the ‘banking’ concept of education, which is criticized by Paulo Freire (1987).  
Teachers do not even believe they can do otherwise. Only one out of seven teachers, 
with whom we worked with during our master’s research in Rio Claro (SP), Brazil - a 
city with a tradition in Mathematics Education research-, showed some 
approximation/awareness between her theory/practice and the literature on Problem 
Solving. Another teacher was aware of the current trends in Problem Solving, but did 
not use them. She alleged that she could not apply in class what she had recently 
learned in college, consequently continuing in traditional teaching. 
Recently, Regarding with a better approach between research and classroom has been 
emerging preoccupations in publications as “Lessons learned from research” (Sowder 
2002), “Teachers engaged in research: inquiry into Mathematics classrooms” 
(Mewborn, 2006) and in events as ICME 10 (2004), especially in the sessions ST1 
(Survey Team 1): The relation between research and practice in Mathematics 
Education and DG2 (Discussion Group 2) - The relationship between research and 
practice in Mathematics Education. 
METHODOLOGY AND DATA COLLECTION 
Regarding the methodology of research in Mathematics Education we understand that 
some researchers seem to be linked to a unidirectional paradigm of research of the 
type research → methodology → problem. It seems to be a concern to fit the problem 
of research in one determined methodology, not realizing that it is the problem that, 
in a multidirectional process of the type research/theoretical referential /world visions 
⇔ problem ⇔ research/ theoretical referential/world visions ⇔ methodology 
determines the methodology to be used in the development of the research. It is 
necessary that we endeavor to select strategies that fit each research problem instead 
of labeling it and casting it under a peculiar methodological denomination. In this 
sense, we stress out that the researcher, respecting the compatibilization of processes 
and the epistemological foundation, can work with some methodological resources to 
make his research. Problematization and methods are inseparable. When one 
formulates a research problem, one also invents a peculiar way to search, to produce 
and to propose alternative answers. 
It doesn't matter the method we use to arrive at the knowledge; what in fact makes a 
difference is the interrogations that can be formulated within one way or another of 
conceiving the relations between subject, method, knowing and power. It is the looks 
that we place on things that create the problems of the world. The statements do more 
than a representation of the world; they produce the world. To Foucault (2004a, 
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2004b), they are the visible elements – non-discursive formation - and the enunciable 
elements - discursive formation - that will make the world what it seems to be to us. 
We should problematize all the certainties, all the declarations of principles. It is 
necessary a look that goes beyond what others already have looked at, a restless look, 
a look that surprises, disarms, disturbs and introduces the disturbances in the interior 
of the debate, in the plan of discourses. 
Specifically, this study, the research methodology has mainly been based on 
discourse analysis and studies from the perspective of Michel Foucault (1996, 1999, 
2004a, 2004b) that this way we seek to explain the fragile and strong points of the 
relationship between research practice and the classroom practice, type a 
topographical and geological summary.  
We take under consideration here that what in fact makes a difference in the 
methodology is the questioning that can be formulated within another way of 
conceiving the relations between subject, method, knowing and power. The method 
consists then of understanding that the things are not more than practical 
objectifications of specific practices, whose determination must be exposed to light, 
since consciousness does not conceive them. And, in this context, the movement of 
the relation research/classroom is perceived as practice that systematically forms the 
objects that are spoken of and the ideas and theories are taken as the keys of a 
toolbox. We have also thought simultaneously with Foucault and, among others, 
Jacques Derrida, for example. We have found fertile convergences between Derrida’s 
deconstruction (1974) and Foucault’s splitting analytics that disturbs what was 
previously considered at a standstill; fragments what was considered amalgamated; 
shows the heterogeneity of what was imagined consistent with itself. Together, theses 
theories take on a provocative and irresistible energy (St. Pierre, 2004). This way, our 
research methodology would also be a deconstruction one, to keep things in process, 
to disrupt to keep the system in play, to set up procedures to continuously demystify 
the realities we create, to fight the tendency for our categories to congeal. 
The survey of data/facts and their analysis include speeches of 71 Mathematics 
Education researchers (44 Brazilians and 27 from other countries), P01 to P71 - 
obtained through opened and discursive research questionnaire; speeches of teachers 
of Mathematics - selected of our Master Degree research and speeches of the works 
presented in the sessions ST1: The relation between research and practice in 
Mathematics Education and DG2: The relationship between research and practice in 
Mathematics Education, ICME 10 (2004). 
SOME RESULTS, ANALYSIS AND CONCLUSION 
Based on the set of the gathered data/facts, as described in the methodology 
mentioned above, we single out the following partial result: that it seems to exist, in 
the set of the discourses of a good many researchers, a certain defense of research and 
projects of the collaborative type, action-research, participative or similar, in the 
belief that such research and projects would have a better impact in the classroom 
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than others. The declarations below, extracted of our data collection, from a Brazilian 
researcher (P24) and one from abroad (P49), are examples in this direction. 

P24: The research is still very distant from the classroom. One of the reasons is that 
the school teachers do not understand the texts and the academic language do 
not identify themselves with the contexts being presented. During all this time 
of production in the area, the research has been about the teachers and for the 
school teachers. I believe that, only when there is a radical change and the 
research starts being produced with the teachers is that these will begin to 
produce the desired effect. 

P24:  In this sense, there are some innovative experiences that have been disclosing 
how much the teacher searches for processes of formation that mean something 
for him or her. The problem is that they rarely find them. In the last 10 years, 
several were the researches produced in the area of Mathematics Education that 
have been pointing to new alternatives of teacher education. These researches 
reveal that successful experiences are those carried through with the teachers, 
from their necessities, angst and search for solutions to the problems they find 
in their daily school life. 

P49:  One of the bigger successes I have had in research is working “with” schools and 
teachers – ie the action-research-type model of research. This is a process where 
the teachers (and students) feel a commitment to the research and hence become 
active participants in the change, take ownership of the change/process and real 
outcomes can be achieved. The less successful model is that where the research is 
‘done’ on classrooms. This research tends to be less valued by the 
schools/teachers and less likely to have an impact. It does make for good research 
that is easier to publish and hence improve the career prospects of the researcher! 
The action research type research is less easy to publish as it does not conform 
with the general parameters of what constitutes good research in the field and 
hence more difficult to publish in high quality journals read by maths educators. 

The research-action, collaborative and similar approaches as resources to bring 
research and classroom closer together represent only one of the several points 
discussed by the researchers, it does not represent the thinking of the whole group. 
A speech such as the researcher's P53, problematize such debate questioning if the 
researchers really are interested in this. P53 says: “I am not sure most researchers 
actually do want to do this. They are doing a job of work”. 
Researcher P03 states out that we, researchers, could contribute to a change in the 
classroom if we managed to institute new forms of relation with the knowledge. 

P03:  The research objects are very "local" or very "broad", they do not reach the 
classroom directly, in the generic sense. This is not going to change. We, 
researchers, could contribute if we could institute new forms of relation with 
knowledge. 

Researcher P26 places as the main point that it is necessary to go back to the 
classrooms and look closely at the student and discover who he or she is and then 
think how to give him or her support. 

P26:  It is necessary to go there, to the classrooms, and look at the student a lot. We 
have to disclose him, this student connected to the contradictions, vicissitudes, 
assets and benefits of the modern society. 
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Skovsmose (2004), in document presented at the ICME 10 (2004), defends, among 
other points, that it is necessary that the research in Mathematics Education be 
focused in classrooms of the non model type, in classrooms at a poverty-stricken 
neighborhood, in classrooms of the 4th world. He questions the fact that a certain 
model classroom seems to dominate the field of research in Mathematics Education, 
that in many cases it seems to be selective regarding which practice to address. To 
him, the discourse in Mathematics Education has been dominated by the prototype of 
the model classroom.  
He suggests we defy the hegemony of the discourse bred around the model 
classrooms and, he adds that a non-standard classroom would have an enormous 
number of students, it would be located in a poverty-stricken neighborhood, it would 
be infected by violence. To him, research on the non standard Mathematics classroom 
can focus on many declarations: the violence, poverty, immigration and 
discrimination in general etc. 
Speeches such as the teacher's below, subject 04, taken from our master dissertation 
(Andrade, 1998), also seems to point to the necessity of there also being research 
focusing on non-model classrooms. 

Subject 04: Well, the school... it is kind of problematic today. I guess the teachers are 
with no incentive. We, in a general way, are. Another day, in a meeting, a 
teacher came and spoke so: look she does activities with newspapers in the 
Portuguese language class. And she makes the students bring news, because 
sometimes they do not have time to read. They read the news and later they 
explain to the class. Every week, one day is reserved to this. Imagine that there 
was a day, reading a newspaper about drugs, they got to talk, and she found out 
that in the class, most of them were all druggies, everyone was an addict. And 
she started to understand the behavior of the class. The adult education 
classroom is a classroom where I have no problems, but, the others do. Then, 
when I get to, if I get to, because I do not want to get to, in this case, the 
regular class, I do not know what to do. Because I never used drugs, I never 
had the problems that they have in life. What am I going to do with an adult 
about his or her problems? I said like this: my! Poor girl! What an awful 
situation! I have nothing to say to them. I won't know how to act with them, 
how to deal. The school today needs, not teachers, but yes, I am speaking about 
my school, a center where the students can be recovered, because what there is 
a lot of here are problems, students with problems. And they form a 
problematic classroom. 

Lester & Wiliam (2004) placed, among other points, the dimension that the research 
has to reach the makers of educational politics. Sfard (2004), enters in the debate, 
looking at research and practice as discursive activities. Researches like P01, for 
example, declare that there is some impact from the research in the classroom, but 
such impact has been to keep the status quo. 

P01:  The Mathematics Education and the Education in general is the main strategy of 
the power structure [State, or Church, or Corporations] to maintain and to 
consolidate themselves. There is interest in "filtering" those that go through the 
educational system in order to be able to co-opt those convenient to the power 
structure. History teaches us this. 
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P01:  There is some impact, as long as it allows the improvement of the strategy 
mentioned above. The great majority of the research is related to the models in 
practice [improvement of the same-old-same-old]. 

The discourses above indicate that the theme the relation between research and 
classroom in Mathematics Education is a very complex phenomenon and of multiple 
looks. The current text has been a brief look in search of a representative map of this 
complexity and multiplicity, in a deconstruction process that teaches us, on one hand, 
about the possibilities and impossibilities of impact of the research of Mathematics 
Education in the classroom, but, on the other hand, does not bring a key to the real 
impact. 
For example, when P01 declares that the Mathematics Education and the Education 
in general are main strategies of the power structure. We here have an impossibility 
for the real impact. But, there is another declaration of P01 in our data collection that 
points that we have to think about a Mathematics Education that can necessarily 
include Ethics. Here, we have, therefore, a possibility for the real impact. 
The different speeches of the researchers bring us then a deconstruction on the word 
impact, regarding the relation between research and classroom. Each 
speech/statement is transactional. They teach us something about the conditions of 
the production of making impact of the research in the classroom, but they do not 
give a key for the real impact. They teach us about the possibility and impossibility of 
such impact happening or not. They teach us something on essentialisms of being 
among the conditions of producing the doing, knowing, being, but they do not give a 
key to the real impact. 
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Student transition from arithmetic to algebraic reasoning is recognised as an 
important but difficult process. Functions and numeric patterning activities provide 
opportunities to integrate early algebraic reasoning into mathematics classrooms. 
This paper examines student use of generalisation strategies when engaged in 
numeric patterning activities and explores how young students can be supported to 
use flexible efficient strategies. Results suggest that use of generalisation strategies 
can be extended through purposely designed tasks and specific teacher actions. 
INTRODUCTION  
Over the past decade the teaching and learning of algebraic reasoning has been a 
focus of both national and international research and reform efforts (e.g., Ministry of 
Education (MoE), 2007; National Council of Teachers of Mathematics (NCTM), 
2000). Such attention has arisen primarily in response to the growing recognition of 
the inadequate algebraic understandings many students develop during their 
schooling and the role this has in denying them access to prospective educational and 
employment opportunities (Knuth, Stephens, McNeil, & Alibabi, 2006). In response, 
some curricula advocate teaching arithmetic and algebra as a unified strand across the 
curriculum (e.g., NCTM, 2000; MoE, 2007). This approach focuses on using 
students’ informal knowledge and numerical reasoning to build early algebraic 
thinking. Tasks involving functions and numeric patterning activities offer an 
opportunity to integrate early algebraic reasoning into the existing mathematics 
curriculum. The research reported in this paper examines student use of 
generalisation strategies when participating in numeric patterning activities. The 
focus of the study is to explore how the students aged from nine to eleven years of 
age were supported to use flexible efficient generalisation strategies.  
Recent research (e.g., Becker & Rivera, 2007; Swafford & Langrall, 2000; Warren, 
2005) indicates that young children, in making the transition from numeric to 
algebraic reasoning, exhibit forms of functional thinking. Functional thinking is 
described as “representational thinking that focuses on the relationship between two 
(or more) varying quantities, specifically the kinds of thinking that lead from specific 
relationships (individual incidences) to generalizations for that relationship across 
instances” (Smith, 2008, p. 143). The inventing or appropriation of a representational 
system to represent the generalisation is evidence of algebraic reasoning. Through 
analysis of tasks that involve functional thinking –henceforth referred to as functional 
tasks– Lannin, Barker, and Townsend, (2006) illustrated that the strategies students 
use to generalise numeric situations emerge through different types of reasoning. 
Their framework outlines a continuum of generalisation strategies that students can 
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use. Less sophisticated use of recursive generalisations involved students identifying 
the relationship between consecutive values using an additive strategy. More 
proficient strategies included ‘chunking’ in which the students construct a “recursive 
pattern by building a unit onto known values of the desired attribute” (p. 6), and 
‘whole-object strategies’ in which a portion is used as a unit “to construct a larger 
unit using multiples of the unit” (p. 6). The most sophisticated strategy identified by 
Lannin et al. involved students’ use of an explicit generalisation in which a rule is 
constructed to allow “for immediate calculation of any output value given a particular 
input value” (p. 6). 
Student use of generalisation strategies is influenced by a range of task related 
factors. For example, students in Lannin et al. (2006) and Swafford and Langrall 
(2000) studies commonly used recursive strategies when completing patterning tasks 
with closely related input values and used whole-object strategies when input values 
were multiples or doubles of previous values. These researchers suggest that setting 
tasks which require students to consider increasingly large input values is an effective 
ways to encourage students’ movement towards explicit generalisation strategies. The 
notion of efficiency is also identified as an important factor influencing students’ 
choice of generalisation strategies. Lannin and his colleagues showed how students 
used flexible strategies and explicit rules in order to establish more efficient 
strategies. Visual images also influence students’ use of explicit generalisations. 
When students are able to link the rules to a visual representation they are more 
flexible in their strategy use and accurate in developing explicit rules (Healy & 
Hoyles, 1999; Warren, 2000). However, developing students’ proficient use of 
generalisation strategies is complex and difficult. It requires more that the provision 
of appropriate tasks; it requires considerable time and explicit teacher attention. 
The theoretical framework of this study uses the emergent perspective taken by Cobb 
(1995). The socio-constructivist learning perspective links Piagetian and Vygotskian 
notions of cognitive development connecting the person, cultural, and social factors. 
In this paper, construction of algebraic understanding is recognised as both an 
individual constructive process and the social negotiation of meaning. 
METHOD  
The findings reported in this paper are a small component of a larger study involving 
a 3-month classroom teaching experiment (Cobb, 2000). The research was conducted 
at a New Zealand urban primary school and involved 25 students between 9-11 years 
old. The students came from predominantly middle socio-economic home 
environments and represented a range of ethnic backgrounds.  
The teaching experiment approach supported a collaborative teacher-researcher 
partnership. A hypothetical learning trajectory and sequence of learning activities, 
focused on developing students’ early algebraic understanding, was collaboratively 
developed. Data were generated and collected through student interviews, participant 
and video records, and classroom artefacts. 
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On-going data analysis shaped the study and involved the researcher and teacher in 
collaborative examination of classroom practices and modification of the 
instructional sequence and associated learning trajectory. Retrospective data analysis 
took a grounded approach, identifying categories, codes, patterns, and themes. Both 
on-going and retrospective data analysis were used to develop the findings of the one 
classroom case study. 
RESULTS AND DISCUSSION 
Mathematical tasks were purposely designed to support student development of early 
algebraic understanding. Following on from task activities focused on exploring the 
properties of number and associated computations, the students were provided with 
problems designed to develop algebraic reasoning through functions and patterning 
activities. These were comprised of linear functional problems and included tasks 
with geometric contexts. The design of the problems was aimed, with the assistance 
of teacher scaffolding and modelling, to promote the use of flexible, efficient 
generalisation strategies. Drawing on the framework provided by Lannin et al. (2006) 
we were aware of the need for the tasks themselves to promote students to 
progressively adopt recursive, chunking, whole-object, and explicit strategies. 
Recursive strategies  
In the initial lesson, many of the students applied additive recursive strategies –listing 
successive values until the desired output number was reached. For example, during 
small group work while solving a functional relationship problem1 a student, Ruby, 
introduced the recursive pattern into the discussion as follows: 

Ruby:  Look there’s five people here but there’s three added on.  
Heath:  We are plusing three, so on one table there is five, on two tables which makes 

eight.  
Matthew: So then four tables will be fourteen. 
Rani:  So that is just showing we add another three on.  

Sharing of strategies for the same problem appeared to be a useful way to encourage 
most, but not all, students to consider more effective strategies.  
For some students, however, shifting beyond the use of recursive strategies was 
challenging. Despite Ruby sharing a more efficient chunking strategy for the table 
problem, Rani continued to promote the use of a recursive strategy:  

Rani:  You have to keep adding three all the time and if you do it this way twenty-
seven won’t come here, nine would be twenty-nine and ten would be thirty-
two.  

                                                            
1 Table problem 
At the table 5 people sit like this ……   ◦              When another table is joined this many people sit around it…    ◦◦◦ 
                                                       ◦ /  \◦                                          ◦/ \ /◦ 
                                                          ◦◦                               ◦◦◦ 
Can you find a pattern? How many people could sit at 3 tables or 5 tables or 10 tables? See if your group can come up 
with a rule and make sure you can explain why your rule works. 
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In following lessons, students were frequently observed to use recursion as their 
initial strategy before seeking more efficient strategies. We related this to the ease 
with which they could recognise the recursive relationship in the patterning problems. 
For some students it appeared that the confidence to generate and answer this way 
provided the space for them to risk trying alternative strategies.  
Chunking strategies  
To extend student flexibility and efficiency in strategy use the teacher used 
questioning to prompt students to consider issues of efficiency. In the following 
example the prompt was implicated in a student developing her recursive strategy 
into a chunking strategy using the known values:  

Teacher: What would be a quicker way than going plus three? 
Ruby:  [points to model] The first table is five so you could ignore that and just go nine 

times three…you could just ignore that because you know it is five, so nine 
times, because that's table one, nine times three then add the five on.  

Whole-object strategies 
In a lesson early in the sequence, a task containing input values which were multiples 
led to some students using an erroneous whole-object generalisation strategy. The table 
problem required that they calculate how many people could sit around ten tables. 
Pressing further, the teacher asked them to calculate the number of people around 100 
tables. Both Heath and Matthew over-counted in their generalisation strategy:  

Heath:  [points to 10 in the table of data] If it is a hundred we will just plus a zero to that.  
Matthew: [points to 10 and 32] You can add a zero to that and a zero to that.  

The teacher’s observations of students’ using whole object strategies that over-
counted led to the provision of additional tasks which facilitated further examination 
of the whole-object strategy. By structuring the input values of the problems she was 
able to prompt the students to examine and discuss the whole-object generalisation 
strategy in-depth. For example, one problem2 involved input values that doubled.  
When Gareth’s explanation over-counted the values he was challenged:   

Gareth:  So if four is twenty-one so it is twenty-one plus twenty-one.   
Ruby:  Instead of just doing twenty-one plus twenty-one, you don't because you 

wouldn't just build another four separate and there is not going to be another six 
one so it's not really adding twenty-one... 

Teacher:  So you're saying you can't just double it because there’s not going to be 
another six one like at the start. 

Ruby:  So you just do twenty.  

                                                            
2 House problem 
Jasmine and Cameron are playing “Happy houses”.    They have to build a house and add onto it.  
The first one looks like this…..    /  \     The second building project looks like this….    /  \ /  \  

                                      │_│                                │_│_│ 
How many sticks would you need to build four houses? How many sticks would you need to build eight houses? 
Can you find a pattern and a rule? 



Anthony and Hunter 

PME 32 & PME-NA XXX 2008  2 - 69 

Gareth responded to the reasoned argument by correctly using a whole-object 
generalisation strategy to find the output value:  

Gareth:  So it's only twenty because you take a one away at the start, you add on twenty 
from here… like Ruby said you can't add on six that would mean there would 
be two of those sides [points to middle stick] so it can't be twenty-one plus 
twenty-one so it's twenty-one plus twenty. 

Explicit strategies  
In all the lessons, the teacher explicitly encouraged students to be aware of the range of 
generalisation strategies and explore and examine more efficient generalisation strategies: 

Teacher:  Is there another way you can do it without adding? Can you think of an 
equation or a rule that would help you get from four to twenty-one?  

Initially, when many of the students did not use an explicit generalisation strategy to begin 
solving a problem, this press to consider alternative and effective strategies often led to the 
development of a final strategy involving an explicit generalisation. For example, Ruby’s 
challenge to find a quicker strategy to solve the house problem facilitated other students to 
shift from recursive generalisation towards a more efficient strategy: 

Ruby:   It would be five more because the first one was six but they don't need another 
wall there [points to the middle stick between the two houses]. 

Susan:  You just add on. Yeah it changes. 
Ruby:  But the easier way is adding five but what I am thinking is instead each time 

you could just. 
Susan:  Plus five.   
Ruby:  If you are doing four houses instead of going five, plus five, plus five, you can 

just go four times five then add one. 
Susan:  Well, that's kind of a problem because this is six. 
Ruby:  I know, but look times four then add one. You are just timesing that and then 

adding one so that one [points to first house] is still six. 
Heath:  So you just keep plusing five.  
Ruby:  But keep plusing five isn’t good because you want a quicker way.  
Gareth:  You could count it but that would take ages. If you wanted to get it to a hundred 

or something it would take too long. 

In many cases it was observed that the geometric structure or visual image of a 
problem assisted students to use explicit strategies and construct correct rules. The 
teacher pressed the students to connect their explicit rules with the geometric problem 
representation. For example, when Hamish explained an explicit generalisation in 
response to the table problem the teacher pressed him to connect his contextual 
explanation to the geometric representation:  

Hamish: Thirty-two people sit at the table…you get the ten and times it by three and the 
two people who are sitting on those ends, one of them stays there and the other 
one gets moved to the end of the new table.  

Teacher:  Hamish can you show…the times three part of your model there and the plus 
two part? 
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Subsequently, elaboration with reference to a geometric representation became a 
more frequent and expected way for students to explain and justify the rules they had 
constructed from their explicit generalisation strategy. The following explanation 
illustrates how Ruby draws on geometric representation when sharing her group 
strategy for the house problem:  

Ruby:  [builds model] The first one is six but then when you add another house it is 
only five because you don’t need another wall…if you wanted to see how many 
for eight you could just go eight times five and then plus the one. You plus one 
because you have to understand that is six [points to first house]. 

Such practice was also observed to be appropriated within small group discussions. 
For example, students consistently referred to the geometric context of a problem3 
when justifying their explicit generalisation and rule for finding the number of 
squares across and the total number of squares in a cross-shaped object: 

Josie:  This is cross one. There is one on each side plus one in the middle.  This is 
cross two, so two here and two here and one in the middle so that makes five. 
So you double it and then add one to get the number across… 

Steve:  So when you double it, what are you actually trying to get to by doubling it? 
Josie:  [covers the vertical row so only the horizontal row is visible] The number of 

squares in that line there… this little bit here is also three squares wide [points 
to right horizontal line] and this is three squares wide [points to left horizontal 
arm] … so to get the bit across here in the middle you do times two plus one. 

CONCLUSION  
This study sought to explore student use of generalisation strategies and how they 
could be supported to use flexible, efficient strategies as they engaged in numeric 
patterning activities. The description of the learning activities presented in this paper, 
although only a small sample of those used in the teaching experiment, demonstrate 
that the use of deliberately designed functional tasks and specific teacher actions can 
successfully extend student use of generalisation strategies.  
Similar to the findings of other researchers (e.g., Lannin et al., 2006; Swafford & 
Langrall, 2000), the students initially employed additive recursive generalisation in 
order to solve functional relationship problems. The use of functional tasks designed 
with specifically selected input values resulted in different generalisation strategies 
being utilised. Multiple or double input values led to student examination of whole 
number generalisation strategies. Students were pressed to use more efficient explicit 
generalisation strategies through the extension to large input values. Additionally, the 
use of specifically designed functional tasks including those with numeric and 
geometric patterns offered possibilities for students to integrate their visual and 
numeric schema.  

                                                            

3      
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Whilst tasks features invoked a range of strategies, specific teacher actions led to the 
students’ flexible use of a range of strategies. The teachers’ pedagogical press 
included questions and prompts that progressed student reasoning toward the use of 
more efficient strategies. Requiring that students link their explicit rules to the 
geometric basis of the functional problem also supported them to develop explicit 
generalisation strategies based on the geometric structure of the problem. The 
geometric representation had the advantage of providing a thinking tool that was able 
to be shared with other students within the explanation and justification processes 
associated with forming and defending generalisations. 
The forward and backward shifts students made between recursive and explicit 
generalisations strategies were evident in this study. Multiple opportunities for 
students to create representations involving models, diagrams, and tables of numeric 
patterning activities were needed. In combination with effective pedagogical support, 
opportunities to for students to engage with functional relationships problems and 
connect their actions to appropriate representational systems enabled them, at various 
levels, to form generalisation of relationships across instances. As such, these 
patterning problem types should form a significant part of elementary curricula 
aiming to support students’ development of algebraic reasoning.  
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INDIRECT ARGUMENTATIONS IN GEOMETRY                       
AND TREATMENT OF CONTRADICTIONS  

Samuele Antonini 
University of Pavia 

 
In proof by reductio ad absurdum, the impossibility of a mathematical object is 
drawn from the deduction of a contradiction. The relationship between the statement 
and the contradiction is logical in nature and it is one of the main obstacles for 
students. An analysis of indirect argumentations produced by students in geometry 
enlightens how they sometimes by-pass this obstacle transforming the geometrical 
figure so that the (false) proposition becomes true and the link between the 
contradiction and the statement is reconstructed. This analysis reveals some 
interesting differences in the treatment of the contradiction in argumentations and in 
proofs, identifying important difficulties in understanding proof by contradiction.  
INTRODUCTION 
In the last decades, many researchers have investigated proof in mathematics 
education. Some studies have focused on proof by contradiction and have identified 
many students’ difficulties with this type of proof. Obstacles are found in the 
formulation and interpretation of the negation (Wu Yu et al., 2003; Antonini, 2001), 
in the treatment of the false properties generated by the assumptions of the statement 
negation (Mariotti & Antonini, 2006; Leron, 1985) and in the last step, that is the 
passage from the contradiction to the conclusion (Antonini & Mariotti, accepted for 
publication).  
On the other side, it seems that indirect argumentations – argumentations fitting the 
scheme “…if it were not so, it would happen that…” (Freudenthal, 1973) – are 
common in students discourses and are spontaneously produced by them also in 
mathematics (Reid & Dobbin, 1998; Thompson, 1996; Freudenthal, 1973), in 
particular when they are dealing with open-ended problems (Antonini, 2003).  
Therefore, we think it is important and interesting to study indirect argumentations 
generated by students and to compare them with proofs. A comparative analysis can 
give elements to identify specific characteristics of proof by contradiction and of 
cognitive processes leading to its construction, that are far from those we find in 
indirect argumentation and then could be cause of significant difficulties.  
In particular, in this paper we present an exploratory study on the treatment of the 
contradiction in indirect argumentations in geometry context. 
THEORETICAL FRAMEWORK 
Studies on proof have often considered relations between argumentation and proof 
and, in spite of significant differences in their epistemological and didactical 
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approaches, have contributed with many results that are important both for teaching 
and from theoretical point of view (Pedemonte, 2007, 2002; Knipping, 2004; Garuti 
et al., 1998; Duval, 1992-93). The work we are presenting here is part of a wider 
research on argumentation and proof in the theoretical framework of Cognitive Unity 
(Pedemonte, 2002; Garuti et al., 1998). The studies on Cognitive Unity focused on 
the analogies between argumentation and proof and in particular between the 
processes leading to their constructions. From didactical point of view an approach to 
proof based on the students’ generation of the conjectures is suggested because of the 
richness of argumentative processes that open-ended problems can promote. Of 
course, to implement educational activities, studies on argumentations are needed. In 
this paper, we investigate indirect argumentations by which students justify the 
impossibility for a geometrical figure to have some properties. 
In proofs by contradiction in geometry, we assume the existence of a geometrical 
figure with some properties and we aim to prove its non-existence, or, and it is 
logically the same, that it can not have these properties. Starting from the existence of 
this (impossible) figure, some deductions are drawn according to a mathematical 
theory (usually Euclidean geometry) until we reach a proposition contradicting a 
theorem, an axiom or another proposition previously deduced in the proving process. 
The achievement of a contradiction, according to a meta-theorem, a logical theorem 
on the derivation between propositions, assures that the geometrical figure does not 
exist or that it can not have these properties (for an analysis from a cognitive 
prospective of the meta-theorem, see Antonini & Mariotti, accepted for publication). 
The figure, the object of the reasoning, has a temporarily role (as any object in a 
proof by contradiction): once deduced a contradiction it has accomplished its goal. 
Briefly speaking, the meta-theorem states that, if a contradiction can be drawn from a 
statement, this is false and its negation is valid. In other words, when from the 
existence of a mathematical object we can deduce a contradiction, this object does 
not exist, it has never existed.  
Two concepts are relevant here: the impossibility and the contradiction. As underlined 
by Toulmin (1958, pp. 30-38) in his famous book, the notion of impossibility is 
common not only in mathematics but in many fields, as Physics, Physiology, 
Linguistic, etc., and the criteria of impossibility depend on these fields (are field-
dependent). In mathematics, contradictoriness is a criterion of impossibility but in 
other fields different criteria could be used1. In these terms, we aim to observe if the 
contradiction is a criterion of impossibility in students’ argumentations in geometry. 
METHODOLOGY 
The empirical data are part of the main research on argumentation and proof and 
consisted in recording of clinical interviews and of some regular lessons. The subjects 

                                                            
1 We are not saying here that deriving a contradiction is the only way to prove an impossibility. If a statement A is 
proved, of course the impossibility of non-A is stated as well, and sometimes it is also possible to prove an impossibility 
after exhaustive analysis of cases (see Winicki-Landman, 2007).  
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are secondary school students (grades 10-13) and university students. In the 
interviews, they were asked to express their thinking processes aloud and to work in 
couple, in order to favour argumentative processes. In this paper we report an 
analysis of the solution of a geometrical problem consisting in formulating and 
proving a conjecture; an excerpt of a regular lesson will also present in the 
discussion.  
THE CONTRADICTION AND A NEW GEOMETRICAL FIGURE 
We analyse two excerpts. The task was the geometrical open-ended problem: what 
can you say about the angle formed by two bisectors of a triangle? Students dealt 
with it in the paper-and-pencil environment. In the transcript, the interviewer is 
indicated with “I” and the students with the first letter of their names (pseudonyms). 
Excerpt 1 
Elenia and Francesca are university students (second year of the degree in Biology). 
Named the angles as in the picture, they are evaluating the possibility that the angle δ 
is right and they have just deduced that if it is so then α+β=90 and 2α+2β=180. In 
this brief excerpt, only Elenia speaks.  

46   E: … there is something wrong. 
47   I: Where? 
48   E: In 180. 
49   I:  Why? 
50   E:  Because, is not the interior sum of all 

the three angles?  
51   I:  Yes, the sum of the interior angles of a triangle…  
52   E:  is 180 [degrees]. 
53   I:  Yes. 
54   E:  Right. 
55   I:  And then? 
56   E:  And then there is something wrong! They should be 2α+2β+γ=180. […] 
60   E:  …and then it would become γ =0… 
61   I:  And then? 
62   E: But equal to 0 means that it isn’t a triangle! If not, it would be so [she joins her 

hands]. Can I arrange the lines in this way? No... […] 
85   E: And then there is essentially not the triangle any more. 
86   I: And now? 
87   E:  …that it cannot be 90 [degrees]. 
88   I: Are you sure? 
89   E:  Yes. 
90   I: Why? 
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91   E:  Because, in fact, if γ=0 it means that… it is as if the triangle essentially closed on 
itself and then it is not even a triangle any more, it is exactly a line, that is absurd.  

The assumption that δ is right leads to the proposition “2α+2β=180” that contradicts 
a well known theorem. The consequence is the falshood of the starting assumption 
and the validity of its negation: the geometrical figure, object of the reasoning, does 
not exist and the fact that the angle δ is not right is proved. Nevertheless, initially the 
students look astonished and disoriented. The non-sense of the contradiction induces 
them not to take it into account to formulate and to argument a conjecture. Therefore, 
it seems clear that the contradiction is not a criterion for the impossibility of the 
figure. Subsequently, students give a sense, drawing further conclusions. From γ=0 
they identify a new geometrical figure in which the false proposition is true: the 
triangle becomes a line (in fact, the triangle should become two parallel segments but 
it does not seem important for our discussion). 
The transformation of the figure allows them to give a sense to the false proposition 
and at the same time to formulate and to argument a conjecture: it is impossible that 
the angle is right because otherwise the triangle closes on itself. The figure does not 
have a temporary role as in the proof by contradiction, because its status is different 
from that assumed in a proof. In this argumentation the figure is a dynamic entity: it 
is initially a triangle; then, in order to have the properties deduced in a mathematical 
theory, is transformed and “it is not even a triangle any more”. The impossibility of 
that triangle is not a consequence of the contradiction but of the transformation 
process that has changed it.    
Excerpt 2 
The following is the solution process of Paolo and Riccardo (grade 13). They named 
K and H respectively the angles that in the previous picture were indicated as 2α and 
2β. Also in this excerpt they are involved in the case of the right angle. 

63   R:  … it cannot be. 
64   P: Yes, but it would mean that K+H is ... a square […] 
65   R:  It surely should be a square, or a parallelogram. 
66   P: […] [it] would mean that […] K+H is 180 degrees... 
67   R:  It would be impossible. Exactly, I would have with these two angles already 

180, that surely it is not a triangle. […] 
71   R: We can exclude that [the angle] is π/2 [right] because it would become a 

quadrilateral. 

As in a previous interview, referring to an important theorem, the students deduce 
that K+H=180, and even here this proposition does not seem sufficient for them to 
formulate and to prove a statement until a new geometrical figure with this property 
is identified. The quadrilateral arises during the exploration phase of the solving 
process but it comes back subsequently as the main actor of the argumentation. The 
figure was initially a triangle but later the students better identify the figure they are 
treating and it is a different figure: this seems very convincing for them, more than 
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the deduction of a contradiction (for further details on this protocol, see Antonini & 
Mariotti, accepted for publication). 
DISCUSSION 
The protocols enlighten some differences between mathematical proofs and students’ 
argumentations. In the interviews, students produce and justify a conjecture through 
indirect argumentations: they assume that a geometrical figure has some properties 
and then they claimed that it does not have. But, differently from what happens in 
proofs by contradiction, in students’ argumentations the contradiction is not a 
criterion of impossibility; it does not even seem that the contradiction has some links 
with any statement: initially the students do not manage to assign any sense to it and 
they consider it as “something wrong”. Subsequently, the students aim to find a 
geometrical meaning in the false proposition they have deduced (look at the 
frequency of the verb “to mean” in the protocols: “if γ=0 it means that…”, “it would 
mean that K+H is ... a square”, etc.) through a transformation of the figure (the 
triangle “becomes” a line or a quadrilateral). Now, the false proposition is a (true) 
property of a new geometrical figure. Only at this point students feel satisfaction and 
manage to conclude; to assign a geometrical meaning to the false proposition has then 
relevant consequences to their argumentations. The geometrical (impossible) figure is 
not rejected because it has a consequent contradiction but it is adjusted in order to be 
coherent with the (false) proposition and according to the mathematical theory. 
Elenia says that “there is essentially not the triangle any more” not because its 
existence lead to a contradiction but because it is transformed in something different 
(“it is as if the triangle essentially closed on itself and then it is not even a triangle 
any more “); in the same way, Riccardo concludes that “we can exclude that [the 
angle] is π/2 [right] because it would become a quadrilateral”. Note the expressions 
like “any more”, “become”, “closed on itself” by which students refer explicitly to the 
dynamic status of the figure and to its transformations. Summarizing, the figure is 
transformed in order to find a geometrical meaning in the false proposition and to 
reconstruct a link between this proposition and a statement. Moreover, the 
transformation of the figure in something different seems to be an accepted criterion 
for the impossibility.  
In this way, the students overcome one of the main obstacles involved in proof by 
contradiction. In fact, an important aspect is the assumption of false hypotheses and 
the consequent deductions from them (Mariotti & Antonini, 2006). As revealed by 
Leron (1985), in a proof by contradiction students are asked to generate a false, 
impossible world and, instead of a construction of the results of the theorem, deduced 
a contradiction, this false world has to be rejected. Students can feel confused and 
dissatisfied for the destruction of the mathematical objects on which the proof was 
based. In a proof by contradiction, the geometrical figures have a temporarily role, 
their function is exhausted when a false proposition is deduced; after that, they have 
to be rejected and it is stated that they have never existed. Differently, in the 
described argumentation they are modified. 
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We observe that these argumentative processes can be analysed in the Harel & 
Sowder’s framework (1998). As a matter of fact, these argumentations are examples 
of Transformational Proof Scheme. We briefly recall the characterization:    

“…the transformational proof scheme is characterized by (a) consideration of the 
generality aspects of the conjecture, (b) application of mental operations that are goal 
oriented and anticipatory, and (c) transformations of images as part of a deductive 
process.” (Harel & Sowder, 1998, p. 261). 

In particular, in the cases we have analysed the generality does not seem a problem, 
the goal of mental operations was the research of a figure for which the deduced false 
proposition is meaningful and true, and it seems also that subjects anticipate the 
results of the transformations. Moreover we have seen the transformations of the 
figure to be really “part of a [students’] deductive process”. As in the examples 
reported by Harel and Sowder, our students treat the mathematical object as dynamic 
entity that can be transformed. It is the false property of a figure that promotes the 
important form of reasoning called by Martin (1996) transformational reasoning, 
with the goal to overcome the lack of a meaning and to conclude the argumentation. 
We have seen here the particular case of argumentation of impossibility, but we recall 
that the activation of mental dynamics in production and in justification of a 
conjecture is one of the main aspects of the Cognitive Unity framework (Garuti et al., 
1996). We also notice that our study, as in general the results in Cognitive Unity 
framework, allows significant analysis and explanations of students’ difficulties and 
behaviour even outside the situations of the production of conjectures. The following 
episode is part of the regular didactical activity in a classroom (grade 10).  

The teacher has to prove the statement “if r is parallel to s, then α=β” (look at the picture) 
and he proposes the following proof by contradiction: “Suppose that α>β and let δ=α. 
For a theorem proved in the previous lesson, t is parallel to r. Then we have two lines, 
parallel to r and passing through the 
point P; this is false for a Euclidean 
axiom. Then α=β.”  
Students are astonished and confused: 
they do not understand and they do not 
accept this reasoning. A teacher tries to 
argument in another way: “Ok. Listen to 
me. For Euclidean axiom there exist 
only one parallel line, then, in fact, the 
line t and the line s are the same! Then 
the angles β and δ are the same angle; 
and, because δ=α, then β=α”. Almost 
every student understood this argumentation, they accept it and they prefer to the first one.  

The teacher proposes a proof by contradiction and then an argumentation like those 
we have analysed. Differently to the proof, the argumentation is both understood and 
accepted. In the proof, the equality of the two angles is based on the deductive chain 
starting from the assumption of their diversity and ending in the negation of an 
axiom. In the argumentation, the teacher offers a different conclusion. The false 
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proposition becomes true after a modification of the figure according to the axiom: 
there are not false propositions any more and the link with the statement is 
reconstructed. In our opinion, the reconstruction of a geometrical meaning and of a 
link with the angles equality determined the immediate understanding and 
acceptability of this argumentation.  
CONCLUSION 
We have described particular justifications of some impossibilities in geometry. 
Other forms of indirect argumentations are possible. For example, a different process 
that leads to claim a statement formulated in a positive form, is analysed by Leung & 
Lopez-Real (2002) who studied the production of proof by contradiction in dynamic 
geometry environments (e.g. Cabri-Géomètre, Geometer’s Sketchpad). 
However, further researches are necessary to identify different indirect 
argumentations and to better understand the processes leading to their constructions. 
These studies could be significant to enlighten the potentialities of argumentative 
processes and also the differences between argumentations and proofs that could 
explain students’ difficulties and that have to be carefully considered in teaching. 
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In this text, we report on a research project developed within the European research 
team TELMA (Technology Enhanced Learning in MAthematics) of the Kaleidoscope 
network of excellence created in 2004. We describe the conceptual and 
methodological tools we have progressively built for allowing productive research 
collaboration and overcoming the difficulties resulting from the diversity and 
heterogeneity of our respective theoretical backgrounds. We also show how these 
tools have contributed to give us a clearer idea of what is needed in terms of 
theoretical connection and integration in mathematics education, of what seems 
accessible today and how.  
INTRODUCTION  
Research in mathematics education does not obey a unified paradigm. On the 
contrary, it often appears as a field broken into a multiplicity of local communities 
that develop more or less independently, generating an overflow of conceptual and 
methodological tools poorly connected. In spite of the multiplicity of international 
conferences and groups, in spite of evident common trends, exchanges remain often 
superficial. Even if anyone understands the necessary sensitivity of the educational 
domain to social and cultural contexts, this situation conveys the negative image of 
an immature scientific field and does not encourage at considering the results 
obtained in it as convincing and valuable. Such a situation appears more and more 
problematic, increasing the attention paid to issues of comparison and connection 
between theoretical frames, as illustrated for instance by two recent issues of the 
Zentralblatt für Didaktik der Mathematik (ZDM 2005 Vol. 37(6), ZDM 2006 Vol. 
38(1)), the chapter by Cobb in the second NCTM Handbook of Research on Teaching 
and Learning Mathematics (Cobb, 2007) or the existence of a working group 
especially devoted to these issues at the two last conferences of the European 
Association for Research in Mathematics Education (Bosch, 2006). Research 
concerning digital technologies does not escape this rule as evidenced for instance by 
the meta-study (Lagrange & al., 2003) but, due to the normal ambition of artefact 
designers to develop tools not restricted to one particular local community and able to 
migrate from one educational context to another one, researchers in that area are 
perhaps more sensitive to the problems raised by the current fragmentation of the 
field.  
Within the European research team TELMA, we faced the difficulties generated by 
this situation when exploring possibilities for collaboration between the six different 
teams involved. In this paper, we report on the TELMA enterprise which began four 



Artigue and Cerulli  

2 - 82                                                                                PME 32 & PME-NA XXX 2008 

years ago and led us to develop specific tools for overcoming these difficulties. We 
first briefly present the TELMA structure then focus on the conceptual and 
methodological tools that we have developed. After describing these, we try to show 
how these tools have contributed to give us a clearer idea of what is needed in terms 
of theoretical connection and integration in mathematics education, of what seems 
accessible today and how.  
TELMA: AIMS, CHARACTERISTICS AND FIRST STEPS 
TELMA (Technology Enhanced Learning in Mathematics) is a sub-structure of the 
Kaleidoscope European Network of Excellence. It includes six European teams from 
four different countries (England, France, Greece and Italy), and its main aims is to 
promote networking and integration among such teams for favouring the development 
of collaborative research and development projects on the teaching and learning of 
mathematics with digital technologies. The TELMA teams have a long experience in 
that area but they live in different educational contexts, the digital technologies they 
have developed are diverse, ranging from half baked microworlds to diagnostic and 
remedial tools, and the theoretical frameworks they rely on are also quite diverse. A 
first attempt made for identifying these (ITD, 2004) showed the existence of at least 
eight main theoretical frameworks: theory of didactical situations, anthropological 
theory of didactics, activity theory, instrumental approach, theory of semiotic 
mediation, social semiotics, socio-constructivism and constructionism, not to mention 
the theoretical approaches referred to in the AIED community and mobilized in the 
design of digital artefacts (Grandbastien & Labat, 2006).  
For facilitating research collaboration, TELMA teams decided first to structure their 
collaborative work regarding the design and use of digital technologies around two 
main issues: representations and contexts, and to produce a description of each team 
according to common categories: main research aims, theoretical frameworks of 
references, digital tools designed and used… in order to make visible similarities and 
differences. As mentioned above, the descriptions produced evidenced a striking 
diversity in terms of theoretical frameworks, language and concepts used, and the 
difficulty we had to understand up to what point and how these differences affected 
our respective research and perspectives on the issues at stake. The notion of 
didactical functionality (see below) was then introduced as a reading key, general 
enough and based on elements relevant for all the teams, to be used to describe and 
compare frameworks. It was also decided to ask each team to select some few 
publications it considered the most appropriate for promoting mutual understanding 
and to work on these. Soon enough we experienced the limitation of such an 
enterprise: the reading of selected papers gave us only a rather superficial view of the 
exact role played by theoretical frames in our respective research projects. 
Theoretical frames were of course evoked or even discussed but their links with the 
details of the actual research work were missing or remained fuzzy. The idea of 
developing a specific methodology: the cross-experimentation methodology, 
presented in the next part, emerged from the awareness of these limitations. 
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TELMA CONSTRUCTS 
The first construct introduced in TELMA was the notion of didactical functionality. It 
was seen as a reading key as mentioned above and a means to link theoretical 
reflection and practice, helping us approach theories in more operational terms, 
beyond the declarative level dominating in the set of selected papers. 
The notion of didactical functionality 
The notion of didactical functionality (Cerulli et al, 2005) indeed individuates three 
different dimensions to be taken into account when considering a learning environment 
integrating one or several digital artefacts, for purpose of design or analysis of use: 

• a set of features/characteristics of the considered digital artefact(s); 
• one (or a few coordinated)  educational goal(s); 
• the modalities of use of the artefact(s) in the teaching and learning activity 

enacted to  reach such goal(s). 
These three dimensions are not independent of course: although characteristics and 
features of a digital tool can be identified through an a priori inspection, these 
features only become functionally meaningful when understood in relation to the 
educational goal for which the artefact is being used in a given context and to the 
modalities of its use. Nevertheless, identifying and distinguishing these dimensions 
helped us structure the reflection and analysis, and approach theoretical frameworks 
in operational terms. For progressing in the understanding of our similarities and 
differences, we needed then to complement this structure by appropriate descriptors 
or categories. This was the source of the notion of key concern we introduce below.  
The notion of key concern 
In spite of its limitations, the analysis of selected papers carried out showed that the 
different teams shared evident common sensitivities (for instance common sensitivity 
to semiotic and instrumental issues, to the social and situated dimensions of learning 
processes), but they generally took these into consideration through different 
constructs and approaches. Retrospectively, the existence of such common 
sensitivities has nothing strange: even if we live in different educational cultures and 
have different trajectories, we are partly facing similar challenges and issues. Seeing 
theoretical frameworks and constructs as tools that we build for understanding and 
addressing challenges and issues, we thus conjectured that, for comparing and 
identifying possible productive connections between our respective theoretical 
frameworks and concepts, a good strategy could be to approach theories and concepts 
through the main sensitivities and needs they try to respond to. For tracing these 
common sensitivities and needs, we needed a common language not dependent on 
some particular theoretical approach. This was the source of the notion of key 
concern. A set of key concerns was thus attached to each dimension of the notion of 
didactical functionality, expressing the main sensitivities evidenced by the analysis 
carried out in the first phase of TELMA work (Artigue & al., 2005).  
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If we consider for instance, the first dimension of the notion of didactical 
functionality corresponding to the analysis of the tool for identifying potentially 
interesting characteristics, we distinguished between different dimensions, 
questioning the usability of the tool, how the mathematical knowledge of the domain 
is implemented in the tool and what kind of relationships with mathematical objects 
this implementation allows, the forms of social and didactic interactions offered by 
the tool, the distance with institutional and cultural objects. This resulted in a set of 8 
different key concerns for this dimension.  
The theoretical frame(s) that a team relies on contribute to creating a partial hierarchy 
between key concerns. We decided to use these hierarchies, once identified, for 
organizing the comparison and connection between theoretical frameworks that we 
wanted to achieve, considering that priority had to be given to the cases where the 
same key concern or set of key concerns was given a high position by two or more 
different teams. In such cases, we expected to be able to trace how similar or close 
needs were fulfilled by different theoretical constructions, better understand the 
functionality of these, and infer from that possible interesting connections.   
We had thus a structure and the meta-language of concerns for approaching 
theoretical connection, but what made these tools productive was the cross-
experimentation methodology we developed for supporting the analysis. 
The cross-experimentation methodology  
The cross-experimentation methodology was supposed to enable comparison among 
teams highlighting similarities and differences in their research approaches. In order 
to do this TELMA teams developed a set of simultaneous teaching experiments 
according to the principles described below. 
First of all it was decided that each team would develop a teaching experiment 
making use of an IT-based tool developed by another team. This was expected to 
induce deeper exchanges between the teams, and to make more visible the influence 
of theoretical frames through comparison of the vision of didactical functionalities 
developed by the designers of the digital artefacts and by the teams using these in the 
cross-experimentation. These simultaneous experiments needed to be gathered 
together to allow comparisons. For this reason it was decided the collaborative 
development of a common set of guidelines expressing questions to be addressed by 
each designing and experimenting team in order to frame the process of cross-team 
communication. This document was meant to draw a framework of common 
questions providing a methodological tool for comparing the theoretical basis of the 
individual studies, their methodologies and outcomes. Furthermore, to increase the 
visibility of theoretical choices and discussions, and also to make the experimental 
situation more realistic, it was decided that in each team PHD students and young 
researchers would be in charge of the experimentation.  
Finally the range of some variables was limited: in order to facilitate the comparison 
between the different experimental settings, it was agreed to address common 
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mathematical knowledge domains (fractions and introduction to algebra), to carry out 
the experiments with students between the 5th to 8th grade, and to perform classroom 
experiments of about the same duration  (one month). 
These principles were put in practice through an on-line collaborative activity that 
brought the involved young researchers characterised by the 4 main phases: 1. 
Production of a pre-classroom experiment version of the guidelines, containing plans 
for each experiment and answers to some questions (a priori questions); 2. 
Implementation of the classroom experiments; 3. Analysis of the experiments; 4. 
Production of the final version of the guidelines containing answers to all of the 
addressed questions (including the a posteriori questions). 
Each phase was interlaced with reflection tasks were the involved researchers were 
requested to review in-itinere the other teams' answers to the questions contained in 
the guidelines, and to comment on them and ask for clarifications. In this way a 
constant dialogue could be set up, enabling researchers to bring to light implicit 
assumptions and to compare the different teams' approaches (Cerulli & al, 2007). In a 
sense the guidelines may be considered both as a product and as a tool supporting 
TELMA collaborative work. A product in the sense that the final version contains 
questions and answers to questions as well as plans, descriptions of the experiments 
and results. A tool in the sense that the guidelines structured each team's work by: 

• providing research questions concerning contexts, representations, and 
theoretical frameworks; 

• establishing the time when to address each question (ex. before, or after the 
classroom experiment, etc.); 

• establishing common concerns to focus on when describing classroom 
experiments, on the basis of the definition of DF;  

• gathering, under the same document, the answers provided by each team to 
the chosen questions, in a format that could possibly help comparisons. 

The guidelines were finally complemented by a final analysis of the cross experiment 
based on a set of interviews: a senior researcher in each team, who was not directly 
involved with the experimental work, interviewed the young researchers who carried 
out the field experiments (Artigue & al., 2007). Interviews followed a specific 
technique named “interview for explicitation” (Vermesch & Maurel, 1997): young 
researchers were asked to tell what they had done and how, but they were not directly 
questioned about the rationale for their actions.  
THE LESSONS DRAWN FROM THE TELMA CROSS-EXPERIMENT 
As was expected, the cross-experiment methodology, thanks to the perturbation it 
introduced in the normal functioning of the research teams, contributed to make 
visible the invisible, explicit the implicit. The space limitations of this research report 
do not allow us to enter into the necessary details, but we will try to show some 
important lessons that we drew from this cross-experimentation regarding both the 
role played by theoretical frames in design and analysis, and the needs and potentials 
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in terms of coordination of theoretical frames. In the oral presentation, we plan to 
illustrate these results by using the two particular cases which are provided by the 
TELMA teams of the two co-authors of this research report: the DIDIREM team 
which experimented a digital artefact: Arilab, designed by the ITD team and the ITD 
team which experimented a digital artefact: Aplusix, designed by the Metah French 
team sharing the same didactical culture as DIDIREM. 
The cross-experiment confirmed the conjectured relationship between theoretical 
frames and the key concern hierarchy, and showed the precise effects of this 
relationship in the design of the experiments, from the selection of the digital artefact 
to be experimented, the type of tasks proposed to the students, the diversity of 
semiotic mediations considered and the role given to these, the granularity in the  
planning of their management, the respective role given to the teacher and the 
student, to the attention paid to the distance with institutional and cultural habits. 
Moreover, it was evidenced that this influence was more or less conscious to the 
researchers. Familiar constructs were often used in a naturalized way and that was 
also the case regarding values. For that reason, the reflective interviews introduced in 
the cross-experimentation methodology were especially productive.  
Another important result was that, even if important, the role of theoretical frames 
and concerns in shaping the design was limited. Answers to the guideline 
questionnaires and interviews evidenced the existing gap between what the theories 
offered and the decisions to be taken in the design. A lot of design decisions were 
determined by usual habits and experience and not under the control of theory. The 
same occurred in the implementation of the experimental design. Moreover, it clearly 
appeared that, for a given team, the hierarchy of key concerns was dependant on the 
moment of the experimentation: for instance concerns which played major role in the 
design of the experiment were less apparent in the analysis of the experiment. Vice 
versa, during the analysis phase, researchers often realized that they had 
underestimated specific needs in the design, and this awareness also contributed to 
move the concern hierarchy. They also faced unexpected events that were not so 
unexpected when adopting other theoretical perspectives, for instance those offered 
by other teams. 
More generally, regarding connection and integration issues between theoretical 
frames, we draw from this experience a number of lessons potentially helpful for 
future research. We list below three of these. 
The necessity of distinguishing, when looking at integration, possibilities and needs 
between design and a posteriori analysis. The economical and coherence needs of 
design are different of those of a posteriori analysis. Incorporating two many different 
theoretical frames can make design quite impossible, but in a posteriori analysis 
introducing new theoretical frames for instance for explaining unexpected events, 
producing alternative explanations, is easier and can be an effective support towards 
theoretical integration. For instance, the cross-experiment made clear that the theory 
of didactic situations and theory of semiotic mediation, which have a crucial role in 
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design for the DIDIREM and the ITD team respectively, induce to control and 
anticipate in the design of an experiment is quite different but that each vision has its 
own coherence and leads the design in a different and potentially productive 
direction. But we also got the evidence that the theoretical tools of one approach can 
enrich the a posteriori analysis of the other one. 
The fact that the hierarchy of concerns can be exploited for looking at possible 
theoretical connections in different ways. In TELMA work, similarities in hierarchies 
were first exploited for establishing connections between theoretical frames and 
concepts, but contrasted priorities can also been exploited for looking at possible 
complementarities between theoretical frames.  
The fact that progressing in the comparison and connection between theoretical 
frames needs the development of specific structures and languages making the 
communication possible. In our case, these structure and languages were provided by 
the notion of didactical functionality and the language of concerns. They obliged us 
to approach theories in terms of functionalities and this approach was really 
productive.  
Beyond that, progression needs also the building of some form of collaborative 
practice supporting the comparison and connection work. Knowledge in this domain 
as in others cannot only result from readings, explanations and discussions. In our 
case, the cross-experimentation was asked to play this role, and the results it allowed 
us to achieve led us to reinvest this methodology in a new and more ambitious 
European project: the Remath project (Representing Mathematics with Digital 
Technologies) where the collaboration is extended towards the development of digital 
artefacts, of a common language for scenarios, and of an integrative platform 
MathDils. In this project, each team experiments both faliliar and alien digital 
artefacts in realistic contexts and cross-experiments. Moreover each team 
experiments both its own ILE and an alien ILE in realistic contexts, and the 
methodological tools built in TELMA are no longer only used to foster 
communication per se but also to achieve specific common research goals. 
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HOW TO CHOOSE THE INDEPENDENT VARIABLE? 
Ferdinando Arzarello Domingo Paola 

Università degli Studi di Torino Liceo Issel 
           

A case study is presented, where the paper and pencil environment and the 
technological one are combined together and designed to face a subtle mathematical 
problem: how to choose the dependent Vs independent variables in modelling 
situations? We show how the combined approach allows to pose the problem in an 
adequate way for 9th grade students, provided the teacher interventions support 
suitably their learning processes. The case is analysed through two lenses from the 
literature: the so called instrumental approach and the notion of semiotic mediation. 
INTRODUCTION  
The paper presents a case study that illustrates how the combined use of technologies 
and paper and pencil environments can offer the teacher first the opportunity of 
focusing subtle but important mathematical problems not so easily accessible in only 
one environment, and second the tools for a positive mediation with respect to the 
consequent difficulties met by the students.  
The “combined environment” can be thought as a tool that triggers problem posing 
and supports problem solving activities, provided the teacher suitably designs her/his 
interventions. The example we discuss here is emblematic of similar cases we met in 
the teaching experiments we are developing from many years with secondary school 
students, where the curriculum for the secondary school is “function-based” (Chazan 
and Yerushalmy, 2003) and developed through the combined use of new technologies 
(e.g. spreadsheets, DGS or CAS: see Paola, 2006) and paper and pencil 
environments.  
The combined approach philosophy ensues from the following observations. From 
the one side, the students, who solve problems within technological environments, 
often develop practices that are significantly different from those induced by paper 
and pencil environments and this may offer fresh didactical opportunities:  

The curriculum with technology…changes the order and the intensity in which students 
meet key concepts. This change in order allows students to solve some kinds of problems 
that students typically might find difficult; it also either restructures points of transition 
between views or introduces new points of transition (Yerushalmy, 2004, p.3). 

From the other side, sometimes they “naturally” use a mixed approach, where paper 
and pencil environment survives beside the technological one. In such cases it can be 
useful to exploit the didactical positive interactions of the two, suitably designing 
their combined use. We have observed that this methodology can be particularly 
useful in approaching some delicate mathematical problems, where remaining within 
only one environment (technological or not) may not be so productive. We shall 
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illustrate this point showing how students choose the independent Vs dependent 
variables for modelling sequences of geometrical figures defined by recursive rules.  
THE THEORETICAL FRAME 
To properly describe our case study we use two theoretical frames in a 
complementary way: (1) the notion of instrumental approach (see Verillon & 
Rabardel, 1995); (2) the notion of semiotic mediation of the teacher (see Bartolini & 
Mariotti, 2008, Arzarello & Robutti, 2008). 
1. Instrumental approach. Teaching-learning mathematics in computer environments 

introduces a strong instrumental dimension into the processes developed by the 
students. Verillon and Rabardel (1995) speak of instrumented actions, insofar the 
actions of the subjects are deeply ruled by the instrument’s schemes of use (for a 
description of these phenomena within another theoretical frame, see Yerushalmy, 
2004): e.g. to compute the roots of an equation, students can use the suitable function 
in the calculator modality. Instrumented actions have strong consequences on the 
cognitive dimensions of didactic phenomena and must be carefully considered. We 
shall point out how in the combined approach of paper and pencil with a specific 
software (TI-nspire) students instrumented actions contribute to modify their approach 
to the choice of independent Vs dependent variables in a modelling problem on 
recursively given sequences of geometrical figures (see below). But their 
instrumented actions alone are not enough to allow them to completely grasp the 
situation. Appropriate interventions of the teacher are necessary, as sketched in (2).  

2. Semiotic mediation of the teacher. According to Vygotsky’s conceptualization of ZPD 
(Vygotsky, 1978, p. 84), teaching consists in a process of enabling students’ potential 
achievements. The teacher must provide the suitable pedagogical mediation for 
students’ appropriation of scientific concepts (Schmittau, 2003). Within such an 
approach, some researchers (e.g. Bartolini & Mariotti, 2008) picture the teacher as a 
semiotic mediator, who promotes the evolution of signs in the classroom from the 
personal senses that the students give to them towards the scientific shared sense. We 
shall describe how the semiotic mediation of the teacher is crucial to support the 
students towards a deep understanding of the functional relationships among the 
variables of our problem. As a consequence, they can make an aware choice of the 
independent variables and draw a graph that suitably represents the situation. 

THE CLASSROOM BACKGROUND AND THE TASK  
The activity we shall comment concerns students attending the first year of secondary 
school (9th grade; 14-15 years old) in Italy. They attend a scientific course with 5 
classes of mathematics per week, including the use of computers with mathematical 
software. Since the beginning the students have the habit of working in small 
collaborative groups. The classroom has been chosen for experimenting a new 
mathematical software, TI-nspire (see: www.ti-nspire.com/tools/nspire/index.html) of 
Texas Instruments, within an international project, whose aim is to investigate the 
software effectiveness in mathematics learning. The students have used TI-nspire 
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from the second month of school for about 2-3 hours per week. Each student has also 
the software at home to make her/his homework. As to the curriculum they follow, it 
is strongly based on the notion of function and on modelling activities through 
problem solving. While making the activity described below (on March 15, 2007) the 
students were already able to use the (first and second) finite differences techniques 
for analysing if and how a function grows; and to distinguish between the polynomial 
and exponential growing of functions or between linear and quadratic growings. For 
more information (in Italian) on the curriculum and these activities, see 
http://www.matematica.it/paola/Corso%20di%20matematica.htm. 
In the activity we analyse, the students, grouped in pairs, must solve a problem taken 
from Hershkovitz & Kieran (2001), according to the following task sheet (its working 
methodology is usual in the classroom). 
Task 
Listen carefully to the reading of the problem by the teacher. For 10 minutes think 
individually to the problem: do not use paper and pencil or TI-nspire. Produce 
conjectures about the change of the rectangles areas. In the successive 10 minutes 
discuss your conjecture with your mate; use paper and pencil only; share possible 
strategies to approach the problem (for validating or exploring) within TI-nspire. In 
the successive 60 minutes you can use TI-nspire to verify your conjectures, to explore 
the problem and eventually to solve it. 
Problem 
Consider the following three sequences a), b), c) of rectangles: 
a) The height is constant (1 cm); the base of the first rectangle is 1 cm, while the 
successive rectangles are got by increasing the base 1 cm each time, as suggested by 
the following figures: 

 
b) The first rectangle has height of 1 cm and base 0.1 cm; the successive ones are 
got increasing of 0.1 cm both the base and the height each time, as suggested by 
the following figures: 

 
c)  The  first  rectangle  is  a  square  with  the  side  of  0.01  cm;  the  successive 
rectangles have the height always of 0.01 cm, while their bases are got each time 
doubling the base of the previous rectangle, as suggested by the following figures:  

 
What can you say about the type of growing of the rectangles area in each sequence? 
Justify your answer." 
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All the pairs have produced a final document within TI-nspire and one of them has 
been videorecorded by two cameras: a fixed one for the computer screen and a 
second mobile one for recording the two students (L and S) while working. In the 
next paragraph we shall present and comment some excerpts from this 
videorecording. L and S are two good level achievers in mathematics. 
THE SOLUTION STRATEGIES BY L AND S  
In this paragraph we shall comment the strategies elaborated by L and S to solve the 
three questions. We shall analyse what happened only in the last two phases of their 
work (with paper and pencil and with TI-nspire).  It must be observed that the 
classroom has been divided into two groups: one in one room with L and S and the 
researcher, who videorecords them but does not intervene; and the other with all the 
other students, who work in another room. The teacher goes back and forth from one 
group to the other. Hence there are long periods of time in which L and S work alone.   
In phase 2, L and S do not hesitate to agree that the area in a) changes linearly. The 
study of the sequence b) is not so immediate. L and S build a 2 columns table, where 
they write the first values of the height and of the base (Table 1). L observes that the 
areas seem to “grow more and more” (it is the shared expression to indicate a 
function that increases with the concavity upwards). L wonders if this type of 
growing can concern all the data and not only the few considered in the table. His 
conjecture is that it is so provided the base does not exceed 1.  

 

                  

                   

                                          Table 1                                Table 2 
Hence he builds a second table (Table 2), which starts with the value 1 in the second 
column. This method is a typical strategy within paper and pencil environment; using 
the spreadsheet of TI-nspire the strategy would have been different, since students 
could have easily considered a lot of values and studied them with the first and 
second differences. At this point L generalises his conjecture saying: “It seems that it 
grows more and more…even because if one enlarges…it must grow more and 
more…two sides are always growing…hence it must grow”; and with the pencil 
traces in the air the “drawing” of an increasing curve with concavity upwards.  
Then they pass to the sequence c). Also in this case the two students produce a table 
like above. At this point the teacher interacts with them and asks them what kind of 
growing they expect. S makes a gesture, which in their previous discussion had been 
used to indicate the doubling of the base. L says explicitly: “exponential…there are 
always powers of 2”. Then L calculates some first differences, observes that they 
reproduce the same values of the function and this confirms his conjecture of an 

h B 
1 0.1 
 1.1 0.2 
1.2 0.3 
1.3 0.4 

H B 
1.9 1 
2 1.1 
2.1 1.2 



Arzarello and Paola 

PME 32 & PME-NA XXX 2008  2 - 93 

exponential growing. Even if with some perplexity S accepts. Hence the students are 
ready to pass to the software already with many given answers. One could so expect 
that in TI-nspire they find the confirmation of their (right) conjectures. This regularly 
happens with the sequence a): the graphic and numeric information they get from the 
software are coherent each other and confirm their conjecture of a linear growing. 
More interesting their work for the sequence b). Once they have done the work with 
the spreadsheet of TI-nspire they wish to produce a graphic and must decide what is 
the independent and what the dependent variable. The second choice is obvious: it is 
the area. But what about the independent variable? They have some uncertainty: 

L: With respect to the variation of what? Of the base? 
S: Hmm… 
L: Yes, L3 [he refers to the name of the variable in the spreadsheet]  
S: However, it is not only the change of the base ... 
L: Both are changing…both are changing… with respect to the variation of what 

otherwise? 
S: Yes but both are changing… 

After a while, the teacher recalls them that when its second differences are constant 
the function is quadratic and then asks them: “that this is a second degree growing, 
could we have foreseen it?”. The students remain silent for a while; then there is the 
following interaction between L and T (the teacher): 

L: Hence they both increase [namely height and base] 
T: Before you told me that when you have thought individually you thought to the 

fact that to find the area you multiply the base times the height. Isn’t it? You have 
thought to this formula… 

L: Yes, hence the area could be…Then we multiply the starting number…area-one equals 
b times a number, b times c. The second area equals (b+1) times (c+1), hence… 

L gets lost with these computations: the symbols he uses are not so good to clarify 
why the sequence is quadratic.  

T: Of what type is the change of the base? 
L: Linear as that of the height.  
T: If both the base and the height grow linearly, what happens to the area? 
L: The area will grow…two things that grow linearly and are multiplied…ah yes x times x! 

Hence they decide that the independent variable may be indifferently either the base 
or the height and draw the consequent graph with TI-nspire: a quadratic function of 
the area Vs the base. 
The work for the sequence c) is very interesting. The students wait for an exponential 
graph, but when they draw the graph area Vs base a linear function appears! The 
graph is so unexpected that L suggests not to consider it and eliminates it from the 
screen of TI-nspire. It is the teacher to oblige them to reconsider what has happened.  

T: What about the third graph? 
L: Ehmm…we do not understand, it seems that it is a linear function […]  
T: What were you waiting for? 
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L: More and more…[i.e. a growing function with the concavity upwards] 
T: The area is growing […] why? 
L: Because as a base…Because we have put…also the base is changing… it changes 

with the same step. 
T: Hence it is correct, isn’t? 
S & L: Yes, yes, yes […] 
T: Be careful! We were waiting an exponential function. Namely the area were 

increasing exponentially, but with respect to what? 
L: Of an x that went on regularly… 
T: Well, what is this x that changes regularly? […] 
L: With a constant increment 
T: Yes but in what manner…when you have said that the area grows exponentially 

[…] with respect to what you have thought it was increasing?...Not with respect 
to the base. In fact if the base grows up exponentially it is clear that the area …if 
the base doubles, the area doubles with respect to what?  

L: With respect to what?  […] 
T: The area of the first rectangle is […] 
L: 0.0001 
T: The area of the second rectangle measures… 
L: Ah, with respect to the places.  
T: Good, with respect to the places! This problem does not appear in the preceding 

sequences: why? 
L: Because all change with a constant step…the base 

It is interesting to observe how the students arrive to the linearity of the graph in the 
dialogue (see italics) and their explanation in the notes: “…the area of the sequence 
grows exponentially. This appears very clear to us looking at the values of the first and 
second differences [of the base], which result the same as those of the area”. Namely 
for them it is clear that linearity depends on the choice of the independent variable [the 
base], which in this case changes proportionally with respect to the areas. So it is clear 
that they do not feel the necessity of making it explicit in their notes.  
CONCLUSIONS 
The three questions a), b), c) are essentially solved by the students in paper and pencil 
environments, but at different levels of understanding. Students are pushed to enter 
more deeply into the relationships among the variables that model the different 
situations by the instrumented actions they produce. In fact, they must choose a 
column of the spreadsheet as independent variable to validate with the software what 
they are waiting for: the task is obvious in case a); problematic in case b), very 
difficult in case c). We call this the problem of the independent variable. In case b) 
they acknowledge that the quadratic dependence results because of the increase given 
to both the height and to the base of the rectangle. The reflection about the structure 
of the area formula (suggested by the teacher) produces L’s understanding of the real 
nature of the quadratic law (“The area will grow…two things that grow linearly and 
are multiplied…ah yes x times x!”). The semiotic mediation of the teacher is based on 
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two ingredients: (i) the necessity of passing from the signs of the spreadsheet to those 
of the graph environment of TI-nspire, which requires to explicit the two variables of 
the graph; (ii) the reflection on the way the multiplicative area formula incorporates 
twice the linear increment of the sides (bilinearity of the area function). The 
combined effect of these two ingredients supports the cognitive processes of L. The 
third case is more complex: none of the variables in the spreadsheet changes linearly 
with the “place”. The place is a hidden variable that has supported all the previous 
thinking processes of the students in cases a) and b). When passing to the software, 
they changed the independent variable, without realising it. But while in case a) and 
b) the hidden variable could in some way be represented through the variables they 
had in the spreadsheet (case b already posed some difficulties), in case c) this is not 
any longer possible: it is now necessary to explicit the hidden place-variable, to see 
what they are waiting for. The problem could not have cropped out so “naturally” in 
the paper and pencil environment. Students’ instrumented actions generate it in cases 
b) and c) but it is the intervention of the teacher to make the students aware of the 
problem. Its solution is crucial for developing an algebraic thinking apt to sustain the 
formal machinery that is necessary for modelling mathematical situations. It requires 
to shift from the neutral reading of the relationships among the variables of a formula 
(e.g. Area = base × height) to a functional reading of the same formula (e.g. Area = 
linear function of the base, provided height is constant, as in a). The epistemological 
relevance of this shifting was already pointed out by J.L. Lagrange (1879, p.15): 
“Algebra…is the art of determining the unknowns through functions of the known 
quantities, or of the quantities that are considered as known”. Its didactical relevance 
has been stressed by many researchers, e.g. see Bergsten (2003, p.8).  
Comparing what happened in our classroom with the results in Hershkowitz & 
Kieran (2001), we find some analogies and some differences. Our experience is more 
similar to what happened in their Israeli 9th grade classroom, where students “were 
first invited to suggest hypotheses without using the computerized tool, then to use it 
to check them” (ibid., p. 99). In that case students could find the closed algebraic 
formulas for problem c), even if with some difficulties; successively they could draw 
the three graphs using the graphic calculator. We must observe that the focus of the 
problem in that experience concerned more the comparison among the relative 
growth of the rectangles, while in our case the attention is more on the choice of the 
independent Vs dependent variables. During the discussion with the teacher, the 
Israeli students were able to match “together representatives from different 
representations: the algebraic, the numerical, the graphic, and the phenomenon itself” 
and “the evidence provided by the different representations of the software was 
accepted even if, for some students, it was unexpected” (ibid., p. 100). In our case the 
students concentrated more on the finite difference techniques and got a meaningful 
model of the situation; however their successive instrumented actions with the 
software disorientated them because of some unexpected answers, particularly in case 
c). In our case the software acted also as a source of problems and it has been 
necessary a further strong mediation of the teacher. In fact, the independent variable 
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problem is a subtle question that has been grasped by the students because of the 
instrumented actions fostered by the software and of the semiotic mediation of the 
teacher. The two have produced a meaningful reflection on this issue and avoided 
that “computerized tools reduce students’ need for high level algebraic activity” 
(ibid., p.106): the instrumented actions made the question accessible to the students; 
the teacher fostered their thinking processes by asking them the right questions at the 
right moment.  The use of software in this example has been complementary and not 
substitutive to that of paper and pencil environment. Using both has allowed to get 
two goals. The first one concern students learning: the dialectic between what they 
have foreseen in the paper and pencil environment and what they are seeing within 
the TI-nspire environment poses the problem of the independent variable and gives 
fuel for solving it. The second concerns the researcher in mathematics education: 
combining both environments in the teaching experiment has allowed to face the 
issue of the use of technologies in mathematics teaching-learning according to a fresh 
perspective. Our point is that the curriculum with technology “changes the order and 
the intensity in which students meet key concepts” not only in the “substitutive” 
sense that it makes “natural” different approaches to the same problem, making it 
easier. It changes things also in a “integrated” sense: in fact, for many reasons the 
paper and pencil environment continues to live in our students thinking models even 
if they massively use technological environments. It can be useful to combine 
didactically the two in order to pose and solve mathematical problems that could be 
posed and solved with more difficulty remaining only within one single environment. 
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STUDENTS’ VERBAL DESCRIPTIONS THAT SUPPORT VISUAL 
AND ANALYTIC THINKING IN CALCULUS 

  Leslie Aspinwall Erhan Selcuk Haciomeroglu Norma Presmeg 
Florida State University University of Central Florida Illinois State University 
 
This study adds momentum to the ongoing discussion clarifying differences between 
visualization and analysis in mathematical thinking. By virtue of a new instrument for 
understanding the thinking of calculus students, we present data from its first use 
with 195 Advanced Placement calculus students from five high schools. Our results 
indicate that the new framework predicts individuals’ preferences for visual or 
analytic thinking and, moreover, advances an alternative model involving more than 
this simple duality. As a result of interviews with students, we report that successful 
students use a combination of visualization and analysis, and that verbal-descriptive 
thinking is the linchpin sustaining the use of visual and analytic thinking. 
OBJECTIVES 
The value of calculus lies in its potential to reduce complex problems to simple rules 
and procedures. However, as mathematics educators have seen, many students in 
calculus classrooms are either unsuccessful or appear to have resigned themselves to 
learning strategies in order to cope without understanding; they often lack an 
understanding of the conceptual foundations of calculus and its practical value. One 
means of effecting innovation involves curricular change. With potential significance 
for such change, this study focuses on how students understand the derivative 
function with a goal of enriching learning environments in calculus classrooms. 
By virtue of a new instrument for understanding the thinking of calculus students, we 
present data from its first administration with 195 Advanced Placement calculus 
students. From the perspective of developmental research, this study completed one 
research cycle in preparation for future examination and classroom trials by 
researchers and teachers. Although this new instrument classifies elements of visual 
and analytic mathematical thinking, more than this simple duality appeared to be 
involved.  
Thus, in addition to the development of a new framework, we interviewed students to 
whom the instrument had been administered as we sought to understand the 
complexity of visualization and analysis as (internal) cognitive processes and to 
explore their roles in students’ understanding. We found that a significant number of 
students resort to verbal descriptions as internal processes to support their analytic or 
visual processing. We argue that such description of mathematical objects is one of 
the most pervasive and useful modes of internal processing, supporting visual and 
analytic processing. We refer to this internal processing as verbal-description and 
introduce a new model, to illustrate critical intersections among visualization, 
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analysis, and verbal-description, as internal processing by individuals, to understand 
external representations of mathematical objects – graphs, equations, tables, and 
words.  
BACKGROUND 
A primary theme we develop is that verbal-description is both a mode of internal 
processing and a means of representation of a concept; for example, in a case 
described below, an individual uses analysis and verbal-description, as internal 
modes of processing, to create a function represented by a graph and by words. We 
contend that such verbal-descriptions are critical to understanding for many 
individuals and occupy a special place as cognitive support for tables, graphs, and 
equations. To develop this theme, we visit three domains – one to describe what we 
mean by visualization, one to describe our Krutetskiian perspective for cognitive 
processing, and a third to propose written or verbal expressions as a way to know and 
understand mathematics. 
Calculus is a topic that includes graphs –in addition to arrangements of symbols, 
tables, and other diagrams– and it is appropriate to explore learners’ thought 
processes that relate to visual processing. The term visualization has been used in 
different ways in the past two decades of mathematics education research, and thus it 
is necessary to define how it is used in this study. Following Presmeg (2006), when a 
learner creates, or considers, a mathematical object, a visual image in the learner’s 
mind guides this creation. By visual image, we do not mean merely a mental picture; 
instead our depictions are informed by Piaget’s (1977) distinctions among visual 
images based on actions taken on the image leading to the creation of new cognitive 
structures. We follow Zazkis, Dubinsky, and Dautermann (1996) in the contention 
that analysis is the manipulation of these cognitive structures, with or without the use 
of symbols; we too do not see analysis as incompatible with visualization and insist 
that neither could exist without the other. Mathematical visualization then includes 
processes of creating or changing visual mental images, a characterization that 
includes the construction and interpretation of graphs.  
Our work is framed by Krutetskii’s (1976) classifications of learners as analytic or 
geometric (visual) in which visual learners are characterized as those who prefer to 
use visual methods when there is a choice; below, we provide descriptions of these 
elements for our work. We agree with Aspinwall, Shaw, and Presmeg (1997) that it is 
not useful to classify individuals in categories since mathematical problem solving is 
situation-specific and the approach used by an individual may vary according to the 
situation. Accordingly, we generally refer to types of processing rather than types of 
individuals.  
Students’ attempts to express their thinking in words without mathematical symbols 
of the derivative and integral in calculus enrich their understanding of connections 
among graphic, algebraic, and numeric representations (Aspinwall & Miller, 1997; 
2001). Aspinwall and his associate investigated written and verbal mathematical 
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expressions as a fourth representation and demonstrated that when provided 
structured writing prompts as a way of learning, students developed a positive 
reliance on writing for conceptual understanding and continued its use, independent 
of instructor solicitation, in other mathematics classes.  
We found evidence for Zazkis et al.’s (1996) model that described an interchange 
between analysis and visualization by students in an abstract algebra course. 
However, the model was insufficient for all calculus students in our study as we also 
observed a third component that we describe as neither visualization nor analysis.  
METHODS 
Our work is supported by the view that posing and analysing rich tasks for students 
provide windows into their thinking with ramifications for curriculum and 
instruction. For this study, we required a valid and reliable instrument for capturing 
the manifold nature of students’ understanding of calculus to determine the relative 
presence and value of the visual and analytic elements of their thinking. Because no 
adequate instrument was available, one had to be developed as a component of this 
study, and we developed and field tested the Mathematical Processing Instrument for 
Calculus (MPIC). Presmeg’s (1985) Mathematical Processing Instrument (MPI) was 
the catalyst and model for the MPIC.  
The MPIC classifies the processing of students according to their preferences for 
visual and analytic thinking in calculus. Validity and reliability are critical to any 
research study that employs an instrument of measurement, and the nature of 
students’ cognitive activity makes it difficult to measure; thus careful attention was 
paid to techniques to make the instrument valid and reliable. For example, to insure 
such credibility, individual items on the MPIC are based on the standards advocated 
by the National Council of Teachers of Mathematics ([NCTM], 2000), an 
international organization with standards related to the teaching and learning of 
mathematics. Moreover, pilot tests of the MPIC were conducted with research 
mathematicians, mathematics teachers, and mathematics education professors. The 
Chronbach alpha correlation coefficient is a calculation resulting from a formula that 
is based on two or more parts of the instrument. The coefficient can take a value 
between 0 and 1, and a higher coefficient indicates a more credible instrument. Our 
field testing with the MPIC yielded a Chronbach alpha coefficient of .862, indicating 
that the instrument is trustworthy. 
This study generated two sets of data. First, we used the newly-created MPIC to 
develop a quantitative understanding of the, necessarily internal, visual and analytic 
cognitive processes of 195 Advanced Placement (AP) students in eleven classrooms 
in five North Florida high schools. The instrument provides a score that reveals the 
extent to which students employ visualization or analysis to determine their answers. 
Second, to investigate students’ thinking, we developed case studies by means of 
task-based interviews with students who, having been classified by the MPIC as 
either analytic or visual, described their thinking in greater detail. We asked students 
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to draw a derivative graph when presented with the graph of a function. We describe 
one of the tasks in this paper and, as parts of case studies, excerpts of interviews with 
two students, one whose scores on the MPIC were analytic, and one whose MPIC 
scores were visual.  
It is useful here to describe the Elements of Visualization, Analysis, and Verbal-
Description that guided our explorations of students’ thinking. When students acted 
on the external visual object, in this case the graph of a function, we considered this 
an example of Visualization, Analysis, or Verbal-Description, based on our meaning 
for these Elements, as follows. 
Elements of Visualization 
Visual solutions are dynamic and image-based. Students using such solutions can 
operate on their images without feeling the necessity of another thinking process. 
They are able to visualize the changing slopes of tangent lines to the function and 
accordingly are able to construct an entire derivative graph with no need to consider 
individual parts such as critical points or intervals. These individuals are able to 
determine the shape of derivative graphs based on their estimates of slopes. 
Elements of Analysis 
Analytic solutions are generally equations-based. An analytic solution to a task 
presented graphically typically may involve translation to an equation, computing the 
derivative of the equation, and then using this new equation to draw the derivative 
graph. In addition, we observed students whose analytic processes do not necessarily 
involve precise estimation of equations; these individuals referred to basic groups of 
functions such as cubic functions or quadratic functions, and their graphs associated 
with odd or even powers of x, respectively. They described a process of using 
analytic information obtained from tasks presented graphically.  
Elements of Verbal-Description 
Students using thinking processes that are verbal-descriptive determine critical points 
and intervals on the graphs, distinguish among different elements in the tasks, 
determine a hierarchy for these elements, and then combine them to draw the 
derivative graph. This process 
enables them to assemble 
descriptions of evidence they 
use to create their graphs. 
The individuals in our study 
tended to use some combination 
of visual and analytic strategies, 
just as Zazkis and her associates 
reported in their 1996 study. 
However, we observed a 
cohesive third component that Figure 1: Triangle of Mental Processes. 
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supported visualization and analysis; we 
demonstrate with excerpts from our interviews 
below that these students are using a verbal-
descriptive mode of thinking.  We propose a 
model that unites the elements of visualization 
and analysis with students’ verbal expressions. In 
our model (Figure 1), the processes are depicted 
as the vertices of the triangle, and our examples 
describe how individuals progress from one 
“vertex” to another in making decisions. We 
created transcripts of the interviews with Al, 
whose thinking required all three processes in the 
model, and Bill, for whom only two processes in 
the model were needed. Our cases describe how 
Al and Bill used the processes in the triangle to create their sketches of the derivative 
graph of the function in Figure 2. The purpose of the interviews was to understand 
better how they created their sketches. 
RESULTS 
The Case of Al 
Al’s results on the MPIC reveal that his responses were visual. He demonstrated his 
preference for visual processing for the graph in figure 2 as the following excerpt 
suggests. When we asked how he drew his graph, his descriptions were image-based 
as he described the changing slopes of the graph.  

Al:  The slope is] pretty big negative number around here [points to the interval 
between -1 and 1], here [points to the interval between−∞ and -1] it [slope] is 
positive so you know it [x intercept of the derivative graph] is going to be 
somewhere here. To the left of horizontal tangent line, to the left of -1 so it will 
be positive and to the right of 1, that’s also positive. 

Interviewer: What do you mean when you say positive or negative? 
Al:  Slopes. 

At this point it seems Al had constructed an image of the derivative graph, as his 
MPIC results predicted. The transcript above demonstrates that Al supported his 
visualization with verbal description revealed in his reference above to critical 
intervals for the changing slopes for the graph in Figure 2. Thus, he was shifting 
between two of the vertices of the model – visualization and verbal-description. But 
he then resorted to analytic processes to support his (verbal-description-supported) 
visualization. We considered this a shift from visualization to analysis, and when we 
continued to probe, he described the elements of his analysis. 

Al:  It [points to the original graph] looks like cubic so the derivative would be a 
parabola. It would look something like this [draws the derivative graph shown 
in Figure 3]. 

Interviewer: How did you know that it was cubic? 

Figure 2: The Task. 
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Al: Well you don’t but it’s about cubic the shape of it. The derivative of a cubic is a 
parabola. That should also look somewhat like a parabola. 

The descriptions by Al support the Zazkis’ model. As Zazkis and her associates 
found in their study, we too observed that visual and analytic processes are mutually 
dependent in mathematical problem solving; that is, 
students translated between them as they solved 
graphical tasks. When we asked how he drew his graph 
in Figure 3, Al’s descriptions were dynamic and image-
based as he described the changing slopes of the graph. 
And the interview revealed analytic and verbal 
descriptive support for his visual images, implying the 
dichotomy between visual and analytic processes may 
be an inadequate classification for describing all 
students’ learning. All three processes of the model in 
Figure 1, including the verbal-descriptive as a linking 
component, were necessary for Al, and it may be an 
essential element in the internal processing of others. 
Consider now the case of Bill. 
The Case of Bill 
Bill’s results on the MPIC reveal that his solutions were analytic, and he demonstrated 
his preference for analytic processing in the interviews. But as he explained his 
thinking, his descriptions contained elements of verbal-descriptions as well. He first 
tried unsuccessfully to estimate a possible equation of the graph in Figure 2:  

Bill:  [Pauses] I am trying to think of an equation, what equation makes these minima  
and maxima? 

We considered this to be attempts at analysis. He then shifted from analysis to verbal-
description as he surrendered his attempts at translating (for analysis) and turned his 
attention to critical points and intervals on the graph.   

Bill:  Right here [points] is where the derivative is going to be equal to 0, which 
means that here and here [points] is where it is going to cross the x axis. And 
here [points] the derivative is going to be negative, and here it is going to be 
positive and positive. 

These determinations of critical points and intervals on the graphs, with his 
explanations for their meaning, are elements of verbal-description that he used to 
sketch the graph. When we asked how he had determined the minimum value of his 
derivative graph, he shifted back to analysis.  

Bill:  Because the slope where x = 0 is, roughly guessing, if you take ─1 and +2, the 
slope appears to be about ─2. [draws box shown in Figure 4]. 

We considered Bill’s drawing of the box in figure 4 an act of analysis as he was 
analytically determining the slope between -1 and 0. He shifted again to verbal-
description as he described how he distinguished and assembled elements of these 
descriptions to create his graph in Figure 5: 

Figure 3: Al’s Sketch. 
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Bill:  Kind of piece by piece. I know first, these 
two points are right here on the graph. 
They have to be, that x value for the 
derivative has to be 0. So, whatever the 
graph looks like, it is going to go through 
those two points [on the x axis]. Then I 
found the vertex by estimating the slope 
here [points to the origin]. So, it goes 
through these two points. But it’s not going 
to look like this [draws a V on his paper, 
on the side].  

As the interview suggests, Bill translated between 
Analysis and Verbal-Description. He examined 
points and intervals “piece by piece” as he gathered 
evidence to draw his graph. His descriptions of 
slopes are dramatically different than the changing 
and dynamic images of slopes of which Al spoke. 
The box he drew near the origin suggests elements 
of analysis that he used as he translated to analysis 
and used this analysis to support his verbal 
descriptions. He made little reference to a mode of 
thinking that we considered visualization. 
Therefore, only analysis and verbal-description, as 
two processes of the model in Figure 1, were 
necessary for Bill, who preferred analytic solutions 
on the MPIC.  
SIGNIFICANCE 
We defined visualization, analysis, and verbal-description, and our definitions were 
theoretical. We suggest that the definitions, along with our data, provide useful 
windows into the thinking of students. Furthermore, we think the data are reasonably 
consistent with our model (figure 1). We have concluded that students invoke words 
as an amalgam to support their visual and analytic understanding of mathematical 
equations, graphs, and tables. Further, for some, verbal-description is possibly used in 
lieu of accessible visual images or symbolic mathematical expressions. Our research 
with the data base of students who have been tested with the Mathematical 
Processing Instrument for Calculus continues. Future study will help us determine the 
use and degree of interactions among the three elements of analysis, visualization, 
and verbal-description. 
To the extent that these data make sense for our model of visual, analytic, and verbal-
descriptive thinking in students’ understanding of elementary calculus, we think the 
model they suggest may be useful for learning and instruction of mathematics in 
other areas. Successful students, if success is measured by conceptual understanding, 
use a combination of strategies. The element of verbal-description, described in this 
study as a third mode of internal processing, is a critical link between visualization 

 

Figure 4: Bill's First Sketches.

 

Figure 5. Bill's Sketches. 
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and analysis, and may sometimes be used in lieu of these modes. An increased focus 
on how students understand and know calculus has the potential to enrich classroom 
instruction and conceptual learning.     
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CLASSROOM ENVIRONMENT FIT IN MATHEMATICS ACROSS 
THE TRANSITION FROM PRIMARY TO SECONDARY SCHOOL  

Chryso Athanasiou and George N. Philippou 
University of Cyprus  

 
In the present paper we investigate students’ perceptions of the actual and the 
preferred classroom environment in mathematics across the transition from primary 
to secondary school. The analysis of 220 students’ responses to a questionnaire 
suggests that there is a developmental mismatch between the actual and the preferred 
classroom environment across the transition. More specifically, our findings indicate 
that students perceive fewer actual opportunities to participate in learning and carry 
out investigations after than before the transition; they also express a preference for 
more interactive teaching and independence after than before the transition. The 
level of congruence between students’ actual and preferred perceptions declines after 
the transition regarding personalization/participation and investigation. 
BACKGROUND AND AIMS OF STUDY  
The period surrounding the transition from primary to secondary school has been 
found to result in a decline in students’ motivation in mathematics (see e.g., 
Athanasiou & Philippou, 2006, MacCallum, 2004). This decline in motivation in 
mathematics was found to be related to certain dimensions of the school and 
classroom culture (e.g. Eccles et al., 1993, Urdan & Midgley, 2003). It has been 
suggested that during this transition there are inappropriate changes in a cluster of 
classroom organizational, instructional and climate variables. The two types of 
schools were characterized as very different organizations with respect to “ethos” as 
well as to practices, and that this discrepancy influences students’ motivation and 
performance (Midgley et. al., 1995). 
The dimensions of the school culture that were found to affect motivation during this 
systemic transition include the perceived classroom goal structure (Urdan & Midgley, 
2003), teacher’s sense of efficacy and his/her ability to discipline and control students 
(Midgley et al., 1989), teacher-student relations and opportunities for students to 
participate in decision making (Athanasiou & Philippou, 2006).  
A slightly different analysis of the possible environmental influences associated with 
the transition to middle school draws on the idea of person-environment fit (PEF). 
PEF theory (Eccles et al., 1993) states that the behaviour of an individual is jointly 
determined by his/hers characteristics and the properties of the environment in which 
the person functions. Therefore, within this theoretical framework, it is the fit 
between the needs of the adolescent and the educational environment that is 
important, that is the fit between the preferred and the actual classroom environment 
(Eccles et al., 1993). If it is true that different types of educational environments may 
be needed to meet the needs of different age groups, then it is also possible that some 
types of changes in educational environments may be inappropriate or regressive at 
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certain stages of development, such as the early adolescent period, during which 
students move to secondary school. Exposure to such changes is likely to create a 
particularly poor person-environment fit, which could account, to a certain extend, 
for the decline in motivation seen at this developmental period. 
Despite the above theoretical considerations, we have located only a few studies that 
examined the fit between the actual and the preferred classroom environment and all 
of them focused on a single dimension, namely decision-making (e.g. Midgley & 
Feldlaufer, 1987). In these studies, students where found to perceive fewer actual 
decision-making opportunities after than before the transition and that the congruence 
between students’ actual and preferred perceptions declined after the transition.   
The purpose of the present longitudinal study is to chart the developmental changes 
of the fit between the actual and the preferred classroom environment in mathematics 
during the transition from primary to secondary school, focusing on four classroom 
dimensions: opportunities provided to students to: a) participate and interact with the 
teacher, b) investigate, c) make decisions regarding movement and sitting, and d) be 
treated differently according to their own individual abilities and pace. Since the 
transition to secondary school in the educational system of Cyprus, where the study is 
conducted, occurs after Grade 6, the research questions were formulated as follows: 

• Is there any mismatch between the actual and the preferred classroom 
environment in mathematics as perceived by sixth and seventh graders? 

• Are there any changes in students’ perceptions of the actual and the 
preferred classroom environment in mathematics across the transition to 
secondary school? 

• Are there any developmental differences in the fit between the actual and the 
preferred classroom environment in mathematics across the transition to 
secondary school? 

METHODOLOGY 
Participants in this study were 220 students (97 boys and 123 girls) who were 
followed over a period of two consecutive school years, from Grade 6 in elementary 
to Grade 7 in secondary school. Data were collected from these students in four 
waves through a self-report questionnaire, which was an adaptation of the 
Individualized Classroom Environment Questionnaire (Fraser, 1990). The first 
measurement was taken at elementary school and the other three in each of the three 
trimesters in secondary school. The exact timing of the measurements was based on 
the organization of the school year in the specific educational system where the study 
is conducted and on the Phase Model of Transitions by Ruble (1994). 
The Questionnaire included 20 items tapping students’ perceptions of the classroom 
environment in four dimensions: a) personalization/participation (Pers/Part) (e.g. 
“The teacher considers students’ feelings in mathematics”), b) investigation (Inv) 
(e.g. “Students carry out investigations to test ideas in mathematics”), c) 
independence (Ind) (e.g. “The teacher decides where students sit in mathematics”) 
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and d) differentiation (Diff) (e.g. “All students do the same work at the same time in 
mathematics”).  
The questionnaire was completed by students in two parallel forms, eliciting the 
perceived as actual classroom environment and the preferred or expected classroom 
environment in each of the four dimensions. For instance, the preferred version in a 
Diff statement was: “I would prefer all the students to do the same work at the same 
time in mathematics”. The statements were presented at a five-point Likert-type 
format (1=Strongly Disagree, 5=Strongly Agree).  
Data processing was carried out using the SPSS software. The statistical procedures 
used were paired-samples t-test and multivariate analysis of variance (MANOVA). 
Post-hoc tests (Bonferroni multiple comparison procedure) were performed as 
follow-up tests to examine whether there are significant differences between the 
means of each pair. Confirmatory Factor Analysis was undertaken to determine the 
effectiveness of the translated instrument in the specific environment; all scale items 
were clustered in the expected factor in all four measurements for the Ind, Inv and 
Diff dimensions of the scale, whereas the items regarding personalization and 
participation clustered in a joint factor (Pers/Part). The reliability estimate 
(Cronbach’s alpha) for the whole scale was found to be quite high (a = .81). 
RESULTS 
To examine whether there is any mismatch between the actual and the expected 
classroom environment, as perceived by students, pairwise t-tests were performed to 
compare the means in the respective forms of the questionnaire at each of the four 
waves of measurement in each scale dimension. Table 1 presents the means of the 
students’ perceptions of the actual and the preferred classroom environment.  
 Wave 1 Wave 2 Wave 3 Wave 4 

 M SD T M SD t M SD t M SD t 

Personalization/Participation             
    Actual 3.85 .76 

-4.69*
3.65 .86 

-9.24*
3.79 .81

-4.81* 
3.84 .79 

-2.38*
     Preferred 4.13 .61 4.26 .59 4.06 .64 3.98 .64 

Investigation             
     Actual 3.51 .90 

-.62 
3.29 .88 

-4.58*
3.33 .97

-4.44* 
3.37 .80 

-2.32*
     Preferred 3.55 .94 3.63 .98 3.63 .91 3.56 1.0 

Independence             
     Actual 2.88 .90 

-3.20*
3.25 .80 

-3.43*
3.08 .86

-2.32* 
3.05 .86 

-3.02*
     Preferred 3.15 .97 3.52 1.0 3.23 .93 3.31 1.0 

Differentiation             
     Actual  2.43 1.0 

6.20* 
2.04 .84 

2.84* 
2.13 .88

-.37 
2.36 .95 

.53 
     Preferred 1.88 .93 1.85 .89 2.15 .88 2.32 .92 

*p<0.01 

Table 1. Means and Standard Deviations of students’ perceptions                               
of actual and preferred classroom environment 
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Table 1 shows that across all four waves, students reported that the actual classroom 
environment was significantly lower than the environment they prefer on the 
dimensions of Pers/Part and Ind. A different pattern is, however, observed with 
respect to Diff, where students reported that the actual classroom environment was 
significantly higher than the preferred in Waves 1 and 2. Furthermore, with respect to 
Inv there was no difference between the actual and the preferred classroom 
environment in the pre-transition period (Wave 1), indicating that in the primary 
school students’ expectations are in this respect well met, while in the secondary 
school (Waves 2, 3 and 4) students perceived the actual classroom environment as 
being below their expectations on the factor Inv.  
To look for changes in student perceptions of the actual and the preferred classroom 
environment, repeated measures multivariate analyses of variance (MANOVA) were 
performed, including one within-subjects factor, which was the wave of measurement 
(4 levels). Post hoc tests were performed as follow-up tests to determine whether the 
means differed significantly from each other.  
Table 2 summarizes one-way MANOVAs on the actual and the preferred classroom 
environment scores.  
The analysis indicated that the time of measurement effect was significant for all the 
factors of the actual classroom environment indicating that students’ perceptions 
change over time. More specifically students’ mean perceptions of the actual 
classroom environment in three dimensions (Pers/Part, Inv, and Diff) were at the 
lowest value immediately after the transition to secondary school (Wave 2).  
According to the post-hoc tests though, only students’ perceptions regarding Diff 
were significantly higher at Wave 1 than at Waves 2 and 3, suggesting that the 
decline was a transition effect.  
A different pattern of change was observed for Ind with students reporting more 
actual independence opportunities after the transition than before. The post-hoc tests 
showed that students’ perceptions of actual independence were significantly lower at 
Wave 1 than at Wave 2, suggesting that the increase was a transition effect. 
The MANOVA on the preferred classroom environment dimensions showed a 
significant time of measurement effect on the three scale dimensions: Pers/Part, Ind 
and Diff, but not on the Inv factor. More specifically, students’ perceptions of the 
preferred Pers/Part and Ind dimensions of classroom environment appear at peak 
after the transition (Wave 2). Post-hoc tests showed that students’ perceptions of the 
preferred Pers/Part dimension were significantly higher on Wave 2 than at Waves 3 
and 4, whereas in the case of the Ind dimension, their perceptions were significantly 
higher at Wave 2 than at Wave 1, suggesting that the increase was a transition effect. 
Students’ perceptions of the preferred Diff classroom environment were the lowest 
after the transition (Wave 2) and increased at Waves 3 and 4; post-hoc tests showed 
that their perceptions were significantly lower at Waves 1 and 2 rather than at Waves 
3 and 4.   
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Variable Df MS F 
Actual Classroom Environment 

Personalization/Participation 2.460 2.148 5.053* 
Investigation 2.891 2.166 3.886* 
Independence 2.723 5.524 9.365* 
Differentiation 2.813 7.934 14.412* 

Preferred Classroom Environment 
Personalization/Participation 2.854 3.123 11.736* 
Investigation 2.849 .452 .699 
Independence 2.689 6.235 8.892* 
Differentiation 2.918 11.579 18.982* 

*p<0.01   

Table 2. Effect of Time of Measurement on students’ perceptions                                 
of actual and preferred classroom environment 

To test for differences in the fit between the actual and the preferred classroom 
environment, we took as fit scores the differences between the respective means in 
the two formats of the questionnaire, in each scale dimension (actual – preferred 
classroom environment). A negative value of the fit score indicates that students 
reported that they did not experience but they would expect the classroom 
environment mentioned. A positive value indicates that students reported that they 
actually had experienced the classroom environment but they should not have, 
whereas a zero value of the fit score indicates that students reported that the 
classroom environment they actually had coincides with what the have expected to 
have or that they actually did not and should not have the classroom environment 
mentioned. The results of the analysis are shown in Table 3.  

Variable df MS F 
Personalization/Participation 2.636 9.647 15.330* 
Investigation 2.851 4.298 3.448** 
Independence 2.785 .773 .600 
Differentiation 2.654 16.273 12.360* 

*p<0.01, **p<0.05 
Table 3. Effect of Time of Measurement on students’ fit score 

The analysis indicated that the time of measurement effect was significant for the 
three factors of the fit between the actual and the preferred classroom environment 
that is for Pers/Part, Inv and Diff dimensions. The mean fit scores in each 
measurement wave regarding Pers/Part were: -.27 (SD = .88), -.60 (SD = .97), - .27 
(SD = .84), and -.14 (SD = .90), for Waves 1,2,3,4, respectively. Likewise, the fit 
scores for the Inv factor were:  -.04 (SD = .98), -.34 (SD = 1.11), -.30, (SD = 1.00), 
and -.18 (SD = 1.17), for Waves 1,2,3,4, respectively. Clearly, the fit of the actual 
and the preferred classroom environment on the Pers/Part and Inv dimensions of the 
scale had the most negative values immediately after the transition to middle school. 
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The post-hoc tests showed that the mismatch between students’ actual and preferred 
Pers/Part and Inv dimensions of classroom environment increases after students 
enter middle school, since students’ mean fit was significantly higher at Wave 2 than 
at Wave 1, suggesting that the increase was a transition effect. The means of the fit 
score for Diff were: .54 (SD = 1.31), .19 (SD =1.02), -.02 (SD = .88), and .04 (SD = 
1.19) for Waves 1,2,3,4, respectively. The post-hoc tests showed that the mismatch 
between students’ actual and preferred Diff classroom environment decreases after 
students enter the middle school, since students’ mean fit was significantly higher at 
Wave 1 than at Waves 2, 3 and 4. 
DISCUSSION 
The purpose of the present study was to examine the developmental changes of the fit 
between the actual and the preferred classroom environment in mathematics as 
perceived by students over the transition from primary to secondary school. 
The analysis of the data indicated that there is a mismatch between the actual and the 
preferred classroom environment. At both the pre- and the post- transition level 
students’ preferences are out-of-synch with their environment regarding two scale 
dimensions, Pers/Part and Ind; they would like considerably more opportunities for 
participation and interaction with the teacher, and more independence than they 
perceive they actually have. According to PEF theory, when the needs of the 
individual are congruent with opportunities granted by the environment, favourable 
affective, cognitive and behavioural outcomes should result for that individual. 
Conversely, when a discrepancy exists between the needs of the individual and 
opportunities available in the environment, unfavourable outcomes should result 
(Midgley & Feldlaufer, 1987). In line with this theory, the lack of fit between 
students’ preferences and the actual environment they encounter daily in class, should 
predict unfortunate consequences for those students whose needs are not being met. 
Longitudinal studies should address this issue, since studies regarding students’ 
decision-making confirmed this prediction, showing that students whose desire for 
decision-making in mathematics was discrepant with the opportunities available in 
the classroom were less positive about mathematics and about their potential in 
mathematics than the students whose desires and opportunities were congruent 
(Midgley & Feldlaufer, 1987). 
A different pattern of findings was observed for the dimensions of Inv and Diff. For 
the former, pre-transition students’ needs are being met, while post-transition 
students would expect more opportunities for mathematical investigations. This 
finding is pretty logical taking into consideration that elementary school classrooms 
as compared to middle school classrooms are characterised by a greater emphasis on 
student involvement and investigation in learning mathematics. The findings about 
Diff indicate that the actual classroom environment was significantly higher than the 
preferred environment; the students were found to prefer less differentiation than they 
perceive they actually had. If we consider that differentiation in both contexts has to 
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do with selective treatment of students, based on ability and therefore with 
weaknesses in mathematics and social discrimination, then it seems logical that 
students do not want the teacher to offer different teaching materials or aids to 
students with special abilities in mathematics. 
The results of the study contribute to our understanding of the fit between the actual 
and the preferred classroom environment in mathematics during the transition to 
middle school. It is remarkable that the mismatch between students’ actual and 
preferred Pers/Part and Inv classroom environment had the most negative value 
immediately after the transition to middle school, whereas the mismatch between 
students’ actual and preferred differentiation classroom environment decreases after 
students enter middle school. Given the differences in the school culture between 
elementary and secondary schools reported in other studies (Athanasiou & Philippou, 
2006, Urdan & Midgley, 2003) it is not surprising that elementary school students 
perceive that in their mathematics classroom the teacher is friendly, caring and 
helpful and that he/she encourages investigation and participation more than the 
teachers in middle schools.  
Exposure to such changes leads to a particularly poor person-environment fit and this 
lack of fit could account for some of the declines in motivation seen at this 
developmental period. Therefore, the environmental changes often associated with 
the transition to middle school seem especially harmful in that they emphasize lower 
level cognitive strategies at a time when the ability to use higher level strategies such 
as investigation is increasing; they emphasize pathetic learning at a time of 
heightened need for participation and involvement in learning; and they disrupt social 
networks with the teacher at a time when adolescents are especially concerned with 
close adult relationships outside of the home.  
The findings of the present study highlight the developmental differences in students’ 
perceptions of the fit between the actual and the preferred classroom environment in 
mathematics. Longitudinal studies addressing this issue, need not examine students 
only as a whole group. Recent research in the area of students’ perceptions of 
classroom environment adds credence to the view that students’ do not all perceive 
the same environment in the same way, at least not in all dimensions (MacCallum, 
2004). Also there is a need to understand not only the effects of what is most 
prevalent in classrooms but also to determine what the most facilitative environments 
are, even if they are uncommon, in order to test the effects of these environments on 
the nature of change in student motivation in mathematics. 
Such longitudinal studies can assist in unravelling the complexity of motivational 
change across the transition from primary to secondary school, by providing 
information of the dimensions of the classroom culture that influence motivational 
change. Such studies will be useful for teachers, educators, and policy makers in their 
planning to make systemic transitions easier for students. These preventive steps can 
include the identification of the dimensions of the school culture that have a positive 
or a negative impact on students motivation and the strengthening of the support 
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structures provided to students either by their family or by the school through 
transition programs.   
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This study examines the views of people involved in mathematics education regarding 
the role of mathematics learning in the development of deductive reasoning that is 
not restricted to mathematics but can be used in other domains as well. The data 
source includes 21 individual semi-structured interviews. All interviewees said that 
developing deductive reasoning is one of the goals of mathematics teaching.  
However, none of them seemed to think that this is at all possible, but for different 
reasons. Three distinct views were identified: the reservation view, the intervention 
view, and the spontaneity view. Each interviewee’s view was interrelated with the 
interviewee’s approach to deductive reasoning and its nature in mathematics and 
outside it.  
In a previous PME meeting we presented findings on different approaches to the 
meaning of deductive reasoning and its nature in mathematics and outside it that were 
expressed by mathematics educators (Ayalon & Even, 2006). This paper extends this 
research and examines the views of these mathematics educators on the role of 
mathematics learning in the development of deductive reasoning. 
INTRODUCTION 
There are various sorts of thinking and reasoning. Among them are association, 
creation, induction, plausible inference, and deduction (Johnson-Laird & Byrne, 
1991). Deductive reasoning is unique in that it is the process of inferring conclusions 
from known information (premises) based on formal logic rules, where conclusions 
are necessarily derived from the given information and there is no need to validate 
them by experiments. There are several forms of valid deductive argument, for 
example, modus ponens (If p then q; p; therefore q) and modus tolens (If p then q; not 
q; therefore not p). Valid deductive arguments preserve truth, in the sense that if the 
premises are true, then the conclusion is also true. However, the truth (or falsehood) 
of a conclusion or premises does not imply that an argument is valid (or invalid). 
Also, the premises and the conclusion of a valid argument may all be false. 
Mathematics and deductive reasoning have twofold connections. On the one hand, 
deductive reasoning serves mathematics because it is a key to work in mathematics. 
Rigorous logical proof, which is a unique fundamental characteristic of mathematics, 
is constructed using deductive reasoning. Although there are some other accepted 
forms of mathematical validation, deductive proof is considered as the preferred tool 
in the mathematics community for verifying mathematical statements and showing 
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their universality. And indeed, deductive reasoning is often used as a synonym for 
mathematical thinking.  
But deductive reasoning is not only a servant of mathematics. Since the early days of 
Greek philosophical and scientific work, deductive reasoning has been considered as 
a high (and even the highest) form of human reasoning (Luria, 1976). Already 
Aristotle, who laid down the foundations for this kind of thinking in the 4th century 
B.C., perceived a person who possesses deductive ability as being able to grasp the 
universe in more profound and comprehensive ways. Similarly, more than two 
thousand years later, Luria (1976) viewed deductive ability as necessary for gaining 
new knowledge. Throughout human scientific development, great scientists, such as 
Descartes and Popper, emphasized the importance of this kind of reasoning to 
science. Johnson-Laird & Byrne (1991) emphasized its importance for work in 
science, technology, and the legal system, and Wu (1996) for facilitating wise 
decision making related to politics and the economy.  
Learning mathematics has been traditionally believed to be an effective tool for 
teaching deductive reasoning, altering the connections between mathematics and 
deductive reasoning and, in a way, making mathematics a servant to deductive 
reasoning. The Greeks, more than two thousand years ago, taught logic by teaching 
arithmetic and geometry (Nisbett et al., 1987). And today, curriculum guidelines, 
textbooks and teacher guides in many countries state explicitly that mathematics 
helps students develop their ability to reason logically, and that one of the goals of 
mathematics instruction is the development of deductive reasoning. For example, 

Mathematics equips pupils with a uniquely powerful set of tools to understand and 
change the world. These tools include logical reasoning, problem-solving skills, and the 
ability to think in abstract ways (emphasis added) (Qualifications and Curriculum 
Authority, 2006). 

Do people involved in mathematics education, such as, curriculum developers, 
teacher educators, teachers, and researchers view mathematics learning as an 
effective tool for teaching deductive reasoning? If they do, what do they mean by 
that? If they do not, why do they think so? And - how do people with different 
approaches to deductive reasoning, and to the usability of deductive reasoning 
outside mathematics, view the role of learning mathematics in the development of 
deductive reasoning? This study addresses these questions.  
This study continues a previous study (Ayalon & Even, 2006) in which we identified 
two different approaches to deductive reasoning among the participating mathematics 
educators. One, which was expected, describes deductive reasoning as an action of 
inference based on the rules of formal logic. The other approach, which we did not 
anticipate when starting the study, describes deductive reasoning as a systematic step-
by-step manner for solving problems, with no attention to issues of validity, formal 
logic rules, or necessity – the very essence of deductive reasoning. Moreover, 
whereas all study participants agreed that deductive reasoning is essential to 
mathematics, different approaches regarding the usability of deductive reasoning 
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outside mathematics were identified. Those approaching deductive reasoning as a 
systematic step-by-step manner for solving problems considered the use of deductive 
reasoning in mathematics to be the same as its use in other domains or in daily life. In 
contrast, those emphasizing formal logic as the basis of deductive reasoning, 
distinguished between mathematics and other domains in the usability of deductive 
reasoning. The latter view is in line with the argumentation literature (Duval, 2002, 
Krummheuer, 1995; Mariotti, 2006; Toulmin, 1969; Voss & Van Dyke, 2001), where 
it is frequently claimed that rationality, in the sense of "taking the best choice out of a 
set of options whereby what counts as the best is a matter of negotiation" 
(Krummheuer, 1995, p. 229), better describes reasoning in real life situations 
(Toulmin, 1969). Thus, instead of analytical arguments (i.e., based on formal logical 
deduction), substantial arguments (Toulmin, 1969), which do not have the logical 
rigidity of formal deductions, are claimed to often be more suitable. Some of the 
study participants were moderate in their approach, claiming that in non-
mathematical situations people apply other “softer” rules of inference in addition to 
the rigorous formal ones. The other participants were more radical and claimed that 
people do not, or even cannot, use deductive reasoning in non-mathematical contexts.  
METHODOLOGY 
Research participants 
Twenty-one people participated in the research. Most of them (17) belonged to 
different sub-communities in the field of mathematics education. This group was 
chosen to be as heterogeneous as possible in terms of the kinds of involvement they 
had in mathematics education, in order to increase the potential of diversity in their 
approaches. The group included mathematics teachers at various levels (from 
secondary school teachers to research mathematicians who teach undergraduate or 
graduate university mathematics), curriculum developers, pre- and in-service teacher 
educators, and researchers in mathematics education. Naturally, some of these 
participants belonged to several sub-communities (i.e., a curriculum developer who 
was also a teacher educator, and so on). All the participants had a reputation of being 
experienced and knowledgeable in their respective fields, all had solid university or 
college education in mathematics; many also in mathematics education.  
The four remaining participants out of the 21 were not connected to mathematics. They 
were chosen because their deep knowledge in issues related to logic and deductive 
reasoning. The aim was to enrich the data in order to contribute to the analysis and 
interpretation of the approaches of the math participants, which are the focus of the 
study. Two of these participants were logicians in the philosophy department of a 
leading university; the other two were university researchers in science education who 
had a long history of studying students' development of logical thinking. 
Data collection and analysis 
The data sources were individual semi-structured interviews that lasted between one 
to two hours. They focused on different issues related to the role of learning 
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mathematics in developing general deductive reasoning (that is not restricted to 
mathematics, but can be used in different fields and situations). For example, What 
does the concept of deductive reasoning mean to you? To what extent do you think 
deductive reasoning is significant in our lives? Where? Why? How do you perceive 
the connections between learning mathematics and the development of general 
deductive reasoning? How, if at all possible, can deductive reasoning be improved 
through learning mathematics? Probing during the interviews aimed at elaboration 
and explanation of general statements, continuously asking the interviewees to give 
specific examples from their own experiences.  
Data analysis was based on the Grounded Theory method (Strauss & Corbin, 1990). 
Thus, no prior assumptions were made regarding the interviewees’ opinions and 
approaches, or regarding possible differences or similarities among different sub 
groups. The interviews were transcribed and read carefully several times in their 
entirety, in no specific order. We then used open coding to generate initial categories. 
For example, the significance of deductive reasoning, the role and use of deductive 
reasoning in daily life, the likelihood of developing deductive reasoning. The initial 
categories were constantly compared with new data from the interviews and refined. 
We identified relationships and hierarchies among the categories, and created core 
categories which are "the central phenomenon around which all the other categories 
are related" (Strauss & Corbin, 1990, p. 116). We used the core categories as a source 
for theoretical constructs. One of the categories that was developed through this 
process and is discussed in this paper is the view regarding the claim that learning 
mathematics can develop deductive reasoning. 
VIEWS ON THE ROLE OF MATHEMATICS LEARNING                              
IN THE DEVELOPMENT OF DEDUCTIVE REASONING 
All interviewees said that developing deductive reasoning is one of the goals of 
mathematics teaching.  However, this statement had different meanings for different 
interviewees. Three distinct views regarding the role mathematics learning could play 
in the development of deductive reasoning were identified. Each interviewee’s view 
appeared to be consistent throughout the interview, and was interrelated with the 
interviewee’s approach to deductive reasoning and its nature in mathematics and 
outside it, as identified in Ayalon and Even (2006).  
View 1: Intervention 
Most of the interviewees, 13 of them (several of the following: school teachers, 
teacher educators, curriculum developers, mathematicians, and researchers in 
mathematics education, and all four non-mathematics participants), held the 
intervention view. They claimed that there should be a deliberate intervention in the 
process of teaching mathematics in order to achieve significant improvement of 
deductive reasoning. As found in Ayalon and Even (2006), all these interviewees 
approached deductive reasoning as an action of inference based on formal logic rules, 
and claimed that different kinds of factors affect reasoning outside mathematics. 
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Thus, they argued, in non-mathematical situations people apply “softer” rules of 
inference, in addition to the rigorous formal ones that are used in mathematics.  
When addressing the question whether mathematics learning can develop deductive 
reasoning, they responded positively, but replaced the term deductive reasoning with 
terms related to argumentative habits of mind and skills, such as, justifying, 
articulating claims, and evaluating arguments. These interviewees referred to 
mathematics as a suitable subject matter to teach argumentative habits of mind and 
skills that students could use also in discourses other than mathematics, where, these 
interviewees said, the connections between claims and their supporting reasons are 
not necessarily deductive. For example, an interviewee was asked whether she thinks 
learning mathematics could assist in promoting deductive reasoning that can be 
implemented in domains other than mathematics. In her reply she distinguished 
between the nature of reasoning in mathematics and in other domains, but also 
pointed out that some aspects are common to both: 

Look, developing the ability to think logically, to think deductively, has been always 
presented as a central goal of mathematics education. But first we have to define exactly 
what it means to promote such abilities... When I think about this goal, I think that 
mathematics learning can contribute to the improvement of habits such as providing 
reasons for one's views and evaluating others’ views. Now, in mathematics the arguments 
may have to be more deductive. But the habits of giving reasons and examining arguments 
could still be used in informal discussions such as conversation in family dinners or in 
listening to and reading the news. The important thing in these kinds of conversation is not 
the deductiveness of arguments, but the fact that these arguments should be clearly 
articulated, with sound reasons, not in an ambiguous way. So I believe that mathematics 
education should direct itself towards the enhancement of these skills (interviewee no. 10). 

These interviewees viewed the development of argumentative habits as something 
that requires an explicit attention during the process of instruction. They thought that 
mathematics is indeed a suitable subject matter for enhancing argumentative skills. 
However, many of these interviewees claimed that talk in classrooms is commonly 
non-argumentative in its nature, and thus does not support the development of 
argumentative habits of mind and skills, such as, justifying claims, listening to others, 
following others’ reasoning, determining whether what was presented made sense 
and why, voicing disagreement and providing reasons for it. These interviewees 
pointed out the crucial role that the teacher plays in creating an atmosphere that 
encourages practices and norms of argumentation. For example,  

In order to develop habits of argumentation among the children, the mathematics teacher 
should invite students to participate in discussions, to justify their thinking. She should 
teach them to listen to their friends and to attempt to understand their explanations and to 
intervene when they think that these explanations are wrong (interviewee no. 9). 

View 2: Reservation 
Four interviewees (three researchers in mathematics education, one of which is also a 
mathematician, another is also a curriculum developer, and one curriculum developer 
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who is also a teacher educator) held the reservation approach. They claimed that 
learning mathematics might have an influence on students' deductive reasoning, and 
that its development is a valued goal of mathematics education. However, they found 
it hard to point out how this goal might be achieved, and questioned the possibility of 
actually achieving it, as the following excerpt exemplifies: 

Well, it is a difficult question. I think it is a worthy goal of mathematics to promote 
deductive reasoning. Even if we do not use deductive arguments outside mathematics it is 
important that we all be familiar with the logical rules so we can value our ideas against 
logic standards… It also looks like something that can be done. However, I don’t know of 
any method to achieve this goal, and I doubt if there exist any at all (interviewee no. 2). 

As found in Ayalon and Even (2006), like the intervention group, all these 
interviewees approached deductive reasoning as an action of inference based on 
formal logic rules. However, unlike the intervention group’s interviewees, these 
interviewees claimed that outside mathematical context, people do not, or even 
cannot, use deductive reasoning. Similarly, as exemplified above, when addressing 
the question whether learning mathematics develops deductive reasoning that can be 
used in non-mathematical situations, these interviewees revealed hesitation and deep 
reservation. 
View 3: Spontaneity 
Four interviewees (two school teachers and two curriculum developers, one of which 
is also a teacher educator) held the spontaneity view. They regarded learning 
mathematics as spontaneously improves students' deductive reasoning, and claimed 
that there is no need for deliberate intervention to achieve such an improvement. Yet, 
as found in Ayalon & Even (2006), these interviewees approached deductive 
reasoning as a systematic step-by-step manner for solving problems both in 
mathematics and in other domains, with no attention to the logical validity of the 
inference. Thus, when discussing the development of deductive reasoning, these 
interviewees talked about developing systematic habits of mind and ascribed this 
development to the systematic structure of mathematics and to the methodical, step-
by-step manner of solving mathematical problems. According to them, doing 
mathematics provides experiences in working systematically, and consequently 
encourages the spontaneous formation of students' systematic habits of mind. For 
example, an interviewee was asked whether learning mathematics could improve 
deductive reasoning. She replied: 

I think that mathematics improves deductive reasoning, and that it is one of mathematics' 
main goals… It teaches them [the students] to be methodical, that everything requires a 
method and that there is order, and these are very important values… For example, in 
solving a problem of personal relationships in work or in the family, and also in making 
plans in the economical field of expenses and incomes, of getting out of debt, buying an 
apartment – how to get organized. It helps a lot, organizes your thinking, and helps in 
building a systematic procedure of how to reach the sum of money you need, how to save 
(interviewee no. 11). 



  Ayalon and Even  

PME 32 and PME-NA XXX 2008                                                                           2 - 119                   

Later she emphasized that this learning to be organized and work systematically 
happens spontaneously, simply as a result of experiencing the learning of 
mathematics: 

When you learn mathematics and practice it you internalize systematic principles: to read 
a problem, to extract from it the relevant data, to examine them one by one to see how 
they relate to the question posed in the problem, to plan a method for solving it, to 
progress step by step in an organized way. The student internalizes this systematic 
approach to problem solving. By the mere mathematical practice the student develops 
this attitude. And these principles would become usable when the student faces problems 
also in non-mathematical contexts. It might be that the nature of the data and the problem 
will be different, but the ability to organize, to systematically examine the situation, the 
possible ways of solutions – all these could be actualized. And that happens mostly 
thanks to learning mathematics (interviewee no. 11). 

CONCLUSION 
In contrast with common statements in curriculum guidelines, and their own, that one 
of the goals of learning mathematics is the development of deductive reasoning that is 
not restricted to mathematics but can be used in other domains as well, the study 
participants did not view mathematics learning as an adequate means for developing 
deductive reasoning (logic based inference), but for different reasons. Three views 
were identified among the interviewees. These views were interrelated with the 
interviewees’ approaches to deductive reasoning and its use and usability in 
mathematics and outside it. One group of interviewees (the reservation group) 
approached deductive reasoning as an action of inference based on formal logic rules 
that is useful and usable in mathematical contexts only. They doubted 
straightforwardly the possibility of achieving the goal of developing deductive 
reasoning that is not restricted to mathematics. Another group (the intervention 
group) approached deductive reasoning as an action of inference based on formal 
logic rules that is used outside mathematics alongside “softer” rules of inference. 
They claimed that there is a need for explicit intervention during the process of 
instruction in order to achieve the goal of developing deductive reasoning, but 
modified the goal from developing deductive reasoning to developing argumentative 
habits and skills, in ways that do not necessarily comply with rigorous deduction. 
Still, another group (the spontaneity group) approached deductive reasoning as a 
systematic step-by-step manner for solving problems both in mathematics and in 
other domains, with no attention to the logical validity of the inference. They claimed 
that learning mathematics develops systematic habits of mind spontaneously.  
The findings of this study show that the goal of using mathematics learning to 
develop deductive reasoning has different meanings for different mathematics 
education practitioners.  
These different interpretations shape what these people try to develop when they 
teach mathematics, design teaching and learning materials, or prepare teachers to 
teach mathematics (e.g., systematic habits of mind, argumentation habits and skills, 
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the use of formal logic to make and evaluate inferences). The different interpretations 
shape also whether and how these people try to do that (e.g., provide experiences in 
mathematics problem solving, encourage justification and evaluation of arguments, 
provide experiences in the use of deduction).  
Our study raises several issues for future research. E.g., What would happen when a 
teacher with a systematic approach teach a logic-based curriculum? Or vice versa? 
Do specific sub-groups of mathematics educators tend to approach the development 
of deductive reasoning in different ways? Do different countries do? 
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The aim of this paper is to describe the evolution of a teaching learning sequence for grade 
6 students beginning algebra learning over a period of two years that included multiple 
trials. The teaching learning sequence was designed to enable the students to make a 
transition to algebra from arithmetic by connecting their prior knowledge of arithmetic 
and operations and exploiting the structure of arithmetic expressions. In the process, the 
study aimed to identify the concepts, rules and procedures which facilitate the connection 
between arithmetic and algebra and enable the transition. The repeated trials allowed us 
to see the potential of the two concepts ‘term’ and ‘equality’ identified during the study and 
the nature of tasks that help in  making the connection between the two domains.  
INTRODUCTION 
Researchers in algebra education have suggested a variety of approaches for 
introducing algebra. One set of approaches introduces symbolic algebra to students in 
the lower secondary grades through generalized arithmetic, emphasizing structure of 
arithmetic expressions and replacing the number by the letter to represent generalized 
rules and properties of operations in arithmetic (e.g. Thompson and Thompson, 1987; 
Liebenberg et al., 1999; Livneh and Linchevski, 2003). Much of this research has 
focused on building a sense of the structure of arithmetic and algebraic expressions 
among students. Earlier exploratory students (e.g. Chaiklin and Lesgold, 1984; 
Linchevski and Livneh, 1999) had shown that the lack of the understanding of 
structure was a major factor in not understanding the manipulation of algebraic 
expressions. Although the teaching studies just mentioned identified important 
elements of a beginning algebra curriculum, they have not yielded a well elaborated 
model of teaching and learning of algebra using arithmetic as the base. Some of these 
studies suggested the need to focus away from computation to be an important 
criterion for transiting to algebra from arithmetic (e.g. Liebenberg et al. 1999). 
Elsewhere, we have reported aspects of a teaching approach that aimed to develop a 
structural understanding of arithmetic expressions (Subramaniam and Banerjee, 2004, 
Banerjee and Subramaniam, 2005). In this paper, we describe the evolution of the 
teaching approach as part of a design experiment, highlighting the changes and the 
decisions made and the reasons for these decisions.  
THE RESEARCH STUDY 
In a two year long study involving a design experiment methodology (Cobb et al., 
2003), we developed a teaching approach to learning algebra using students’ prior 

                                                            
1 A preliminary version of the paper was presented at EPISTEME-2 conference held in Mumbai, Feb. 12-17, 2007.  
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knowledge of arithmetic and operations. The approach aimed to build a strong 
structure and procedure sense of arithmetic and algebraic expressions by giving visual 
and conceptual support. In the process, we wanted to identify the nature of concepts, 
rules and procedures which would facilitate building the connection between the two 
domains. The study started with only a conjecture about the possibility of using the 
structure of arithmetic for teaching algebra and the many assumptions had to be 
progressively tested in order to build the sequence. The teaching learning sequence co-
evolved with the developing understanding of the researchers about the phenomena 
under study as well as with the growing understanding of the students as evidenced 
from their performance and reasoning on various tasks. After each trial, the strengths 
and limitations of the concepts, ideas and tasks were identified leading to suitable 
modification of the sequence in the next trial of teaching.  
The study was conducted with grade 6 students from nearby English and vernacular 
medium schools during vacation periods in summer and mid-year. Each trial had two 
to three student groups, with each group receiving 11-15 days of teaching, 1.5 hours 
per day. The teaching sequence, which included concepts and task that went well 
beyond those introduced in the school, was developed over five trials between 2003-
2005 with the first two trials being exploratory in nature and considered pilot trials 
(PST-I and PST-II) and the last three trials forming the main study (MST-I, MST-II, 
MST-III). Different groups of students attended the pilot trials whereas the same 
students who attended MST-I were invited for MST-II and III. The data was collected 
through students’ performance in pre and post tests, interviews, teachers’ daily logs 
and video recordings of classroom discussions.  
THE TEACHING CYCLE 
The evolution of the teaching approach was similar to the ‘mathematics teaching 
cycle’ and the ‘hypothetical learning trajectory’ described by Simon (1995). The 
approach was developed keeping in mind the insights from the literature, using 
arithmetic as a ‘template’ to build the new algebraic symbolism. The main focus of 
the sequence was to move the students away from a sequential, procedural 
understanding of expressions to a relational, structural understanding, which is 
important for algebra. Besides learning to parse expressions correctly, developing 
understanding of structure of expressions requires students to turn the processes of 
computation into ‘objects’ (Sfard, 1991) or flexible ‘procepts’ (Tall et al., 2000). This 
would allow them to think mentally about operations, suspend computations, 
anticipate the outcome of actions and attend to the relations within components of the 
expressions as well as between two expressions. The sequence tried to achieve this 
gradually by creating appropriate learning tasks, and by identifying concepts, rules 
and procedures, together with visual and verbal support which could consolidate the 
reification of the processes of arithmetic. 
A teaching sequence was constructed for the first trial which aimed at identifying 
instructional material as well as testing their efficacy, sequencing and identifying pre-
requisite concepts or skills needed for developing structure sense among students. 
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Tasks were chosen, adapted and modified from the existing literature for the trials. 
Students’ intuitive as well as formal ideas about operations, symbols and procedures 
were given due importance in the classroom, allowing the students to articulate their 
reasoning, so as to be able to build on them. During the enactment of the teaching 
sequence in the classroom, the students were engaged in making sense of the tasks 
and the responses expected (e.g. that they have to explain their solution, that they 
have to understand the explanations given by others) and the teachers were engaged 
in observing and making sense of the students’ responses and actions. This not only 
led to changes in the subsequent trials but also small immediate changes, with regard 
to examples and explanations in the same trial.  
In the following paragraphs, we give an account of the processes that led to the 
evolution of the teaching approach and the rationale for emphasizing certain 
concepts/ ideas and choosing and changing some of the tasks.  
THE PILOT TRIALS 
The first two trials (PST-I and PST-II) explored how students’ knowledge of 
arithmetic could be harnessed as a preparation for symbolic algebra. We began the 
trials with the understanding that procedure and structure sense are two separate 
pieces of knowledge and building the structure sense is enough to make the transition 
to algebra. But as we tried out the instructional sequence in the first trial, we found 
that building of the structure sense itself required adequate procedural understanding. 
This led us to include tasks which strengthened students’ procedural knowledge, like 
working with brackets and later integer operations as well.  
One of the goals of the first trial was to move the students away from a computational 
understanding of expressions towards a relational understanding. This was the first 
step towards attending to the structure of the expressions and appreciating the duality: 
that the expression stands for a number which is the value of the expression and that 
all the expressions for a number ‘express’ different information about the number, in 
the form of a relationship among two or more numbers. For example, students learnt 
that the expression 5 + 8 stands for the number 13 and conveys the information that it 
is ‘8 more than 5’. Many other phrases like ‘more than’, ‘sum’, ‘difference between’, 
‘less than’, ‘product of’, ‘times’ and ‘quotient’ were introduced.  
Rules of evaluating simple expressions, like 13 – 5 + 8 and 6 + 2 × 4, were explained 
to them in the traditional fashion by explicating the precedence rules (giving 
precedence to ‘×’ operation and computing from left to right) and strengthened using 
the meaning of the expressions. For example, 9 – 3 + 4 is four more than the difference 
between nine and three whereas 9 – (3 + 4) is difference between nine and the sum of 
three and four, suggesting the difference in the way the computation is be carried out. 
Another goal of the first trial was to develop among students an ability to judge 
equality of expressions without computation. However first, their understanding of the 
‘=’ sign needed to be broadened. They then compared expressions which could be seen 
as related such as 27+32 and 29+30. Although students were able to view expressions 
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relationally, we saw overgeneralizations from the addition context to expressions with 
a negative sign. Such situations required students to keep track of the transformations 
on the number for which they did not have the resources, like the use of brackets. For 
expressions with brackets, simple bracket opening rules were introduced with the use 
of phrases like ‘adding/ subtracting a sum or difference’. For example, 12 – (6 + 4) and 
12 – 6 – 4 are equal and one can subtract the sum of 6 and 4 from 12 or subtract them 
one by one as in the expression 12 – 6 – 4. Other tasks included finding the value of an 
expression given the value of a related expression (find 228+149 if 227+148=375). 
The students were expected to explain their answers verbally. Attempts by the teacher 
to help students with symbolic justifications were not very successful. As students 
worked on these tasks, the concept of ‘term’ was introduced as a component of an 
expression (e.g. in 12 + 4 – 3 the terms are +12, +4, –3), and the students soon learnt 
by verification that the value of an expression remains the same on rearranging the 
terms. This concept not only helped the students parse an expression correctly but also 
allowed them to see relationships between the terms and with the expression as a 
whole, leading to the important idea of ‘equal expressions’. Thus, ‘terms’ and 
‘equality’ were the two key concepts identified during the first trial.  
The second trial sought to build this sequence by extending it to include algebraic 
expressions. It had a two group design: students who were taught algebra together 
with the approach to arithmetic expressions as outlined above and a group who were 
taught algebra without any arithmetic beyond the instruction in school. The first 
group of students who worked on both arithmetic and algebra were taught the concept 
of term immediately after dealing with the procedures of evaluating arithmetic 
expressions. Terms were categorized into ‘simple term’ (e.g. +3, –4) and ‘product 
term’ (e.g. +3×4, +2×y). But the use of terms was restricted to tasks of comparison of 
expressions. In contrast to the group which had been exposed to only algebra, this 
group of students performed better in both procedures of evaluating expressions and 
using the surface structure of the expressions to identify and generate equal 
expressions, where terms and numbers were rearranged, in both arithmetic and 
algebra. However, the appreciation of surface structure did not allow abstraction of 
procedures to manipulate algebraic expressions, which needed a deeper 
understanding of rules and properties of operations. On retrospect, we realized that 
the procedures used with arithmetic expressions for evaluation and with algebraic 
expressions for simplification (by collecting like terms) were disparate, not allowing 
for transfer between the two, many students making the conjoining error 
(3+5×x=8×x) due to non-appreciation of the constraints on operation. Also, students 
were introduced to bracket opening rules by embedding them in story situations 
which could lead to two ways of representing and solving. This proved to be quite 
cumbersome and did not succeed in explicating the structure of the expressions.  
At the end of these two trials, it was evident that although strengthening the 
understanding of arithmetic was helpful in making sense of algebra and rules of 
transformation of algebraic symbols, there was a need to make the sequence more 



Banerjee, Subramaniam, and Naik 

PME 32 and PME-NA XXX 2008                                                                           2 - 125                   

coherent and bridge the gaps between procedure and structure and between arithmetic 
and algebra, so that the understanding developed in the context of arithmetic could be 
fruitfully used in the context of algebra (see Subramaniam and Banerjee, 2004). There 
was also a need to pay attention to negative numbers and bracket opening rules.  
MAIN STUDY TRIALS 
The three main study trials (MST-I, II and III) were carried out with two fresh groups 
of students. The students came soon after appearing for their grade 5 exams for MST-I 
(Summer, 2004), were in the middle of grade 6 during MST-II (mid-year vacations, 
2004) and finished grade 6 during MST-III (Summer, 2005). These trials were aimed at 
achieving better coherence in the teaching learning sequence. In all the three trials, the 
concept of ‘term’ was introduced in the beginning and was used for both procedural 
and structural tasks in an increasingly integrated manner. 
Students were introduced to the idea of ‘terms’ of an expression immediately after 
developing an understanding of expressions in MST-I. Terms were made visually 
salient by putting them in boxes (e.g. terms of 19 – 7 + 4 are                       ) and were 
used to decide the precedence rule to be applied for evaluating arithmetic expressions 
and to identify like terms in the context of algebraic expressions. They were 
subsequently used to compare expressions, identify and generate equal expressions as 
earlier. Students again failed to make the connection between the simplification 
procedures of arithmetic and algebraic expressions due to the persisting disparity as in 
PST-II. Some efforts to make the connection explicit included evaluating algebraic 
expressions for a given value of the letter (e.g. 5+4×x, x=2) and finding easy ways of 
evaluating expressions like 28-17-8+17, emphasizing non-sequential computation. 
These efforts were not entirely successful partly due to the rigidity of the rules of 
evaluation. Rules for transformation of expressions with brackets (+ and ‘–’ to the left 
of the bracket) were connected to the idea of equal expressions verified through 
computations. Area of a rectangle model was used for distributive property. Number 
line and letter-number line were used to give meaning to the integers and the letter. The 
letter-number line served the dual purpose of understanding expressions like x-1 as 
denoting a number by means of a relation (a number which is one less than x) and the 
process of decrementing ‘x’. It could further be used in tasks like the journey on the 
letter-number line and finding the distance between two points on the letter-number 
line, both of which required the students to create a representation and manipulate it.  
As we have noted, a strong connection between the procedural and the structural 
components of the expressions was still lacking in MST-I. The students also could not 
use their knowledge of rules of transformation in contexts where algebra was being 
used as a tool for justification (like, think-of-a-number game). It was clear that simply 
the presence of structural notions and explicating the surface structure is not sufficient 
to make the connection between procedure and structure and between arithmetic and 
algebra. The structural notions had to be used differently in such a manner that one 
could reflect on possibilities and constraints on operations, enhancing flexibility and 
anticipation with respect to results of carrying out operations. 

+19 –7  +4 
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Figure 1. Illustration of students’ solutions while evaluating/ simplifying expressions. 
In the second main study trial (MST-II), terms and equality were made more central to 
the teaching sequence and the approach was made radically structural. Terms were 
now classified as simple and complex terms (examples of the latter are product term, 
bracket term). The procedures for combining terms for evaluating expressions were 
introduced as a structural reinterpretation of the precedence rules. The rules of 
evaluation were made flexible by including the idea of combining terms in any order, 
thus subsuming integer addition. Positive terms increased the value of the arithmetic 
expression, while negative terms decreased the value. A product term needed to be 
converted into a simple term before combining with other simple terms. Two product 
terms with a common factor could be combined using the distributive property. This 
paved the way for integrating the transformation rules of arithmetic and algebraic 
expressions (where this flexibility and non-sequential computation is essential) as well 
as complement procedure sense with structure sense. Figure 1 illustrates the flexible 
ways in which students evaluated/ simplified expressions as they learnt this approach. 
The complementary nature of procedure and structure was strengthened by the tasks of 
finding easy ways of evaluating expressions and generating expressions equal to a 
given expression (both arithmetic and algebra) using various transformations, requiring 
abilities to mentally operate in forward and reverse direction. Even the bracket opening 
rules were reformulated using ‘terms’ and ‘equality’ in conjunction with ideas of 
‘inverse’ (taking care of the integer subtraction) and ‘multiple’. This evolved sequence 
was called the ‘terms approach’ and gave the students the vocabulary and visual and 
conceptual support to reason about the syntactic based transformations. The two 
structural concepts of ‘term’ and ‘equality’ and the reformulation of the rules of 
transformation enabled the students to consider the arithmetic processes as potential 
processes which could be suspended for a while and combined with other terms based 
on structural relations. Further, generating equal expressions separated the denotation 
from the meaning of the expressions, the transformations keeping the value same but 
changing the surface structure of the expressions. 
The last trial (MST-III) aimed to consolidate the teaching learning sequence focusing 
on students’ verbalization and articulation of various concepts and rules and their use 
in different contexts. Evaluation of expressions with brackets (e.g. 23-(4+5×3)) 
together with understanding general principles of keeping the value of an expression 
invariant were the focus of this trial. Also a fair amount of time was spent on tasks 
which embedded the use of algebra in contexts requiring generalizing and proving/ 
justifying (Think-of-a-number game, pattern generalization from growing patterns). 
Building on our earlier observations of students’ inability to use their knowledge of 
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syntactic transformations in such contexts, students were engaged in verbalization of 
explanations of the answers before introducing symbolic justifications. These 
activities led to fruitful discussions about semantic and syntactic aspects of algebra: 
meaning of letters, correct representation and proper use of brackets and 
generalization from particular instances (‘seeing the general in the particular’) and 
goal directed manipulation of expressions. The study ended after this trial with 
indications that the transfer to ‘reasoning with expressions’ in context is not trivial 
but ‘reasoning about expressions’ in the course of working with syntax based 
transformations can play a part in predisposing students to think about situations with 
the help of expressions.  
Clinical interviews were conducted with a subset of students after MST-II (14) and 
III (17) to probe the robustness of their understanding. The interviews revealed 
students’ ability to appropriately articulate the reason for the incorrectness of the 
solution of an expression like 22-7+9 = 22-16 by pointing out the need for a bracket 
around 7 and 9 for the above solution to be correct or that -7+9=+2. Probing specific 
abilities of students with respect to simplification of algebraic expressions (e.g. 
5×a+6-2×a+9) at the end of MST-III, almost all students were able to convincingly 
explain the procedure of simplification by drawing on their knowledge of evaluating 
arithmetic expressions. They stated the rules for combining terms to explain why 
expressions like 3+5×x cannot be simplified further. Also, eleven of the students 
understood that each step in the simplification process yields equivalent expressions. 
The remaining six students needed to calculate the simplified and the original 
expression to arrive at this conclusion, generalizing their understanding from 
evaluating arithmetic expressions with similar structure.  
CONCLUSIONS 
The design experiment led to the development of a teaching learning sequence with the 
potential to bridge the gap between arithmetic and symbolic algebra for students 
beginning algebra learning. Through a long term engagement with the process and our 
own reflections on the assumptions and the tasks, the study helped us understand the 
nature of arithmetic and the tasks required to make the transition possible. The 
transition is not a trivial affair and the connection is not spontaneously seen by the 
students. Using arithmetic as a template, and enhancing both computational as well as 
non-computational reflective understanding of operations and their properties by the use 
of two structural concepts ‘term’ and ‘equality’ enabled the students to develop a new 
symbolic system of algebra and simple operations on them. The ‘radicalized’ structural 
treatment created meaning for the symbols in the context of syntactic transformation 
and allowed us to convert the processes of addition, subtraction, multiplication into 
‘objects’ which could feed into the development of the algebraic symbols.  
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HYBRID DISCOURSE IN MATHEMATICIANS’ TALK:  
THE CASE OF THE HYPER BAGEL 

Richard Barwell 
University of Ottawa 

 
One issue that has arisen in research on the nature and role of mathematical 
discourse in thinking about Mathematics is to better understand the relationship 
between everyday discourse and mathematical discourse. Little, if any, of this work 
has, however, examined how mathematicians talk about mathematics. In this paper, I 
use ideas from discursive psychology to analyse an example of mathematicians’ talk, 
taken from a live radio broadcast about the Poincaré conjecture. My analysis 
highlights some of the discursive resources the mathematicians draw on in their 
thinking. Moreover, my analysis suggests that these mathematicians’ talk is an 
example of a hybrid discourse incorporating both the mathematical and the everyday.  
INTRODUCTION 
There has been a good deal of research examining different aspects of the nature of 
mathematical discourse and its role in the teaching and learning of mathematics (for a 
summary, see Barwell, 2008). This work is fairly diverse in scope, ranging from 
concerns with understanding how classroom interaction shapes students’ learning, to 
specific concerns about multilingual or second language learners, to the nature of 
formal academic mathematical discourse. For this paper, however, I want to highlight 
one issue in particular. This issue concerns the problem of defining mathematical 
discourse and its relation with ‘everyday’ discourse. While it seems reasonable to 
think of mathematical discourse as the way language, gestures, symbols and other 
resources are used in doing mathematics, it is not really possible to demarcate clear 
boundaries with everyday (i.e. supposedly non-mathematical) discourse 
(Moschkovich, 2003, 2007). As Moschkovich (2007) implies, it seems questionable 
to assume that mathematical discourse consists only of formal practices, such as 
formal definitions. She hints at how more informal, everyday discourse has a role in 
how students make sense of mathematics. Indeed it is likely that informal, everyday 
discourse has a role in how professional mathematicians think about mathematics. It 
would, therefore, be useful to examine examples of mathematicians talking about 
mathematics in a variety of settings to explore if and how they draw on the everyday. 
Research on mathematical discourse has, however, generally analysed mathematics 
classroom discourse, usually spoken, occasionally written (e.g. Pimm, 1987; Kieran 
et al., 2002). Fewer studies have looked at the nature of mathematical discourse 
produced by professional mathematicians and most, if not all, of this work looks at 
formal written mathematics (e.g. O’Halloran, 2005). There appear to be few 
examples of analyses of mathematicians’ talk. In this paper, then, I report some initial 
analysis of an example of spontaneously produced mathematicians’ talk from a live 
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radio broadcast. This analysis is framed by discursive psychology, which is outlined 
in the next section. 
DISCURSIVE PSYCHOLOGY 
Discursive psychology (e.g. Edwards, 1997; Edwards & Potter, 1992) has been 
described as offering an anti-cognitivist, anti-realist, anti-structuralist account of the 
relationship between discourse and cognitive processes, such as thinking, meaning or 
remembering [1]. This perspective involves a shift in theoretical and analytic focus 
from ‘what happens in the mind’ to how ‘what happens in the mind’ is discursively 
accomplished. This shift is based on the principle that ‘what happens in the mind’ is 
played out through talk or other forms of interaction. What participants in interaction 
think or know or believe are, as Edwards (1997) puts it, topics of discourse. From this 
perspective, for example, the cross-examination of a witness in a courtroom, although 
ostensibly a process of establishing a set of pre-existing facts and rememberings, can 
instead be understood as a process of constructing these facts. A key principle, then, 
is that versions of reality are situated – the accounts given by a witness are shaped by 
the court’s proceedings and as such are jointly produced. In the case of mathematics, 
mathematical thinking can also be seen as situated, with particular versions of 
mathematical reality being produced and accounted for in different circumstances 
(Barwell, 2007). Furthermore, these processes are seen as primarily social, rather than 
cognitive. That is, the organization of different versions is a response to the unfolding 
social situation, which is itself reflexively produced through the interaction. 
The inevitable variation that arises from the situated discursive construction of 
cognitive processes provides a way into analysis (Wetherell & Potter, 1992). By 
looking for variation, the researcher can begin to explore, for example, how 
participants’ accounts of experiences vary in response to potential challenges, 
questions or counter-stories. Analysis of variation in turn leads to the identification of 
discursive resources: different ways of talking and organising discourse which can be 
deployed to, for example, head off challenges or accusations. The idea of discursive 
resources provides a link between the broader patterns of language use into which 
human beings are socialised and the here-and-now of particular moments of 
interaction. The emphasis, therefore, is on how language is used and on the effects 
that different kinds of language use have, rather than on listing and categorising 
different resources.  
How then, do mathematicians present their ideas to non-mathematicians through talk? 
How do they use the everyday as a discursive resource to talk about mathematics? 
What are some of the other resources they use? How are these resources used? What 
effects do they have? 
DATA: MATHEMATICAL RADIO BROADCASTS 
The data for this study come from a set of radio broadcasts from the UK. The data 
consists of five programs, of which, in this paper, I will discuss one. The programs 
come from a regular series broadcast on BBC radio called In Our Time. The series, 
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hosted by Melvyn Bragg, according to its website [2], concerns ‘the history of ideas’. 
A wide range of topics has been addressed, in the fields of religion, philosophy, 
history, culture and science. The format of the program is that three experts on the 
week’s topic (usually academics) are invited. Bragg introduces the topic and the 
speakers. He then chairs a live, unscripted discussion lasting 45 minutes. Although 
unscripted, the discussion is fairly tightly structured, usually chronologically, by 
Bragg. Thus the early part of the program might summarise the origins of an idea or 
the career of a key actor. The development of these ideas is then traced through time 
so that the last few minutes of the program generally concern issues of contemporary 
relevance. Bragg prompts the contributors to talk about particular aspects of the topic. 
There is often a reasonable degree of interaction between all the participants, 
particularly as the program unfolds. Nevertheless, the format invites fairly extended 
contributions from participants from time to time. For this study, I have selected five 
broadcasts with a mathematical theme: they are about symmetry, negative numbers, 
pi, prime numbers and the Poincaré conjecture. These broadcasts have been 
transcribed.  
The analysis reported in this paper is of the broadcast about the Poincaré conjecture. 
The episode features Ian Stewart (Warwick University), Marcus du Sautoy (Oxford 
University) and June Barrow-Green (Open University). This episode was selected for 
initial analysis because of the particularly advanced nature of the mathematics of the 
topic. The program begins with some biographical material about Poincaré followed 
by some summarising of his significance and contribution to mathematics. The 
origins of topology are introduced and the middle part of the program involves some 
elaboration on what topology is about. This material leads into an account of what the 
conjecture itself is about. Finally, the last segment of the program gives a sketch of a 
recent possible proof of the conjecture. 
The analysis reported in this paper is presented in two parts. In the first part, an 
overview is given of some of the discursive resources apparent in the program, along 
with necessarily brief illustrations. In the second part, I present a more extended 
extract from the data to illustrate these resources and to enable some examination of 
how they are used and to what effect. 
ANALYSIS 
First, then, I will highlight three particular discursive resources that arose from 
noticing variations of different kinds. The purpose here is not to provide an 
exhaustive list of all the discursive resources apparent in the program, but rather to 
highlight some that seem to be more significant in constructing a version of 
mathematical reality. 
1. Narrative-like forms: the presentation of ideas in chronological sequence and 

involving some semblance of a situation, of actors and of a situation that needs to 
be resolved. One of the functions of narrative is to implicitly provide a sense of 
motive for human action (Bruner, 1996). At one point, for example, du Sautoy 
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describes the Konnigsburg bridge problem and Euler’s solution of it, in the form 
of a vignette about the people of Konnigsburg amusing themselves by trying to 
cross all seven bridges once only and wondering if it could ever be done. In du 
Sautoy’s account, it would appear that Euler’s motive for solving the problem was 
to put the people of Konnigsberg “out of their misery.” 

2. Agents: specific or general active ‘doers’ of mathematics or other activities arising 
in the participants’ accounts and explanations. As Pimm (1987) has argued, the 
use of different pronouns in mathematics serves to include or exclude different 
participants and revolves around the relationship between participants and 
mathematics. Agents used in this program include ‘you’, ‘we’, ‘mathematicians’, 
Poincaré, Euler and ‘I’. ‘You’ arises frequently as a form of generalisation, as in: 
“if you try to write down mathematical formulas for how those bodies move 
you’re not really going to get anywhere.” It is unlikely that many listeners would 
be inclined to tackle this problem, so the ‘you’ must be heard as a generalised 
agent. ‘I’ also occurs frequently, often as a way to include the listener in a way 
that ‘you’ does not. Du Sautoy, for example, is explaining what topology is and 
says: “a rugby ball in (.) topologically would be the same as a football because I 
can sort of squash it to one from one to the other,” which invites the listener to 
imagine du Sautoy or themselves deforming the ball. This use of ‘I’ presents 
mathematics in a more human-centred way than much written mathematics. 

3. Everyday discourse: interpreted broadly to include vocabulary, expressions, 
analogies and references to popular culture. As discussed in the introduction, the 
relationship between the everyday and the mathematical is not easy to untangle. 
Everyday vocabulary used in the broadcast includes pushing, pulling, squashing 
and gluing. Expressions used include ‘discovered to their horror’ and ‘ditch the 
formulas’. Analogies used include references to bagels, pretzels, coffee cups and 
teapots, as well as accounts of lasoos tightening around footballs. References to 
popular culture include Homer Simpson and the map of the London Underground.  

In the rest of this section, I will refer to and discuss the extract transcribed below (see 
[3] for transcript conventions). The extract consists of the whole of a single turn made 
by Ian Stewart, which I present in 6 sections, the rationale for which is explained 
afterwards. Stewart’s contribution follows a lengthy exchange between Bragg and du 
Sautoy in which the latter summarises the Poincaré conjecture. Ian Stewart is then 
invited by Bragg to ‘develop that a little further’. 

IS: 1 [uh: (.) it’s (.) yeah uh:m (.) I think it’s important to realize that we live in a 
three dimensional space=a particular three dimensional space=we actually live 
in a fairly small bit of it=we don’t explore huge amounts of this space uh:m we 
have a rather naïve view that (.) the model of space we have in our 
heads=euclidean three dimensional space is really a:ll there is= 

 2 I mean marcus is talking here about uh:m (.) ways of bending three dimensional 
space and uh: I’m sitting here thinking now I understand this stuff but that’s a 
pretty strange thing to want to do uh:m how can you bend it where can it go 
uh:m (.)  
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 3 now the way mathematicians bend three dimensional space is actually they 
don’t bend it what they just do is they slice it into bits and then they tell you 
how conceptually you glue the pieces together again so the wa:y that this (.) 
proof that surfaces a:re spheres or bagels or two handled bagels or bagels with 
seventeen holes or som:e specific number of holes and that’s all there is=the 
way that that works is let’s say you chop the surface into triangles (.) uh:m you 
(.) work out how all the triangles fit together edge to edge (.) and then you do a 
massive mathematical simplification of this sort of huge jigsaw puzzle a:nd you 
end up discovering that you can (.) simplify the structure down until you can 
actually count how many holes there are and that really is the only thing that’s 
going on (.)  

 4 you can do this in three dimensions (.) you can chop space into (.) let’s say (.) I 
mean one of the=one of the simplest three dimensional curved spaces to=well 
curved in a sense to understand it=is=is called the flat torus (.) uh:m it’s=it’s 
sort of hyper bagel (.) you just take a cube (.) and you have a rule which says if 
you go off the cube you immediately come in again on the corresponding 
position on the other si:de=it’s like these video games where something goes 
off the edge of the television screen=it comes back goes out on the right=it 
comes back on the left as if the screen wraps around=you can wrap the faces of 
a cube ^around^ (.)  

 5 and it’s that representa:tion that suddenly opens up a huge pile of different (.) 
wei:rd (.) fascinating three dimensional shapes  

 6 from the inside it just sort of looks like all these lumps you know if you looked 
around in a limited region (.) it would look as if you were just in our ordinary 
three dimensional space (.) but as marcus says if=if=if=if you look fa:r enough 
(.) you might discover you’re looking at the back of your head 

The three sets of discursive resources summarised above can be seen in use in 
Stewart’s contribution. The turn as a whole is structured in a narrative-like way. He 
begins by outlining a situation (section 1): we live in a three dimensional space. Next 
he ‘troubles’ this situation (section 2): bending space is a strange thing to want to do. 
Most of the turn is taken up with an account of how mathematicians deal with this 
trouble, which appears to consist of two separate parts. A description of slicing up 
surfaces and counting the holes (section 3) is followed by a description of the flat 
torus as an example of a curved space (section 4). The end of the turn explains the 
consequence or resolution of these mathematical actions (section 5: they open up “a 
huge pile of different…shapes”) and a corollary (section 6: “you might discover 
you’re looking at the back of your head”) – not unlike the moral of a story. One effect 
of this structure is to provide a degree of coherence. The situation and trouble serve 
to situate and motivate the mathematical ideas that follow. 
The various sections involve several different agents. The opening situation begins 
with a broadly inclusive statement: “we live in a three dimensional space”. The 
inclusiveness is brought about, in part, by the use of ‘we’. Gradually, however, this 
initial wide claim is qualified, first with ‘a particular bit’ and then with ‘a fairly small 
bit’ and finally with ‘a rather naïve view that [that] is really all there is.” Stewart 
starts with a general, apparently uncontroversial idea, highlights its limits and then 
highlights our limitations for having had such a simple idea in the first place! 
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Furthermore, these limitations are all presented as facts - a rhetorical device that 
‘creates’ truths. It does not seem unreasonable to say that we live in ‘a fairly small 
bit’ of space. Here, however, space is used ambiguously, implying ‘the universe’ as 
much as ‘topological’ space. ‘A fairly small bit’ might be an everyday version of 
localness (as in ‘locally flat’) or neighbourhoods, but can also be heard more literally 
to mean ‘where I live.’  
The ‘trouble’ is presented from Stewart’s own perspective – ‘I’ – “I’m sitting here 
thinking now I understand this stuff but that’s a pretty strange thing to want to do.” 
The troubling of the mathematical ideas is presented as Stewart’s thoughts, 
particularly about bending space in four dimensions. It is unlikely that Stewart does 
find the ideas particularly strange: he’s spent his life thinking about them! His 
voicing of these ‘thoughts’, however, act as proxy for the possible thoughts of 
listeners: they introduce an outside perspective. His subsequent expansion of this 
‘strange thing’ as “how can you bend it where can it go” actually appears to be 
equally strange: he does not question the possibility of curving space, which, despite 
being rather a complex idea, is taken for granted. Stewart’s concern is rather with 
how one goes about bending space. His ‘thoughts’, however, allow the questions to 
be asked and positioned as coming from the same outside perspective as the initial 
observation of strangeness. 
The move to mathematical action involves another change of agent and a contrasting 
move or counter-story: “the way mathematicians bend three dimensional space is 
actually they don’t bend it what they just do is they slice it into bits and then they tell 
you how conceptually you glue the pieces together again.” The agent in this section is 
mathematicians, signalling that we are now in the realm of mathematics rather than 
our world of space and our naïve views.  And mathematicians have their own way of 
doing these things (slicing, not bending), although Stewart expresses them in 
everyday terms, with words like ‘slice’, ‘bits’ and ‘glue’. These kinds of words avoid 
the mathematicians appearing too obscure, despite them doing things their own way. 
This account also minimises the mathematical work involved, glossing over it as 
‘they tell you conceptually.’ This minimising of mathematical work arises again 
during these sections, with rather vague expressions like ‘massive mathematical 
simplification,’ ‘you end up discovering’ and ‘simplify the structure down’. 
The consequence or resolution (section 5) does not appear to have an obvious agent, 
“it’s that representation that suddenly opens up a huge pile of different (.) weird (.) 
fascinating three dimensional shapes,” although the ‘representation’ has a degree of 
agency and could be seen as standing for mathematics more generally. Again, though, 
the rather mathematical trait of giving agency to a representation is softened by 
everyday language like ‘a huge pile’ and ‘weird’. 
DISCUSSION: A HYBRID DISCOURSE  
Throughout Stewart’s turn, there is a constant movement between more ‘everyday’ 
and more ‘mathematical’ discourse, such as the interweaving of references to tori and 
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bagels. This last example seems to be fairly clear-cut: bagels do not seem like 
mathematical discourse and ‘torus’ is a fairly technical mathematical term. In many 
cases, however, the distinction is less clear. At first glance, words like ‘chop’ and 
‘glue’ appear to be from everyday discourse. I suspect, however, that such words, and 
even bagels, arise rather frequently in more informal, particularly spoken, 
mathematical situations. Similarly, the account of a representation of the flat torus 
incorporates the everyday and the mathematical: “you have a rule which says if you 
go off the cube you immediately come in again on the corresponding position on the 
other si:de.” This account involves much that can be seen as everyday: ‘if you go off’ 
‘you immediately come in again’ and the account is a kind of mini-narrative. At the 
same time, it is informally mathematical: it includes a rule and an if/then condition 
and some fairly precise description (“corresponding position”). Similarly, the 
variation in agents in Stewart’s turn incorporates more everyday discourse (“I’m 
sitting here thinking”) and more mathematical discourse (“it’s that representa:tion 
that suddenly opens up…”). 
I have been using words like ‘movement between’ and ‘interweaving’ to describe 
how the everyday and the mathematical are related. These words imply mutually 
exclusive discourses, however, when often both are present in a word like ‘slice’. 
Perhaps a better description is to say that the mathematicians’ talk is hybrid (e.g. 
Pennycook, 2005), a fusion of the everyday and the mathematical (for another 
topological example, see Barton, 2008, pp. 60-61). This idea is particularly well 
illustrated by the form ‘hyper bagel’, which incorporates a mathematical modifier 
with an everyday object. I conjecture that this kind of hybridity is actually 
widespread in the world of professional mathematics. In the above transcript, it seems 
to be a crucial resource in the participants’ attempts to relate some sense of advanced 
topology to a general audience and perhaps to try to avoid the impression that 
mathematics is abstract, abstruse and irrelevant. The participants’ talk, moreover, 
constructs a version of mathematics and of mathematical thinking. These versions 
involve active agents, narrative-like structure and are very much part of the everyday 
world. 
Endnotes  
1. The three antis are from a response given by Margaret Wetherell as part of a UK 

Linguistic Ethnography Forum colloquium at the annual meeting of the British 
Association for Applied Linguistics, Bristol, 15-17 September 2005. 

2. See www.bbc.co.uk/radio4/history/inourtime/ where you can access an archive of 
all editions broadcast to date. 

3. Transcription conventions used are as follows: bold indicates emphasis; colons (:) 
indicates phoneme extension within a word (one colon for every approx. 0.1 sec); 
(.) is a pause < 1.5 secs; ^ ^ encloses whispered or very quiet speech; = shows 
latching (no gap between words). I am grateful to Jennifer Bene for her careful 
transcribing. 
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This paper looks at the implications of decolonising methodologies on mathematics 
education research with Indigenous communities. It uses a study of remote 
Indigenous assistants being supported to become effective mathematics tutors of at-
risk Indigenous students to draw implications for the application of the Empowering 
Outcomes research model for remote Indigenous research sites. It discusses the 
results of the study in terms of benefit and empowerment, and draws conclusions with 
respect to research designs that benefit the researched. 
In 2001/2, authors Baturo, Cooper and Warren began to work in remote Australian 
Indigenous communities supporting teachers to enhance the mathematics learning of 
Indigenous students. As such, they joined the army of mostly non-Indigenous 
researchers who have made Indigenous people the most researched group in countries 
like Australia and who, generally, have brought little or no benefit to these Indigenous 
people or their communities. In 2003/4, aware of their limitations and realising that non-
Indigenous research of Indigenous issues can be part of the ongoing oppression of 
Indigenous people, these authors sought out Indigenous researchers, of whom authors 
Matthews and Underwood are presently part, with whom to collaborate in setting up a 
research group that came to be called Deadly Maths. In this, the initial members of 
Deadly Maths were strongly influenced by L. Smith (1999) who cogently argued that 
non-Indigenous research of Indigenous people has been “implicated in the worst 
excesses of colonialism” (p. 1), continued constructing Indigenous peoples as the 
problem, and “frequently failed to improve the conditions of the researched” (p. 176).  
Deadly Maths group 
Deadly Maths was set up to undertake Indigenous mathematics-education research with 
the primary focus on benefitting the researched, a focus that cannot be violated even to 
maintain so-called excellence in scientific design. Informing this research were the two 
imperatives for education espoused by Indigenous people across the 16 Queensland 
Indigenous communities that Deadly Maths members visit − namely, that students in 
Western schooling learn to be: (1) “solid” (strong) and “deadly” (smart) Indigenous 
people who have pride in their heritage; and (2) successful people in terms of enhanced 
employment and life chances. The Deadly Maths projects are embedded in decolonising 
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methodologies (L. Smith, 1999) and attempt to incorporate her seven cultural positions, 
namely: (a) to have respect for people, (b) to present yourself to the people face-to-face, 
(c) to “look, listen … speak” (p. 120), (d) to share and host people and be generous, (e) 
to be cautious, (f) to not trample over people’s dignity, and (g) to not flaunt your 
knowledge. Deadly Maths projects also recognise G. Smith’s (1992) Empowering 
Outcomes model that addresses the sorts of questions that Indigenous people want to 
know in ways that empower these people; and Mentoring, and Power Sharing models 
through having Indigenous researchers on all projects and collaborating with Indigenous 
Community members as equal partners.  
This paper 
This paper reflects on these decolonising methodologies with respect to a project 
(funded by Australian Research Council Linkage grant LP0562352) to support 
Indigenous teacher assistants (ITAs) to tutor more effectively Indigenous students at-risk 
with respect to mathematics. It discusses the study’s design in terms of the Empowering 
Outcomes model for remote Indigenous research sites, discusses the results of the study 
in terms of benefit and empowerment, and draws conclusions with respect to research 
designs that benefit the researched.  
DECOLONISING METHODOLOGIES AND REMOTE COMMUNITIES 
The education of Australian remote Indigenous students is inherently unjust (Warren, 
Cooper & Baturo, 2007) with the lowest retention and performance rates in 
Australia’s school system particularly in mathematics (Queensland Studies Authority, 
2004; 2005; 2006). This is due to social factors (Fitzgerald, 2001) such as racism, 
poverty, remoteness, unemployment and welfare dependence, and education systemic 
issues (Matthews, Watego, Cooper & Baturo, 2005) such as culturally 
disempowering forms of teaching, curriculum and assessment, particularly the use of 
Standard English which is, at best, a second language for Indigenous people. Due to 
remoteness, there is a scarcity of resources and services, and schools are generally 
staffed by inexperienced non-Indigenous teachers with little Indigenous education 
knowledge who, in turn, are supported by ITAs with little training in what and how to 
teach. As well, the relationship between the non-Indigenous teachers and the ITAs 
has, in general, led to the further disempowerment of the ITAs within the school. For 
remote Indigenous communities, the continued low educational performance of their 
children is a major issue and one for which there are only a few examples of success 
(e.g., Sarra, 2003) which have not been sustainable when key people have left.  
Empowering outcomes research with Indigenous people is post-positivist and qualitative 
in nature and requires persistent face-to-face contact (L Smith, 1999). This is fiscally and 
physically challenging in remote communities because of their isolation − even with air 
travel, and their limited and irregular facilities and services. Air travel can take two days, 
requiring connections to be made between regional and local airlines (that often fail to 
meet their timetables). Shops have limited opening hours (food may have to be carried by 
researchers on the plane), accommodation is restricted to a few highly in-demand school 
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cottages, and email is very slow. However, face-to-face contact is crucial to building 
collaborative relationships in which there can be “two-way” sharing of ideas and joint 
researcher-TA activity to improve Indigenous students’ mathematics performance.  
As argued by L Smith (1999), cultural sensitivity and humility are important for 
acceptance and success in Indigenous communities. Western expectations that research 
visits take priority over other daily events and that timetables and structures developed in 
Brisbane will be adhered to in the remote community is not respecting local culture. 
Furthermore, it is important not to apply non-Indigenous perspectives to Indigenous 
student attendance and behaviour in classrooms as low attendance and confronting 
behaviour is a product of cultural resistance of Western schooling (Matthews et al., 
2005) as well as students meeting their family and cultural obligations within the 
community (looking after siblings and attending funerals). As Partington (1998) argued:  

As a consequence of the treatment they experience in the classroom - even from the first 
day of school – many Indigenous students become alienated and start on the path that 
ends only when they drop out of school. They do not become alienated voluntarily but as 
a consequence of the way they are treated (p. 19). 

Australia’s schooling system remains largely Eurocentric in structure and curriculum. 
Indigenous teachers and ITAs “are not given input into the strategic plans of the 
school” (Matthews, Howard, & Perry, 2003, p. 11) and “are denied access to 
facilitators and services that other teachers take for granted” (MCEETYA, 2000, p. 
16). The way in which Indigenous students learn, their languages, cultures and 
values, are not respected within this environment. In particular, mathematics is not 
contextualised into Indigenous culture which is perceived as primitive and simplistic 
(Matthews et al., 2005). Where no real attempts have been made to reverse this, 
Indigenous teachers and ITAs cannot mediate between Community and school often 
resulting in half of the students being absent each day (Fitzgerald, 2001). This can 
severely affect most types of “scientific” research; for example, it makes pre-post 
testing and persistent observation problematic.  
Empowering Outcomes research is not so troubled with the perceived uncertainties of 
Indigenous Community life; with its focus on community benefit, it takes the existing 
situation as the starting point for collaborative activity. Thus, the involvement of 
Indigenous researchers and community members in looking at problems they feel are 
important enables research to advance (although, as will be discussed later in this 
paper, sometimes not with the “scientific” structure wanted by many editors). For 
Deadly Maths, decolonising research approaches were particularly important in 
reducing difficulties in interviewing Indigenous students who were reluctant to answer 
direct questions. As Barnes (2000) noted, Indigenous students “may find it difficult to 
respond to questions or display knowledge in the presence of adults or other persons 
in authority. This may be misinterpreted as ignorance or resistance” (p. 9).  
Once a respectful relationship is built, students feel able to talk freely, particularly to 
Indigenous researchers. 
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TEACHER ASSISTANT STUDY 
One focus of Deadly Maths projects which has attracted strong Indigenous support has 
been collaborative work with untrained ITAs to improve their (and the researchers’) 
abilities to tutor at-risk Indigenous students in mathematics (Baturo, Cooper & Doyle, 
2007). The study discussed in this paper occurred in two remote Queensland sites 
(referred to as Junction and Kanoona) where the Professional Learning (PL) activities 
were undertaken and involved four local Indigenous communities (Junction, Ooting − 
Site 1; Kanoona, Beachall at Site 2). Altogether, 10 TAs were involved in this project − 
7 females; 3 males; 8 Indigenous, 2 non-Indigenous. 
At each PL site, a non-Indigenous and an Indigenous researcher worked with four Tas to 
provide PL with respect to addition and subtraction (meaning, mental computation 
strategies, and algorithmic procedures). All participants were provided with 5 booklets 
of addition and subtraction tutoring materials which they were asked to trial in the weeks 
following the PL sessions. Data were gathered by: (a) observations (video-taped) of the 
PL sessions, (c) interviews (audio-taped) with the TAs before, during and after their 
tutoring trials of the addition and subtraction materials, and (d) TAs’ records of their 
tutoring trials with Indigenous students.  
Professional learning sessions and tutoring trials  
Junction/Ooting’s PL sessions were held in a regional city which has one plane flight 
a day. Kanoonga required two days of flying, but by driving a hired four-wheel drive 
vehicle from the regional city, the travel time each-way was reduced to one day. By 
travelling Sunday and Friday, four days were available for the PL sessions for both 
groups. As the next visit by researchers was in two months, the tutoring trials with the 
booklets meant to follow the PL sessions had to be undertaken by the TAs with only 
phone support by the Indigenous researcher.  
The PL sessions incorporated 10 PL principles (Baturo, & Cooper, 2004; Baturo, 
Cooper, & Doyle, 2007) which encompassed mathematics and pedagogy, 
professional development, and social principles. The sessions thus focused on 
activities that would develop structural rather than procedural knowledge; they 
were designed to provide the TAs with the same level of material as preservice 
teachers.  
The content focus of the PL/booklets was on: (a) building conceptual meaning for the 
two operations within both set and length models using games and activities to 
connect different representations (materials-diagrams, language, symbols) using the 
approaches of Payne and Rathmell (1977) and Duval (1999); (b) covering three 
strategies for computation, namely, separation (adding/subtracting in place-value 
positions), sequencing (adding/subtracting parts of second number to the first) and 
compensation (changing both numbers to make computation easy yet maintain 
equivalence); and (c) developing abilities to both interpret and construct real-world 
problems using the part-part-total concept and forward, backward and comparison 
stories.  
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The pedagogic focus was on: (a) concept and strategy development; (b) relating 
operations to the everyday world of the student (contextualisation); and (c) making 
out-of-school knowledge legitimate within school; getting answers was de-
emphasised. The TAs were encouraged to have high expectation of themselves and 
their students. The pedagogy was based on a mixture of social constructivism and the 
holistic interactive Indigenous learning approaches espoused by Grant (1997). The 
extent the above was attempted can be seen in two aspects of the teaching (Cooper & 
Baturo, 2008): (a) local issues were used for context, including an Indigenous card 
game learnt from assistant A1 which was used to teach computation; and (b) 
compensation was connected to identity by showing that equivalent computations 
involve adding/subtracting numbers equivalent to zero.  
Trialling each of the main tutoring ideas with students directly after the ideas were 
covered in the PL sessions was part of the plan, but this was not possible. For the 
Junction-Ooting TAs, the PL sessions were in a regional office and no students 
were available. For the Kanoonga-Beachall TAs, one-and-a-half days of the PL 
sessions available had to be cancelled for a funeral; all remaining time was 
assigned to covering the main ideas in the materials. This meant that the TAs had 
no experience at all of using the booklets with students when they returned to their 
classrooms.  
Findings from TA interviews 
Interviews were conducted by the Indigenous researcher over the phone with nine of 
the twelve TAs, three from Junction-Ooting (classified as J1, J2, J3) and six from 
Kanoonga-Beachall (K1, K2, K3, K4, K5, K6) (the other TAs had left their 
Communities). These interviews were transcribed and combined with observations of 
the PL sessions. These data were analysed in terms of commonalities in the TAs’ 
responses. This section describes the central ideas from these data on perceptions of 
the PL and trials.  
Empowerment/confidence. All the nine TAs stated that they felt empowered through 
the learning experiences in the PL sessions and tutoring trials, and felt confident to 
teach mathematics. In particular, they remarked on being able to return to their 
classrooms with knowledge of what to do. In one case, the TA said she took over the 
teaching of an area of mathematics. Examples of responses were: 

J1  … now I have different ways of actually, like in case they are not getting in one 
way of teaching it I actually have something to go back on…I can change it to 
simplify it 

J2  Yes I am [more confident]. I have the Deadly Maths by myself and I do that by 
myself while the teacher is in the classroom 

J3  … the different ways you have are better than the ways we sort of put it 
together … and the kids are sort of getting the work. 

K2  The other teachers have seen me doing and showing the teacher I am with, 
when it does come to maths I take over and do a bit of the games with them 
with the maths sheets 
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K4  … how to start from scratch basically to give the kids more of an understanding … 
she [the teacher] will say 'can you do this?' and I can say 'oh how about we do this’ 

Knowledge/Relationships. All TAs felt that they had gained important knowledge that 
they could share with the students in their community. They liked the PL sessions 
because, as J2 stated, you get to see other people from other places and know who they 
are. In particular, they liked the sharing and they appreciated their differences: 

J1  … everybody has got their say in this didn’t work or that didn’t work, or I did it 
this way … then everybody has their own thing. If you came to our school it would 
be just me and [J2] and we don’t really see what the other people have been doing 
and what their outcomes are too. If you have the group then it is better. Everybody 
then knows what’s going on. [J4] is out there but she’s not Indigenous and we are 
different to her. We probably teach in a different way to her.  

However, they also felt that the experience would be improved with more attention to 
applying this knowledge in tutoring students, particularly their students. As K5 stated, it 
is really hard to try and do it with someone else’s kids, at least our kids know us.  
All TAs felt that good relationships had been built with researchers and were very 
comfortable speaking with the Indigenous researcher in particular. However, K2 felt 
that there could be more face-to-face and phone contact.  
PL sessions/Tutoring trials. The TAs valued the support provided by the researchers and 
that it had been provided in community; they felt that the structure of PL sessions was 
appropriate for discussing ideas but not for applying ideas to tutoring. The TAs liked 
the resource booklets − they were very useful … like ready to go … and when you read 
it you add more information for … the better way to teach the kids (J1); they [students] 
all liked it and they would run to it when they had free time (J4). This led to requests for 
more games and activities in future booklets. The TAs also liked the contextualisation − 
it just surprised me of what you can use and how to use it … you can just use the things 
in your own school and around the classroom (J5). However, not everything was 
appreciated − J1 and J2 felt that the separate session on theory given at Junction-Ooting 
(and not at Kanoonga-Beachall) needed to be integrated into the activities. 
School support/Student improvement during trials. School support depended on the 
assistants’ school and teacher, and lack of support from some schools/teachers inhibited 
the tutoring trials. Some assistants were not able to tutor the mathematics (addition and 
subtraction) from the PL sessions in their classrooms, while others were supported or 
partially supported. Assistant A1 was assigned to Prep Year so her tutoring did not cover 
operations. This variation in support can be seen in the three responses below: 

J2  …. like every time we come back and I told her that we were going to try this 
and see if it works with the kids and stuff like that and she was OK, you know, 
she would just say ‘if you think it is going to work, then do it’.  

K5  … I haven’t really put it [tutoring program] into practice … only when we 
came back in the beginning, the first two weeks after the training, we were able 
to do things with kids.  

K6 No [could not tutor the program] … it’s just a bit hard when you have got 
teachers that have their own agenda. 
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Only four (J2, J4, K1 and K4) of the nine assistants interviewed were able to trial the 
tutoring of the addition and subtraction material. However, their results were 
encouraging; students’ mathematics outcomes appeared to improve. J2 described her 
success with the number board, they didn’t really realise how easy it [computation] 
was like if you started at a number and wanted to add 10 more you could just jump 
down 10 and 1 over and 2 back. J4 referred to her pre and post testing which she said 
showed that they become very good at it. K1 declared, ... they are moving up levels in 
their maths, while K4 felt she had success in co-teaching with her teacher.  
Relationships with their teachers were particularly sore points with Indigenous TAs. 
To attract teachers to the remote communities, the state Education Department has a 
point system that means that a remote community teacher can transfer to any school 
after two years and most do. As J1 said when asked how about her Community, the 
only thing that changes in [Junction] is the teachers. 
DISCUSSION AND CONCLUSIONS 
The study described in this paper is a typical Deadly Maths project using L. Smith’s 
(1999) decolonising approaches, namely, and G. Smith’s (1992) Empowering Outcomes 
research model. The focus is on benefiting the TAs and, in the long run and of 
paramount importance, benefiting the students. For this reason, the researchers visit the 
Communities, set up relationships with the TAs that promulgate sharing of ideas (e.g., 
the card game that is the focus of Booklet 4 – Cooper & Baturo, 2008), and limit 
intrusive data gathering (e.g., no pre-post tests on TAs’ mathematics performance were 
given as this might inhibit building relationships: another disempowering process).  
The feedback from the TAs is that the study worked at their level; they felt: (a) 
empowered in the classroom, (b) supported as Indigenous educators using 
contextualised mathematics (Matthews et al., 2005), and (c) happy to continue 
working with us. However, trialling with students was ambivalent; many assistants 
were not given the time to trial the ideas even though this aspect of the study had 
been negotiated with the schools beforehand, but those that could, appeared to have 
success. The structure of the materials was also acceptable.    
Deadly Maths will continue the work with the TAs at the sites in 2008 with 
multiplication, division and fraction material. As a consequence of this study, the 
work will focus more on tutoring students in classrooms and on including the TAs as 
co-managers and co-researchers in the trials (the Sharing Power research model).  

J1 No I think just the group gathering first until I can get it implemented into 
working with the staff, teachers; then I could ask you to come and see how or if 
I am doing it right. 

In conclusion, three implications are evident. First, the TAs have shown that they are 
solid and deadly and have the potential to be the major sustainable provider of quality 
mathematics education to Communities into the future. Second, such quality 
beneficial outcomes require compromise with regard to data gathering and a focus on 
relationship before data; there has to be a way that such research can be accepted in 
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prestigious journals. The development of ways to publish findings from decolonising 
projects is one aim of Deadly Maths. Third, L Smith’s (1999) arguments apply 
equally to research on all disempowered peoples in Australian society. For these 
peoples, it is the opinion of the Deadly Maths researchers that the only acceptable 
research methodologies are those whose prime purpose is to make the disempowered 
active participants and beneficiaries of the research outcomes.  
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This paper examines the effectiveness of analogies in the teaching and learning of 
the function concept. Our findings indicate that instructional analogies cannot 
support students’ understanding of the functions unless students are given 
epistemologically appropriate analogues and illustrated the structural relations 
between the analogues and the targeted concepts. Provision of analogies to 
emphasize procedures, algebraic or otherwise, may confine students to a limited 
way of thinking about the concept.    
INTRODUCTION 
Educators emphasize the importance of analogies in teaching and learning science 
and mathematics (Podolefsky & Finkelstein, 2006; Shulman, 1986). Simply defined, 
analogy refers to descriptions which tell how two things are similar to each other. It 
entails using a familiar system – the so called source or base – as a foundation for 
drawing inferences about an unfamiliar system – referred to targeted concept 
(Spellman & Holyoak, 1996). Rattermann (1997) states that “A good analogy conveys 
large amount of information with very little explanation, it inspires scientific 
discovery, and it provides new information about an unfamiliar domain” (p. 247). 
Shulman (1986) suggests that teachers need an expertise in using most appropriate 
analogies to align the logic of scientific notions to the students’ comprehension. They 
need to have rich repertoire of analogies to transform subject-matter into forms that 
could be grasped by the students of different ability and social background (ibid).   
The role of analogy in teaching and learning has been extensively researched in 
science education (see, for example, Heywood, 2002; Podolefsky & Finkelstein, 
2006; Reiner et al, 2000). In recent years, instructional analogies have received 
attention from mathematics educators (Alexander et al, 1997; Fast, 1996; Kathy et al, 
1999; Richland et al, 2004). Fast (1996) indicated that provision of analogies can 
cause conceptual changes in students’ understanding and help them revise and 
reconstruct their knowledge of probability. Kathy et al (1999) researched the 
effectiveness of analogies in teaching and learning the fraction concept. They used 
seven concrete analogues (e.g., pizza, ice-cream bars, and licorice straps) and 
evaluated them with respect to their ‘ecological validity’ – how realistic for pupils 
was the sharing context engendered by the analogues – and their ‘ease of 
partitioning’ – how easy were the analogues to physically partition into quotients. 
The results indicated that both ‘ecological validity’ and the ‘ease of partitioning’ 
were crucial features of the source analogues that were greatly affecting the students’ 
ability to draw inferences about the fraction concept.  
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A review of available literature suggests that analogies could promote students’ 
understanding of mathematics. Thinking by analogy means transferring structural 
information from a familiar system to an unfamiliar system. Educators place a great 
emphasis on the transfer of knowledge from an analogue to a targeted concept, 
suggesting that it is this phenomenon that has significant implication for teaching and 
learning mathematics (English, 1997). The present study contributes to a growing 
body of research in the filed by examining an experienced teacher’s analogy-based 
teaching approach and relating it to his students’ understanding of the function 
concept.  
BACKGROUND: THE CONCEPT OF FUNCTION AND THE TURKISH 
CONTEXT   
The contemporary literature suggests that the concept of function can be construed in 
two fundamental ways:  as a process and as an object. The former entails an ability to 
interpret a function as a process transforming inputs to outputs (Dubinsky & Harel, 
1992). Those who possess a process conception would manipulate a function in 
various ways, for instance they could reverse a function process or combine it with 
other processes (ibid). The constant reflection upon a function process may lead to its 
eventual encapsulation as an object (Breidenbach et al, 1992), and this level of 
understanding enables one to use a function in further processes, such as 
manipulating a function as a single entity in the process of derivative or integral. No 
matter how one conceives a function, the concept has two fundamental properties: the 
univalence and the arbitrariness conditions. The univalence states that every element 
of the domain must be assigned to a unique element in the co-domain (Malik, 1980). 
The arbitrariness suggests that a function could do transformation in an arbitrary 
manner (ibid); thus it rules out attributing a mechanical rule, algebraic or otherwise, 
to the concept. 
The participant teacher, Burak1, introduced the idea of function through a definition – 
“A function is a relation that matches every element of the domain to a unique 
element in the co-domain”. He illustrated the definition through various examples in 
the set-diagrams and ordered pairs with a particular emphasis on the univalence 
condition. Burak continued to use above definition as he moved into algebraic and 
graphical context; yet his teaching encouraged an understanding of the function as a 
computational (algebraic or arithmetical) process and mostly engaged the students 
with the rules, procedures and the factual knowledge associated with the visual 
properties of algebraic and graphical representations. Consequently, in the coming 
sections we shall use the above definition as a benchmark and refer to its dynamic 
(process-like) nature as we comment upon analogy-based teaching instances derived 
from Burak’s lessons. The essence and the properties of the sub-concepts of the 
function (e.g., inverse function, constant function) will be illustrated through data 
presentations. We shall do this to facilitate an evaluation of the extent to which 

                                                            
1 Teacher’s and students’ names are altered.  
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Burak’s analogy-based teaching could have prompted his students’ understanding of 
the functions as a process transforming elements from domain to co-domain.  
RESEARCH METHOD AND THE DATA ANALYSIS  
The research employed a qualitative case study using classroom observations and semi-
structured interviews as the main sources of data. The research sample included an 
experienced mathematics teacher - Burak who had 24 year teaching career - and his 9th 
grade students (age 15). The teacher was observed 14/19 lessons teaching all aspects of 
the functions. The lessons were tape recorded and annotated field notes were taken. 
During the sampling process Burak had stated his belief that the use of analogies could 
promote students’ understanding of the functions thus when observing his lessons we 
gave a particular attention to analogy-based teaching instances and took narrative 
summary of the context where the analogies were used and how they were used. After 
the course on functions Burak’s students (27 students) were given a questionnaire 
which encouraged them to provide reasons (including instructional analogies) for their 
answers. The questionnaire aimed to assess students’ conceptual (process-conception) 
and procedural understanding of the function concept, its properties and sub-notions. 
Based on their achievements in the questionnaire three students were selected for the 
interviews. A semi-structured interview was conducted and the aspects of clinical 
interview (Gingsburg, 1981) were considered to delve into the students’ thinking. If a 
student revealed analogical thinking we probed him/her to see whether he/she was able 
to use analogies to draw inferences about the situation at hand.    
Overall, literature about epistemology of the functions (Dubinsky & Harel, 1992) and 
the role of analogies in teaching and learning science and mathematics (Kathy et al, 
1999; Podolefsky & Finkelstein, 2006) provided a conceptual base for the data 
analysis. Content analysis (Philips & Hardy, 2002) was conducted to discern meaning 
in the teacher’s written and spoken expressions. Lessons were fully transcribed and 
considered line by line whilst annotated field notes were used as supplementary 
sources. The first phase of data analysis included detecting analogy-based teaching 
instances and identifying source analogue and the targeted concepts, for instance 
‘fixed minded person - constant function’ and ‘clothes worn under certain weather 
conditions - piecewise function’. The subsequent phases embraced in-depth 
examinations of spotted cases in accord with two criteria: ‘purpose of use – whether 
analogies were offered to explain function-related ideas or to emphasize procedures’ 
and ‘content validity - whether the source analogues had the epistemological power 
to represent function-related ideas; if they had so, how they were used’. As it was the 
manner in the analysis of the teacher data students’ interviews were fully transcribed 
and considered. Learning instances in which the students indicated analogical 
thinking were identified and, then, they were scrutinized to determine whether or not 
the students were able to use analogies to resolve the function problems they were 
given. Lastly, since the research involved multiple cases, it was necessary to use the 
strategy of cross-case analysis (Miles & Huberman, 1994) to establish the 
relationships between the variables. The comparison between the sets of data was 
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made in two ways. We examined analogy-based teaching instances and then looked 
for the corresponding learning outcomes in the students’ data, or we did the reverse.  
RESULTS   
Provision of analogies was a distinguishing feature of Burak’s teaching. He offered 
analogies as an ‘advanced organizer’ to prepare his students for the concept of 
function or as an ‘activator’ to stimulate their knowledge when they were solving 
problems in the domain. Table-1 provides a list of analogies that Burak used in his 
teaching, and it illustrates the contexts where the analogies were used and how they 
were used. 

 Source analogue Targeted 
concept  

Content validity of the analogues/Purpose of use  

1 
Washing machine, 
camera  

Pre-image 
– Image   

Analogies were used to explain how to calculate 
the images when the pre-images were given, or 
vice versa. 

2 A relation of dance…   Univalence 
condition 

The source analogue had the content validity to 
illustrate the idea of univalence; yet the teacher did 
not illustrate the structural relations between the 
two.  

3 
Identity numbers, 1 and 
0.  

Identity 
function 

The analogues were epistemologically 
inappropriate to illustrate the notion of identity 
function…  

4 
A ‘fixed-minded’ person 
who rejects all the ideas 
proposed…   

Constant 
function 

The analogue of a ‘fixed-minded person’ was 
epistemologically inappropriate to illustrate the 
concept.  

5 
Clothes worn under 
certain weather 
conditions…  

Piecewise 
function 

Analogy emphasized the procedure – selection of 
the right formulas to operate on each sub-
domain…  

6 Blanket used for warmth.  Onto 
function  

Analogy was used to emphasize a surface property 
of the concept… Analogy: “… As we go to sleep 
we cover ourselves with the blanket… an ‘onto 
function’ is like that it covers up every element in 
the co-domain…”   

7 
Football matches in the 
first premiership…  

One-to-one 
function 

The analogue had the epistemological power to 
illustrate the targeted concept, but the teacher did 
not illuminate the structural relations between the 
two.   

8 

The idea of ‘inverse 
operation’, and the 
examples from every day 
life…   

Inverse 
function 

Analogies emphasized the idea of inverse 
operation, not the concept of inverse function. The 
idea of inverse operation included inverting a 
sequence of operations in a function process…   

Table 1. A list of analogies that Burak used in his teaching of the functions 
It is seen from this table that there are three basic limitations in Burak’s analogy-
based teaching approach and these include:  
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• Provision of analogues which had no content validity, 
• Not clarifying the relations between the analogues and the targeted concepts, 

and 
• Using analogies to over-emphasize procedures and the factual knowledge.   

Content validity is concerned with the epistemology of an analogue in that the 
analogue should potentially incite an idea of a function as a process transforming 
every input to an output. It should have properties and components that match up 
those of the function concept. Nevertheless, this property was not evident in many of 
the analogues Burak used. For instance, preparing his students for the idea of identity 
function Burak gave the explanation: “… The number one (1) has no effect in the 
operation of multiplication; likewise zero (0) has no effect in the operation of 
addition. … You would think of the identity function like these numbers. …”. The 
teacher suggests his students to think of the identity function like identity numbers, 1 
and 0. However, neither of these numbers represent a transformation process, they are 
mathematical entities used in the process of multiplication or addition. On some 
occasions, although Burak gave his students epistemologically appropriate analogues 
he did not illustrate the structural relations between the analogues and the targeted 
concepts. He talked about the analogues very much in tune of their daily meaning 
(like story telling) and this shifted, apparently, students’ attention from function-
related ideas to daily events. Consider the following which was given to illustrate the 
univalence aspect of the function concept (Episode-1):    

… Suppose that we are invited to a party, OK. …the party is going on… music is 
playing…and it is time to have a dance… And there are two groups in the party; the group 
of guys and the group of ladies…we are going to dance… Yet, we have a rule… … First, 
all the guys must dance…[1]. Second, every guy can choose only one partner…nobody is 
allowed to dance with more than one girl, OK [2]. …if there is a beautiful lady…you can 
queue in front her…this does not break the rule…you can queue in front of her [3]. The 
function is like the relation of dance…it must satisfy certain conditions.    

Notice that Burak’s description suggests, implicitly though, all the conditions, [1], 
[2], and [3], which correspond to the features of univalence condition; yet he does not 
clarify this in an explicit manner. The structural relations between the two could be 
best established by converting the source analogue into a mathematical task – 
sketching two set-diagrams, putting the names of students into the sets (first set: the 
group of guys, and second set: the group of ladies), and then illustrating all the 
alternative mappings between the elements of these sets. The teacher does not do this 
nor does he encourage his students to find out the relations by themselves.  
It was common for Burak to use analogies to emphasize procedures and the factual 
knowledge associated with the algebraic and graphical representations of the 
functions. Consider the following which was given when they were reversing an 
algebraic function, f(x)=x3+7, (Episode-2):   

… We got up in the morning; we had a breakfast, put on our clothes…and then we 
locked the door when we left home… When we return back to home…first of all we shall 
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open the door, and then take off our clothes, and so on… Yes, this is the logic we are 
going to implement… The last operation here is addition of 7; therefore in the first step 
we should subtract 7 from the x… The operation before the last one is the 3rd power of x, 
so we should take the 3rd root of x-7 (obtains the inverse function through appropriate 
manipulations).  

An inverse function undoes what a function does and it is in this sense the notion of 
‘undoing’ captures the essence of the inverse function (Even, 1992). The property of 
‘one-to-one and onto’ is the basic criterion that a function must meet to be reversed. 
However, Burak communicates neither of these ideas through the analogy. He 
presents the analogy in a way that confines the essence of the concept – the notion of 
‘undoing’ – to the idea of ‘inverse operation’ – reversing an algebraic function by 
inverting a sequence of algorithmic operations in a function process.  
LEARNING OUTCOME 
An analysis of the student data indicated that none of the students revealed analogical 
thinking in their written responses in the questionnaire. During the interviews two 
students recalled and used analogies to interpret the function problems they were 
given. However, both failed at executing the mapping process between the analogues 
and the targeted concepts. Belgin’s response to ‘Does the relation m={(4,9), (3,6), 
(2,7), (1,8), (4,6)} represent a function?” is typical:  

B-  Yes, it does. …it (4) can go to many elements… Our teacher told us that a guy 
cannot dance with more than one lady; yet many guys can queue in front of a 
beautiful lady…[laughing]…this is like that. 

Int-  Could you tell me who are the guys, and who are the ladies here? 
B-  …[Silence]…these [first components] are ladies; is not it? …umm…these 

[second components] must be guys then…[Silence]… 
Int-  So, you think…two guys are queuing in front a lady; and this does not bother you.    
B-  …umm…[Silence]…yes, two guys are waiting… I remember the 

example…many guys   can queue in front of a lady [laughing]; we can think 
like that. …     

This exchange shows that Belgin is unable to transfer structural information from the 
analogue to the target so that she can conclude that the situation is not a function because 
it matches an element of the domain to more than one element in the co-domain.   
DISCUSSION AND CONCLUSION  
The purpose of this paper was to illustrate the influence of analogy-based teaching 
practices on students’ understanding of the function concept. However, the study has 
limitations. Teaching is a social and cognitive activity offered to help students 
acquire knowledge (Leinhardt, 1993). Learning is a mental process through which 
individuals construct their knowledge by interacting with the external stimuli. The 
mediating process between the two is open to influence of many internal and external 
factors that may include individuals’ cognitive ability, and parental involvement in 
students’ education. The difficulty in controlling all these influences does permit 
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considering analogy-based teaching instances in isolation and relating it to the 
students’ learning. 
Having cited these limitations this study produced evidences which have implications 
for pedagogical considerations and classroom practices. As we have seen there are 
three basic limitations in Burak’s analogy-based teaching approach. The first is 
concerned with the content validity of the source analogues. Many analogues that 
Burak offered to his students had no epistemological power to illustrate the function 
concept, its properties and sub-notions. Fundamentally, the source analogues lacked 
the ability to represent a function as a process transforming every input to an output. 
Second, although on several occasions Burak used epistemologically appropriate 
analogues he did not link them to the targeted concepts nor did he encourage his 
students to find out the structural relations between the two. Consider again the 
analogy of ‘a relation of a dance’ (see Episode-1). The source analogue permits 
communicating the idea of univalence: a function could do ‘one-to-one’ and ‘many-
to-one’ mappings and it should not omit an element in the domain. Nevertheless, 
Burak does not establish the relations between the aspects the analogue and those of 
the univalence condition. We can see the negative impacts if this on students’ 
learning. In the interviews, one of Burak’s students, Belgin, recalled the same 
analogy but could not utilize it to interpret the situation she was given. Third, as it is 
seen in Episode-2 Burak introduces analogies to emphasize procedures (the idea of 
inverse operation), not the function-related ideas (the notion of undoing). This 
approach might have intensified the importance of routines for the students and, as a 
result, confined their understanding of the concept to algorithmic procedures (Bayazit 
& Gray, 2004).      
In conclusion, our evidence suggests that instructional analogies cannot support 
students’ understanding of the function concept unless the content validity is 
established in them. Provision of appropriate analogues does not help students 
develop a meaningful learning unless students are explained the structural relations 
between the two. The efficiency of analogies in teaching and learning the functions 
depends upon the teacher’s and students’ expertise at executing the mapping process 
between the analogues and the function concept. One may use analogies to emphasize 
procedures associated with the algebraic and graphical functions; yet this might shift 
students’ attention from function-related ideas and, as a result, confine their 
understanding of the concept to mechanical manipulations.  
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COMPUTER ALGEBRA SYSTEMS, SEMIOTIC ACTIVITY      
AND THE COGNITIVE PARADOX  

Margot Berger 
University of Witwatersrand 

 
I propose that a semiotic perspective provides an illuminating view of mathematical 
activity. In line with this position I suggest that a Computer Algebra System (CAS) 
may be viewed as a semiotic tool. Given the capacity of a CAS to transform signs 
within and between registers, I specifically argue that the use of a CAS may facilitate 
the learning of mathematics. This argument is based on Duval’s (2006) cognitive 
paradox: how can a learner distinguish the represented object from its semiotic 
representations when there is no access to the mathematical object apart from its 
semiotic representations? I illustrate these theoretical arguments with a semiotic 
analysis of a pair of mathematical learners at first−year university level engaging in 
mathematical activity whilst using a CAS. 
INTRODUCTION 
The important role that technological tools may play in the learning of mathematics is 
well-recognised within the mathematics education world. For example, there is 
research that focuses on the possibilities and drawbacks of the use of technology (for 
example, Hershkowitz and Kieran, 2001). Other research (for example, Artigue, 
2002) argues that the successful introduction of technology into a mathematics 
classroom involves the development of a complex relationship between user and tool; 
the learner has to construct personal schemes which turn the tool into an instrument 
for learning (instrumental genesis).  
In this paper, I argue that a Computer Algebra System (CAS) is a tool for semiotic 
activity. I show how such a perspective illuminates the process whereby the use of 
CAS may promote mathematical understandings.  
A SEMIOTIC APPROACH  
Mathematics as a semiotic system 
The idea of adopting a semiotic perspective when looking at the nature of 
mathematics and mathematical activities has its modern roots in the writings of the 
fathers of contemporary semiotics, Peirce (1839−1914) and Saussure (1857−1913). 
During the twentieth and current century, a semiotic view has been developed and 
applied to mathematics or mathematics education by, for example, Rotman (1993), 
Radford (2005), Presmeg (2006).   
In this paper I use Ernest’s (2006) formulation of mathematics as a semiotic system 
as my broad framework. Ernest (ibid.) argues that mathematics consists of three 
components: a set of signs which may be written or uttered or encoded electronically, 
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a set of rules for sign production and “a set of relationships between signs and their 
meanings embodied in an underlying meaning structure” (p. 70). Furthermore, he 
argues that sign use is socially located: it is part of social and historical practice. 
Ernest’s semiotic view of mathematics links the individual (who constructs her own 
meaning from the mathematical signs) with the social (the individual’s successful use 
of mathematical signs must be compatible with their use by the community of 
mathematicians). It also links the subjective with the objective “For signs are 
intersubjective, and thus provide both a basis for subjective meaning construction, as 
well as the basis for shared human knowledge, which …is what is taken for objective 
knowledge” (ibid, p.68).   
Clarification of how I use word ‘sign’ is required: “A sign is a thing which serves to 
convey knowledge of some other thing, which it is said to stand for or represent” 
(Peirce, 1998, p.13). An essential aspect of a sign is that it is experienced meaningfully. 
That is, it must signify to someone something other than itself. For example, a green 
traffic light is a sign that tells one to go; it is not there to make one think of greenness. 
In the phrase ‘a=b’, ‘=’ is a sign which tells us that a and b are equal; it is not there to 
make us think of the shape ‘−’ or the combination of shapes ‘=’.  
According to Peirce (1998) all signs have three parts: a representamen (signifier) 
which refers to the form which the sign takes (not necessarily material), an object (a 
physical thing or an abstract concept) and an interpretant (the idea or meaning of the 
object). Peirce refers to the interaction between the representamen, the object and the 
interpretant as ‘semiosis’. Significantly the interplay of the sign’s components leads 
to the possibility of infinite semiosis whereby the representamen stands for an object 
which entails an interpretant and this interpretant in turn becomes the representamen 
for yet another object and so on. In ‘good’ learning, semiosis continues until the 
learner is able to use the mathematical sign in a way that is meaningful to herself and 
is commensurate with its use by the relevant mathematical community.  
Examples of mathematical representamen are symbols, words, graphs. Examples of 
mathematical objects are the conceptual objects: the function, the rectangle. 
Examples of interpretants are an idea or interpretation of the function, the rectangle. 
For example a graph of a parabola (the representamen) is a particular representation 
of the mathematical object, a quadratic function. Different individuals may construct 
different interpretants for the quadratic function (for example, the shape of the 
parabola or the fact that any value in the range other than the vertex is generated by 
two different values in the domain, and so on).  
CAS and the cognitive paradox 
I propose that a view of CAS as a tool which facilitates the production and 
transformation of mathematical signs helps illuminate how it may serve as a tool for 
learning mathematics. My argument is based on Duval’s thesis that “the only way to 
have access to [mathematical objects] and deal with them is using signs and semiotic 
representations” (2006, p. 107). Hence we get the cognitive paradox of access to 
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knowledge objects: how can a learner distinguish the represented object from its 
semiotic representations when there is no access to the mathematical object apart 
from its semiotic representations? (ibid, 2006).    
Duval argues that there are four “registers of representation” (2001, p.2) which are 
relevant for mathematical activity. Briefly these comprise the register of natural 
language (as used in proofs), the register of numeric, algebraic and symbolic 
notations, plane or perspective geometrical figures and Cartesian graphs. 
Representamen (that is, representations) necessarily differ from one register to 
another. Mathematical comprehension involves the capacity to change from one 
register to another “because one must never confuse an object and its representation” 
(2001, p.7). Duval (ibid.) calls the process of transforming the representation (or 
representamen) of a mathematical object from one register to another, a “conversion”. 
He argues that two representations (or representamen) of the same mathematical 
object in two different registers do not have the same content − they may denote the 
same object but different registers make different properties of the object explicit. He 
also claims that another type of transformation that is intrinsic to mathematical 
activity is a treatment (also called processing). A treatment is a transformation of a 
representation (or representamen) that occurs within the same register; for example 
solving an equation given symbolically within the symbolic register.  
My argument is that a CAS is a tool that can transform mathematical signs in 
accordance with the standard rules and procedures of mathematics. Hence, and in 
terms of the cognitive paradox, its use may facilitate the comprehension of 
mathematical objects and relationships. For example, a user may be able to move 
easily from a symbolic to a graphic representation (a conversion). Seeing the same 
object using different representamen may enable the learner to construct different 
interpretants for the same object. In this way, the student may notice important 
properties of the object not previously perceived. Also seeing different objects in the 
same registers may help the student discriminate between properties of these different 
objects.  
The use of the word ‘may’ in the above paragraph is important: the use of a CAS 
does not in itself guarantee that a user is able to move from one mathematical sign to 
another (for example, she may not know the correct CAS syntax to generate a 
representamen) nor that the user is able to recognize the same object in different 
registers (for example, she may not recognize that a graph of the derivative of sin x is 
a graph of cos x). 
Duval’s framework has also been used by Winsløw (2002) who argued that the use of 
a CAS may enable mathematical activity on a conceptual level higher than possible 
without the tool (the lever potential). 
Semiotic activities with a CAS 
In order to examine mathematical activity with a CAS, a further refinement of 
Duval’s semiotic registers is required. In particular it will be useful to distinguish the 
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different notation systems (symbolic, algebraic and numeric) from one another. For 
example, using Mathematica one can approximate a limit numerically (numeric 
register); using paper and pencil, one can determine the limit using laws of algebra 
(algebraic register); using Mathematica, one can evaluate the limit (symbolic 
register). Of course, I am assuming that the limit exists in all these instances. 
Furthermore I distinguish different media (CAS or pencil and paper) from one 
another. Chandler (2002, p. 232) argues that “signs and codes are always anchored in 
the material form of a medium − each of which has its own constraints and 
affordances”. (The specifics of the CAS medium differ according to which particular 
CAS is being used, eg Mathematica, Derive, etc. But each CAS uses its own 
representamen which are different to the representamen used in traditional 
mathematical notation.) The production of mathematical signs in the CAS medium 
involves, inter alia, learning a new syntax and being able to distinguish certain 
mathematical objects or operations (which may look the same in the paper and pencil 
medium) from each other. Indeed the precise notation of a CAS may be problematic 
for students and may act as an impediment to the effective use of the CAS (Pierce & 
Stacey, 2004).  

For example, to solve the equation x2 − 4 = 0 using Mathematica, the user has to use 
the double equal sign: Solve [x2 − 4 = = 0, x]. To define a function, f(x) = sin x, the 
user needs to use the single equal sign preceded by a colon: f[x_ ]: = Sin [x]. To 
define a constant, say area of a circle where r is radius the user enters: area = π*r2.  
On the other hand, CAS can enable the production and transformation of 
mathematical signs. That is, CAS can be used to execute numerical operations, to 
generate graphs, to define functions and to manipulate symbols in a mathematical 
way. For example, even if the user does not yet know how to differentiate the Arcsine 
function, she can enter the command D[ArcSin[x], x] (symbolic register) and get the 
response 21/ 1 x−  (a treatment in the symbolic register). The user can use the new sign 
(within the CAS medium or not) to produce yet another sign, for example, a graph, 
which she may then use to produce yet another sign and so on. This is reminiscent of 
the notion of unlimited semiosis.  This production of mathematical signs by CAS 
depends largely on the initial production of signs by the individual using the CAS 
medium. Besides syntactical concerns, the user may need knowledge of specific 
properties of the mathematical object. (For example, to plot a graph of the Arcsine 
function, she needs to know the domain of Arcsine.)  
But the crucial point is that the learner, given sufficient knowledge of the CAS syntax 
and the mathematics, may use the CAS to produce new mathematical signs. These 
new signs may enable her to recognise the same object in different registers thus 
enriching or supporting her conception of the mathematical object. That is, different 
representamen may enable the user to construct different interpretants for the same 
object. In this way the learner can construct or deepen her knowledge of the 
mathematical object.    
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EXAMPLE OF SEMIOTIC ANALYSIS OF STUDENTS ENGAGING               
IN A CAS-BASED TASK  
In this brief example, I hope to demonstrate how a semiotic perspective provides the 
researcher or teacher with a fresh insight into students’ activities with a CAS. In 
particular I demonstrate how learners use various signs to generate yet new signs. 
These new signs with their new interpretants eventually enable appropriate 
mathematical activity.  
The Context and Task 
Mathematica was introduced several years ago into the first−year Mathematics Major 
Course at the South African university at which I lecture mathematics. Every two 
weeks students use this CAS during a tutorial to solve mathematical problems and to 
consolidate or anticipate new mathematical material.  
Near the end of the previous academic year all students in the class were given an 
assignment. The assignment was designed to introduce students to the concept of the 
Maclaurin polynomial before the students had been introduced to the concept in 
regular mathematics lectures. The assignment involved the use of CAS and paper and 
pencil.  

Five pairs of volunteer students were audio−taped (a pair at a time) while working on 
this mathematical assignment. The CAS keystrokes were recorded by Bulent 
software. I took field−notes during the recordings which took place at a computer in 
my office. 
In the episode below, Temba and Sipho are working on a particular task from this 
assignment. Previously in the assignment they had to generate, symbolically and 
graphically, the quadratic approximation (second order Maclaurin polynomial) p, of 
f(x) = Cos x given that p(0) = f(0), p’(0) = f ’(0) and p”(0) = f ”(0). They did this 
successfully and found that p(x) = 1 – ½ x2. They now proceed with the following 
task: 
 

Determine the values of x for which the quadratic approximation p(x) found above 
is accurate to f(x) within 0.1.  

[Hint: Graph the functions, f(x) = cos x, y = p(x) and y = cos x + 0.1, y = cos x − 
0.1 on a common screen.] 

 
Activities and Analysis 
After some discussion about the meaning of the question in the task, Temba and 
Sipho plot all four graphs on one screen, as per the hint. They use domain (−4π, 4π). 
This results in a picture (Figure 1) in which all four graphs are very close together; it 
is consequently difficult to distinguish one graph from another.   
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Figure 1. 

Despite this Temba and Sipho are able to generate several meaningful signs from 
these CAS-generated graphs.  

1. Temba: No! What’s happening there (referring to screen, ie Figure 1).  
2. Sipho: I’m not too sure. Okay, oh ya.  
3. Temba: Oh ya.  
4. Sipho: I can see what is happening. It’s shifted in two directions.  
5. Temba: Oh. The centre one. The one in the centre. If you can see. That’s probably 

the Cos one, Cos x. And then minus 1 for the bottom one. Minus 0.1, I mean. And 
plus 0.1. 

6. Sipho: They are saying: which values of x… its accurate to within 0.1. 
Wouldn’t that be where they intersect? Do you see what I am saying? Like you 
have this one. 

7. Temba: Um 
8. Sipho: You have, you have a Cos graph coming like this. And you have Cos 

plus 0.1 and you have Cos minus 0.1 (drawing with pencil the four graphs − 
Figure 2). Then you have this quadratic estimate over here. 

:   
9. Temba: Okay do you see at this end… I’d say, um. You see where… what will, 

what will the quadratic do here. Won’t it cut the Cos minus 0.1 there. And then 
not go into these graphs? Right? (Looking at hand−drawing and screen). 

: 
10. Temba: Like what I am trying to say to you is, we must equate our p(x) to that 

point there and this point here (darkening points of intersection on Figure 2). So 
it’s in between there… the values where it is accurate. 

Analysis: At first Temba & Sipho struggle to interpret the graphical sign (Figure 1) 
that they have generated with the CAS (lines 1 – 3). But in line 4, Sipho “sees what is 
happening” (the interpretant) which he partially explains (line 4) using the language 
register. Temba elaborates further (line 5) by explaining correctly that the centre 
graph is Cos x, and that the lower graph is Cos x − 0.1.  
In line 6, Sipho rhetorically asks: “Wouldn’t that be where they intersect?” 
Presumably this question (a sign in the language register) is consequent upon 
previous interpretants. Also this question anticipates eventual mathematical activity 
(finding the points of intersection of two graphs).  
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Sipho goes on to generate yet another graphical sign (line 8) using paper and pencil. 
In this drawing (Figure 2), he sketches the four graphs with the points of intersection 
of p(x) and Cos x − 0.1 highlighted. This new graphical sign both depends on the 
previous signs (with their interpretants) and looks forward to the generation of future 
signs.  (This hand-drawn graph represents a similar object to that of Figure 1, but 
with a different domain and scale. Possibly Sipho chooses to hand-draw rather than 
generate the graphs with CAS due to a lack of confidence with CAS?)  
 

        
Figure 2. 

 
After further discussion about points of intersection (omitted here), Temba argues 
correctly that the p(x) graph will only cut the Cos x – 0.1 graph (line 9). A little later 
(line 10) he is able to transform this sign (interpretant) into an appropriate plan of 
mathematical activity (equate p(x) to Cos x −0.1).   
Due to space constraints, I cannot provide further transcript for analysis. Suffice to 
say that the students generate further CAS graphs (consisting of p(x) and Cos x–0.1 
on a single set of axes). Consequent upon the generation of these signs (with their 
new interpretants) they use the appropriate command, FindRoot (symbolic register in 
CAS), to find the points of intersection of p(x) and Cos x – 0.1. They are then able to 
infer the values of x for which p(x) approximates Cos x to within 0.1.     
DISCUSSION  
In the above episode we see how the students initially use the CAS as a tool to 
transform the instructions (signs) in the task (in symbolic and language register) into 
signs in the graphical register. The students’ interpretation (the interpretants) of the 
CAS-based graphical sign leads them to successfully generate further signs (in 
language register and paper-and-pencil and CAS graphical registers). The 
interpretation of these further signs ultimately leads to their finding the relevant 
points of intersection using the symbolic register in CAS. 
This semiotic analysis illustrates my elaboration of Duval’s argument: Seeing the 
same mathematical object (in this case, the values of x for which the quadratic 
approximation p(x) is accurate to f(x) within 0.1) using different representamen (in 
graphical and language registers primarily) enables the learner to construct different 
interpretants (for the same object) and consequently to embark on an appropriate 
course of mathematical activity.  
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CONCLUDING SUMMARY 
I have argued and demonstrated that CAS is a tool for semiotic activity. Within this 
framework, I have examined one small episode of students using CAS and paper and 
pencil. Drawing on Duval’s (2006) notion of the cognitive paradox, I have 
demonstrated how the movement between signs in different registers and media 
facilitates mathematical activity. Implications for designing CAS−based tasks include 
the use of activities which exploit CAS’s multi−representation affordances.  
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TEACHERS’ AND THEIR STUDENTS’ PERCEPTIONS OF THEIR 
MATHEMATICS CLASSROOM ENVIRONMENTS 

Kim Beswick 
University of Tasmania 

 
Teacher and student versions of the same instrument were used to compare the 
perceptions of their classroom environments of a sample of mathematics teachers 
with those of their students. Overall the data suggest that the teachers had realistic 
views of the extent to which their classrooms conformed to constructivist principles, 
but significant differences were found for a one quarter of the items suggesting 
aspects of the classroom environment that may warrant consideration by teachers. 
Teachers’ descriptions of ideal and typical mathematics lessons provided insights 
into factors that teachers perceived as constraining their capacities to create the 
kinds of classroom environments that they wanted and suggest possible reasons for 
the discrepancies between their’s and their students’ perceptions. 
LITERATURE & BACKGROUND 
Classroom environment refers to the overall psychological and social context of the 
classroom (Fraser, 1991) and is the net result of myriad cognitive, affective and social 
elements to which teachers and students alike contribute (Shuell, 1996). Considerable 
research has found that students learn more effectively when their perceptions of their 
classroom environments are positive (Dorman & Ferguson, 2004) and instruments 
have been developed to measure particular aspects of classroom environments. 
Among these is the Constructivist Learning Environment Survey (CLES), used in the 
study reported here, which was designed to measure the extent to which the 
classroom environment is consistent with a constructivist view of learning (Taylor, 
Fraser, & Fisher, 1993). 
As a theory of learning, constructivism does not prescribe particular teaching 
practices, but it is possible to identify principles or beliefs, held by the teacher, that 
are consistent with a constructivist view of learning and which are necessary for the 
creation of a constructivist classroom environment (Pirie & Kieren, 1992). For 
example, Pirie and Kieren (1992) asserted that the teacher must recognise: the 
differing mathematical understandings that students bring with them; the 
unpredictability of students’ learning; that there is more than one pathway to 
understanding a given mathematical concept; and that for any topic various levels of 
understanding exist and that the process of coming to understand is never 
completed.  
Consistent with this, the subscales of the CLES comprise a set of broad aspects of a 
classroom environment that could be described as constructivist. Each could be 
manifested in a variety of ways and hence do not relate to specific pedagogical 
practices. They were described by Taylor et al. (1993, p. 6) as follows: 
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Autonomy: Extent to which students control their learning and think independently. 
Prior Knowledge: Extent to which students’ knowledge and experiences are 

meaningfully integrated into their learning activities. 
Negotiation: Extent to which students socially interact for the purpose of negotiating 

meaning and building consensus. 
Student-Centredness: Extent to which students experience learning as a personally 

problematic experience. 

Recent and ongoing curriculum reform efforts in many places are also underpinned 
by constructivist views of learning. In this environment it is increasingly important 
that teachers understand the implications of constructivism for their teaching and are 
able to incorporate aspects like those identified in the subscales of CLES into their 
mathematics classroom environments. In Australia, where this study was conducted, 
mathematics is regarded as the discipline that underpins the development of 
numeracy, and it is numeracy, with its inherent emphasis on the application, 
relevance, and usefulness of mathematics, which is central to the curriculum. For 
students to appreciate the usefulness of mathematics, its applications need to be 
included in curricula (National Council of Teachers of Mathematics (NCTM), 2000) 
and connections made with the lives and interests of students (Wiske, 1998).  
Consistent with social constructivist learning theories, the value of student talk has 
been highlighted in policy documents (e.g., Department of Education Training and 
Youth Affairs, 2000), curriculum documents (e.g., DoET, 2002) and in research 
reports and advice for teachers (e.g., Watson, De Geest, & Prestage, 2004). Amit and 
Fried (2005) linked the control of classroom talk with the control of ideas and the 
notion of shared authority which they saw as consistent with constructivism, and 
which are implicit in the Autonomy, Negotiation and Student-Centredness subscales 
of the CLES.  
Differences between mathematics classrooms and those in other school subjects have 
been attributed to the prevalence of such beliefs as, there is just one way to solve 
mathematics problems, and that achievement in mathematics is more strongly related 
to innate ability than is achievement in other subjects (Ryan & Patrick, 2001). These 
beliefs are at odds with the constructivist views of learning that underpin ongoing 
reform efforts in mathematics teaching and hence consideration of the extent to 
which teachers and students perceive their mathematics classrooms to conform to 
constructivist principles indirectly reflect the prevalence of those beliefs (Beswick, 
2005). Comparisons of teachers’ and students’ perceptions raise questions about the 
particular features of classroom life to which the two groups are attending in forming 
their perceptions and have the potential to alert teachers to aspects of their practice 
that students may be interpreting differently from them. 
Associations between students’ perceptions of various aspects of their mathematics 
classroom environments and behaviours likely to be important to their learning 
include: links between the social aspects of the environment and students’ 
engagement and motivation (Ryan & Patrick, 2001); and between classroom goal 
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structure and teacher discourse, and students’ tendency to use avoidance strategies 
(Turner et al., 2002) or other self-handicapping behaviours (Dorman & Ferguson, 
2004). One of few studies to have examined associations between students’ and 
teachers’ perceptions of their classroom environments (including mathematics) found 
that teachers perceived their students’ effort and use of strategies less favourably than 
did the students (Meltzer, Katzir-Cohen, Miller, & Roditi, 2001).  
THE STUDY 
The following questions provided the focus of the current study. 

• What differences are there between students’ and teachers’ perceptions of 
the extent to which their mathematics classroom environments can be 
described as constructivist? 

• What factors do teachers believe constrain their capacity to create their 
preferred mathematics classroom environments? 

Instruments 
Teacher and student versions of the CLES (Taylor, Fraser, & Fisher, 1993) were 
used. These differed very slightly with, for example, the word “students” in the 
teacher version replaced with “I” in the student version. Both instruments comprised 
28 items with seven contributing to each of the four subscales described by Taylor et 
al. (1993). Each item required a response on a 5-point Likert scale indicating the 
frequency, from Never (scored 1) to Very Often (scored 5), with which the respondent 
perceived the event described to occur.  
A sample of teachers were asked firstly to describe an ideal mathematics lesson, and 
then a typical one, in terms of  what they and the students would be doing, the 
physical environment, mathematics content, teaching methods, and resources. 
Participants and Procedure 
A total of 25 mathematics teachers (i.e., teachers with two or more mathematics 
classes) in 6 secondary (Grades 7-10) schools in one rural region were asked to 
complete the CLES (teacher version) for at least two of their mathematics classes. 
They then administered the CLES (student version) to all students in their classes. 
A number of teachers chose to complete just one version for two or more classes as 
they perceived the classroom environments in both/all to be essentially the same. 
Thirty teacher surveys were thus completed. Several teachers also administered the 
student version to just one class resulting in a total of 39 classes contributing data. 
Of these, 34 were also mentioned on the teacher versions. The 25 teachers had from 
1-38 years of teaching experience, 17 were male, 8 had studied mathematics to 
third year university level, including 3 with majors in the subject, and 4 had a 
Masters degree in education. The eight interviewed teachers were representative of 
the diversity of survey results and of the teaching experience, gender, and 
mathematics background of the 25 teachers, but included 3 of the teachers with a 
Masters degree. 
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RESULTS  
For the majority of classes the teachers scored the Student-Centredness scale lower 
than the other scales. The average totals for the four teacher version subscales were: 
Negotiation, 24; Prior Knowledge, 23; Student-Centredness; 15, and Autonomy; 23. 
The corresponding averages for the 39 classes were Negotiation, 23.7; Prior 
Knowledge, 22.1; Student-Centredness, 15.0 and Autonomy, 23.2. The average 
classroom environment, as perceived by both teachers and students, was therefore 
one in which students negotiated meaning through social interaction, were 
autonomous in their learning and thinking, and engaged in learning activities that 
were integrated with their prior experience and existing knowledge. However, 
students were perceived to be relatively unlikely to experience their learning as 
personally problematic. That is, teachers were regarded as primarily responsible for 
deciding on content, setting tasks and deadlines, and providing solution methods. 
Independent sample t-tests comparing the teachers’ responses and the average 
responses of students to individual items revealed significant differences for seven of 
the 28 items. Effect sizes were calculated as described by Burns (2000) and in each 
case were either medium or large. The 34 classes which completed the CLES (student 
version) and in relation to which their teacher completed a CLES (teacher version) 
were considered in this analysis. The results are shown in Table 1. 

CLES (teacher version) item 

Teacher 
Mean 
n=34 

Class 
Mean 
n=34 

Mean      
diff. (teacher 

-student) 
Std 

Dev. 
Sig. (2-
tailed) 

Effect 
size 

1. In this class students ask each 
other about their ideas. 

3.71 3.10 0.61 0.16 0.000** 0.92 

2. In this class I help students to 
think about what they learned in 
past lessons. 

3.88 3.08 0.80 0.12 0.000* 1.66 

3. In this class students think hard 
about their own ideas. 

3.50 3.82 -0.32 0.12 0.010* 0.65 

5. In this class students don’t ask 
other students about their ideas. 

2.00 2.49 -0.49 0.10 0.000** 1.14 

17. In this class students try to make 
sense of other students’ ideas. 

3.09 3.43 -0.34 0.14 0.017* 0.61 

18. In this class students learn about 
things that interest them. 

2.79 3.30 -0.50 0.13 0.000** 0.94 

24. In this class I insist that students 
complete activities on time. 

3.65 4.00 -0.35 0.12 0.005** 0.71 

*p<0.05.     ** p<0.01. 

Table 1. Significant differences between teacher and class average CLES responses 
Differences between the average perception of teachers and those of their classes 
concerning the frequency with which students asked one another about their ideas 
were significant (Items 1 and 5, p=0.000) with teachers more likely to perceive this as 
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a frequent occurrence. On average, the students were more likely than their teachers 
to believe that they tried to make sense of their peer’s ideas (Item 17, p=0.017) and 
that they thought hard about their own ideas (Item 3, p=0.010). Teachers were 
significantly more inclined than their students to believe that they often helped 
students to think about what had been learned in past lessons (Item 2, p=0.000), but 
less likely to consider that students often learned about things of interest to them 
(Item 18, p=0.000). Compared with their students, teachers tended to believe that 
they enforced deadlines for task completion less often (Item 24, p=0.005). 
Interview data were listed and clustered (Miles & Huberman, 1994) according to 
whether they referred to students, teachers or other factors, and then according to 
whether they referred to an ideal or existing situation, or were seen as a constraint on 
achieving the ideal. The factors mentioned more than once, and the numbers of 
mentions (sometimes more than once by the same teacher) are shown in Table 2. 

Ideally students… No. Constraints: students No.
would be motivated/engaged 5 Many students are unmotivated, especially; 

average/lower ability students (4), older 
students (2), after lunch (2) 12

would discuss their work 4 
could be trusted 3 
would sit and listen 2 Some students are disruptive 3 
would come up with 
problems for themselves 2 

Social/peer group more important than 
results/mathematics 2 

would be able to hypothesis 
and plan investigations 2 

You need to be quite rigid, discipline is poor 2 
Students don’t like thinking 2 

I actually try to… No. Constraints: teachers/ teaching No.

make students think 4 
Teachers need to understand the 
mathematics 3 

avoid telling students 
answers 3 

Teachers need to know students as learners 3 
Heterogeneous classes (grades 9 & 10) 3 

emphasise why we are doing 
things – more than utilitarian 2 

There is insufficient professional learning 
for teachers  2 

I would like to… No. Constraints: Other No.
make links to real people 
using and enjoying 
mathematics 2 

Some topics are not suited to practical tasks 6 
Lack of budget, resources, status  4 
Inadequate physical space 3 

  Irrelevant curriculum (grades 9 & 10) 2 
  Maths is not valued in society 2 

Table 2. Interview responses concerning ideal and typical mathematics lessons 
There were also single mentions that students ideally would; be challenged and 
stimulated, help one another, and be prepared to take risks. Individual teachers 
professed attempting to; use ambiguity and conflict to stimulate students’ thinking, 
listen more and talk less, emphasise the importance of mathematical communication, 
use positive relationships with students to motivate them, use practical tasks, work 
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with students on problems that he hadn’t already found answers to, and keeping 
students occupied. One teacher said that he would like to include some history of the 
ideas that they were dealing with in mathematics lessons. In terms of constraints there 
were single mentions of; the struggle that students have to volunteer their own ideas 
for investigation, students’ difficulties with communication, the need for older lower 
ability students to have life skills rather than other aspects of the curriculum, and 
some students’ tendency to gossip if allowed to talk. Individual teachers observed; 
that teachers are very isolated in their classrooms, that teaching as he would like 
required enormous amounts of preparation time, and that non-traditional teaching was 
exhausting. 
DISCUSSION  
The different directions of the differences between the average perceptions of 
teachers and their classes concerning the frequencies of students asking one another 
about their ideas (perceived by teachers as more frequent), and of students trying to 
make sense of each other’s ideas and thinking hard about their ideas (perceived by 
students as more frequent) suggests that teachers are more inclined than their students 
to judge student interactions as other than genuine efforts to understand. The fact that 
the most frequently mentioned constraint on achieving their ideal mathematics lesson 
was students’ lack of motivation is consistent with this. Indeed, many of the 
constraints mentioned related to students and their shortcomings. In all cases the 
teachers were referring to a subset of their students or to particular classes. In the 
latter case these were always lower ability or older students (grades 9 and 10). For 
example one teacher said, 

the [grade 7] class I’ve got at the moment, because they’re quite good, an enjoyable class 
to teach. They’re all sort of proactive and enthusiastic, but by nines and tens particularly 
the lower levels, I think their social and peer group’s are more important to them than 
probably, for a lot of them, than their, how would you say, their results or anything. 

It seems likely that teachers’ concern to maintain order, and the effort spent in 
attempting to motivate some students led to them more readily to associate student 
talk with off-task behaviour than perhaps was the case. 
All but the two interview responses (Ideally students would sit and listen) about the 
behaviours of students in an ideal lesson were consistent with constructivist ideas, as 
were all of the things that teachers professed to be trying to do and wanting to do. 
This suggests that these teachers were aware of and largely in agreement with reform 
thinking based on constructivist ideas.  
The constraints related to teachers and the demands and circumstances of their 
teaching were all offered by a total of four of the teachers, including all three with a 
Masters degree, with the majority coming from just two. It is likely that the further 
study (in education not mathematics) undertaken by these teachers had alerted them 
to broader issues in mathematics education. The six comments on the difficulty of 
using practical tasks for some topics were from other teachers, each of whom 
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illustrated their ideal lessons with descriptions of particular topics that they had 
taught in non-traditional ways. It could be that they lacked knowledge of how to 
teach other topics in similar ways. 
Amit and Fried (2005) contrasted the clear distinction, usually apparent in 
mathematics classrooms, between the one with authority (the teacher) and those 
under that authority (students), with the ideal of a community of mathematical 
thinkers (teacher and students) subject to the authority of the discipline. They 
connected this with traditional, but still prevalent, ideas about classroom control. At a 
practical level Watson et al. (2004) described specific ways in which teachers had 
moved towards a situation approaching Amit and Fried’s (2005) ideal, and 
acknowledged the opportunity that such changes could afford for off-task behaviour, 
and need for perseverance on the part of the teacher in establishing new work habits 
in their classrooms. Concerns about students’ behaviour, and teachers’ conception of 
their role, particularly in terms of the nature of their authority, could be important 
obstacles to the creation of constructivist classroom environments. Differences 
between teachers’ and their classes’ perceptions concerning who decided when tasks 
should be completed may also be linked with these concerns. 
The finding that teachers were less inclined than their classes to believe that students 
often learned about things that interested them, may indicate that the emphasis on 
relevance found in recent curriculum documents has been effective in raising 
teachers’ awareness of the importance of this issue. Alternatively, it could suggest 
that students are less concerned about this than has been assumed, although other 
researchers (e.g., Bay, Beem, Reys, Papick, & Barnes, 1999) have reported positive 
student responses to curricula including “real-world” applications. 
CONCLUSION 
This study revealed discrepancies between the perceptions of teachers and their 
classes regarding the extent to which their classroom environments can be described 
as constructivist. Most of the teachers in this study aspired to create constructivist 
environments but felt constrained by a range of factors, principally unmotivated 
students and their concerns for the implications of this for student behaviour. Future 
research, including studies incorporating the voices of students, is needed to further 
unpack the particular features that contribute to these perceptions. 
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This paper examines primary classroom teachers’ preparedness of implementing a 
new curriculum model. The new curriculum displays a paradigmatic shift from a 
behaviourist approach to more of a constructivist one. The development of problem 
solving skills is particularly emphasised in the new curriculum. Two questionnaires 
including items on students’ different solution strategies to problems are applied to 
roughly 500 teachers to seek how teachers value and make sense of different 
strategies. The data reveals that the teachers are not open to different strategies, 
have difficulties in evaluating students’ responses to the open-ended questions and 
experience serious mathematical difficulties in assessing students’ solutions. We 
discuss issues raised by the findings with regard to the curriculum implementation. 
INTRODUCTION  
Dissatisfaction with the long-lasting poor conditions of the educational system has 
compelled the Turkish Ministry of National Education to put the system in the 
primary level under close scrutiny. Parties concerned with the poor conditions of the 
system have decided that what need to be done is more than just window dressing. A 
paradigmatic shift regarding how learning and teaching are viewed and conducted 
was considered to be necessary. Endeavours in this direction eventually, 
unsurprisingly, resulted in a massive curricular change at primary level (MEB, 2004).  
In Turkey, primary education lasts for eight years. Students are taught by one 
classroom teacher in the first five years and different teachers who are specialists in 
their subject areas in the last three years. Compared with the previous one, the new 
school mathematics curriculum for the first five years in which we are interested in 
this paper displays a shift from a behaviourist approach to the one with constructivist 
flavour (Babadogan & Olkun, 2005). It proposes fundamental changes in learning, 
teaching and assessment. It adopts a student-centred approach where students are 
active in their learning. More emphasis is placed upon conceptual understanding 
rather than procedural one. Such macro skills as problem solving, reasoning, 
communications and use of technology are emphasised (ibid.).  
Teachers’ roles are redefined and new roles are assigned to them. They are deemed as 
facilitators rather than sole transmitters. Teachers are expected to conduct activity-
based teaching in which students are encouraged to reason, work cooperatively, 
communicate with others and share their ideas. The new curriculum also proposes 
changes in terms of how assessment is conducted. Process and performance-based 
evaluation rather than product evaluation is emphasised. Students’ performance 
evaluation with such tools as portfolios and projects is suggested.   
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The curricular change works started in 2004. The new curriculum was piloted in the 
academic year of 2004-2005 and started to be implemented in 2005-2006 nationwide. 
Classroom teachers were trained only for a week to get to know about the whole new 
primary school curriculum. As mentioned above, the new curriculum particularly 
defines and determines new roles for teachers that they were never used to before. 
With little training, it is not known how well equipped classroom teachers are to 
handle their new roles. This study takes a step in this direction and aims to shed light 
on this issue. The question of how we do this is the focus of following two sections.  
THE THEORETICAL FRAMEWORK OF THE STUDY 
A curriculum with its philosophy behind, at least theoretically, defines and 
determines roles for students, teachers, school administrators and parents. It does 
shape how textbooks are written, which technologies and teaching tools are going to 
be employed, and how teacher education programmes are/should be designed. A 
curriculum change, therefore, means changes in all these parameters’ roles or uses.  
The literature provides evidence that change in a curriculum does not necessarily 
mean a change in the actual classroom practices (e.g. Ball&Cohen, 1996). Cuban 
(1992) uses the terms ‘intended’ and ‘taught’ curriculum to draw attention to this 
issue and notes that change in the intended curriculum does not easily reflect itself in 
delivery in classrooms. Papert (2000) also points to difficulties of implementing a 
new curriculum with the idea(s) behind it. He claims that when ideas go to school 
they lose their power and are subjected to disempowerment. He notes his appreciation 
and shares intentions of contemporary movements of school reform but claims that 
“in practice these would-be reform movements have allowed themselves to be 
assimilated to School’s way of thinking and in the end bolster rather than reform the 
fundamentals of School mentality they set out to reform” (p. 722). 
The reason that the ideas lose their power or meet resistance when they enter the 
school is perhaps because they enter an institution in which institutional rules are 
already well-established, organisational patterns are firmly structured, space and time 
utilisation is well configured, and roles and authority relations are customarily 
appropriated (Waks, 2003). A new curriculum with a powerful idea behind it means 
introducing new institutional rules and therefore fundamental changes in all these 
parameters (Cuban, 1992). Any attempt in this direction would perhaps encounter the 
resistance of ‘the establishment’ particularly formed by the school teachers and 
administrators (Waks, 2003). The resistance against the implementation of a new 
curriculum does not come solely from within. Such external factors as standard 
textbooks, achievement tests and university admission requirements can also hinder 
the implementation of a new curriculum (ibid.).  
The related literature suggests that one of the main reasons that new curricula have 
not a deep influence on school practice is because the influences of teachers on their 
curriculum had been neglected too often by curriculum researchers and designers (e.g 
Manouchehri & Goodman, 1998). The lack of research on teacher influence has since 
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forced researchers to examine how teachers cope with the demands of new curricula 
(e.g. Manouchehri, 1998). A large body of studies have come into being particularly 
examining teachers’ beliefs, practices (e.g. Middleton, 1999), their subject matter and 
pedagogical content knowledge with reference to new curricula (e.g. Manouchehri, 
1998; Ball & Bass, 2003). These studies suggest that teachers’ beliefs, experiences, 
personal theories, level of content and pedagogical content knowledge all have 
influences on how they teach and implement a curriculum. 
Teachers surely have the chief role in the implementation of a new curriculum. With 
the new curriculum model in Turkey, the big idea is to shift learning and teaching 
from a behaviourist approach to more of constructivist one. This assigns dramatically 
new roles and responsibilities to teachers. Development of problem solving skills is 
one aspect that is particularly emphasised and teachers are expected to create 
classroom environments in which students’ non-standard solutions to open-ended 
problems are encouraged. In this study, we aim to explore how well-equipped 
classroom teachers are to take up their new role in this regard through the following 
two research questions.  

• How open are the primary classroom teachers to different solution strategies 
to mathematical problems? 

• How do primary classroom teachers evaluate students’ responses to the open-
ended questions?  

THE CONTEXT AND METHODOLOGY OF THE STUDY 
The project that gave rise to this paper set out to investigate the level of preparedness 
of classroom teachers in coping with the demand of the new curriculum. We aimed to 
explore this in two phases: (1) to elicit a large group of teachers’ preparedness 
through questionnaires; (2) to follow a small representative sample of the teachers in 
the classroom settings to see how they get on with the new curriculum. The data we 
provide in this paper comes from the first phase. 
Two questionnaires with open-ended questions were developed to seek whether 
teachers themselves are actually open to non-standard solutions and value them. Both 
questionnaires included items regarding mathematical concepts covered in primary 
school mathematics curriculum. In this paper, due to space limitations, we focus only 
on one item from each questionnaire. The first item is related to multiplication (item-
1) and the second one is concerned with the calculation of the area of a rectangle 
(item-2). In both items, teachers are presented with students’ different solutions to the 
problems and asked to evaluate these fictional solutions. 
 
Item-1: 
 
 

x  

32 
25 

Below students’ three different responses to this multiplication are 
presented. All three students have reached the same result. Please 
evaluate each response and explain which one or ones you would 
accept as an answer and why? (adopted from Ball & Bass, 2003). 
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Item-2: Fourth and fifth grade students are presented with following problem: 
What can be the dimensions of a rectangle with exactly half 
the area of this rectangle? Please explain your answer.   
The responses of two students to this problem are presented 
below. How would you grade these responses over a range 
from 0 to 10 and please explain why? (adopted from 
Hansen et al., 2005). 

 
 Student’s Answer and Explanation  Score Reason 

Student 
K 

To find out half area of the rectangle, I do 

this:
5

2
46
=

+

. Then each dimension can be 5 cm.

  

Student 
L 

“I would have the half of each dimension: 6÷ 2 
= 3   and   4÷2 = 2. Then I would come up with 
a rectangle with a one side being 3 cm and the 
other 2cm”. And draws the following figure:   
 
 

  

The first questionnaire that included item-1 was applied to approximately 300 
classroom teachers and we had 216 returns. The second questionnaire that included 
item-2 was applied to approximately 200 teachers and we had 177 returns. Of them, 
148 teachers responded to item-2. The participating teachers differed in terms of the 
years of teaching experiences ranging from 2 to 35 years. Those teachers taking the 
first questionnaires were working in 104 different schools in a large province and 
those taking the second one were working in 10 different schools in three different 
provinces in Turkey.  
DATA ANALYSIS AND RESULTS 
This section presents data analysis and results concurrently. The analysis and related 
results of each item are provided respectively. 

4 cm 

6 cm 

x  

32 
25 

160 
64 

+  

800 

A 
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   150 
   40 
   600 
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With regard to item-1, a frequency analysis is first carried out to determine the 
number of teachers accepting any of solutions of A, B, C; both of any A, B, C; or all 
of them. Table 1 shows that a vast majority of teachers (67%) states that they would 
accept only solution A, 15% accept both A and B, and only 17% accept all A, B, and 
C as an answer to the multiplication problem. 

         A     A&B A&B&C No answer     Total  
Number 
Percentage  

    145  
   67% 

      33 
    15% 

    36 
   17% 

      2 
     1% 

     216 
   100% 

Table 1: Teachers’ responses (frequencies–percentages) to item-1 
A further analysis is conducted on those teachers who cited accepting only solution 
A. The aim was to find out why they would accept only solution A. This analysis 
consisted of repeated readings of participants’ reasons for accepting solution A. The 
analysis eventually generated five categories which encompass the teachers’ 
reasoning for their choices (Table 2):  

Categories Explanations for categories 
Rule Teachers cite algorithmic rule of multiplication 
Practical Teachers cite responses like “Solution A is easy, practical and 

take little time” 
B and C being 
difficult 

Teachers’ finding these solutions difficult and complex to 
understand or/and teach 

Accept A but 
listen to B and C  

Teachers cite to be open to both B and C solutions but would 
accept only A as an answer 

Not categorised No reasoning or statements like “I accept only solution A” 

Table 2: Analysis of teachers’ reasoning for accepting only solution A in item-1 
Establishment of the categories is carried out by two researchers simultaneously and 
100% agreement was reached for every teacher’s response to a category. Frequencies 
of these categories are presented in Table 3 below. Note that some responses fall 
under more than one category and hence the total percentage exceeds 100%. 

Those teachers who accept only solution A (145) 
 
 
Number 
Percentage  

Rule Practical   Accept A but  
 listen to B and C 

B and C being 
 difficult  

    Not 
categorised 

79 
54% 

39 
27% 

16 
11% 

17 
12% 

20 
14% 

Table 3: Responses of teachers who only chose solution A in item-1 
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Of those teachers who state to accept only solution A, 54% cites rule and 39% cites 
practicality in explaining their reasons (Table 3). Only 11% of the teachers indicates 
to listen to B&C solutions too and 12% finds these two solutions difficult. 
With regard to item-2, it was applied to 144 teachers to see how teachers view 
different solutions to open-ended questions, how they evaluate erroneous student 
answers, whether they are aware of, and able to propose any remediation to, common 
student misconceptions. A frequency analysis is first conducted to determine how 
teachers grade student K and L’s responses over a range from 0 to 10 (Table 4). 

Scores 0 1 2 3 4 5 6 7 8 9 10 

Student 
K 

76 
51% 

13 
9% 

7 
5% 

7 
5% 

5 
3% 

13 
9% 

4 
3% 

3 
2% 

4 
3% 

1 
1% 

15 
10% 

Student 
L 

35 
24% 

4 
3% 

6 
4% 

6 
4% 

6 
4% 

18 
12% 

3 
2% 

3 
2% 

1 
1% 

0 
 

65 
44% 

Table 4: Teachers’ responses (frequencies–percentages) to item-2 
The data reveals that teachers graded students’ wrong responses for different reasons 
over a range from 0 to 10. For solution K, 51% of the teachers gave a score of 0, 10% 
gave a score of 10 and the rest ranged between. For solution L, 44% of the teachers 
unexpectedly gave a grade of exact 10 to the wrong response of the student L, 24% 
gave a grade of 0 and the rest ranged from 1 to 8. Those teachers who knew that the 
responses were wrong but gave grades from 1 to 5 provided various reasons including 
“because at least students attempted to solve the problem”, “as an encoura-gement or 
award”, and “because the student knows at least how to calculate the area”.  
DISCUSSION 
The results, overall, have shown that classroom teachers are not open to different 
solution strategies to mathematical problems (Table 1), have difficulties in evaluating 
students’ responses to the open-ended questions, and experience serious difficulties in 
assessing whether student solutions to open-ended problems are mathematically 
correct or not (Table 4). Further examination of teachers’ reason reveals that they 
value ‘routine’, ‘rule’ and ‘practical’ aspects of mathematical solutions (Table 3).  
We interpret these findings as signalling three potential difficulties in the 
implementation of the new curriculum. The first one is related to the classroom 
teachers’ difficulties in mathematics. This is particularly evident in the teachers’ 
evaluation of student L’s wrong response to item-2 to which 44% of teachers gave a 
grade of exact 10 (see Table 4). Such a high percentage was unexpected to us and we 
do not, on the basis of our data, tend to over-generalise this trend to the whole 
primary teacher population in Turkey. Yet this is an important proportion and points 
to a possible source of challenge, that is lack of mathematical content knowledge, in 
implementing the new curriculum. These findings, in fact, before anything else, raise 
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concern with regard to the competency of the teachers’ teaching mathematics to the 
students let alone the implementation of the reformed curriculum. 
The second challenge, as our data indicate, is related to the issues of assessment of 
students’ non-standard solutions to open-ended questions. The new curriculum puts a 
heavy emphasise on the use of open-ended questions for both formative and 
summative assessments. Yet asking and expecting teachers to employ open-ended 
questions is one thing but using such questions during instruction and in exams is 
quite another. Open-ended questions mean variations and unexpected responses in 
students’ solution strategies to the questions that sometimes raise challenges for 
teachers to make sense. The teachers’ responses to item-1 clearly show that teacher 
tend to privilege rule-based and practical solutions and have difficulties in making 
sense of different (but correct) solutions (see Table 3). Further to this, on what bases 
responses to open-ended questions would be evaluated especially if students make an 
effort to answer? Responses to the item-2 show great variations even in grading of 
those who found the solutions wrong. For instance, 51% of teachers graded solution 
of student K in item-2 with 0 and expressed that because it was wrong. Yet student 
K’s solution also received the grades ranging from 1 to 5 from those teachers who, 
while stating the inaccuracy of the solution, noted that “the student at least tried”. 
This variation in our view is important as the grades send signals to the students what 
is valued (mathematical accuracy or making effort). To some extent a certain level of 
variation might be understandable for subjective judgements yet this indicates lack of 
assessment criterion which teachers draw on in the evaluation of students’ work.  
The third one is related to overall teachers’ already formed personal theories, views, 
orientations and beliefs with regard to mathematics, its learning and teaching. This is 
particularly evident in the teachers’ reasons for choosing solution A in item-1 in that 
some appear to hold the view that solutions to mathematics problems should take 
little time, be practical and employ procedural rules. Of these teachers, for instance, 
one cites to accept only solution A “because there is only one way to the truth (right 
conclusion)” and another one cites not to accept B and C as correct answers and if his 
students “attempt to do the multiplication like in B and C, he would interfere at the 
very beginning not to do so”. This stance, in fact, is sharply in conflict with what the 
new curriculum sets out to achieve, which encourages teachers to “create classroom 
environments in which students can bring different solutions to the posed problems 
so that students learn to value different solution strategies in the process of problem 
solving” (MEB, 2004, p. 11). Our findings, however, suggest that most teachers 
themselves are not appreciative of and do not value non-standard solution strategies.  
We do not see classroom teachers’ mathematical difficulties and problems arising 
from these with regard to assessment and not being open to non-standard approaches 
in learning and teaching just being peculiar to Turkey. There is evidence that teacher 
difficulties in mathematics and other aspects especially at primary level is a reality all 
around the world (e.g. see Ma, 1999; Manouchehri, 1998). This might be understand-
able given the fact that these teachers are not specialised in mathematics and 
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responsible for teaching different subjects. Yet we, as mathematics educators, need to 
take these difficulties seriously and to search ways of improving in-service primary 
teachers’ mathematical content knowledge in a wide scale, probably nationwide. This 
certainly requires serious consideration about not only the content of such in-service 
courses but also methods of implementing them. Achieving this collaboration at an 
international level could be a possibility and perhaps a necessity. Without attending 
to teachers’ mathematical difficulties in the first place, in the words of Papert (2000), 
curricula changes with its big idea behind (in Turkish case this being constructivism) 
would meet resistance from the teacher and run the risk of giving into the school way 
of thinking, losing its power and hence being disempowered.  
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VISUALISATION: THE TANGENT AT AN INFLECTION POINT 
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The role of visualisation in the mathematical reasoning teachers present to students 
may be influenced by several factors (e.g. mathematical, epistemological and 
pedagogical). Our study explores these potential influences through engaging 
teachers with tasks that invite them to: reflect on/solve a mathematical problem; 
examine flawed (fictional) student solutions; and, describe, in writing, feedback to 
students. Teachers are also interviewed. We discuss responses to one Task (which 
involved recognising a line as a tangent to a curve at an inflection point) of 91 
teachers in order to explore the influence on the teachers’ feedback to students of: (i) 
persistent images of the tangent line; (ii) beliefs about the sufficiency of a visual 
argument; and (iii) beliefs about the role of visual arguments in student learning. 
INTRODUCTION 
In the last twenty years or so the debate about the potential contribution of visual 
representations to mathematical proof has intensified (e.g. Mancosu et al, 2005), not 
least because developments in IT have expanded this potential so greatly. Central to 
this debate is ‘whether, or to what extent, visual representation can be used, not only 
as evidence or inspiration for a mathematical statement, but also in its justification’ 
(Hannah & Sidoli, 2007, p73). Recent works (e.g. Giaquinto, 2007) argue that visual 
means are much more than a mere aid to understanding and can be resources for 
discovery and justification, even proof. Whether visual representations need to be 
treated as adjuncts to proofs, as an integral part of proof or as proofs themselves 
remains a point of contention. 
Within mathematics education the body of work on the important role of visualisation 
has also been increasing and has been focusing on issues as diverse as: curriculum 
development with an emphasis on visualisation (and often on related IT); 
mathematicians’ perceptions/use of visualisation; students’ seeming reluctance to 
engage (and difficulty) with visualisation; gender differences; links with embodied 
cognition; etc. – see Presmeg (2006) for a substantial review. Overall we still seem to 
be rather far from a consensus on the many roles visualisation can play in mathematical 
learning and teaching. So, while many works clearly recognise these roles, several (e.g. 
Aspinwall et al, 1997) also recommend caution with regard to ‘the ‘panacea’ view that 
mental imagery only benefits the learning process’ (p315). One of the aims of the study 
we report in this paper is to explore the role of visualisation with particular reference to 
the reasoning and feedback that teachers present to students. To do so we first 
introduce the study briefly and then discuss some of our data. 
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THE STUDY AND THE TANGENT TASK  
The data we draw on in this paper originate in an ongoing study in which we invite 
teachers to engage with mathematically/pedagogically specific situations which have 
the following characteristics: they are hypothetical but likely to occur in practice and 
grounded on learning and teaching issues that previous research and experience have 
highlighted as seminal. The structure of the tasks we ask teachers to engage with is as 
follows – see a more elaborate description of the theoretical origins of this type of 
task in (Biza et al, 2007): reflecting upon the learning objectives within a 
mathematical problem (and solving it); interpreting flawed (fictional) student 
solution(s); and, describing, in writing, feedback to the student(s). 
In what follows we focus on one of the tasks (Fig. 1) we have used in the course of the 
study. The Task was one of the questions in a written examination taken by candidates 
for a Masters in Mathematics Education programme. Ninety-one candidates (of a total 
105) were mathematics graduates with teaching experience ranging from a few to 
many years. Most had attended in-service training of about 80 hours. The first level of 
analysis of the scripts consisted of entering in a spreadsheet summary descriptions of 
the teachers’ responses with regard to the following: perceptions of the aims of the 
mathematical exercise in the Task; mathematical correctness; interpretation/evaluation 
of the two student responses included in the Task; feedback to the two students. 
Adjacent to these columns there was a column for commenting on the means the 
teacher used (verbal, algebraic, graphical) to convey their commentary and feedback to 
the students across the script. The discussion we present in this paper is largely based 
on themes that emerged from the comments recorded in this column. In addition to the 
scripts we also collected data through interviewing a selection of the participating 
teachers: their individual interview schedules were based on the first level analysis 
briefly described above. Interviews lasted approximately 45-60 minutes. 
The mathematical problem within the Task in Fig. 1 aims to investigate students’ 
understanding of the tangent line at a point of a function graph and its relationship 
with the derivative of the function at this point, particularly with regard to two issues 
that previous research (Biza et al, 2006; Castela, 1995; Vinner, 1991; Tall, 1987) has 
identified as critical: 

• students often believe that having one common point is a necessary and 
sufficient condition for tangency; and, 

• students often see a tangent as a line that keeps the entire curve in the same 
semi-plane. 

The studies mentioned above attribute these beliefs partly to students’ earlier 
experience with tangents in the context of the circle, and some conic sections. For 
example, the tangent at a point of a circle has only one common point with the circle 
and keeps the entire circle in the same semi-plane. 
Since the line in the problem is a tangent of the curve at the inflection point A the 
problem provides an opportunity to investigate the two beliefs about tangency 
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mentioned above − similarly to the way Tsamir et al (2006) explore teachers’ images 
of derivative through asking them to evaluate the correctness of suggested solutions. 
Under the influence of the first belief Student A carries out the first step of a correct 
solution (finding the common point(s) between the line and the curve), accepts the 
line tangent to the curve and stops. The student thus misses the second, and crucial, 
step: calculating the derivative at the common point(s) and establishing whether the 
given line has slope equal to the value of the derivative at this/these point(s). Under 
the influence of both beliefs, and grounding their claim on the graphical 
representation of the situation, Student B rejects the line as tangent to the curve.  

Year 12 students, specialising in mathematics, were given the following exercise: 

‘Examine whether the line with equation y = 2 is tangent to the graph of function f, 

where
3( ) 3 2f x x= + .’ 

Two students responded as follows: 

Student A 

‘I will find the common points between the line and the graph solving the system: 
3 3 3 03 2 3 2 2 3 0

22 2 2
xy x x x
yy y y
=⎧ ⎧ ⎧= + + = = ⎧

⇔ ⇔ ⇔⎨ ⎨ ⎨ ⎨ == = = ⎩⎩ ⎩ ⎩  
The common point is A(0, 2). 

The line is tangent of the graph at point A because they have only one common point 
(which is A).’ 

Student B 

‘The line is not tangent to the graph because,  

even though they have one common point,  

the line cuts across the graph, as we can see  

in the figure.’  

 

 

 

a. In your view what is the aim of the above exercise? 

b. How do you interpret the choices made by each of the students in their responses 
above? 

c. What feedback would you give to each of the students above with regard to their 
response to the exercise? 

Figure 1. The Task. 
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With regard to the Greek curricular context, in which the study is carried out, the 
Year 12 students (age 17/18) mentioned in the Task have encountered the tangent to 
the circle in Year 10 in Euclidean Geometry and the tangent lines of conics in 
Analytic Geometry in Year 11. In Year 12, they have been introduced to the tangent 
line to a function graph as a line with a slope equal to the derivative of the 
corresponding function at the point of tangency. Although in Years 11 and 12 the 
tangent is introduced as the limiting position of secant lines, this definition is rarely 
used in problems and applications. 
One of the themes that emerged from the comments recorded in the spreadsheet with 
regard to the means the teachers used (verbal, algebraic, graphical) to convey their 
commentary and feedback to the students concerned the beliefs (epistemological and 
pedagogical) of the teachers about the role of visualisation. For example, with regard 
to the teachers’ evaluation/interpretation of Student B’s solution and feedback to 
Student B we explored questions such as: does the teacher turn the student away from 
the graphical approach (which may have led the student to an incorrect claim) and 
towards an algebraic solution in order to help the student change their mind about 
whether the line is a tangent or not? Does the teacher compare and contrast the 
algebraic solution to Student B’s solution or do they proceed directly to the 
presentation of an algebraic solution? What types of examples/counterexamples, if 
any, do they employ in this process? What is the teacher’s position towards Student 
B’s grounding their claim on the graph? Etc. 
In the course of this part of our analysis we noticed several influences on the 
teachers’ responses: for example almost all teachers distinguished between (and often 
juxtaposed) Student A’s algebraic approach and Student B’s graphical approach. In 
almost all cases, in both scripts and interviews, the teachers included in their 
comments an evaluative statement regarding the sufficiency/acceptability of one or 
both approaches. And often they referred explicitly to their beliefs about, for 
example, the sufficiency/acceptability of the graphical approach; or about the role 
visual thinking may play in their students’ learning. The teachers’ responses also 
appeared significantly influenced by the mathematical context of the problem within 
the Task; namely, by their own perceptions of tangents and their own views as to 
whether the line in the Task must be accepted as a tangent or not.  
At this point of our analysis we were somewhat surprised by the fact that 43 out of 
the 91 teachers supported Student B’s claim that the line in the Task is not a 
tangent line – explicitly (25/91) or implicitly (18/91). In what follows we present 
examples from our analysis of the data from the 25 teachers who explicitly 
supported Student B’s claim in order to examine the interplay between the 
teachers’ mathematical views on whether the line is a tangent or not, beliefs about 
the sufficiency/acceptability of the visual argument used by Student B and beliefs 
about the role of visual thinking in their students’ mathematical learning. We note 
that our examples originate in the scripts only, and not in the interviews, due to 
limitations of space. 



Biza, Nardi, and Zachariades 

PME 32 and PME-NA XXX 2008                                                                           2 - 181                   

PERCEPTIONS OF TANGENTS AND BELIEFS ABOUT VISUALISATION 
Mathematical views on whether the line is a tangent or not. Of the twenty-five 
teachers who explicitly accepted Student B’s claim, ten rejected the line as a tangent 
without stating an argument (phrasing their responses as if this was obvious). The 
other fifteen stated that the line intersects with the curve without being its tangent 
either because point A is an intersection point but not a tangency point; or because it 
‘cuts across’ the graph as student B argued. Three of these fifteen based the rejection 
on the fact that the line does not keep the entire curve in the same semi-plane. For 
example, Teacher 101 claimed that ‘it is not sufficient that the tangent line has only 
one common point, but it must keep the graph on the same side’ and offered the 
graph in Figure 2. Taking a local perspective on Student B’s ‘cutting across’ 
argument the teacher also offers Figure 3 and says: ‘the tangent could cut across the 
curve … the line is a tangent at x0 [in Figure 3] although it cuts across the curve [at 
another point, our addition]’.  

  

Figure 2. Figure 3. 
Beliefs about the sufficiency/acceptability of the visual argument used by Student B. 
Of the twenty-five teachers, ten did not dispute this visual argument. Of these ten, 
eight made no reference at all to an algebraic argument. One teacher (Teacher 81) 
made some reference to both the ‘algebraic and graphical methods’ implying that she 
accepted the validity of both. She wrote that ‘the aim of the exercise is that the 
students examine whether the line is tangent to the graph either graphically (if they 
can) or algebraically with the derivative’ and later on observed that ‘the exercise does 
not specify which way should be used to solve it’. (We return to this teacher’s hint at 
the superiority of the graphical solution – ‘if they can’ – later in this section). Another 
one of these ten teachers (Teacher 6) set out with some reference to an algebraic 
argument that involved accepting the line; on the way, as she proceeded to a 
consideration of Student B’s solution, she deleted the algebraic argument and 
concluded her response with agreeing with Student B. 
The other fifteen teachers, while basing their inference on the graph and supporting 
Student B’s claim, stated the need for supporting and verifying the claim 
algebraically (11 explicitly and 4 implicitly). These teachers, although they hinted at 
the algebraic solution for the justification of the answer, did not employ it in the 
argument they offered the students. As a result they did not confront the 
inconsistency of their statements. For example, Teacher 97 wrote: 

To the first student I would say that it is not sufficient that the line and the curve have 
one common point but that the line must not split the graph as well. The derivative of the 
curve at Α(0,2) must be equal to the derivative of y=2 at Α(0,2). To the second student I 
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would say that his conclusion is correct and I would encourage him to give a better 
justified answer. 

‘Better justification’ of a correct answer seems to sum up the views of these teachers. 
‘Better’ is meant as: 
- More general, feasible, useful: 

It is not acceptable to answer through graphical representations, because in a more 
complex case this approach is not feasible, Teacher 1  
[…] even if a graphical understanding of functions is particularly useful, [Student B] 
should not forget that it is not always possible to use graphical representations and that he 
should learn to solve problems also algebraically, Teacher 80 

- Offering a ‘more rounded view of the problems’, Teacher 69 
- Accurate, because, for example, ‘however helpful the graph may be, it is never 
totally accurate when done by hand’, Teacher 53 
- The graph not necessarily constituting a valid complete proof: 

If the exercise is asking for a proof it is better that the graph is accompanied also 
algebraically by the criterion for finding tangents through the first derivative and 
monotonicity, Teacher 64 

In the above examples the teachers, while appreciating their students’ employment of 
visualisation to reach a conclusion, are keen to stress that ultimately students are 
expected to demonstrate their capacity to complete the task algebraically. It is therefore 
possible that these teachers’ embrace of the visual approach evident in Student B’s 
solution is driven more by their belief in the gradual enculturation (Sierpinska, 1994) 
of the students into formal mathematical practice and their belief in the assistance that 
visualisation can provide towards reaching a conclusion (rather than a belief in the 
completeness of a graph-based argument). We cite below some evidence of these 
teachers’ support for the employment of visualisation by their students. 
Beliefs about the role of visual thinking in students’ learning. A substantial number 
of the twenty-five teachers (nine) declared overtly their view of the graphical 
approach employed by Student B as evidence of ‘conceptual’ understanding. For 
example, Teacher 68 applauded Student B and would say to him that he has a 
‘rounded way of thinking’, ‘his idea to investigate the problem graphically is very 
good’, ‘understands to a good degree what mathematical thinking is about’ and ‘carry 
on this way’. 
Five teachers saw students’ employment of the algebraic method as ‘instinctively’ 
driven by the conditioning students are subjected to in ‘traditional’ mathematics 
teaching. For example, Teacher 4 wrote: ‘Student A used the method mechanically’ 
and ‘Student B has a complete understanding of the problem’. 
Eight teachers declared that the graphical solution is more ‘quick and ready’, ‘clever’ 
and ‘not wasting any time’, even ‘natural’ and ‘real’. For example, Teacher 48 
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claimed that ‘through following a formal procedure we do not always reach correct 
results if we do not try at the same time to offer a ‘natural’ interpretation of the result’ 
and would ‘encourage Student A to always try to find the real dimension of the 
problem (e.g. through drawing the graph)’. 
Several teachers, while expressing their appreciation for the graphical approach, 
stressed that students are not always at ease with it (see also Teacher 81’s comment 
earlier) and are often reluctant to use visualisation. 
Overall many of the twenty-five teachers described the pedagogical role of graphical 
approaches as supporting students’ use of their mathematical intuition and 
imagination. For example, Teacher 69 stated that ‘the aim of the exercise is to 
encourage students to combine their knowledge in mathematics with imagination in 
order to reach a result’ and Teacher 64 that ‘Student B’s answer is better, purely 
intuitive based, that is, only on the graph’. 
It is perhaps interesting to see how some of these twenty-five teachers responded to 
Student A, with particular regard to that student’s exclusive use of the algebraic 
method. Many attempted to balance their feedback to the students with regard to the 
approach they encouraged students to employ:  

It has been observed that many students have difficulty with algebraic manipulation 
while they are rather facilitated with visualisation, while for others the opposite applies. 
The teacher must encourage students to work in both ways, Teacher 53  

In this spirit, and as we saw above, many teachers encourage Student B to work more 
algebraically. Analogously they encourage Student A to work also graphically:  

To Student A I would explain the mistake he has made and I would suggest one or two 
directions so that he tries to solve the problem again. I would also tell him to make the 
geometrical interpretation as this would help him. To Student B I would say that his 
answer is correct but that he would also need to justify it also algebraically. That is to 
make a synthesis of the algebraic and the geometric frame, Teacher 85 

CONCLUDING REMARK 
The Task in Fig. 1 invited the teachers to offer feedback to two students one of which 
had used (incompletely) the algebraic method for deciding whether the line is a 
tangent and the other had used (incorrectly) a graphical representation of the problem. 
In this occasion the graph contained information that conjures up images that may 
lead to the rejection of the line as a tangent. About half of the teachers in our study 
appeared to get ‘carried away’ by this information – or, in Aspinwall et al’s (1997) 
term, by these ‘uncontrollable’ images – and agreed with Student B’s incorrect claim 
that the line is not a tangent. In the evidence we presented above the teachers 
appeared to get ‘carried away’ not simply by the images that they hold about 
tangents, conjured up by the graph in Student B’s response, but also by a compelling 
tendency to support what they described as the more ‘conceptual’, ‘imaginative’ etc. 
approach of Student B. To them the mathematical problem in the Task offered an 
opportunity to convey their appreciation for the employment of visualisation. 
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However lack of awareness of the problems that certain imagery may cause, in this 
case the graphical representation of tangency at an inflection point, stands in the way 
of fulfilling the potential within the employment of visualisation. 
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This study reports on an experienced sixth-grade teacher’s communicative strategies 
when introducing a mathematical task involving different semiotic representations. 
The analysis has revealed the following communicative strategies: focusing the 
pupils’ attention, posing questions (speech), pointing and sliding (gestures). Working 
on the task in groups, two girls have difficulties in coordinating a two-dimensional 
Cartesian diagram. The interplay between the teacher’s gesture and speech is a 
mediating device in her explanations to the girls. The gestures make the connection 
between the semiotic representations, figure and diagram. 
INTRODUCTION 
Gestures and discourses are central tools in the teaching and learning of mathematics. 
Both modalities are also fundamental tools to interpret communicative strategies used 
by teachers in the classroom. In a series of studies related to the use of mathematical 
signs (Bjuland, Cestari & Borgersen, 2007; Bjuland, Cestari & Borgersen, in press), 
used by two groups of sixth-grade pupils working on a task which involves moving 
between different semiotic representations, we have identified their gestures and 
discourse strategies. The aim of the present paper is to focus on an experienced 
teacher’s communicative strategies while presenting this particular task in her sixth-
grade lesson. These strategies involve two communicative modalities: verbal and 
gestural, considered as mediating devices and important resources for understanding 
the task. We will particularly analyse one extract of the teacher-pupils dialogue in the 
beginning of a lesson, and one extract when two girls, working on the task in a small 
group, need help from their teacher.  
This study addresses the following research question: What kinds of communicative 
strategies does an experienced teacher use in her dialogues with pupils, introducing a 
task that involves moving between different semiotic representations?   
THEORETICAL BACKGROUND 
Gestures can be defined as “movements of the arms and hands … closely 
synchronized with the flow of speech” (McNeill, 1992, p.11). McNeil has classified 
gestures in four major categories: iconic, metaphoric, deictic, and beat. In our work 
we are mostly concerned with deictic gestures which are defined as “pointing 
movements, which are prototypically performed with the pointing finger” (McNeill, 
op. cit., p. 80). Edwards (2005) reported that almost all the gestures produced during 
the mathematical discourse of prospective female school teachers consisted of deictic 
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pointing to different aspects of their problem solving while they were working in 
pairs, trying to solve some mathematical problems related to fractions. We have in an 
earlier work defined pointing and sliding as deictic gestures (Bjuland et al., in press). 
These gestures are identified when pupils’ point to different semiotic elements in a 
task (pointing) and if they move their fingers/hands continuously within or between 
two semiotic representations (sliding). We have also distinguished between linear 
sliding (pupils move their fingers along a line, for instance along the figurative 
representation of the task or along one of the axes of the diagram) and circular 
sliding (circular movement of the hand, for instance between two semiotic 
representations).  
According to Roth (2001), teachers employ many gestural resources crucial for 
understanding a concept. It is therefore important that pupils attend to both their 
teachers’ speech and their gestures in order to access important information presented 
in a lesson. In Bjuland, Borgersen, and Cestari (paper submitted), we have revealed 
how the multimodal components speech, gesture, and written inscriptions develop 
synchronically. These major components of the objectification process (Radford, 
2003), have stimulated the pupils to come up with a solution. In this paper we 
illustrate how the teacher makes use of these multimodal components in her 
dialogues with her pupils in full class and in a small-group dialogue with two girls.    
METHOD AND CONTEXTUAL BACKGROUND 
A four year developmental research project, Learning Communities in Mathematics1 
(LCM), started in Spring 2004 at University of Agder (UiA) in Norway, is “rooted in 
a philosophy of learning through inquiry with the aim of forming inquiry 
communities between teachers in schools and didacticians in the university” 
(Jaworski, Fuglestad, Bjuland, Breiteig,  Goodchild, & Grevholm, 2007, p. 11).  The 
experienced teacher in our study has been a member of the project and transposed 
ideas from workshops at UiA to her own sixth-grade classroom. We have chosen two 
extracts of teacher-pupils dialogues from a 19-minute video clip from a particular 
lesson in order to focus on her communicative strategies.  
In order to analyse the teacher’s dialogues with her pupils, we have adopted the 
dialogical approach to communication and cognition (Marková & Foppa, 1990; 
Cestari, 1997; Linell, 1998). This approach allows us to identify interactional 
processes, which are the teacher’s questioning and her use of particular words to 
draw the pupils’ attention. Using video to collect data, we have also been able to 
identify the teacher’s gestures. These gestures are situated within a theoretical 
framework that considers cognition as an embodied phenomenon (Edwards, 2005). In 
our analysis, we focus on the teacher’s gestures and speech embodied and situated 
during the teacher-pupils dialogues.     
The pupils were working in groups of two and three on the following task: Write 
down which person corresponds to each of the points in the diagram (the Norwegian 
words alder and høyde mean age and height respectively. This mathematical task has 
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been carefully analysed in Bjuland et al. (in press). We observe that the task 
challenges the pupils to move between the three semiotic representations, figure, 
diagram and written text. 
 

 
 
Liv corresponds to point  …………………. 
Gry corresponds to point  …………………. 
Ole corresponds to point  …………………. 
Hans corresponds to point …………………. 
    
THE TEACHER’S PROPOSITION OF THE TASK IN THE CLASSROOM 
The aim of analysing the following dialogue is to identify the teacher’s 
communicative strategies while presenting the task for her pupils by using an 
overhead projector. The pupils are focusing on the screen, siting in a semi-circle. The 
teacher (Tea) is sitting close to them.  

15 Tea: Look, this is about Liv and Gry and Ole and Hans. Do you notice anything 
about Liv and Gry and Ole and Hans? Can you see any differences between 
them? Kari what do you see? 

16 Kari: They have different heights. 
17 Tea: That’s right. Mm. Can you see some more differences? Sofie?  
18 Sofie: Different age. 
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19 Tea: Yes, that’s clear that they are different ages. Yes, then you know that these four 
persons have been out for a walk and, and then we’re going to try to find out 
where the different persons are (The teacher goes from her chair towards the 
screen). Who is number one? (Pointing at point 1 followed by a circular sliding 
up to the picture). Who is number two? (The circular sliding from the picture 
ends in pointing at point 2). Who is number three? (From point 2 with a 
decreasing circular sliding without reaching the picture, pointing at point 3) 
and who is number four? (From point 3, a decreasing sliding before pointing at 
point 4). Hm! How can we find out this? 

20 Pupil Number one 
21 Tea Don’t say it loud yet, don’t say it loud. Now I have thought that you should go in 

groups. And you should try to find out who are the different persons. We should 
only read the task, very carefully we read it.   

The teacher uses the verb see many times, inviting her pupils to be attentive to the 
visual image of the task (15). She also uses a singular you (Norwegian singular du), 
indicating that each individual pupil has to focus on the screen. The word see is used 
in three consecutive, open questions. The third question stimulates the pupils to see 
any differences in the figure, indicating a first approach to identifying the two 
dimensions height and age (15). This question is posed to Kari, inviting her to tell 
what she sees from the figure. The visual image perceived by Kari elicits her 
response, introducing the variable height in the dialogue (16). Then the teacher asks 
another open question, inviting Sofie to see more differences (17), when the variable 
age emerges in the conversation (18). The communicative pattern between the 
teacher and the two pupils shows the well known IRE sequence (initiative – response 
– evaluation) identified by Sinclair and Coulthard (1975) and used by Mehan (1979) 
in analysing classroom discourse.  
The teacher is contextualising the task by suggesting that the persons have been out 
for a walk (19). Locating the task in a concrete life situation, could be helpful for the 
pupils.  The contextualisation is also introduced based on a singular you perspective, 
indicating that each individual pupil has to be concerned with the task. She is then 
focusing on the transition from the picture to the Cartesian coordinate diagram by 
making a connection between people and the labelling of points by talking and 
making gestures simultanously. While standing at the screen, the teacher makes four 
consecutive pointings to the diagram with a gradually decreasing circular sliding 
between the diagram and the picture. In this way she indicates the relationship 
between these two semiotic representations, figure and diagram. The teacher has now 
introduced the task, and her open question shows that she is ready to let the pupils 
explore the task in groups.  
The pupils’s utterance (20) suggests some interference, indicating that he/she is 
eager to start working on the problem, but the teacher does not want to have any 
class discussion at this moment (21). This indicates that the pupils should get the 
opportunity to spend some time in order to explore the task in groups in order to 
find out the answers themselves. The strategy of reading the task carefully is 
emphasised.  
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Analysis has revealed that the teacher clearly focuses on the figurative representation 
of the four persons in her presentation of the task. She is also concerned with the 
transition between the representations figure and diagram. The variables height and 
age are introduced in the dialogue related to the persons in the picture. However, 
these variables are not related to the two axes in the diagram, indicating that she does 
not put much emphasis on this representation in her presentation. Nor does she focus 
on the points in the diagram, for instance by posing a question like, what does a point 
represent in a diagram? The teacher does not read the task together with her pupils, 
showing that the third representation, the written text, is left out in her presentation. 
However, the teacher clearly emphasises that the pupils must read the task very 
carefully.  
THE TEACHER IN DIALOGUE WITH THE TWO GIRLS  
The dialogue below shows that two girls have difficulties in capturing the connection 
between the two variables height and age. They need help from their teacher twice. 
The sequence of turns illustrates some aspects of the first dialogue between them.  

  96 Pupil 5: We didn’t understand it (Teacher stands behind the two girls, Pupil 4 and 
Pupil 5). 

  97 Tea: Didn’t you understand it? (The task) 
  98 Pupil 5: No. (Erasing her written solution) 
  99 Tea: No. Mm. But what have you looked at? 
100 Pupil 4: We have looked at the height (Moving her pencil around without any 

specific pointing or sliding) [because Hans is highest there] 
101 Pupil 5: [It tells that height there and age there] 
102 Tea: Have you looked at the age? 
103 Pupil 4: that Gry, she is youngest. 
. 
. 
113 Pupil 4: But I didn’t understand what these labels meant. 
114 Tea: No. These are which persons they are (Linear sliding along the picture). One 

of those persons is number three (Linear sliding along the picture followed by 
pointing at point 3 in the diagram). One of those persons is number four 
(Linear sliding along the picture followed by pointing at point 4 in the 
diagram). One of those persons is number two (Linear sliding along the picture 
followed by pointing at point 2 in the diagram) and so on, aren’t they? 

115 Pupil 4: Okay, but those then? 
116 Tea: Yes the points one, two, three, four. Those are four different points. 
117 Pupil 4: Should we write the name to those points? (Moving her pencil between the 

diagram and the written text) 
118 Tea: Yes, you should only write one, two, three or four on these, according as 

where you find that those are the different [persons] 
119 Pupil 4: [okay]  
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After Pupil 5 expresses that they have some difficulties (96), the teacher repeats this 
pupil’s utterance as a yes-no question (97), making it explicit that the pupils need 
some help (98). The teacher’s open question (99) invites the pupils to express what 
they have done so far. Pupil 4 focuses on the one-dimensional perspective height 
(100), while Pupil 5 seems to be concerned with the coordination of the variables 
height and age (101). The teacher continues to ask for the dimension, age, probably 
challenging Pupil 4 since she has only focused on the variable height (102). Pupil 4 
focuses on the extreme location, Gry (103), who is the youngest person. From the 
teacher’s yes-no question (97), the open question (99), and the specific question 
(102), we have implicitly observed that Pupil 4 has difficulties in making any 
connection between age and height, for instance by locating Gry at point 3 in the 
diagram.  
In the continuation of the dialogue, Pupil 4 expresses what she does not understand 
(113), and the teacher shifts from posing questions to making an explanation. The 
teacher’s verbal explanation is supplemented with gestures. She makes two linear 
slidings along the picture followed by one pointing at point 3 in the diagram. This 
gestural sequence (linear sliding, pointing) is repeated two more times (114), with the 
important function of making connection between the two semiotic representations 
figure and diagram.  
Pupil 4 expresses that she has understood the explanation given by the teacher (115). 
However, the dialogue between Pupil 4 and the teacher (115-119) illustrates that this 
pupil needs some help to understand the connection between the two semiotic 
representations diagram and written text (116), (118).  
DISCUSSION AND CONCLUSION 
The analysis of the sequence of the teacher-pupil dialogue from the whole-class has 
revealed some of the teacher’s strategies when presenting the task. She focuses on 
seeing (the four different people, and possible differences between them), on posing 
open questions bringing the variable height and age into the discourse and on 
contextualising the task, without using any gestural resources. However, when the 
teacher focuses on the transition from the two different semiotic representations, 
figure and diagram, she uses both speech and gestures by making a connection 
between people and the labelling of points. More specifically, the communicative 
strategy of questioning is used simultaneously with pointing to the diagram followed 
by a gradually decreasing circular sliding between the diagram and the picture. This 
sequence (questioning, pointing, circular sliding) has been repeated four times, 
illustrating how the teacher’s gestures and speech function as mediating devices, 
helping the pupils to acquire a preliminary understanding of the task. 
Roth (2001) emphasises that in a conjunction with a teacher’s body position, his or 
her gestures can orient pupils to aspects of a visual representation being pointed to 
and highlighted. It is therefore important that pupils have access to both the teachers’ 
gestural resources and their speech. Following Roth (op. cit.), the teacher’s gestures 
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make the pupils aware of the translation between the two semiotic representations, 
from the concrete picture to the more abstract Cartesian diagram. 
According to McNeill’s classification scheme (1992), the teacher uses deictic 
gestures (pointing and circular sliding) in her presentation. This is also the case in the 
dialogue between the girls and the teacher, when she uses, three times, the gestural 
sequence linear sliding along the picture followed by pointing at a specific point in 
the diagram. In the dialogue with the two girls, the interplay between the teacher’s 
gesture and discourse is a mediating device in her explanations to the girls. These 
gestures also reinforce the verbal explanations, stimulating the pupils to make 
connections between the semiotic representations and helping them to be aware of the 
two dimensions, age and height. 
According to Brekke (1995), most pupils are familiar with one-dimensional 
graphs. It is therefore probable that the pupils identify the visual differences on the 
figure and the fact that the persons have different heights. However, it is far more 
complex for them to realise that a graph could also show the connection between 
two variables. The communicative strategies reveal that the teacher focuses on the 
figure of the four persons in her presentation of the task. The two other 
representations, diagram and written text, are left for the pupils, and they are told 
to read the task very carefully themselves. The pupils are therefore challenged to 
cope with this difficulty of coordination in their groups. By posing different 
questions (yes-no, open, specific), the teacher observes that the girls have 
problems in understanding the task. When the girls express their difficulties, 
which are related to the coordination of the two dimensions and the transition 
between the second and third representation, the teacher makes explanations, 
combining gestural resources like pointing and circular sliding to make 
connections between figure and diagram. We could wonder if the difficulties, 
identified in the girls’ solution process, are related to the teacher’s avoidance of 
focusing on the diagram and the written text in her presentation.  
From this microanalysis we have observed that gesture and discourse are natural 
mediating devices when this teacher introduces a new task, involving the 
representation of figures in a Cartesian table. We have identified the following main 
communicative strategies used by this experienced teacher: Focusing the attention of 
pupils, posing questions, using gestures of pointing and sliding. The teacher’s 
approach of using gestures and verbal explanations when moving between semiotic 
representations in a task stimulates the pupils to go on working on the task in groups. 
These modalities are also used in her dialogue with the two girls, starting by posing 
questions, then making verbal explanations in combination with gestures. In future 
studies we would ask what kind of communicative strategies novice teachers use 
when introducing a mathematical task of the same nature.      
Endnote 
1. This project was supported by the Research Council of Norway, No. 157949/S20. 
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Germany took part in a 6-country study on the efficacy of mathematics teacher 
education. Three cohorts of future teachers (beginning, midterm and final) were 
tested on their professional knowledge and their beliefs. The paper presents results of 
the German sub-sample. If interpreted in a quasi-longitudinal way, the data strongly 
support the main hypotheses which led the study: Future teachers’ knowledge 
develops significantly during teacher education. The differences between the cohorts 
reflect the emphases of the teachers’ programmes and are specifically large in those 
fields emphasized in the professional programmes. 
INTRODUCTION 
In Germany as well as in many other countries systematic knowledge about how 
teachers perform at the end of their education is almost non-existent (Sikula, Buttery 
& Guyton, 1996; Wilson, Floden & Ferrini-Mundy, 2001; Blömeke, 2004; Cochran-
Smith & Zeichner, 2005). Even in the field that is covered by most of the existing 
studies – the education of mathematics teachers – research deficits have to be stated: 
the research is often short term, of a non-cumulative nature, and conducted within the 
own training institution (Krainer, Goffree & Berger, 1999; Adler et al., 2005a). Only 
recently more empirical studies on mathematics teacher education have been 
developed (cf. Chick et al., 2006, Baker & Chick, 2006, Adler et al., 2005b). The 
important relation of the qualifications of practising mathematics teachers and their 
teaching or the achievements of their students was recently explored in several 
empirical studies (Ball & Bass, 2003; Hill, 2007; Ferrini-Mundy et al., 2006; Schmidt 
et al., 2006; Brunner et al., 2006).  
The project “Mathematics Teaching in the 21st Century (MT21)” aims to shed light on the 
important field of mathematics teacher education from a comparative perspective. In an 
attempt to fill existing research gaps, the knowledge and beliefs of future lower secondary 
teachers are investigated. In Germany, lower-secondary teachers are prepared in two 
different routes. In the first, future primary and lower-secondary teachers (grades 1 
through 10) are trained; whilst the second graduates lower- and upper-secondary teachers 
(grades 5 through 13). Both routes include two phases. Phase 1 is situated at universities, 
lasts for 3.5 or 4.5 years respectively and involves study in mathematics, mathematics 
pedagogy and general pedagogy theoretically oriented towards mathematics as a 
discipline. Phase 2 follows and takes place in separate state institutions, partly at school. 
This second phase lasts for 1.5 or 2 years respectively and involves study in mathematics 
pedagogy and general pedagogy under a more practical perspective.  
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MAIN FOCUS “PROFESSIONAL COMPETENCIES” 
MT21 mainly refers to the concept of “professional competencies”, which is defined 
referring to Weinert (1999) as core professional tasks that teachers must be able to 
master (Bromme, 1992). Instruction and assessment are evaluated in MT21 as central 
teacher tasks. To accomplish these two tasks teachers need: 

• cognitive abilities and skills in terms of professional knowledge as well as.  
• professional convictions and conception of values in terms of beliefs. 

The professional knowledge that future mathematics teachers need can be divided 
into three general facets well-known in the literature: content knowledge, pedagogical 
content knowledge and general pedagogical knowledge (Shulman, 1985; Blömeke, 
2002; Baumert & Kunter, 2006; for an elaboration of the theoretical approach of 
Shulman see Leikin & Levev-Waynberg, 2007). In MT21 the content is mathematics. 
Beliefs are defined as “psychologically held understandings, premises, or 
propositions about the world that are felt to be true” (Richardson, 1996, p. 103). If 
beliefs are operationalised closely to the content a teacher has to teach, the correlation 
of student performance with teacher beliefs was found to be high (Bromme, 2005). 
Beliefs yield an orientational and action-guiding function (Grigutsch, Raatz & 
Törner, 1998). With this a bridge is built between knowledge and action (Peterson et 
al., 1989; Leder, Pehkonen & Törner, 2002). For further information on the 
development of beliefs during teacher education see the international MT21 project 
report (Schmidt et al., 2007) and the German report (Blömeke, Kaiser & Lehmann, 
2008). 
SAMPLING 
The sampling of countries in MT21 followed a careful selection of criteria based on 
existing international comparisons. The countries had to cover the two main kinds of 
teacher education (one-phase programmes with content, pedagogical content and 
general pedagogy taught simultaneously; two-phase programmes with content taught 
first, followed by pedagogical content and general pedagogy). The spectrum of 
student performance as shown in TIMSS and PISA had to be covered as well. In 
addition, the participating countries had to represent socio-cultural contexts that had 
proved significant in studies of former international comparative educational 
research. Finally, the countries had to show at least a middle grade degree of 
industrialisation in order to avoid serious bias through socio-economic differences. 
According to these criteria, Bulgaria and Germany, South Korea and Taiwan, Mexico 
and the US were sampled. 
Within countries MT21 sampled at the institutional level. The goal was to obtain a 
reasonably representative sample of each country including the variation found across 
all teacher education institutions in the country. In Germany four regions were 
selected to take part in MT21. The sample cuts across important structural 
characteristics of German teacher education, e.g. differences in the structure and 
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content of the taught curricula, the connections to school practice. In these four 
regions all teacher-education institutions were sampled. Within the institutions the 
goal was to take a complete census. 
The overall sample size was 849 with 368 students in the first cohort (beginning), 195 
in the second (midterm students) and 286 students in the third cohort (final). Since 
the response rate differed between the three cohorts the results were weighted 
according to the total number of future teachers prepared in each cohort and in each 
teacher education route at each of the sampled institutions in order to make the 
sample as representative as possible for the four regions. 
TEST DESIGN 
MT21 sought to measure what individuals learn in their teacher education 
programmes, which was done by testing the future teachers’ knowledge. In order to 
consider the situation-specificity of teaching and to avoid the measurement of so-
called “idle knowledge” a special item format was used in addition to traditional 
items, namely, teaching situations which can only be handled by using and linking 
several knowledge dimensions. The test was given in a paper-and-pencil format. Two 
versions of the test were used; each knowledge area shared common items between 
the forms but most of the questions were unique to one version. All scales were 
developed and multi-piloted under the consideration of the curricula from the 
participating countries and expert assessments. 
For the scaling of the test sections on mathematics and mathematics pedagogy the 
two-dimensional Random Coefficients Multinomial Logit model implemented in 
Conquest was used. Item difficulties were estimated by Maximum Likelihood 
procedures based on a 65% probability to solve a problem. Weighted Likelihood 
Estimators were used to estimate individual abilities. The general pedagogical scale 
represents classical sum scores. The distribution of the three scales was transformed 
so that each had a mean of 100 and a standard deviation of 20. 
Since all mathematics related items – those in the mathematics part as well as those in 
the mathematics pedagogy part – measure some kind of content, five scales were 
developed that cover number, algebra, functions, geometry and statistics. For the 
scaling we used in this case the five-dimensional Random Coefficients Multinomial 
Logit model. Again the distribution was transformed so that the mean of the scale was 
100 and the standard deviation 20. Regarding general pedagogical knowledge the test 
covers three sub-domains: lesson planning, assessment and socio-economic 
differences in student achievement. These scales represent sum-scores. They were 
transformed onto a mean of 50 and a standard deviation of 10. 
RESULTS 
The basic hypothesis of MT21 was: 

H1:  Future teachers’ professional knowledge increases significantly during teacher 
education, that is, in each of the three areas mathematics, mathematics 
pedagogy and general pedagogy. 



Blömeke and Kaiser 

2 - 196                                                                                PME 32 and PME-NA XXX 2008 

The data strongly support this hypothesis (see table 1). The differences between the 
results of cohort 1 and 3 are highly significant. On average cohort 3 students scored 16.5 
points higher in mathematics, 10.7 points higher in mathematics pedagogy and 3.2 
points higher in general pedagogy than cohort 1 students. The effect sizes indicate that 
the differences are of practical relevance in two of the three cases. In mathematics and 
mathematics pedagogy they mount up to more than a half standard deviation. Only in 
general pedagogy the difference between the cohorts is of minor relevance. 

 Cohort 1 
(n = 368) 

Cohort 3 
(n = 286) 

Comparison 
Cohort 1 – Cohort 3 

Knowledge 
Dimension 

M SE SD M SE SD Difference 
MK1, MK3 

dK1,K3 

Mathematics 93.7 0.9 18.3 110.2 0.6 21.6 + 16.5* 0.8 
Mathematics 
Pedagogy 

95.1 1.0 18.0 105.8 0.5 18.4 + 10.7* 0.6 

General 
Pedagogy 

98.3 1.0 17.3 101.5 0.5 18.1 + 3.2* 0.2 

Note. Means (M), Standard Errors (SE), Standard Deviations (SD) und Effect Sizes (Cohen’s 
d) represent pooled sampling estimates. Significant differences (p < .05) between the two 
cohorts are marked (*).  

Table 1. Future Teachers’ professional knowledge at the beginning                         
and at the end of teacher education 

In addition to this basic hypothesis, MT21 was led by more sophisticated hypotheses 
which try to capture the relation between opportunities to learn in teacher education 
and outcomes in more detail. One of them was: 

H2:  Future teachers’ professional knowledge depends significantly on their 
opportunities to learn. They gain more knowledge in areas strongly emphasized 
in teacher education. 

Since the differences in opportunities to learn between the two teacher-education 
routes are large in Germany, H2 has to be investigated separately for future teachers 
for primary and lower-secondary schools and future teachers for lower and upper-
secondary schools; otherwise possible effects might be washed out. 
In mathematics the curriculum for future primary and lower-secondary teachers 
strongly emphasizes aspects of number whereas the curriculum for future lower and 
upper-secondary teachers additionally emphasizes algebra and functions besides 
topics from advanced mathematics. Bearing this in mind, it becomes obvious that the 
data support H2 as well (see table 2). Future primary and lower secondary teachers 
have their largest achievement gains in number. The effect size is twice as high as in 
the other areas. Number is an area in which future lower and upper-secondary 
teachers score very high as well (see table 3). In addition, the latter group shows the 
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expected large achievement gains in functions and especially in algebra. In algebra 
the effect size is three times larger than in geometry and statistics. 
 Cohort 1  

(n = 294) 
Cohort 3  
(n = 133) 

Comparison 
Cohort 1 – Cohort 3 

Content Area M SE SD M SE SD Diff. MK1,K3 dK1,K3 
Number 101.6 1.0 18.8 113.8 0.8 19.8 + 12.2* 0.6 
Algebra   92.4 0.9 17.0   96.9 0.8 19.9   + 4.5* 0.3 
Functions   96.8 0.9 17.9 101.6 0.8 20.1   + 4.8* 0.3 
Geometry 102.8 0.9 17.6 105.9 0.8 19.3   + 3.1* 0.2 
Statistics   99.8 1.0 19.4 105.9 1.0 22.2   + 6.1* 0.3 
Lesson Plan  48.3 0.5  9.1  52.3 0.4 10.1   + 4.0* 0.4 
Assessment  49.8 0.4  7.4  52.2 0.3  8.1   + 2.7* 0.3 
SES  48.5 0.4  7.5  51.3 0.4 10.0   + 2.4* 0.3 

Table 2. Knowledge of future teachers at primary and lower secondary schools         
in different content areas at the beginning and at the end of teacher education 

 Cohort 1  
(n = 74) 

Cohort 3  
(n = 153) 

Comparison 
Cohort 1 – Cohort 3 

Content Area M SE SD M SE SD Diff. MK1, MK3 dK1,K3 
Number 115.0 2.5 16.0 127.1 0.6 18.9 + 12.1* 0.7 
Algebra   94.4 2.8 16.8 111.6 0.7 18.3 + 17.2* 1.0 
Functions 109.3 2.3 16.4 121.3 0.8 20.7 + 12.0* 0.6 
Geometry 108.4 3.2 18.3 113.5 0.6 17.6   + 4.9* 0.3 
Statistics 110.2 3.3 20.9 116.1 0.8 21.3   + 5.9* 0.3 
Lesson Plan  49.5 1.6  9.0  50.9 0.4  9.9 +1.4 0.2 
Assessment  52.5 1.4 10.2  46.7 0.3  7.1  - 5.8* 0.7 
SES  46.1 0.9 7.2  52.5 0.3  8.9  + 6.4* 0.8 

Table 3: Knowledge of future teachers at lower and upper secondary schools            
in different content areas at the beginning and at the end of teacher education 

In an indirect way H2 is also supported by the fact that future primary and lower 
secondary teachers of cohort 1 showed relatively even performance in number, 
geometry and statistics and similarly for lower and upper-secondary teachers in 
functions, geometry and statistics. In cohort 3 the two groups scored very differently 
though in these areas. Another support of H2 can be derived from the data that were 
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used for analysing H1. The differences between cohort 1 and 3 were largest in 
mathematics, of middle size in mathematics pedagogy and smallest in general 
pedagogy. This reflects precisely differences in learning opportunities. Overall, the 
amount of future teachers’ education in Germany is highest in mathematics and 
lowest in general pedagogy. 
In contrast to these convincing results, the results in the sub-domains of general 
pedagogy are more irregular and due to space constraints we only name a few. For 
example in the curriculum of general pedagogy lesson planning is emphasized. The 
knowledge of future primary and lower secondary teachers corresponds with this and 
therefore our hypothesis is supported at least partly by the data. However, the 
difference between cohort 1 and cohort 3 in the group of future lower and upper 
secondary teachers in lesson plan is not statistically significant and in assessment the 
scores of the third cohort have even decreased, which does not fit with H1. 
DISCUSSION 
The MT21 data strongly support the hypothesis that teacher education matters. 
Interpreting our cohort data in a quasi-longitudinal way makes it obvious that future 
teachers’ professional knowledge significantly increases during teacher education - and 
this in all areas: mathematics as well as mathematics pedagogy and general pedagogy. 
It is especially noteworthy that the effect sizes are rather high given the fact that we 
tested beginners when they had already taken one year university seminars and final 
cohort students half a year before they actually completed their exams. This means that 
the teacher education effect probably is considerably underestimated. 
Our additional hypothesis that opportunities to learn significantly influence the 
development of professional knowledge is supported by the data as well. Both 
subgroups of future lower secondary teachers show by far the largest gains in test 
scores in those areas which are highly emphasized in teacher education. In areas 
which are not emphasized the knowledge of future teachers does not increase 
approximately even if they were at a similar level at the beginning of their studies. 
The only result that contradicts our hypotheses occurs in the test part about general 
pedagogy within the subgroup of future lower and upper secondary teachers. 
Regarding this a particularity of German teacher education has to be considered: 
Traditionally, general pedagogy is of low importance in the curriculum of the lower 
and upper secondary teachers, it is often not a compulsory subject and/or the 
requirements to pass the examinations are quite low.  
It has to be mentioned that – as always in quasi-longitudinal studies - the study design 
shows weaknesses: We cannot rule out the possibility that the effects documented go 
back to differences in cohort composition. We controlled for important background 
characteristics like route and institutional affiliation but it has to be considered that 
teacher education in Germany lasts for five to seven years. It might be that the first 
cohort entered teacher education with different knowledge than the previous cohorts 
or that their experiences during teacher education differed.  
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A subsequent internationally comparative study, conducted by IEA under the name 
“Teacher Education and Development Study: Learning to Teach Mathematics 
(TEDS-M)” will allow implementing the respective future research. TEDS-M will 
take place in 20 countries – including Germany. It involves representative samples 
which allow testing the hypotheses outlined in this paper and thus has the potential to 
contribute to an evidence-based reform of teacher education. 
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DESIGNING OPEN-ENDED PROBLEMS TO CHALLENGE 
PRESERVICE TEACHERS’ VIEWS ON MATHEMATICS          

AND PEDAGOGY 
Leicha A. Bragg Cynthia Nicol 

Deakin University University of British Columbia 
 
This study examines preservice elementary teachers’ reported experiences of posing 
open-ended mathematics problems. Responses of 33 students in a mathematics 
teacher education course were analysed for the strategies participants used, what 
they learned and the challenges encountered from an opportunity to collect digital 
images and pose open-ended problems related to those images. Results indicate that 
preservice teachers reported a shift in the ways they viewed mathematics and how it 
might be taught. The school curriculum both constrained and provided possibilities 
for preservice teachers in noticing mathematics beyond the textbook and mathematics 
classroom. This study adds to our understanding of teaching as a learning practice 
and the art of posing mathematical problems as a significant aspect of that practice. 
INTRODUCTION 
Selecting, adapting and/or extending mathematics problems are a significant 
pedagogical practice for teachers. Mathematical “tasks convey messages about what 
mathematics is and what doing mathematics entails” (National Council of 
Mathematics, 1991, p. 24). They can provide a context for student learning about 
mathematical concepts and skills as well as mathematical inquiry. Tasks can also help 
students frame ideas about what it means to do mathematics. As Schoenfeld (1989) 
argues, students develop beliefs about the discipline of mathematics from their 
experiences with classroom mathematics activities. What counts as a good 
mathematics task has varied interpretations. Henningsen and Stein (1997) refer to 
worthwhile tasks as high-level tasks having the potential for high cognitive demand 
by students. Sullivan and Lilburn (2002) define good questions for mathematics 
teaching as having three features: 1) requiring more than recalling a fact or skill; 2) 
educative for both students and teachers; and 3) having possibly several acceptable 
answers. Whereas Gutstein (2006) argues that good tasks include those that are 
culturally relevant, that is, those that are related to students’ lives, offer the possibility 
of teaching for social justice, and “rely more on students’ own meaning making 
rather than with outside sources like the teacher or answer sheet” (p. 103). These 
definitions share an openness that offers students opportunities to explore 
mathematics in meaningful ways. They recognize that what makes a task ‘good’ does 
not necessarily reside in the task itself but rather in the relationship between the task 
and the student (or the teacher). 
Learning to develop, adapt, select and pose good tasks is neither simple nor trivial. 
Teachers who have had few opportunities to experience posing their own 
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mathematics problems or even asking “what if?” questions when they themselves 
were students may find it challenging to now select and pose more open-ended 
mathematics problems as teachers. Moreover this challenge may be amplified for 
those elementary teachers who come to teaching without a strong background in 
mathematics. How do teachers learn the practice of selecting and posing good 
mathematics tasks?  
The field of mathematics education does not currently have a well-developed 
knowledge base on particular ways in which teachers learn to pose non-routine or 
open-ended mathematics tasks. We do know that it is extremely difficult for 
teachers to maintain with students the high cognitive demand of potentially high-
level tasks (Henningsen & Stein, 1997). We also know that changes in problem 
posing strategies are possible and that preservice teachers can move from posing 
traditional single step problems to more open-ended cognitively complex problems 
(Crespo, 2003; Sinclair & Crespo, 2006). One factor that seems to support this 
change is opportunities for teachers and preservice teachers to explore new kinds of 
problems in varied contexts. 
Our study adds to this research and examines preservice teachers’ experiences with 
opportunities to pose new kinds of problems: those that are open-ended and grounded 
in images of real-life activities. In this study we explored elementary preservice 
teachers’ perspectives on posing open-ended tasks inspired by a set of digital images 
that preservice teachers collected for the specific purpose of investigating 
mathematics with students. We offer an example of the kinds of images preservice 
teachers collected and the kinds of related problems they posed (see Nicol & Bragg, 
forthcoming for a more detailed analysis of these posed problems). We focus in this 
paper more specifically on preservice teachers’ strategies for developing problems in 
the context of a mathematics teacher education course, what they report they learned, 
and the challenges encountered from an opportunity to collect images and pose open-
ended problems related to those images.  
THEORETICAL CONSIDERATIONS  
For many preservice teachers’ their prior experiences with mathematics has situated 
their knowledge and beliefs of mathematics as procedural, rule-bound, and closed. 
Supporting beginning teachers as they examine their underlying knowledge, beliefs 
and practices about teaching and learning mathematics is challenging. Lampert 
(2001) and others propose that teaching and learning can be understood as learning 
practices. A focus on teaching as learning practices draws attention to the activities 
teachers attend to in the activity or practice of teaching mathematics. Crespo (2003) 
and Nicol (1999) suggest that learning to pose mathematical problems, listen to and 
interpret student responses, and respond to students are central learning practices for 
teaching. Crespo (2003) describes a context in which preservice teachers developed 
their problem-posing practices through penpal letter writing activities where 
preservice teachers and Grade 4 students exchanged mathematical problems. 
Preservice teachers in Crespo’s study were not provided with explicit direction on 
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defining or creating open-ended problems, leaving us to wonder how preservice 
teachers might respond with more explicit instruction. 
Situated theories of learning and cognitive apprenticeships suggest that what is 
learned is intricately tied to the context in which it is learned (Lave, 1996; Lave & 
Wenger, 1991). From this perspective knowledge is inseparable from the activity, 
context, and culture in which it is developed and used. Heckman and Weissglass 
(1994) contend that “a key and vital factor in acquiring knowledge through cognitive 
apprenticeships is situating the learning experience in an environment that is real to 
the student” (p. 30). This requires learning to pose mathematically and pedagogically 
interesting problems that connect to students’ lives. Where do preservice teachers see 
mathematics? How do they see or notice mathematics in their own or their students’ 
lives? Inspired by Richard Phillip’s Problem Pictures CD-ROM 
(http://www.problempictures.co.uk/index.htm) that offers hundreds of digital photos 
as a source of mathematics problems together with Sullivan and Lilburn’s (2002) 
description and examples of open-ended mathematics problems our study examines 
the experiences of preservice teachers who developed open-ended mathematics 
problems around their personal collection of digital photographs. How did preservice 
teachers approach this task, what did they learn and find challenging, and to what 
extent does this problem-posing task offer insight into learning practices of teaching? 
CONTEXT AND DATA COLLECTION METHODS  
The Problem Pictures task was posed to elementary preservice teachers as a course 
assignment in a 13-week mathematics teacher education course taught by Author A. 
The task involved preservice teachers in collecting their own photos with digital 
cameras, selecting four photos from their collection, analysing the photos, and then 
posing 3 to 4 open-ended mathematics problems associated with each photo. 
Preservice teachers were encouraged to collect photo images that they thought would 
be engaging to students and would offer opportunities to explore interesting 
mathematics related to the elementary school curriculum. They collected images over 
a 2-week period and collated and submitted their pictures and problems in a 
PowerPoint file. A range of contexts were chosen by preservice teachers as places to 
pose problems. Figure 1 is representative of the kinds of photos and problems 
developed by participating preservice teachers.  

 
 
Problem: You are a giant spider and this is your web. If 
you catch one or two flies in every “hole” in your web, 
how many flies might you catch for supper? BOO! 
 
 

Figure 1. Problem picture photo and question designed by preservice teacher. 
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Participants for the study were enrolled in a 3 hour per week, 13 week 
mathematics education course as part of a two-year post-baccalaureate teacher 
education program in a large Canadian university. Students enrolled in this course 
were also members of the Diversity cohort–a programme option for students 
entering the teacher education problem with interests on issues of diversity, social 
justice, and equity. Thirty-three of the 40 students volunteered to participate in the 
study. Participants’ backgrounds included Asian-Canadian (14), First Nations (4), 
and Caucasian (15). Participants were in their first year and first term of the 
teacher education program.  
Data collected included researcher field notes, a written response survey completed 
by students upon completion of the course and copies of students’ work in the form 
of the Problem Pictures assignment (as described above). For this paper we draw 
upon researcher field notes and students’ written survey responses. The survey was 
administered through SurveyMonkey (an online survey program) and was 
developed to learn more about preservice teachers’ experiences with the Problem 
Pictures task. It involved 15 open response questions asking students to share their 
thoughts about how they approached the assignment, what they learned and did not 
from it and what they found useful and challenging. Four questions were selected 
for analysis in this paper. These questions specifically examined participants’ 
approach to creating open-ended problems based on original photos, the challenges 
the preservice teachers faced in this assignment and the impact of this task on their 
future as an educator.  
A qualitative computer program, Nvivo, was employed to collate and analyse the data 
gathered from the online survey and field notes. A preliminary phase of analysis 
consisted of reviewing the students’ responses and implementing a coding scheme. 
The responses were coded by the researchers independently according to the common 
themes that emerged and then cross-checked for commonality and consistency. The 
themes were categorised and reviewed again for emerging sub-themes. The data from 
the interviews are presented in a narrative form, and the interpretation presented in 
the discussion. These data are seen as broadly representative of the general views of 
the participating preservice teachers. Field note excerpts supplemented these data 
from the researcher’s perspective.  
RESULTS  
Preservice teachers’ reported varied responses in their strategies for approaching the 
Problem Pictures assignment; however most (85%) stated that they began by looking 
around them (indoors and outdoors) for mathematical contexts. These preservice 
teachers indicated that they began by seeking out mathematically-centred photos and 
developing their questions based on these images. Heather (all names used are 
pseudonyms) detailed this process:  

Firstly, I took my digital camera and snapped photographs of what I thought could turn 
into a mathematical question. Capturing photographs proved to be harder than I thought, 
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because I did not just randomly snapped pictures. I would stare at a potential scene for a 
few good seconds, thinking if I could come up with at least two "good" diverse questions, 
and if I could not, I would just move on and started to walk elsewhere.  

The formulation of open-ended questions is challenging for experienced teachers who 
do not have the added restriction of matching the questions to an original photo as 
outlined in the assignment criteria. It appears that the preservice teachers’ limited 
knowledge of the mathematical curriculum was an added barrier and made the task 
more difficult than anticipated.  
Some preservice teachers chose to stage their photos based on personal interests, as 
illustrated by Ava’s comment:  

I first approached this assignment by taking photos around UBC that I felt contained 
possibilities for good questions. However, I felt uninspired. I then took some photos 
around my neighbourhood (playground, streetscape, etc.) but still did not feel great about 
what I was coming up with. After turning ideas over in my head, I decided to set up a 
Scrabble board with math words. After that the questions wouldn't stop coming! I 
decided to make a list of things I really enjoyed doing; baking, basketball, and playing 
with my nephew inspired me for the remaining pictures. The questions came easily once I 
felt a connection and excitement with the photos. I used the IRPs [curriculum documents] 
as a guide and tried to cover a variety of the Prescribed Learning Outcomes with the 
questions. 

Preservice teachers sought images that depicted school mathematics (particularly the 
topics of space and shape) more than images that were connected to their own lives, 
interests and passions. That preservice teachers did not readily see their own passions 
and interests as a resource to collect photos and develop problems indicates the 
disconnect many felt with mathematics and their personal lives. An informal analysis 
of their photos and problem contexts confirms this claim.  
As some preservice teachers (48%) became more familiar with the provincial 
curriculum documents and the nature of the Problem Pictures assignment their 
approach to collecting photos changed. Rather than selecting and taking photos that 
inspired possible open-ended questions, these students began searching for photos 
that would match questions they had already posed. Sophia’s comment is indicative 
of this change: 

At first, I just took pictures of things that I thought I could formulate questions around. 
But once I refered [sic] to the IRPs [curriculum] it seemed like that wouldn't necessarily 
work. Instead I ended up looking at the IRPs [curriculum] and then generating questions 
and ideas for potential photos. So in the end, I really thought of the questions first, and 
then went out and took the pictures that I had in mind for those questions. 

As these preservice teachers began to focus on the mathematical needs of their 
students they created Problem Pictures based on the requirements of the curriculum 
documents. Thus for some collecting photos became an act of finding images to 
illustrate the problem rather than finding images that could ground or situate the 
problem. 
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Mathematical and Pedagogical Possibilities 
Participants were asked to comment on what they learned through the Problem 
Pictures task. Most students (95%) reported that collecting images and exploring 
open-ended problems with the photos helped extend or challenge their previous views 
about the nature of mathematics and how it might be taught. Connie’s observation 
was representative of this realisation, “I learned that math is really all around me, and 
that it is useful to me in everyday life, not just in school for homework from 
textbooks and tests from teachers.” Preservice teachers further stated that creating 
open-ended tasks challenged their previously-held views about the nature of 
mathematics. This can be seen in Yvette’s comment:  

It taught me that there is such thing as "doing math without ONE correct answer". Prior 
to taking this course, I held the WORST fears and anxieties toward math and teaching 
math, most likely due to my poor math performances in 11th and 12th grade. Looking 
back, it certainly would have been nice to have these types of questions to do back then 
to build confidence. 

Although many preservice teachers in the course expressed some mathematics 
anxiety, it is interesting to note that even those who stated they had enjoyed 
mathematics and was successful with it as a school student reported their experience 
with the Problem Pictures task changed their ideas about mathematics. Isabel stated: 

I love math, but I think it was because I could get the right answers most of the time 
because I was good at the repetitiveness of close-ended questions. However, these open-
ended questions… I actually enjoyed them more… they provoked more enthusiasm and 
excitement in math. 

For preservice teachers, such as Isabel, multiple possible solutions to questions 
provided a less apprehensive lens and a more exciting context through which to view 
and experience mathematics.  
Creating open-ended questions, reported some preservice teachers (25%), gave them 
a sense of empowerment through being able to create mathematical problems beyond 
the textbook and classroom walls. This process provided them with a sense of 
ownership of their questions. Heather stated, “Because these questions are thought of 
by me, I would feel much more comfortable explaining and teaching the concepts of 
these questions because I made them up as compared to teaching through the 
textbooks.” On the one hand, this expression of autonomy is impressive for a 
beginning teacher. However, discarding textbook problems developed by experienced 
teachers and researchers that could be a source of possible problems is worrisome. It 
is important for preservice teachers to not only develop but also consider and 
critically evaluate well-constructed open-ended questions designed by experts in the 
field (see Sullivan & Lilburn, 2002). 
DISCUSSION AND CONCLUSION  
Our results indicate that preservice teachers designing open-ended questions based on 
photographs prompted a shift in their understanding of pedagogical approaches and 
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ways in which they viewed mathematics. However, at least one-third of the 
participants stated that developing open-ended questions was complex. One 
participant stated, “I debated with my classmates for hours trying to figure out 
whether or not my question was open-ended or not.” This statement supported in-
class observations of the preservice teachers’ struggle with the idea of open-
endedness. As Ilana wrote, “…it was hard to distinguish between a very good close-
ended question and an open-ended one.” It was observed that many students initially 
viewed an open-ended question as having multiple, complicated steps to achieving 
one correct answer.  
A second challenge for preservice teachers involved their limited experience with the 
mandated school mathematics curriculum. Unfamiliarity with the curriculum made it 
difficult for preservice teachers to pose mathematically appropriate and suitable 
problems for particular grade levels. This unfamiliarity may explain some students’ 
reported struggle to find the mathematics within a particular photo scene. However, 
students’ understanding of mathematics also framed what they were able to attend to 
or notice that was mathematical within a photo. That some preservice teachers turned 
to the elementary school curriculum for a list of mathematical topics and concepts 
(e.g., number, patterns, relations, space and shape) that could be used to analyze a 
photograph speaks to the structure the curriculum offered them for noticing school 
mathematics outside the textbook. Thus the curriculum both constrained and provided 
possibilities for preservice teachers to explore and create open-ended problems.  
Further analysis that includes an examination of preservice teachers’ collected 
problems and photos can help determine the extent to which the preservice teachers 
were able to develop mathematically interesting problems. Sinclair and Crespo 
(2006) found that when preservice teachers were intent on posing problems for their 
students they created mathematically less interesting problems than if they were to 
create problems for themselves. However, Crespo (2003) previously found that 
having an authentic audience, such as preservice teachers posing problems to young 
children, was one supporting factor that helped preservice teachers move from posing 
procedural computation-type problems to more open-ended problems. Our study 
results indicate that preservice teachers’ overwhelmingly reported the mathematical 
and pedagogical benefits of creating open-ended problems related to photos. As Del 
best stated, “…now I carry my digital camera around and have noticed more math in 
real life.” Nonetheless, we wonder if the kinds of problems preservice teachers create 
in this context are mathematically interesting (Sinclair & Crespo, 2006) and if 
preservice teachers consider themselves as the authentic audience or their future 
students. These questions are important if we are to further our understanding of 
teaching as a learning practice and the art of creating and posing mathematical 
problems as a significant aspect of that practice.  
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TOWARDS A LANGUAGE OF DESCRIPTION FOR CHANGING 
PEDAGOGY  

Karin Brodie 
University of the Witwatersrand 

 
In this paper I develop a set of codes for describing teacher moves as they respond to 
learner contributions. The codes are used to analyse four teachers’ changing practices, 
as they begin to work towards engaging with learners’ ideas. The analysis shows that 
the teachers did shift towards more “reform-type” moves. At the same time they 
maintained the more “traditional” type moves, thus developing hybrid pedagogies. 
It has long been understood that teacher-learner interaction and classroom discourse 
is an important influence on mathematics learning in classrooms. Research on 
mathematics classroom discourse suggests that it is usually relatively constrained and 
does not allow for the development and deepening of learners’ mathematical 
thinking. A key aim of mathematics reforms worldwide has been to shift the nature of 
classroom discourse so that it can better support conceptual mathematical reasoning 
among learners. Changing patterns of discourse can be a difficult and demanding task 
for teachers and recent research has begun to describe different ways in which 
teachers both manage and struggle with this challenge (Gamoran Sherin, 2002; 
Nathan & Knuth, 2003). Much of this research has been done as case studies with 
individual teachers. In this paper, I develop a set of codes to describe teacher 
responsiveness to learner contributions across teachers. These codes serve as the 
beginnings of a language of description for teaching and show how teaching practices 
shift as teachers begin to develop strategies for enabling participation and engaging 
with learners’ thinking in their classrooms. 
RESEARCH PARTICIPANTS AND CONTEXTS 
The subjects in this study were four secondary school mathematics teachers (one 
grade 10 or 11 class for each teacher), in four differently resourced schools in 
Johannesburg, South Africa. Two schools are in poor socio-economic areas, are 
under-resourced, and serve exclusively black learners. One school is in a lower-
middle class area, with adequate resources and with a racially diverse learner profile. 
The fourth is a private, extremely well resourced school, serving very wealthy 
learners who are predominantly white and all boys. At the time of the study, each 
teacher had between 7 and 15 years of mathematics teaching experience in secondary 
schools. Each teacher also has relatively strong mathematical knowledge and 
pedagogical content knowledge (established through task-based interviews and 
through classroom observation). All of the teachers were enrolled on an in-service 
post-graduate degree programme at a university in Johannesburg.  
The teachers volunteered for the study and formed a purposive sample in that they 
were well informed about new curriculum developments in South Africa. Since much 
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teacher development around the new curriculum is at a generic pedagogical level 
rather than subject related, many teachers’ understandings of the mathematical 
implications of the curriculum are relatively superficial (Chisholm et al., 2000). I 
therefore thought it important to work with teachers who were reasonably well 
informed mathematically. While my sample of teachers is unique in this way, my 
initial classroom observations and interviews with the teachers suggested a range of 
teaching styles and approaches. Table 1 gives details of the schools and classes in 
which the research was conducted. 

Teacher  Grade  SES  Class size  Tracking/Level of class 

Mr. Nkomo  11  low  28  Untracked: Weak knowledge 

Mr. Daniels  11  mid  35  Tracked: Knowledge at Grade level 

Mr. Peters  10  very low  45  Untracked: Extremely weak 

Ms. King  10  high  27  Tracked: Strong knowledge 

Table 1. Description of research classes 

The teachers were observed and videotaped for two weeks each. The first week was in 
February or March, towards the beginning of the school year and each teacher taught 
according to his/her own teaching plan in his/her usual ways. The second week was in 
April or May. In preparation for this week, the teachers worked together to plan a 
number of tasks that would support mathematical reasoning among their learners and 
talked with each other about possible teaching approaches. The teachers had been 
exposed to ideas about interaction in reform-oriented mathematics classrooms and they 
spent some time thinking about different ways in which they might respond to learner 
contributions. They all used a combination of group work and whole class discussion, 
where the whole class discussion was based on report backs from the group work. The 
teachers each used about a week of lessons on the set of tasks. All of the lessons were 
videotaped, transcribed and coded on the transcripts while watching the videotapes. 
The analysis in this paper focuses on the whole class sessions. 
CLASSROOM DISCOURSE 
I developed a set of codes to describe the teachers’ shifts in responsiveness to learner 
contributions across the two weeks, drawing on the work of Mehan (1979) and others 
on the Initiation-Response-Feedback/Evaluation (IRF/E) exchange structure of 
classroom discourse. In this structure, the teacher makes an initiation move, a learner 
responds, the teacher provides feedback or evaluates and then moves on to a new 
initiation. Often, the feedback/evaluation and subsequent initiation moves are 
combined into one turn, and sometimes the feedback/evaluation is absent or implicit. 
This gives rise to an extended sequence of initiation-response pairs, where the 
repeated initiation works to achieve the response the teacher is looking for. When this 
response is achieved, the teacher positively evaluates the response and the extended 
sequence ends.  
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Many classroom researchers see the IRE structure as a constraining form of 
classroom interaction. Although this structure requires a learner contribution every 
other turn (the response move), and therefore apparently gives learners time to talk, 
much research has shown that because teachers tend to ask questions to which they 
already know the answers (Edwards & Mercer, 1987) and to ‘funnel’ learners’ 
responses toward the answers that they want (Bauersfeld, 1980), space for genuine 
learner contributions is limited. Therefore, many reform proponents suggest that a 
complete shift of the IRE structure is necessary to achieve the goals of student 
engagement and inquiry. They argue that classroom discussions should become more 
like conversations, with the teacher being a participant in similar ways to learners 
(Davis, 1997; Nystrand & Gamoran, 1991).  
However, aside from the enormous challenges involved in creating such 
conversations (Brodie, 2007), such suggestions ignore the particular functions of the 
teacher in the classroom, which include evaluating learners. Some argue that the 
IRE is a particular form of classroom discourse that can be used for a range of 
functions, both positive and negative (Wells, 1999). In trying to understand 
different possibilities for interaction, it is important to try to understand the benefits 
that the IRE can afford, which depend on the nature of the elicitation and evaluation 
moves. 
TEACHER MOVES 
Teacher initiations and evaluations are often fused in form, although not in function. I 
developed a set of codes to describe the function of teacher utterances as they initiate 
and evaluate. My unit of coding is the teacher move, which is constituted by all or 
part of a teacher turn that can be described with one code. Thus codes help to 
determine moves, it is not possible to identify moves prior to coding, and codes 
distinguish between different moves in one turn of teacher talk. 
The key category in my data is follow up, which describes all teacher moves that 
respond to learner contributions. My follow up code is closely related to, although 
broader than, Nystrand and Gamoran’s (1991) notion of “uptake”. Follow up 
includes some teacher moves that “uptake” might not include.  A teacher move is 
coded as follow up when the teacher picks up on a contribution made by a learner, 
either immediately preceding or some time earlier. This could be in a form of a 
request for clarification or elaboration; the teacher can ask a question or challenge 
the learner. Usually there is explicit reference to the idea, but there does not have 
to be. Usually the idea is in the public space, but it does not have to be; for 
example when a teacher asks a learner to share an idea that she has seen previously 
in the learner’s work. Repeating a contribution counts as follow up if it functions 
to solicit more discussion in relation to the learner’s contribution. An initial 
coding of my data showed that there were several ways in which the follow up 
move was used by teachers each of which functioned differently. Table 2 lists the 
subcategories of the follow up move. Examples of these can be found in Brodie 
(2004). 
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Insert  The teacher adds something in response to the learner’s contribution. She can 
elaborate on it, correct it, answer a question, suggest something, make a link 
etc. 

Elicit  While  following up on  a  contribution,  the  teacher  tries  to get  something 
from the learner. She elicits something else to work on learner’s idea. Elicit 
moves  can  sometimes  narrow  the  contributions  in  the  same  way  as 
funneling. 

Press  The teacher pushes or probes the learner for more on their idea, to clarify, 
justify or explain more clearly. The teacher does this by asking the  learner 
to  explain more,  by  asking why  the  learner  thinks  s/he  is  correct,  or  by 
asking a specific question that relates to the  learner’s  idea and pushes for 
something more.  

Maintain  

 

The  teacher  maintains  the  contribution  in  the  public  realm  for  further 
consideration. She can repeat the idea, ask others for comment, or merely 
indicate that the learner should continue talking.  

Confirm  The  teacher  confirms  that  s/he  has  heard  the  learner  correctly.  There 
should be some evidence that the teacher  is not sure what s/he has heard 
from the learner, otherwise it could be press. 

Table 2. Subcategories of Follow up 

These categories are informed by the literature as follows: Insert is motivated by a 
similar rationale to that of Lobato et al (2005), that teachers cannot avoid “telling” and 
this should be recognised as an appropriate part of their practice. Elicit is closest to 
Edwards and Mercer’s (1987) “repeated questions imply wrong answers” or 
Bauersfeld’s (1980) “funneling”, which can constrain as much as enable learner 
thinking. It is likely that Nystrand and Gamoran (1991) would not have included such 
moves in their notion of uptake because they may not represent a serious consideration 
of learner ideas. I chose to include elicit moves under follow up, because for my 
purposes it is illuminating to distinguish between different kinds of follow up rather than 
to exclude a range of moves that teachers might intend as a follow up from this category. 
Press is similar to Wood’s “focusing” and to Boaler and Brodie’s (2004) fourth question 
category “probing”. Elicit and press moves can sometimes seem similar to each other, 
they are distinguished in similar ways to how Wood (1994) distinguishes focusing from 
funneling – a press move orients towards the learners’ thinking, rather than towards a 
solution. Maintain is similar to “social scaffolding” (Nathan & Knuth, 2003), and 
supports the process of learners’ articulating their contributions. It is also similar to 
revoicing (O'Connor & Michaels, 1996) and often involves a repetition or rephrasing of 
the learner’s contribution which keeps the idea in the public realm for further 
consideration. Although confirm exists as a category, it occurred seldom in my data and 
did not have major consequences for the interaction, so it is not discussed in detail. 
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These moves can be arranged on a continuum of less to more intervention as follows: 
confirm and maintain make no intervention in the learner contribution, merely keep it 
in the public space; press tries to get the learner to intervene in her own contribution; 
elicit intervenes more directly, where the teacher has something in mind that she 
steers the learner towards; and insert is the most direct intervention, where the 
teacher makes her own mathematical contribution. Maintain and press moves can be 
seen to be more “reform-oriented” moves. Maintain moves suggest a more neutral 
teacher or a “facilitator”, where the teacher holds back on her/his own ideas in favour 
of enabling the conversation to continue or supporting a learner to work harder to 
articulate, clarify and deepen her/his engagement with the ideas. Elicit and insert 
moves might be considered to be more traditional, in that the teacher brings in more 
of her own knowledge of the discipline, asking questions that suggest particular 
answers (elicit) or explaining concepts or making her/his own points in the 
conversation (insert). Part of the argument of this paper is that even as teachers shift 
their pedagogy towards reform-oriented moves (maintain and press), they maintain 
elements of previous pedagogy (elicit and insert). 
DISTRIBUTION OF TEACHER MOVES 
For each teacher, I coded all of the whole-class teaching during the two weeks. Table 
3 gives the distribution of follow up moves for each teacher during each week.  

Teacher Week 1 Week 2 

Mr. Daniels 177; 71% 174; 61% 

Mr. Nkomo  319; 44% 238; 70% 

Mr. Peters 929; 82% 432; 68% 

Ms. King 405; 79% 209; 52% 

Table 3. Follow up moves: Week 1 and 2 (numbers and percents) 

The most striking result in table 3 is the predominance of follow up moves in all the 
classrooms. For each teacher during both weeks, except for Mr. Nkomo in week 1, 
follow up moves accounted for the majority of moves. A significant result is that the 
percentages of follow up moves decreased from week 1 to week 2 for all the teachers 
except Mr. Nkomo. This is somewhat surprising, given that the teachers were trying to 
engage their learners’ meanings and reasoning more in week 2 than in week 1. However, 
as discussed above, the way in which follow up was defined included some moves that 
could be considered as more constraining of learner thinking, particularly the elicit 
move. 
Table 4 shows the shifts in the subcategories of follow up from week 1 to week 2. 
There was a substantial increase in press moves for all teachers and an increase in 
maintain moves, although these increased substantially more for the two Grade 11 
teachers, Mr. Daniels and Mr. Nkomo, than for the two Grade 10 teachers, Mr. Peters 
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and Ms. King. The increase in press and maintain moves was accompanied by a 
decrease in elicit moves. This suggests that the teachers decreased the amount of 
narrowing or constraining of the tasks and their questions. The picture for insert is 
slightly more complex, with the two Grade 11 teachers, Mr. Daniels and Mr. Nkomo, 
decreasing and the two Grade 10 teachers, Mr. Peters and Ms. King increasing. 
Across all four teachers, the shift in insert moves is less than the shifts in the other 
moves. 

  Insert Elicit Press Maintain Confirm 

Mr Daniels
Week 1 38 28 6 21 6 

Week 2 24 5 20 42 9 

Mr Nkomo
Week 1 30 24 4 38 5 

Week 2 18 10 13 50 9 

Mr Peters 
Week 1 19 49 4 27 2 

Week 2 24 23 20 30 4 

Ms King 
Week 1 29 34 2 31 4 

Week 2 31 21 7 39 2 

Table 4. Subcategories of follow up (percents) 

The above distributions provide a first level description of the teachers’ changing 
practices. They show that Mr. Nkomo shifted in following up on learner 
contributions, with a substantial increase in week 2. Within this increase in follow up, 
he also increased the percentage of press and maintain moves while decreasing elicit 
and insert moves. Mr Daniels decreased his follow up moves but also increased his 
press and maintain moves while substantially decreasing his elicit and insert moves. 
Mr. Peters and Ms. King decreased their follow up moves while increasing their press 
and maintain moves, slightly increasing their insert moves and decreasing their elicit 
moves (however, these remain substantially higher than both Mr. Daniels’ and Mr. 
Nkomo’s). This description suggests that the two Grade 11 teachers shifted in 
somewhat similar ways, while the two Grade 10 teachers shifted in similar ways. This 
can be somewhat accounted for by the fact that they used similar tasks in week 2. 
Another interesting point to note is that Mr. Peters worked with the lowest SES 
learners in the sample, whose mathematical knowledge was weakest and Ms. King 
worked with the highest SES learners whose mathematical knowledge was strongest. 
This suggests that at this level of description, when teachers work together, shifting 
pedagogies can be seen as similar across SES and mathematical knowledge of 
learners.  
The above analysis suggests a number of important points about the teachers’ 
changing pedagogies. First, they all did shift to the more reform-type moves: press 
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and maintain. However, even with the shift to press and maintain moves in week 2, 
the teachers continued to use all the moves. This resonates with Boaler and Brodie’s 
(2004) finding that while teachers using a reform curriculum asked more conceptual 
and probing questions, they still continued to use a substantial amount of questions 
requiring recall or procedures. So the analysis suggests that teachers develop hybrid 
pedagogies (Cuban, 1993) and illuminates some of the ways in which they do so.  
CONCLUSIONS 
In this paper I have presented a set of codes for describing teacher discourse in 
mathematics classrooms. The codes build on existing analyses of discourse and take 
these further by further elaborating a notion of follow up, which is key to the teaching 
work of seriously engaging with learners’ contributions. These codes, together with 
their conceptual bases provide the beginnings of a language of description for 
teaching as teachers engage with learners’ thinking. The codes enable comparisons 
across teachers as well as a means of understanding each teacher’s practices on its 
own terms. They also enable descriptions of teachers’ practices that cut across vague 
descriptions such as traditional and reform and thus enable us to describe, analyse 
and understand shifting practices in contexts of curriculum and pedagogical change. 
The codes provide a broad level of description, which can be deepened with more 
qualitative analyses, and they provide a framework for such analyses.  
Using this language of description, I presented an analysis of the ways in which four 
mathematics teachers engaged with learners’ contributions, and how this engagement 
shifted when the teachers explicitly attempted to engage learners’ mathematical thinking. 
The teacher moves that are most usually associated with deepening learner engagement are 
the teacher press (Boaler & Brodie, 2004; Kazemi & Stipek, 2001) and maintain moves. In 
my data, there was a significant increase in these moves from week 1 to week 2, suggesting 
that the teachers were attempting to engage learners’ thinking. There was also an increase 
in maintain moves, which shows that the teachers were supporting learner talk. 
Research on teacher learning has shown that learning to support mathematical 
reasoning and engagement is a difficult task for teachers. It is clear that a range of 
interventions is necessary and appropriate to support teachers in this task. While a 
language of description is essentially a research tool, it can also be a tool for teachers 
and educators. Being able to describe what you are doing is a first step in 
understanding and improving on it. While the language that I have provided is 
certainly not the only possibility, I suggest that it can and will give teachers a way in 
which they can talk about and reflect on their own practices of responding to and 
interacting with learners’ contributions. 
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EXPLORING THE NEED FOR A PROFESSIONAL VISION 
TOWARDS CURRICULA 
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In this paper, we describe a novel research approach to exploring the character of 
teachers’ implementations of a Standards-based curriculum. Specifically, we propose 
a theoretical reconceptualisation of the intended curriculum and then use this 
construct to explore teachers’ enactments of lessons. We conclude by discussing the 
need for a professional vision towards curricula shared by teachers, curriculum 
developers, and researchers in mathematics education. 
INTRODUCTION  
The United States has spent nearly 93 million dollars over the past two decades 
developing Standards-based curricula (NRC, 2004) that incorporate the 
recommendations of the National Council of Teachers in Mathematics’ Curriculum 
and Evaluation Standards for School Mathematics (NCTM, 1989) and Principles and 
Standards for School Mathematics (NCTM, 2000), only to have these curricula 
bombarded with attacks on their effectiveness. Furthermore, developers of Standards-
based curricula have been asked to meet unprecedented research standards (Reys, 
2001). These events highlight some of the difficulties faced by researchers and 
Standards-based curriculum developers as they strive to enact the reforms described 
in the NCTM’s Standards documents. 
One benefit of the current controversies surrounding mathematics education in the 
United States is that they have increased both attention to mathematics education and 
opportunities for research on mathematics teaching, learning and curricula (Reys, 
2001). For example, after an extensive review of evaluation studies of 13 curricula, 
researchers concluded that existing research was insufficient to determine the 
effectiveness of the curricula (NRC, 2004). One response to this finding was a call 
for research that analyses “the quality, extent, and means of curricular 
implementation” (NRC, 2004, p. 4). Along the same lines, and in reaction to national 
policy changes, Schoenfeld (2006) argues: 

Indeed, one can imagine curricular materials that, when used in the way intended by the 
designers, result in significant increases in student performance, but, when used by 
teachers not invested or trained in the curriculum, result in significant decreases in 
student performance. Hence, data gathering, coding, and analysis must try to indicate the 
character of the implementation and its fidelity to intended practice (p. 17). 

In this paper, we describe a novel research approach to exploring the character of 
teachers’ implementations of an elementary Standards-based curriculum, Math 
Trailblazers. Specifically, we propose a theoretical reconceptualization of the 
intended curriculum. We then identify aspects of the written curriculum that appear 
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to play a role in teachers’ enactments of the intended curriculum. We conclude with a 
discussion of how teachers’ use of curricula indicates the need for the development of 
a professional vision towards curricula shared by teachers, curriculum developers, 
and researchers. 
RECONCEIVING THE INTENDED CURRICULUM  
Curriculum theorists define the intended curriculum as the learning objectives, 
determined at a national or sub-national level, expected to be taught within an 
educational system (McKnight, 1979). Models of the ways in which these learning 
objectives play a role in student outcomes often view these objectives as directly 
influencing curricula, and consequently, classroom lessons (Valverde et al., 2002). 
This definition and perspective of the intended curriculum is problematic in the 
United States for two reasons. First, we have neither a national curriculum nor do we 
have national learning objectives. Educational learning objectives are determined at 
either state or local district levels with little consistency from one set of objectives to 
the next (Reys, et al., 2006). Second, textbooks in the United States are produced, 
almost exclusively, by private publishing companies who in order to exist must meet 
the requirements of many states and therefore multiple sets of state objectives, 
recommendations, or standards. Thus, curricula in the United States do not address an 
intended curriculum, but rather many intended curricula. Efforts to move towards 
unified learning objectives, however, have been put forth in the National Council of 
Teachers of Mathematics Standards documents (NCTM, 1989; NCTM, 2000). The 
National Science Foundation furthered these efforts by funding or co-funding the 
development of “Standards-based” curricula. Researchers, however, have raised 
questions about how standards are interpreted through curricula and, more generally, 
what it means to be Standards-based (Ferrini-Mundy, 2004). Thus, it is unclear even 
in the context of Standards-based curricula, how the curricula address the intended 
curriculum. It is also difficult, if not impossible, to say the extent to which an 
implementation represents “fidelity to intended practice.”  
The word intended is derived from the Latin word intendere, which means to aim 
towards. The position taken in this paper is that specific learning objectives guide 
curriculum authors’ decisions when developing curricula, whether or not national 
or sub-national learning objectives exist. Moreover, learning objectives do not live 
in isolation. Authors’ selection of learning objectives are influenced by their 
interpretations of others’ learning objectives and their ideas about how students 
come to know mathematics; that is, the authors’ epistemological stance. Moreover, 
the authors’ interpretations of others’ learning objectives and their epistemological 
stance influence the selection, sequencing and more importantly, the 
conceptualization of learning objectives; that is, the ways in which authors design 
activities that address or embody learning objectives. Thus, written curricula, 
within the United States, can and should be viewed as addressing the authors’ 
intended curriculum. In the case of current U.S. reforms, authors of Standards-
based curricula attempted to address not only novel learning objectives but also 
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learning objectives of a different form. Specifically, learning objectives have 
historically been interpreted as specific skill and content knowledge goals. In 
contrast, the learning objectives of recent reforms in the United States and 
described within the NCTM’s Standards documents focused on content and on the 
ways in which students’ might engage in that content during classroom activities. 
In other words, these learning objectives focus on students’ opportunities to learn 
mathematics, as described by Hiebert (2003):  

“Providing an opportunity to learn what is intended means providing the conditions in 
which students are likely to engage in tasks that involve the relevant content” (p.10, 
emphasis in original). 

It is for these reasons that, in the context of curricula in the United States, we have 
reconceptualized the notion of an intended curriculum as existing at a curricular 
level; and in the context of Standards-based curricula, construed the authors’ 
intended curriculum as consisting of the intended opportunities to learn 
mathematics. Viewed in this way, questions concerning the implementation of 
Standards-based curricula, and more importantly, the character of implementations, 
become questions about the extent to which the intended opportunities arose as 
teachers enacted the lessons. Such questions have yet to be addressed within 
American curricular studies. 
EXAMINING TEACHERS’ ENACTMENTS OF LESSONS 
The work reported in this paper was part of a larger NSF-funded study, the Whole 
Number Study (grant # ESI-035-2345). This study was aimed at understanding 
teachers’ use of whole number lessons, students learning of whole number 
concepts, and developing research-based recommendations to inform revisions to 
the Standards-based, comprehensive, elementary curriculum, Math Trailblazers. 
In this paper, we focus on our explorations of teachers’ use of whole number 
lessons as illustrated by two teachers’ enactments of the grade 2 lesson, Base-Ten 
Subtraction.  
To begin, we analysed the curriculum in terms of the authors’ intended 
opportunities to learn. We then derived from a combination of resources -which 
included the curriculum, Standards documents cited in the curriculum, authors’ 
philosophical statements embedded in curriculum resources, and discussions with 
the authors- a series of codes for the authors’ intended opportunities to learn (see 
Table 1).  
Data, in the form of videotaped lessons, was transcribed and then segmented. A 
segment, in this context, refers to a portion of transcript that begins and ends with a 
shift in activity. Pairs of researchers independently coded each segmented transcript 
by selecting the most appropriate opportunity to learn codes, rating the extent to 
which these opportunities arose and providing rationales for each rating. The 
researchers then compared the codes, discussed discrepancies, and produced a rating 
of the observation’s degree of alignment to the intended curriculum. 
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A. Opportunities to Reason About Mathematics 

A1. Opportunities to reason to solve problems; Opportunities to reason about mathematical 
concepts.  

A2. Opportunities to use or apply concepts, strategies, or operations, reasoning about how to 
refine strategies so that they become more efficient. 

A3. Opportunities to select from multiple tools, representations, or strategies. 

A4. Opportunities to compare and make connections across tools, representation, or strategies 

A5. Opportunities to validate strategies or solutions; reason from errors; inquire into the 
reasonableness of a solution. 

B. Opportunities to Communication About Mathematics 

B1. Opportunities to communicate mathematical ideas or ways of reasoning 

B2. Opportunities to interpret another student’s way of reasoning about tools, representations, 
strategies, or operations. 

B3. Opportunities clarify reasoning or explanations; provide supporting rationale. 

B4. Opportunities to characterize mathematical operations. 

Table 1. Opportunities to learn codes 
RESULTS 
For this paper, we will focus on the lesson, Base-Ten Subtraction. We begin by 
exploring the written lesson materials for Base-Ten Subtraction. We then consider 
two implementations of Base-Ten Subtraction to illustrate differences in the extent to 
which opportunities to learn arose during the teachers’ enactments of the lesson. 
The written Base-Ten Subtraction lesson materials emphasize creating situations in 
which students can build on previously developed subtraction strategies and 
representations of number to explore subtraction with base-ten pieces. The lesson is 
part of a unit where students work on subtraction with regrouping and precedes a 
lesson that introduces a subtraction algorithm. In terms of opportunities to learn, the 
lesson focuses on providing opportunities for students to select and compare 
strategies, and to explore and discuss representations and strategies.  
The curricular materials make these aims apparent both in background information 
about expectations for working with students to develop their understandings of 
computational operations, as well as in the lesson text itself. For instance, the written 
lesson materials do not specify a procedure that students’ are expected to use to solve 
subtraction problems in this lesson, and there are numerous statements that indicate 
students should share their solution strategies. For example, “pairs share their 
solutions” would seem to imply that students should compare different ways of 
solving the problem. “If students represent 52 with the fewest number of pieces” 
would seem to imply that there is an expectation for variety in students’ strategies.  
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The two implementations of Base-Ten Subtraction were videotaped in the Spring of 
2004. Both sites were public, urban elementary schools, with moderate-income 
students. Teacher A’s school is a mixed ethnicity school, typical of large urban areas. 
Teacher B’s school is predominately white, with a small percentage of minority 
students. Videotaped observations of both teachers’ implementations of Base-Ten 
Subtraction indicate that the teachers followed the written lesson. In particular, we 
documented that both teachers followed the lesson steps for the set-up, main 
activities, and conclusion of the lesson. Thus, for the remainder our discussion we 
focus on the degree of alignment between the enacted lesson and the intended 
opportunities to learn, where “enacted lesson” refers to the classroom lesson that 
results from interactions between the teacher and the students (and vice-versa) as they 
engage with the lesson materials (Reys & Roseman, 2004).  
We rated Teacher A’s enactment of Base-Ten Subtraction as having a high degree 
of alignment to the intended curriculum, indicating that the observed opportunities 
to learn aligned with the authors’ intended opportunities to learn. In contrast, we 
rated Teachers B’s enactment as having a low degree of alignment to the intended 
curriculum, indicating that the observed opportunities to learn did not align with 
those the authors’ intended. Thus, Teacher A and Teacher B represent different 
ends of a continuum—a trend we observed in the larger data set. To illustrate 
differences in the teachers’ enactments, we will focus students’ opportunities to 
select from multiple tools, representations, or strategies (see A3) during the two 
enactments. 
In Teacher A’s enactment of Base-Ten Subtraction, she asks students to solve 
problems in ways that make sense to them. Notice below, how the teacher invites 
students to solve problems, in the first case, as they chose, and in the second case, as 
they chose but with a particular tool-the base-ten pieces. 
Transcript Segment 1-Teacher A 

Teacher A: Okay. Now let's try to solve this problem by your favourite way of solving 
subtraction. 

Transcript Segment 2-Teacher A 
Teacher A: Now, please use Base Ten Pieces to solve... 
Student 1: YAY! 
Teacher A: …fifty-two minus fourteen. 

In both of these segments, immediately following the teachers’ statements, students 
began working on the problem. As seen in the segments, Teacher A does not specify 
what strategies or representations students should use. Instead, students select how 
they will solve the problems. In general, the opportunities students had during this 
enactment aligned well with the authors’ intended opportunities to learn.  
Teacher B’s enactment does not provide evidence of opportunities for students to 
select representations or strategies. Teacher B, for example, started the task 78-42 by 
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remarking “So they want me to take away forty-two.” She proceeded by specifying 
how students should operate on the base ten pieces, as demonstrated below.  
Transcript Segment 3-Teacher B 

Teacher B: Why do I always start with the bits? Do you know? In math, can I start over 
here on the tens side? I can't, it's the opposite of what? What did we say it's the 
opposite of? 

Student 2: Reading. 
Teacher B: Reading. It's the opposite of reading and reading we work left to right, in 

math we work... 
Students: Right to left. 
Teacher B: Right to left. So we always have to start with the ones.  

In this segment, Teacher B describes a procedure for the students to use when solving 
subtraction problems, as opposed to providing an opportunity for students to select 
strategies for solving the problem as intended by the authors. The teacher prompts 
students to begin with the ones place and work “right to left” while solving the 
problem. This structuring of students activities by the teacher is not suggested 
anywhere in the materials.  
The lack of opportunities for students to select strategies had an impact on the 
potential for other opportunities to learn. Since students used the teacher-specified 
procedure, there were not multiple strategies to discuss or compare. They did not 
have to evaluate each other’s thinking or respond to strategies different from their 
own. Therefore, as a result of the instructional decision to model an approach for 
solving base-ten subtraction problems, Teacher B’s enactment lacked many of the 
intended opportunities to learn for Base-Ten Subtraction.  
Considering the Written Instructional Materials 
Although both teachers implemented the literal steps of the written lesson, there 
seems to be something in their professional and personal experiences that afforded 
them different interpretations of the written lesson. Teacher B appears to have 
interpreted the written lesson as one in which the primary goal was to introduce 
students to a procedure for solving subtraction problems with base-ten pieces. In 
contrast, Teacher A appears to have interpreted the written lesson as one in which the 
primary goal is to develop and explore students’ subtraction strategies. One must 
question why the teachers’ interpretations differed this way. One explanation is that 
Teacher B held particular views about students’ learning of subtraction and therefore, 
read the lesson in a way that aligns with these views. Another explanation is that as 
Teacher B read the lesson, she focused on a subtraction strategy illustrated in the 
margin of the written lesson and concluded that she should model the strategy. Since 
the written lesson materials indicate that students should explore and discuss 
subtraction strategies, one can argue that Teacher B should have recognized that 
many strategies should arise during the lesson. The lesson materials, however, do not 
explicitly state that teachers should not model a strategy; information that Teacher B 
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may have been unable to infer. If the later explanation is valid, then the curricular 
materials included information that supported Teacher B’s interpretation, while at the 
same time leaving the teacher to infer information that contradicted her interpretation.  
TOWARDS A SHARED PERSPECTIVE OF CURRICULA 
In Miriam Gamoran Sherin’s (2001) introduction to the notion of a professional 
vision towards classroom events, she described the following scenario: 

Imagine that you are standing at the site of an archeological dig. On your left you see a 
large rock with a dent in the middle. Next to it you see a pile of smaller stones. Aside 
from this, all you see is sand. An archeologist soon appears at the site. What looked like 
just a rock to you, he recognizes as the base of a column; the small stones, a set of 
architectural fragments. And where you saw only sand, he begins to visualize the 
structure that stood here years before (p. 75). 

After which, Sherin introduces Goodwin’s notion of a professional vision as: 
“socially organized ways of seeing and understandings events that are answerable to 
the distinctive interests of a particular social group” (Goodwin, 1994; cited in Sherin, 
2001). Sherin then makes the case that there is a need for a professional vision 
towards classroom events shared by researchers and teachers. In this section of our 
paper, we extend Sherin’s notion of a professional vision. In particular, we 
demonstrate why reform curricula may depend on the development of a professional 
vision towards curricula shared by authors, teachers and researchers. 
As researchers familiar with the research basis cited in Math Trailblazers and with 
the Math Trailblazers teacher resources, we were able to approach the lessons within 
the curricula from a common foundation. This common foundation allowed us to 
interact with the curriculum authors to develop a shared perspective of the authors’ 
intended curriculum at a lesson level and provided common ground for the 
communication of research findings. Considered in the context of Sherin’s (2001) 
discussion, one can argue that the researchers and authors developed “socially 
organized ways of seeing and interpreting” the curriculum - that is, we developed a 
shared professional vision towards the curriculum. 
Our work on teachers’ implementation of whole number lessons, however, indicates 
that teachers differ in terms of the extent to which their lesson enactments align with 
the intentions of the authors. While some of the teachers in our study, teachers such 
as Teacher A, seem to hold a perspective of the curriculum that they share with the 
authors, other teachers appear to interpret the materials in ways that do not align with 
the authors’ intentions. These findings indicate that while some teachers’ ways of 
seeing and interpreting curricula may align with those held by authors of Standards-
based curricula, we cannot assume that these ways of seeing and interpreting 
curricula are shared. In other words, we cannot assume that teachers, curriculum 
authors and researchers share a professional vision towards curricula. We can argue, 
however, that enactments such as Teacher B’s enactment of Base-Ten Subtraction 
indicate that current reform efforts in the United States are likely to suffer until a 
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shared professional vision of curricula develops. In particular, teachers are likely to 
continue to implement lessons in ways that fail to align with the intentions of authors. 
Furthermore, curriculum authors and researchers, in an effort to improve curricula, 
are likely to struggle with the form and content of information to provide to teachers. 
Specifically, it seems likely that a common language will develop without shared 
meanings – as is common to reforms.  
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8TH GRADE STUDENTS REPRESENTATIONS OF LINEAR 
EQUATIONS BASED ON CUPS AND TILES MODELS 

Günhan Caglayan and John Olive 
The University of Georgia 

 
This study examines 8th grade students' use of a representational metaphor (cups and 
tiles) for writing and solving equations in one unknown. We base our analysis within 
a framework of referential relationship of meanings (Kaput, 1991). Our data consist 
of videotaped classroom lessons, student interviews and teacher interviews. Our 
results indicate that addition and (implied) multiplication operations only are the 
most meaningful and relevant operation types in dealing with these representational 
models. Only one student was able to construct a “family of meanings” in sense 
making of and in connecting the algebraic expressions and the representational 
metaphor when negative quantities were involved. We conclude that quantitative unit 
coordination and conservation are necessary constructs for overcoming the cognitive 
dissonance (between the two representations) experienced by students and teacher. 
BACKGROUND 
Physical objects, also often referred to as manipulatives, can serve as essential 
representational models in the course of experiential learning (NCTM, 2000). 
However, research has shown that the use of physical objects can be an obstacle to 
mathematical progress in some cases. Howden (1986) showed that even though 
students were successful mathematically at the concrete level, that was not always the 
case in the abstract level. Uttal et al. states that “part of the difficulty that children 
encounter when using manipulatives stems from the need to interpret the 
manipulative as a representation of something else.” (1997, p .38) We believe that a 
reference to any kind of physical object brings with itself the necessity to think about 
the object under consideration as some sort of quantity possessing a name, a value, 
and a measurement unit (Schwartz 1988, Thompson 1993). Attending to the 
quantitative nature of manipulatives may be an asset for students' success in relating 
the manipulatives to their written symbolic referents. The physical object itself can 
not be a representation of a written symbol without “meanings” projected into these 
“concrete objects.” (Olive & Vomvoridi, 2006). A successful mapping of the 
“concrete” to the “abstract” depends on the manipulative itself and a “family of 
meanings” attached to these objects. 
THEORETICAL FRAMEWORK 
Our study draws on Kaput’s Referential Relationship Representational Model (1991, 
p.60). In this model, physical observables (e.g., algebraic expressions, their 
representations, etc.) are denoted by letters A, and B, respectively (Figure 1). The 
upper part of this model claims that meanings are projected onto the mental levels in 
the realms of physical observables A and B, respectively; whereas the bottom 
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rectangle serves for connecting the two realms. The double arrows in both 
configurations imply a continuum of forward- and backward- shifts. The notations 
Cog A and Cog B represent the cognitive levels one must take into account in order to 
describe the corresponding representational acts on the physical observables A and B 
(p. 60). The shared referential meaning is a result of the cognitive operation 
connecting Cog A and Cog B. 
 

 
Figure 1. Kaput’s referential relationship (1991, p. 60). 

In this paper we explore the writing and solving of equations in one unknown using a 
representational metaphor of cups (that hold an unknown number of tiles) and tiles. 
Through our analysis of the classroom discussions, students’ explanations and 
responses to interview tasks, along with interviews with the classroom teacher, we 
have come to realize that addition and (implied) multiplication operations only are 
the most meaningful and relevant operations when using drawn representations of 
cups and tiles--there is no way to represent subtraction.   
CONTEXT AND METHODOLOGY 
This study took place in an 8th-grade classroom in a rural middle school in the 
southeastern United States. The 24 students were between 13 and 14 years old and 
had been placed in the algebra class based on their success in 7th-grade mathematics. 
The students were racially, socially and economically diverse, with an approximately 
equal distribution of gender. All eight class lessons on a unit that focused on writing 
and solving algebraic equations from word problems were videotaped using two 
cameras, one focused on the teacher and the other on the students. Four students were 
interviewed twice in pairs (a pair of girls and a pair of boys) during the three weeks 
of the study. The classroom teacher was also interviewed twice during the three 
weeks. All interviews were videotaped. Excerpts from the classroom videotapes were 
used during both student and teacher interviews to initiate discussion of the learning 
that was taking place in the classroom. Excerpts from the videotapes of student 
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interviews were also used in the teacher interviews. The second author conducted all 
of the interviews. 
The data for this study came from two class lessons, two student interviews and two 
teacher interviews. With the Cups & Tiles representational model, each occurrence of 
the unknown in the linear equation is represented by a small circle (a cup), and the 
known quantities are represented by small squares (tiles). Each tile corresponds to 
one unit. Positive quantities are drawn in black and negative quantities (cups or tiles) 
in red. The unspecified rule is that the same number of tiles is hidden in each cup. 
The problem for the students is to solve the equation by determining how many tiles 
are in each cup.  For example, “4 cups – 3 tiles = 1 cup + 6 tiles” would be 
represented as follows: 

  = 

Students were instructed to solve this pictorial equation by first adding 3 black tiles to 
each side of the equation (so as to make zero pairs with the 3 red tiles on the left side) 
and then to remove 1 cup from each side. These actions would result in 3 cups being 
equal to 9 black tiles – thus, there must be 3 black tiles in each cup. Cups and Tiles 
representation gave rise to student difficulties that can be explained in terms of unit 
identification and coordination, as well as the need for a notational system in 
agreement with what the Cups and Tiles Representational metaphor models—
namely, the combining of physical quantities. 
RESULTS 
The analysis of cups and tiles starts when the teacher (Ms. Jennings1) invites students 
to draw pictures of simple equations, that is to say, equations involving positive 
integers and plus sign only. Ms. Jennings starts the class lesson on 11/01/04 with the 
following introduction: 
Protocol I: Introducing cups and tiles to students (From classroom video on 11/01/04)  

Ms. Jennings: We're gonna draw pictures of equations… I want you to write this 
equation on your paper: [She writes 2c+1=7 on the white board] Now, before 
you tell me that I already know what the answer is, and that's fine if you 
already know the answer, the point is, you need some kind of a strategy to 
solve equations, so that you can solve much harder ones. So if you already 
know the answer, please don't tell me, I trust that you do know the answer. 
We're gonna draw the picture of what this looks like. We're gonna use what 
we call cups and tiles. You know, like cups [she shows the class the plastic 
white cup on her desk] and what goes in the cups. The cup is what you don't 
know and the tiles are what you count; you know, like the algebra tiles we've 
done on the overhead. Those are tiles, just like that... OK, so, what am I gonna 
have on this side [meaning the left hand side of the equation 2c+1=7] if I am 
drawing it? 

Gary:  Oh, I got it! 

                                                            
1 All names are pseudonyms. 



Caglayan and Olive 

2 - 228                                                                                PME 32 and PME-NA XXX 2008 

[Ms. Jennings then draws two cups on the left, and then another student jumps in] 
Cliff:  Plus one tile! [meaning that we draw one tile on the left hand side] 
[Ms. Jennings then draws seven tiles on the right hand side to balance the equation.] 
Ms. Jennings: Now, remember. I want my equation to balance. Everything on the left is 

everything on the right. You’ve got to trust that it is. Everything on the left is 
everything on the right, just in a different form. 

This warm-up example is a straightforward one for introducing the cups and tiles 
metaphor in that it deals with positive quantities only. Moreover, it is a very simple 
equation with a positive integer solution [some students already knew that the answer 
would be 3] and this simplicity could help students connect what they already know 
about solving equations to the situation represented with cups and tiles. There is, 
however something more that needs to be emphasized about the cups holding tiles, 
i.e., that all the cups must hold the same number of tiles, as the following protocol 
indicates: 
Protocol II: Solving 2c+1=7 with Cups and Tiles (From classroom video on 11/01/04)  

Ms. Jennings: What do I have on both sides that are the same [meaning tiles]?  
Several students together: They are all tiles! 
Ms. Jennings: Tiles on both sides? How many tiles on the left? 
[Different answers come from various students, e.g., 1, 6, 3] 
Ms. Jennings: How many tiles on the right? 
Several students together: 7 
Ms. Jennings: OK, well, I am gonna take one tile off both sides. If I take one off both 

sides, are they still equal? 
Several students together: Yes 
Ms. Jennings: Am I doing the same thing to both sides? [students affirm] OK this is 

gone [crosses one tile off left hand side] and this is gone [crosses one tile 
off the right hand side] I took them both off… Now my equation looks a 
little bit different, but it’s still equal; I got 2 cups [meaning on the left] and 
six tiles [meaning on the right]. How many tiles do you think will fit in 
each cup? 

Several students: Three 
Ms. Jennings: And how do you know that? 
Brent:  3 times 2… 6 [inaudible] and three times 2c is 6 [this is interesting because 

Brent includes 2c, not just 2 in his multiplication] 
Ms. Jennings: Well, that's true, but how will I know three tiles will go in each 

cup? 
Brent:  Just put them there, in two lines of three. 
Ms. Jennings: In two lines of three. O. K. I can put all this [circling the three top 

tiles in figure 2] in one [draws the top arrow from the top three tiles to the 
first cup] and all this [draws an oval around the bottom three tiles in figure 2] 
in the other [draws an arrow from the bottom three tiles to the second cup - 
see figure 2] 
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Figure 2. Ms. Jennings using drawings of cups and tiles to solve an equation. 

Cliff:  Six divide by two  
Ms. Jennings: Six divide by two? I don't have six? 
Cliff:  Six tiles divided by two cups. 
Ms. Jennings: Oh, six tiles divided by those two? 
Cliff:  Yes. 
Ms. Jennings: OK. So that means my c is equal to... 
Cathy:  3 
[Ms. Jennings then writes c=3 on the white board underneath her drawing and asks her 

students to substitute this value back in the original equation to check that it 
works.] 

Any representation is prone to yield some sense of dealing with different units. In 
fact, the cups and tiles representation necessitates a unit coordination task (Authors, 
2008). There are two different units to be coordinated: First, each cup is to be filled 
with the same number of tiles; therefore, there is the same number of tiles per cup. In 
fact, in the example above (2c+1=7) c must stand for the intensive unit number of 
tiles per cup. There seems to arise a paradoxical situation here, as to what then the 
number 2 in front of c stands for. If it were just a scalar number, then the 
multiplication of 2 by c would not give a different unit, therefore, the unit for 2c 
would still be number of tiles per cup. However, 1, which is added to 2c, itself 
represents a “tile”; and has a different unit, number of tiles, therefore, we cannot add 
it to 2c (unit conservation, see Authors, 2008). We need to redefine “2” as “2 cups” in 
order to resolve the contradiction. Hence there is an implicit unit, number of cups, 
hidden in “2”. In this way, 2c really means (2 cups) times (c tiles per cup) and the 
resulting unit will be just “tiles” as desired. The foregoing analysis is not obvious to 
most people and is certainly not made explicit in the teacher or student materials. 
Cliff’s comment: “Six tiles divided by two cups” in the above protocol, however, 
does suggest that the representation generates an intensive unit as the answer for c. 
To continue with our analysis of the cups and tiles data, we jump to a problem 
presented later on in the lesson, where Ms. Jennings draws 3 black circles and 2 red 
squares on the left, and 1 black circle and 3 red squares on the right. [Note: black tiles 
or cups represent positive quantities whereas red tiles or cups represent negative 
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quantities]. There is an equality sign in the middle that separates the shapes (see 
Figure 3). The task is then to write an equation for this representation.  

 
Figure 3. Showing 3 black cups and 2 red tiles on the left and 1 black cup and 3 red 

tiles on the right of the equal sign. The algebraic equations were added later. 

The discussion between Gary and Ms. Jennings is interesting: 
Protocol III: Converting cups and tiles picture to an equation (From 11/01/04)  

Gary:  I think I got it. Aren't reds negatives? 
Ms. Jennings: That's a really good guess. 
Gary:  I think they are... Would it be “three c plus negative two equals one c plus 

negative three”? (Ms. Jennings writes 3c + (-2) = 1c + (-3) on the board-see 
Figure 3 above.) 

Gary's interpretation of the figurative equation is compatible with the cups and tiles 
picture. First of all, he prefers 3c+(-2) instead of 3c-2, which, in our opinion shows 
that this student believes that the only operation that's going on, if any, must be 
addition because he understands that the contents of the cups and the tiles are to be 
combined. Finally, Gary’s suggestion 1c+(-3) is interesting in that he emphasizes 
the “1” in front of c, indicating an implied multiplication. In our opinion, this is 
consistent with his unit coordination that there must be a counting number that he is 
using to count the cups, and c left alone, without the number “1” in front of it would 
not be enough to give the full explanation of what is going on with the pictures. 
That “1” therefore, could represent the unit “number of cups,” and c could have the 
unit of “number of tiles per each cup.” These are our conjectures at this point in the 
lesson. 
Protocol IV: Teacher's reaction to Gary's proposed equation (from 11/01/04)  

Ms. Jennings: Gary, I am liking this except one thing. It's a little “symbolly” to me.  
Could we simplify this any?  I think it has some symbols in it we don’t need. 

Gary:  Umm, can you put “minus 2” instead of “plus negative 2?” 
Ms. Jennings: I like that a whole lot better. 
Gary:  OK. Three c minus two equals one c minus three. (Ms. Jennings writes 3c-2=c-

3 on the board-see Figure 3 above.) 
Ms. Jennings: Can I make it c instead of 1c? 
Gary:  Err, yeah. 
Ms. Jennings: Simple!  It’s all about making it simple. 
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The teacher's intervention is potentially significant because the resulting problem solving 
procedure is no longer modelled by the cups and tiles. When all the cups and tiles, whether 
red or black, are present in the drawn representation, it would be hard to suggest a 
subtraction operation (see Figure 3 above). Therefore, if the student wants to follow the 
simplified version 3c-2=c-3, s/he is no longer using the initial model represented by the 
black-red cups and tiles combination: The problem lost its original appearance and became 
something else. In fact, two days later, after watching this classroom video, Ms. Jennings 
admitted that the original form of the equation suggested by Gary would work better.  
The classroom lesson continued with the drawn representation, and both equation 
forms written on the whiteboard, as in Figure 3, above.  Ms. Jennings asked the 
students what to do next. Interview student, Ben, suggested removing one black cup 
from each side and 2 red tiles from each side, which Ms. Jennings did by crossing out 
one cup and two tiles on each side of the drawn equation on the whiteboard. The 
simplified equation (3c-2=c-3) was further simplified to 2c=-1 but another student, 
Cathy had some doubts about this, as the following protocol demonstrates: 
Protocol V: Cathy's doubts about 2c=-1 (from classroom video on 11/01/04)   

Cathy:  I don't understand how you’re adding the 2c with the negative 1. 
Ms. Jennings: How many c's are left? 
Cathy:  Two 
Ms. Jennings: How many tiles are left? 
Cathy:  One 
Ms. Jennings: Well, that's where they came from... 
Cathy:  Okay. I guess. 
Ms. Jennings: Cathy, why does that not make sense? I am just looking at what’s left. 

Red is negative... 
Cathy:  I know that.  
Ms. Jennings: Okay... 
Cathy:  But they are two different things like.  How can they equal each other though? 

Cathy's, as well as other students' dissatisfaction with Ms. Jennings’ explanation and 
their inability to see how 2 black cups could equal a red tile can be explained by the 
missing concept of unitizing variables. On the one hand, Ms. Jennings and participating 
students agreed that they could add or subtract only like terms. On the other hand, the 
equation 2c=-1, admits that there is something missing with this configuration that 
troubles students' understanding. We claim that for all the numbers and the letters in the 
original equation: 3c+(-2) = 1c+(-3), and hence naturally, in the last equation: 2c = -1, 
there is a need to designate a quantitative unit for each variable (number of cups and 
number of tiles per cup) in order to conserve units.  In Protocol V above, the student 
appears to think of “2c” as 2 cups, and of “-1” as a red tile. The equality of these 
different representational objects does not make sense because the initial construction of 
units is missing. The “2” really has a unit, “number of cups.” The “c” then must 
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correspond to the intensive unit “number of tiles per cup,” rather than “number of tiles” 
(quantitative unit coordination). Emphasizing all these is necessary here. It naturally 
follows, then, that the product “2c” really has a unit, and that unit must be just “number 
of tiles”. It then would make perfect sense since we have -1 on the right hand side, and 
that corresponds to a red tile, having the same unit, namely “number of tiles” 
(quantitative unit conservation). 
CONCLUSIONS 
Our main conclusion is about the existence of a disconnect between mental 
operations and physical operations (Kaput, 1991, p. 57) that was the case for both the 
classroom teacher and many students. The difficulty that Cathy expressed in making 
sense of the result “2c=-1” in Protocol V suggests a cognitive dissonance in the 
referential relationship between Cog A and Cog B in Figure 1. Here Cog B is Cathy’s 
interpretation of “2 cups and one red tile” as physical quantities and Cog A is Cathy’s 
interpretation of “2c=-1” as a statement of equality between those two quantities. 
Gary, on the other hand, appeared to be successful both in inducing a meaningful 
algebraic notation of his own (Cog A) and in making sense of the physical objects 
with reference to quantitative unit coordination and conservation constructs (Cog B). 
Gary’s family of meanings is a system consisting of black and red cups and tiles as 
quantities existing on their own (elements), black and red cups and tiles as quantities 
existing in relation to each other (relationships among elements), the addition and the 
implied multiplication operations (operations that describe how the elements 
interact), and quantitative unit coordination and conservation constructs (patterns or 
rules that apply to the preceding relationships and operations). We conclude that 
quantitative unit coordination and conservation are necessary constructs for 
overcoming the cognitive disconnect between the two representations A and B. 
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This research report presents part of the findings of a research project whose goal 
was to characterize how prospective secondary mathematics teachers learn to notice 
mathematics teaching through the analysis of video-cases and the participation in 
online discussions. In this context, we understand to learn to “notice” when 
prospective secondary mathematics teacher link empirical evidence to theoretical 
information as a process of identifying relevant aspects in mathematics teaching and 
interpreting them. The findings show that the specific structural aspects of a web-
learning environment might explain some relationships between the different topics 
in on-line discussions and the characteristics of learning to notice mathematics 
teaching. 
In this research project we assume that “notice” teaching mathematics can be learned 
(Lin, 2005; Mousley & Sullivan, 1996; Van Es & Sherin, 2002; Sullivan & Mousley, 
1996;) understood as linking the events in a mathematics lesson with theoretical ideas 
originating in the didactics of mathematics as a process of identifying and 
interpreting different aspects of a mathematics lesson (Morris, 2006; Lin, 2005). This 
process of interpretation is generated by relating the particular to the general, and 
thus forms a starting-point for the development of professional knowledge in 
prospective teachers. 
Nowadays, recently developed technologies can be used to support interaction among 
prospective teachers. Online discussions make it possible to extend the boundaries of 
the class and to provide opportunities for written interactions with peers and 
expanded discussion spaces by allowing students to reflect and to develop skills that 
facilitate learning from practice (Derry et al., 2000). In these social interaction 
spaces, questions are generated on the cognitive effects of interactions that involve 
explanation and justification, in particular the question of how the different modes of 
participation operate to mediate meanings about mathematics teaching (Llinares & 
Oliveros, in preparation). Here, the activity of analysing a video-clip and partipating 
in virtual debates are therefore semiotically directed and enables us to analyse the 
“products generated” by the prospective teachers as particular examples of 
knowledge-building; on the other hand, as the prospective secondary mathematics 
teachers (PSMT) are able to integrate what they consider to be relevant information 
in the analysis of mathematics teaching, we can observe how they construct this 
knowledge (Wells, 2002). 
From these two viewpoints (analysing the mathematics teaching throught video-clips 
and the participation in virtual debates), we designed several virtual learning 
environments for prospective secondary mathematics teachers during their final year 
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of their mathematics degree.  The goal of this research was to characterize how 
prospective secondary mathematics teachers conceptualize mathematics teaching 
through analysing video-cases and participating in online discussions.  
DESIGN OF INTERACTIVE LEARNING ENVIRONMENTS 
For the last four years, we have been carrying out a research project using a design 
experiment approach (Cobb et al., 2003) about how prospective mathematics teachers 
endow mathematics teaching and learning with meaning through analysis of video-
cases of mathematics lessons and through participating in online discussions 
(Llinares & Valls, 2007). 
The multimedia learning environments we designed included the following: a video-
clips of part of a mathematics lesson, a virtual debate, theoretical informative 
documents relating to the teaching of mathematics and documents containing 
information on the actual classroom context, which included the teacher’s lesson 
plan, previous activities and classroom organisation. The PSMT were expected to 
exchange views with their colleagues on the analysis and interpretation of the 
videoed episode, and to come to an agreement on the text of a written report which 
was to be prepared in groups of four or five and handed in as a final assignment.  
The documents with theoretical information described critical classroom features that 
promote mathematical understanding (tasks, tools, norms, structuring and applying 
knowledge, reflection and articulation), and one characterization of mathematical 
competence as a multidimensional construct (conceptual understanding; development 
of skills; communication; posing, representing and solving problems; positive 
attitudes; mathematical confidence in oneself) (Fennema & Romberg, 1999). 
The following two questions were offered to guide PSMT in their analysis of the 
video-clip (Pea, 2006): 

Q1. What features of mathematical competence are improved by Sara’s (the teacher) 
interaction with her pupils? 
Q2. What aspects of teaching (the mathematical task proposed, methodology, 
management of the teaching process …) influence the development of different features 
of mathematical competence in this situation? 

The video-clip shows the interaction between a teacher (Sara)  and a group of pupils 
(14-15 years of age) while attempting to solve a problem consisting in drawing 
graphs to show the relationship between the quantities of water poured into jars of 
different shapes and with different surface levels. The teacher’s role consisted in 
helping them in the process of drawing the graph corresponding to each of the vessels 
and establishing the significance of the differences between the graphs in order to 
lend meaning to the underlying concept of slope of a linear function. 
Data used in this paper come from one of these learning environments which was 
operative during 2005-2006. The participants were 23 PSMT. We analysed the 109 
PSMT’ postings in the online-discussion in the 17 days during which the web-
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learning environment was activated. These PSMT had experience in face-to-face and 
e-learning activities before participating in this learning environment. The e-learning 
activities formed 40% of this subject of mathematics education. That is to say, the 
course has the structure of b-learning. 
ANALYSIS 
During the debate some of the contributions were organised as conversational chains 
trough dialogical interactions. A conversational chain is a set of interactions all 
relating to the same topic. The characterisation of these chains enabled us to identify 
the topics and the ways in which the PSMT interacted. The PSMT’ contributions to 
the debate were analysed on three dimensions: participation, interaction and cognition 
(Schrire, 2006). 
On the participation dimension we paid attention to who contributed and when. In 
the present paper we shall present the global participation features of the group and 
we shall not take the time factor into consideration.  
Ways of interacting were analysed by considering 6 categories: Supplies information 
(SI), Clarifies (Cl), Agrees (A), Agrees and amplifies (A+A), Disagrees (D) and 
Disagrees and amplifies (D+A).   
As regards the analysis of cognition we have established four distinct levels 
considering the content of participations, based on the sources used, the way in which 
the ideas were expressed in the contribution and the way in which were interrelated. 
We also considerated whether relationships were established between ideas from a 
general point of view or whether the student examined the actual mathematical 
content shown in the video-clip. The four levels (L) were as follows:  

• L1. Descriptive: The PSMT responds by describing in a “natural” manner 
what he/she has seen, but does not make use of the theoretical ideas which 
might be relevant to the analysis of the situation.  

• L2. Rhetorical: The PSMT uses the theoretical ideas contained in the 
documents in order to construct a response, but without establishing 
relationships between the ideas and the situation. The discourse may be said 
to lack cohesion.  

• L3. Identification and initial instrumental use of the information provided: 
The PSMT identifies one or more relevant aspects of the situation and links 
them to one or more of the theoretical ideas, thus generating an 
interpretation of the situation. 

• L4. Theorising and conceptualising: relational integration: The discourse 
generated shows a process of integration of different ideas to explain 
different aspects of mathematics teaching.  

PROCEDURE 
We considered the different theoretical bases of level of knowledge building, ways of 
participating and perspective-taking, in order to make a first draft of the category 
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system reflecting the different analytical dimensions. The category system was 
revised after the researchers became familiar with the postings of PSMT in the online 
discussion. Next, we independently codified the different participations considering 
ways of participating, level of knowledge building and the perspective-taking stages. 
Finally, the discrepancies were discussed until a unitary evaluation was reached. We 
present here the findings of the first phase of analysis. 
RESULTS 

We identified two conversational chains whose content is related to each of the 
questions posed at the start of the debate.  
Chain 1 (C1): This chain deals with the meaning of the idea of mathematical 
competence as the interrelation between: (a) conceptual comprehension, (b) 
development of procedural skills, (c) communicating, explaining and arguing 
mathematically, (d) the capacity to formulate, represent and solve problems (strategic 
thought), (e) the development of positive attitudes towards mathematics, and (f) 
achieving mathematical confidence in oneself.  
Chain 2 (C2): This chain deals with the teacher’s handling of the situation in order 
to develop the pupils’ mathematical competence. Following the initial response to 
the starter-question, five new areas of debate were opened up: (i) the rigorous use 
of language and the role the teacher should play, (ii) group work, (iii) 
characteristics of teacher-pupil interaction, (iv) ways in which the teacher can 
encourage pupils’ participation, and (v) the appropriateness of the mathematical 
task proposed.  
The number of contributions and the centre of interest of the discourse were different 
in the two chains. Of the 109 contributions to the debate, 16 referred to the Chain 1 
and 93 referred to the Chain 2.  
Our analysis of the ways in which students participated revealed that although 
there was less participation in Chain 1, the type of interaction was similar to that 
in Chain 2. 75% of the contributions in both conversational chains corresponded 
to a reply to someone else or a clarification of something expressed previously in 
an attempt to make oneself understood (see Table 1). The PSMT were in greater 
disagreement, however, on which aspects of the lesson seemed to promote the 
development of mathematical competence (33.31% in Chain 2), than in their 
indication of evidence of mathematical competence in the pupils (25% in Chain 
1). 
The cognitive levels reached in both chains also showed differences (Table 2). In 
Chain 1, 75% of the contributions (12 out of 16) were considered to be at level 3 
(L3). Of all the contributions at this level, 9 referred explicitly to the mathematical 
content of the videoed lesson. The PSMT concentrated on assessing the potential of 
the mathematical activity generated by the problem proposed by the teacher in the 
video-clips.  
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  Interaction with others   
 SI CL A A+A D D+A Others Total 

Chain 
1 

4  
 

4  
(25%) 

3  
(18.75%)

1 
(6.25%)

0 4 
 (25%) 

0 16  
(100%)(25%) 75%  

Chain 
2 

19 15  
(16.13%) 

14 
 (15.1%) 

8 
 (8.6%)

14 
(15.1%)

17  
(18.21%)

6  
 

93 
 

(100%)(20.43%) 75% (6.37%) 
Total 23 19 17 9 14 21 6 109 

Table 1. Modes of participation in each chain 
 
In contrast, only 39.78% (37 out of 93) of the contributions in Chain 2 were 
considered to be at level 3, and of those only 6 alluded directly to the mathematical 
content; the majority concentrated on more general aspects such as the rigorous use 
of mathematical language in class, features of group work, the role of the interaction 
between the pupils and the teacher, the nature of the task, the way in which the 
teacher handled the relationship between achieving the objective of the lesson and 
dealing with the pupils’ answers, and a description of the context exemplified in the 
video-clips. None of the contributions was identified as being at level 4 (L4). 
 

 L1 L2 L3 L4 Others Total 
Chain 1 3  

(18.75%) 
1  

(6.25%) 
12 (91) 
 (75%) 

0 0 16 (9) 
(100%) 

Chain 2 33 
(35.48%) 

19 (1) 
 (20.43%)

37 (6) 
(39.78%) 

0 4 
(4.31%) 

93 (7) 
(100%) 

Total 36 20 49 0 4 109 

Table 2.Cognitive levels in each chain 
 

DISCUSSION 
The two questions given to initiate the debate referred to learning and teaching, or 
more specifically to the dimensions of mathematical competence which can be 
enlarged by teacher-pupil interaction, and the role of the teacher in the enlargement 
of those dimensions. These two aspects are interrelated: What do we want the pupils 
to learn? How should we modify the instruction process to achieve this end? 
The two chains, however, showed different characteristics. In the first place, the first 
chain concentrated on a single point of interest, while in the second the discourse was 
more destructured and there were several different points of interest. Secondly, the 
students participated and disagreed with each other on the characteristics of the teaching 
process considerably more in Chain 2 than in Chain 1. And thirdly, the contributions to 
                                                            
1 The number in brackets indicates those contributions which referred explicitly to specific mathematical topic in the 
video-clip.  
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Chain 1 referring to evidence of the dimensions of the pupils’ mathematical competence 
were of much better quality. These differences may be explained by the nature of the 
topics under discussion and by the type of information available to the student teachers. 
These two points will form the central issue of our discussion. 
The online discussion topics 
The questions to be debated were of different types. The first (Q1) was more 
conceptual and required answers based on the characterisation of the idea on 
mathematical competence given in the documents provided. The second question 
(Q2) however, could be seen as referring to the social factors involved in the teaching 
process and could be answered more subjectively, with answers based on personal 
educational experience and beliefs, or simple descriptions of what is “seen” in the 
video-clip. To answer question 1, therefore, the PSMT had to use the ideas contained 
in the documents (level 3 contributions), to a greater extent than in their answers to 
the second question (Q2). 
When the discourse was centred on the idea of mathematical competence as revealed 
in the behaviour of the pupils while they were deciding how to draw the graphs and 
while they were interpreting the difference between the finished graphs (the idea of 
slope) (Q1), the online conversation was of a higher quality but the PSMT’ 
involvement and degree of disagreement was lower.  On the other hand, when the 
discourse was centred on the teacher’s handling of the situation there was more 
disagreement and a poorer quality of discourse. These differences reveal how the 
topic under discussion determines the way in which PSMT discuss it. Furthermore, 
the topic of conversation also seems to determine the way in which relevant aspects 
of the situation are identified and linked to some theoretical idea to generate an 
interpretation. If we take these two aspects of the online discussion together, it seems 
to be clear that the PSMTs in this experiment became more easily involved in social 
factors related to teaching than in cognitive aspects of learning, though this greater 
degree of involvement was only maintained at a superficial level. 
The interpretation process. The difference between aspects of teaching            
and the identification of mathematical competence. 
The documents containing theoretical information with which the PSMTs were 
provided referred both to the characterisation of mathematical competence and to 
certain aspects of the teaching process. The information provided mentioned neither 
the specific mathematical content of the videoed lesson nor the specific aspects of 
teaching involved. The information was handled in different ways by different 
PSMTs, which indicated how they related it to the empirical evidence observed in the 
video-clip. They found it more difficult to relate the characteristics of mathematical 
competence to the behaviour of the pupils than to do the same with aspects of the 
teaching process, which they found relatively easy. 
For instance, one of the documents on teaching stated that “in order to create a 
classroom atmosphere conducive to investigation and mutual respect, the teacher 
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should encourage the generation of arguments by asking the pupils to clarify and 
justify their ideas.” Recommendations of this type helped the PSMTs to identify in 
the video-clip some features of the teacher’s performance which could be associated 
with this characterisation. This fact may have caused the PSMTs to focus their 
discourse more on matters relating to the teaching process (Q2). In such cases the 
PSMTs could simply describe what they saw and identify it with a characteristic 
given in the document. They could then disagree on the degree to which they thought 
that what the teacher was doing was, for example, relevant to the encouragement of 
argument-generation among the pupils. But when the information was of a more 
general nature, such as “one dimension of mathematical competence is conceptual 
comprehension of mathematical topics, by which we mean the way in which 
secondary-school pupils are able to link different mathematical ideas together and 
explain their meanings”, the PSMTs were obliged to focus their attention on the 
mathematical cognitive processes of the pupils while they were interacting to solve 
the problem, and then to interpret what they did as manifestations of mathematical 
competence. It appears that this kind of activity required a much greater effort on the 
part of the PSMTs. 
This difference between interpreting the characteristic of the teaching process (Q2) 
and identifying manifestations of the pupils’ mathematical competence (Q1) could 
explain the nature of the debate generated (differences in the quality of the discourse, 
and differences in modes of participation). These results are similar to those obtained 
by Lin (2005) via videoed case studies shown to student teachers, where the students 
tended to focus their attention on the teaching process and had difficulty in “noticing” 
the development of the pupils’ mathematical competence.  
Our results, however, like those of Sullivan & Mousley (1996), show that the use of 
videoed material is a powerful tool in relating theory to practice and in enabling 
PSMT to develop a high cognitive capacity in their analysis of teaching. At the same 
time, our research reveals that the design of the learning environments may facilitate 
to a greater or lesser degree the construction of knowledge about the teaching of 
mathematics. The fact that contributions to the debate refer separately to learning and 
teaching without explicitly interrelating them reveals that the PSMTs approached the 
analysis and interpretation of teaching through an analytical thought-process which 
examined each aspect of the situation in turn, instead of looking at it globally and 
holistically. This fact might be explained by the actual structure of the online debate 
and the presentation of two initial questions, though the students were never asked to 
answer them separately. The directions in which the debate developed could have 
been corrected by a chairperson (tutor), who could have suggested to the students that 
they try to establish more connections between different ideas and thus construct 
cognitive knowledge of a higher quality.  
Endnote 
The research reported here has been financed by the “Ministerio de Educación y 
Ciencia, Dirección General de Investigación”, Spain, under grant no. SEJ2004-05479 
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We document and analyze the extent to which university students utilize diverse 
representations and mathematical processes to interpret and respond to a set of 
questions that involves fundamental concepts associated with the study of differential 
equations. Results indicate that the students’ idea to solve a differential equation is 
reduced to the application of proper solution methods to a certain types of forms or 
equation differential expressions. They failed to remember the solutions methods and 
lacked clear comprehension of the concept of solution. Results suggest that 
instructional activities should promote the students’ use of several representation 
systems in which they can reflect on the various aspects associated with the concept 
itself, the solution methods, the procedures, and the corresponding meaning and 
connections among those representations.    
INTRODUCTION 
Traditionally the teaching of Differential Equations has been undertaken with an 
algorithmic focus in the sense that some guidelines have usually been taught so that 
these are then classified as certain types and solved, sometimes using certain 
techniques that lead to the solution either explicitly or implicitly.  However, what do 
students deem to be relevant when using these techniques or algorithms to solve 
problems?  Will the students remember them and will they be able to use them when 
needed?  Do they recognize that that it is not possible to give an explicit or implicit 
expression for the solutions for most differential equations?  How do they behave 
when faced with a differential equation which cannot be solved by using the methods 
they have studied? 
In this study we document and analyze students’ types of behaviour when attempting 
to solve some differential equation problems which are presented from a different 
perspective than they normally appear during the process of instruction.  We describe 
the processes associated when solving these tasks, as well as the strategies for solving 
problems that students use when carrying out the activities set. 
Our research responds four main questions.  Do students use knowledge gathered 
during their previous studies (meaning of the derivative, function concept, graphics 
representations, etc.) to answer questions on differential equations that do not 
necessarily require methods belonging to this field?  What use do they make of the 
various systems of representation?  What influence does the wording of the question 
have on students’ mode of approaching it?  And, finally, what types of strategies and 
representations do students use when faced with contextualized problems? 
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CONCEPTUAL FRAMEWORK 
The learning or development of mathematical knowledge is a process that demands 
continual reflection on the part of students to help them represent and examine 
mathematical concepts from different points of view and lead them to construct a 
network of relations and meanings associated with this concept (Camacho et al, in 
press).  Development of this process of construction depends directly on the systems 
of representation used and the coordination between these (Duval, 1993).  On the 
other hand, the learning of a mathematical concept is directly related to the activities 
undertaken to solve problems (Santos, 2007).   Problem solving, then, should form a 
major part of teaching.  In this context, the student formulates questions, puts forward 
conjectures, seeks different ways of validating them and communicates his or her 
answers or results in a suitable language. Thurston (1994, quoted in Camacho et. al, 
in press) stated that the comprehension of the concept of derivative involves thinking 
of diverse ways to define, operate, represent, and to interpret its meaning:  

• Infinitesimal: the ratio of the infinitesimal change in the value of a function 
to the infinitesimal change in a function. 

• Symbolic: the derivative of xn is nxn−1 , the derivative of Sin(x) is Cos(x), the 
derivative of  f o g is  f 'og∗ g', etc. 

• Logical: f '(x)= d if and only if for every ε  there is a δ  such that when 
0< Δx <δ , f(x+ Δx)− f(x)

Δx
− d <ε  

• Geometric: the derivative is the slope of a line tangent to the graph of the 
function, if the graph has a tangent. 

• Rate: the instantaneous speed of f(t) when t is time. 
• Approximation: The derivative of a function is the best linear approximation 

to the function near a point. 
• Microscopic: The derivative of a function is the limit of what you get by 

looking at it under a microscope of higher and higher power. 
Thus comprehending the concept of derivative or those that involve the study of 
differential equations requires or demands that students relate and transit, in terms of 
meaning, through the ideas and representations associated with each way of thinking 
about those concepts. 
Based on these premises, we can see that the understanding of a mathematical 
concept passes through various stages or phases, among which there is the phase 
where the student understands the definition of the concept itself, the phase where 
this concept is used algorithmically, and the phase where the concept is recognized as 
an instrument to solve problems. Along the route taken for constructing mathematical 
knowledge it is important to identify the previous knowledge and forms of thinking 
students use when attempting to understand mathematical ideas and solve problems. 
The concept of solving a differential equation and the direction field associated with 
it are some of the meanings that are closely connected with the concept of 
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Differential Equation.  The graphic nature of the direction field (geometric meaning 
in the sense attributed by Thurston) and the traditionally algebraic focus from which 
differential equations are taught (symbolic meaning in the sense attributed by 
Thurston) suggest that we need to analyze the balance or complementariness of the 
relations between the various systems of representation.  The understanding of the 
concept of the solution of an ODE develops as the definition of the concept joins up 
with other elements, among which we can find those that can be seen in the following 
diagram.  Also, the concept of direction field associated with an ODE includes two 
related phases that are different from the cognitive point of view: interpretation and 
representation. 
 

 
 

METHODOLOGY 
A total of 21 students took part in this study, ten of whom were studying for a 
Mathematics degree and eleven were studying Physics (University of La Laguna).  
The main difference between the two groups is the instruction they receive: the 
Mathematics students receive a more theoretical approach while the Physics students 
a more practical instruction.  This difference is due in part to the nature of the 
subjects the students take.  The Mathematics students were studying a fifth semester 
subject devoted solely to Differential Equations, while Physics students cover the 
material in their second semester and the subject they take covers Differential 
Equations as well as other Calculus concepts. 
Analysis of the strategies used by students to solve the activities set is made based on 
a questionnaire designed specifically for this end.  The questionnaire is made up of 
eleven problems which can be solved using several methods or for which something 
more than the application of rules, formulas or algorithms is required (Santos, 2007).  
Selection of these problems was made taking into account the results given in the 
literature review and some were chosen from textbooks used in Differential 
Equations courses.  Other tasks were specifically designed in order to respond to the 
main questions of our study.  The questionnaire includes activities where students 

Solution of a 
differential equation 

Definition of the 
concept 

Strategies to check that an 
expression is solution 

Differentiate between 
particular and general solution 

Identify properties of the 
solutions 
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need to use properly algebraic and graphic systems of representation, both separately 
and together, and it was necessary for students to use their knowledge of solving of 
problems set in a real context.  Tasks were classified into four types: 
Type 1: These questions require knowledge of the concept of solution.  This type of 
question is used to check whether an algebraic expression is a particular or general 
solution to a differential equation (Q3, Q4 and Q11) and to analyze some general 
properties of the solutions in function of the terms of this expression (Q5).  Two 
examples are: 

Q3: Say whether the following statements are true or false and give reasons for 

your answer: a) The function 
dtet

ey ∫=
2

 is a solution for the differential equation 
ye

dx
dy t 2

4=
. b) The function )(xfy =  which allow Cyyx =−+− 33 3  are solutions for 

the differential equation 
2

2

1 y
x

dx
dy

−
=

. 
Q5: Say whether the following statement is true or false and give reasons for your 
answer: “Take the first order differential equation ),()(' yxfxy = . If the function 

),( yxf  is defined as R2, solutions for the differential equation will also be defined 
as R2”. 

Type 2: Solution of this type of question can be achieved through use of logical 
reasoning (Q1) or using simple algebraic methods (Q2).  This type of question 
implies graphic representation of elemental functions, but do not involve either the 
construction or interpretation of the direction field or the interpretation of data from 
or towards a mathematical context.  An example: 

Q1: Represent graphically some solutions for the following equations a)
0=

dx
dy

 ; 

[ ]2,0∈x   b) 
x

dx
dy cos=

. 

Type 3: Questions where solving requires representation and/or interpretation of the 
direction field of a differential equation (Q6, Q8 and Q10).  An example: 

Q10: Draw the direction field for the differential equations 
1=

dx
dy

 and, based on 

this, solve the following initial value problem 
⎪⎩

⎪
⎨
⎧

=−

=

4)2(

1

y
dx
dy

. 

Type 4: Activities where it is necessary to interpret information supplied in algebraic 
or graphic terms, in a real context, or vice versa (Q7 and Q9).  An example: 
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Q7: we know that the population of a city grows constantly over time, 

substantiating the differential equation
K

dt
dP

=
, 0>K . If the population has 

doubled in 3 years, and in 5 years it has reached a total of 40,000 inhabitants, how 
many people lived in the city at the beginning of the five-year period? 

DISCUSSION AND RESULTS 
We mainly focus here on three of the questions taken from the questionnaire in order to 
analyze the processes of solution followed by the students when the tasks are framed in 
different types of contexts.  To this end, we analyze the answers from students for 
Questions Q1a (Type 2), Q7 (Type 4) and Q10 (Type 3) from the questionnaire.  We 
represent the Mathematics students as MSj (j=1 … 10) and the Physics students as PSj 
(j=1 … 12).  We eliminated from our analysis the student PS10 as this student did not 
manage to answer any of the questions in the questionnaire. 
Those students who solved tasks Q1a and Q7 but not Q10 (MS3, PS7, PS10, and PS 
12) share the common characteristic of having shown that they know some algebraic 
methods for solving differential equations but that they fail to represent any of the 
direction fields asked for in the questionnaire and also fail to make mathematical 
interpretations.  Another characteristic that can be underlined regarding these four 
students is that, while they indeed attempted to solve both questions Q1a and 
question Q7, they did so without using the same form of reasoning.  While they all 
solved the equation of the problem Q7, taking it as one of separate variables, only 
MS3 used this solution strategy for Q1a.  Moreover, of these four students, only PS12 
correctly solved the differential equation.  The other three students omitted the 
integration constant when applying the method of separate variables, an error they did 
not make when solving the equations in problems Q1 and Q2. 
Student PS4, who is the only one who deals with the question Q10 and not Q7, 
answers hardly any of the questions set in the questionnaire; she only answers the 
problems Q1 and Q10 (Figures 1 and 2). In spite of this, she is able to find a particular 
solution to each of the differential equations set.  So, in the question Q10, although she 
was asked to solve the problem based on the direction field, this student expressed the 
solution for the initial value problem using logical reasoning in order to find that it 
would be a linear function, and guesswork in order to find the constant that was 
missing.  This is an example of how intuitive the ordinary differential equation is. 

 
Figure 1.  Answer from PS4 to Q1.

        
Figure 2: Answer from PS4 to Q10. 
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We now analyze the answers from those students who attempted to answer the three 
questions that we are studying.  Given the characteristics of the questions text, Q10 
induces use of the direction field associated with a differential equation in order to 
find a solution, which clearly distinguishes it from Q1a and Q7.  We might think, 
then, that this problem is going to be solved by students in a way different from that 
used in the other two questions, due precisely to the use of the graphic representation 
system.  However, we find that of the 10 students under study only two, MS4 and 
PS9, set about this task using the direction field.  The other students depend on an 
algebraic solution of the equation.  Regarding the strategies used by students to solve 
the problems Q1a, Q7 and Q10, we find the following types of behaviour.  Students 
PS2 and PS11 demonstrate throughout the questionnaire that they know some 
methods for solving differential equations; however, they do not take those methods 
into account when solving task Q7.  PS11 uses a rule of three to solve it, while PS2 
does not attempt to solve the equation on finding that he cannot translate the data in 
the problem into mathematical language (Figure 3). This is the only differential 
equation that this student does not solve, which shows us that the student fails to 
relate the equation that appears in the text of Q7 with those that the student has 
solved in the rest of the activities. 

 
Figure 3. Answer from PS2 to Q7. 

 
 
 
 
 
 
 

Figure 4. Solution from PS6 to various differential equations. 

Student MS1 and PS6, on the other hand, find solutions to the equations in the three 
problems by either using knowledge they have acquired prior to their study of 
Differential Equations or directly, without our being able to appreciate use of specific 
methods for the solving differential equations. 
Four students (MS7, MS10, MS9 and PS3), once they have solved the equation 
y’(x)=0 using concepts and procedures they had learnt prior to their study of 
Differential Equations or by expressing the solution of the equation algebraically, 
without explicitly showing the use of any specific method of solution, then use the 
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method for solving separate variable equations when they solve tasks Q7 and Q10.  
The context of the question does not influence them when they make certain 
mistakes.  In all their answers they avoid the integration constant (MS9 and PS3).  
However, MS10 only makes this mistake in the contextualized problem Q7, while 
student MS7 finds herself in difficulties by not being able to interpret the information 
on population supplied in the problem text in mathematical terms, which means she is 
unable to solve Q7 correctly. 
Finally, MS4 and PS9 use different strategies when solving these three activities, 
limiting themselves to the stipulations of the question texts.  PS9, meanwhile, makes 
some modification when solving the equations in Q1a and Q7, using definite integrals 
for the latter but using indefinite integrals for the rest of the differential equations 
solved (Figure 5). 
 
 

 
 
 

Figure 5. Answer from PS9 to Q1a. 
 

   
Figure 6. Part of answer from PS9 to Q7. 

CLOSING REMARKS 
Students’ answers to the various questions set show once more that they prefer to use 
the algebraic rather than the graphic and verbal register.  This might be a result of the 
instruction they have received where algebraic aspects have been predominant, 
graphic studies have only been superficially covered and where there is no incentive 
to find a possible verbal solution (González-Martín, Camacho, 2004). To this should 
be added the students’ deficiencies when undertaking activities associated with the 
solving of problems, such as analysis of the problem, decision making and the 
evaluation of the solution (Santos, 2007). 
Many of the students conceive of the concept of Differential Equation as an isolated 
mathematical entity unconnected to other notions they know.  For the students, 
solving a differential equation is merely a matter of finding an implicit or explicit 
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algebraic expression of the solution, so that for them the relevant information 
supplied to them in a differential equation is that this information can lead them to 
apply some method in order to give them the solution.  Also, in general, it has been 
shown that after a certain amount of time the student cannot remember the methods 
and that they do not have an understanding of the concept of solution that allows 
them to solve problems (for example, Q7) without using the algorithmic methods 
studied. 
We believe that introducing concepts based on others already known can allow the 
student to make connections between the different themes or questions studied.  Also, 
this will permit a broader vision of the concept of Differential Equation, and not limit 
this to the use of certain “tricks” which are easily forgettable and unfruitful.  
Accepting the system of graphic representation as legitimate in the process of 
solution can broaden understanding of the concept.  Teaching based on the solving of 
problems wherein students are shown the need to take into account and work with 
different registers of representation will motivate them to tackle questions related to 
mathematics in general, and to differential equations in particular, in a more open-
minded and complete form, greatly increasing their chances of success when it comes 
to solving problems. 
Endnote 
This research is supported in part by Spanish DGI (Dirección General de 
Investigación I+D+i) under grant No. SEJ2005-08499 and by Conacyt, Mexico 
(reference 47850). 
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As Elementary Preservice Teachers (EPSTs) worked through a proportional 
reasoning problem that was posed in three different ways, we wondered: What 
range of mathematical approaches might EPSTs use? What connections between 
representations might they make, and how might their conceptual understanding 
be affected by the different versions of the problem? In this paper, after describing 
the three versions and how we used them in class, we’ll profile some of the 
different ways of mathematical thinking that EPSTs demonstrated. Of particular 
interest were some of the difficulties that our subjects had in reasoning about the 
task, and the attendant misconceptions which were revealed. This research points 
to a need for university programs to ensure a firm understanding of proportional 
reasoning for EPSTs. 
INTRODUCTION 
The purpose of this paper is to report on research aimed at discerning the conceptions 
held by Elementary Preservice Teachers (EPSTs) in a proportional reasoning context. 
Just as proportional reasoning is of paramount importance in the K-12 school 
curriculum (Lesh, Post, & Behr, 1988; Behr, Harel, Post, & Lesh, 1992), so too is it 
critical that those in university teacher training programs have a deep understanding 
of this concept. As teacher educators, we believe that deep mathematical 
understanding includes the higher level skills of comparing, contrasting, and making 
connections between different computational approaches.  
Thus, we were motivated to pose the following central research question concerning 
our students (the EPSTs): What conceptions of proportional reasoning do students 
exhibit when asked to explore a task that is posed in three different ways? We wanted 
to investigate the range of mathematical approaches that students might use, what 
connections they might make between the parallel problems, and how their 
conceptual understanding might be affected. We called the set of all three versions of 
the task Ratio Triplets. The essential feature of the activity involved determining 
which of two packages of ice cream was the better buy: A 64-ounce container selling 
for $6.79 or a 48-ounce container selling for $4.69.  
While Ratio Triplets centers on a fairly common type of proportional reasoning task, 
we found that using different versions of the task afforded a good opportunity for our 
students to consider the meaning of ratios in multiple ways.  In this paper, after 
considering the theoretical background relevant to the current research, we’ll describe 
the three versions of the task and how we used them in class. Then, we’ll profile 
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some results of the different mathematical thinking that students demonstrated by 
using examples from each of the three versions, and finally we’ll offer a brief 
discussion of these results. 
THEORETICAL BACKGROUND 
While relatively few studies have been aimed specifically at the proportional 
understanding of preservice teachers, there is a substantial body of prior research 
that exists on children’s’ understanding of ratio and proportion (see Behr, et. al., 
1992, for a good overview). Several themes emerge from this corpus of research 
that are germane to the current study, since the Ratio Triplets task fundamentally 
involves a comparison of two rates. One theme is the importance of unit 
recognition, which is included with partitioning and equivalence as part of the 
“basic thinking tools for understanding rational numbers” (Behr, Lesh, Post, & 
Silver, 1983, p. 109). As Lamon (1993) notes, of particular importance to 
reasoning proportionally is “the ability to construct a reference unit or a unit 
whole, and then to reinterpret a situation in terms of that unit” (p. 133). Lamon 
also describes how “the process of norming can achieve yet another level of 
sophistication” (p. 137), whereby an independent unit may be selected as a basis 
for comparison. For example, while two natural units of measurement present 
themselves in the basic Ratio Triplets task scenario as dollars or ounces, a pint (16 
ounces) could be chosen in the norming process. A second theme is the numbers 
that are used in the task and how these numbers may influence the comparison 
strategies employed by students. Two common strategies are comparing “within” 
the same measurement contexts (such as the amount of ice cream in one container 
to the amount in the other), or “between” contexts (such as the amount of ice 
cream to the cost of that amount). For many children, a bias seems to exist for 
finding “between” relationships, although “there is some evidence that on the 
certain tasks the “within” relationship becomes more popular” (Hart, 1988, p. 
203). Research has shown that children are more successful when the “between” 
ratios are integers, while any presence of non-integer ratios presents more 
challenges (e.g. Friedlander, Fitzgerald, & Lappan, 1984). Ratio Triplets involves 
non-integer ratios. Finally, the basic theme of additive versus multiplicative 
structures is of key importance in discerning proportional reasoners. As Resnick 
and Singer (1993) note, “the early preference for additive solutions to proportional 
problems is a robust finding, replicated in several studies” (p. 123). Even with the 
EPSTs in our study, we found a similar reliance on additive strategies.  
METHODOLOGY 
Knowing how the NCTM Standards (2000) echoes calls from the literature to stress 
only not only the importance of using multiple representations in problem solving, 
but also the importance of communication, we designed Ratio Triplets to incorporate 
three versions of the same basic problem. This design choice allowed us to examine 
EPSTs’ understanding of ratio and proportion in a way that also promoted discourse 
about different ways of thinking mathematically. 
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Version A is shown in Figure 1, and it suggests a dollars-per-ounce strategy for Mark 
as well as an ounces-per-dollar strategy for Alisha. The correct result for each 
calculation is also provided.  
 
 Mark and Alisha were sent to buy ice cream for a class party. Their favourite  
 flavours came in a 64-ounce package for $6.79 and a 48-ounce package for $4.69.  
 

► To find which is the better buy, Mark divided like this:  
   6.79    4.69 
     64         48 
  Explain how these ratios can tell Mark which ice cream is the  
  better buy. 

► Alisha claimed she could use different ratios to solve this problem.  
 She divided like this: 
 

     64      48 
    6.79     4.69 
          Is Alisha correct? Explain your answer. 

 Figure 1: Version A of the task behind Ratio Triplets. 

We wondered if students would recognize the meaning behind those calculations, and 
further, would they understand the interpretations of the results?  Version B was 
identical to Version A in all but one respect: The outcome of each calculation was not 
provided. That is, the decimals were missing as well as the equality and 
approximation symbols. Since calculators were available, we wondered if students 
would just do a unit-rate conversion (effectively mirroring the computation results in 
Version A), or would they try something different?  Version C had the same initial 
situation description, but omitted any reference to what strategies Mark or Alisha 
might have used. Instead, it invited any strategy for Mark and any different strategy 
for Alisha. The focus on all versions was in getting the students to provide 
explanations and justify their thinking. 
Our subjects were 75 EPSTs in the same university in the Northwest USA who were 
spread out amongst three sections of a course (taught by the authors) that provided 
both content and methods of mathematics for teaching. The mathematics background 
for the subjects was largely restricted to their precollege education, as common or 
varied as that may have been. In the classroom setting, we broke students up into 
small groups: Each member within a group got the same version, with different 
versions going to different groups. Our instructions were for students to solve the 
problem individually and to write down their approaches. Then, within their groups, 
they were to explain their thinking to each other. We asked them to attend to the 
different approaches their partners might have used. Later, we regrouped the students 
so that there were all three versions within each group, and again asked students to 

= .10609375 = .0977083 

≈ 9.42562592  ≈ 10.2345418 
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share their thinking with each other. Finally, we had a whole-class discussion about 
their reactions and responses to Ratio Triplets. The small-group and whole-class 
discussions were videotaped, and the transcriptions of these discussions along with 
the written responses then analyzed to determine the different types of thinking 
represented. 
RESULTS 
Across all versions, we found a surprising diversity of explanations given by EPSTs, 
some which were reasonable and many which were questionable. To illustrate the 
types of thinking offered, sample results will first be presented in terms of what the 
subjects had to say about Mark (the first strategy in all versions), and then about 
Alisha (the second strategy).  
Mark’s Strategy 
We first distinguished responses about Mark’s strategies according to whether they 
were reasonable or questionable according to the types of themes that emerged from 
the literature on children’s proportional reasoning. For example, responses that 
invoked a unit rate, or demonstrated a “between” or “within” comparison, or relied on 
multiplicative structures generally were coded as reasonable, with finer levels of 
analysis being used to further stratify responses according to types of thinking. Also, 
the response did need to lend support for the inference that the 48-ounce container 
was the better buy. Responses that were questionable typically exhibited some level 
of confusion, lack of clarity, or simply erroneous thinking. Also, support for the 
inference of the 64-ounce container as the better buy usually accompanied a 
questionable response. Of the 75 total subjects, 81.3% (n = 61) gave reasonable 
responses for Mark, which was encouraging. The exact breakdown of the numbers of 
responses by version is given in Table 1.   
 
 
 
 
 

Table 1: EPSTs responses for Mark’s strategy 

As an example of the kind of reasonable response given in Version A, consider AJ 
who wrote that: 

AJ:  Well, the [6.79/64] tells Mark he would spend around 11 cents per ounce and 
the [4.69/48] would tell him he would be spending around 10 cents per ounce, 
letting Mark know the [48 oz.] is a better deal. 

We can see that AJ recognizes a unit rate, and can properly decipher the decimals 
provided in Version A as being related to fractions of a dollar. He understands Mark 

 Version 

  A B C 

Reasonable 21 24 16 

Questionable 3 4 7 
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is finding a cost-per-amount, and wants to associate the lower cost with the better 
buy. As in Version A, in Version B most of the reasonable responses also reflected a 
somewhat standard line of expected thinking, to the effect that Mark was looking for 
price per ounce. In Version C, where the subject needed to determine a strategy for 
Mark, some EPSTs looked for a common multiple for the ounces of ice cream as an 
attempt at a norming process: 

FB:  What you want to do is start by making these into rates and finding a 
commonality between the 2 so that would be finding the same size packaging 
and comparing the prices after that. By comparing the same units it gives you a 
common ground to start comparing. [Has written: (6.79/64 x 48/48 = 
325.92/3072)(4.69/48 x 64/64 = 300.16/3072)] 

Whereas the reasonable responses showed some conventional ways of thinking, we 
were surprised at the questionable responses for Mark’s strategies. We wondered, for 
example, in Versions A & B where the ratios were already set up, where did those 
subjects get confused? One EPST wrote about Version A that:  

GC:  The bigger number [.10609375] would explain how much you get for the 
amount you paid and therefore you would get a better deal for the money from 
the [64-ounce package]. 

His response shows a lack of understanding of the unit rate in the sense that the 
decimal has been mischaracterized as ounces and not dollars. We suspect that there 
also may be some primal linguistic association for the phrase “better buy” with larger 
numbers. On Version B, even if a decimal was obtained (since calculators were 
provided) there still occurred problems of interpretation: 

BT:  If you change the decimals to a percent you could get 10.6% and 9.77% this 
could allow Mark to determine which is the better deal. 64 ounces for $6.79 is 
the better choice. 

Here BT seems to just be doing division blindly, performing a computation without 
an understanding of how to interpret the result. Note how GC and BT both point to 
the 64-ounce container as the better buy, with dramatically different interpretations of 
the provided structure in Version A. On Version C, we saw evidence of a classic 
additive structure as opposed to multiplicative thinking: 

DC: The better deal is 64 ounces for 6.79. This is because there is 2 dollar & 10 cent 
difference between the two prices, but the more expensive one is 16 ounces 
more than the cheaper, so it turns out to be a better deal. 

By finding the differences in prices and comparing that with the differences in 
amounts, the notion of proportion is bypassed for DC.  
Alisha’s Strategy 
The same essential techniques used in coding responses for Mark’s strategy was also 
used in coding responses for Alisha’s strategy. Two additional emphases were on 
Version C, where subjects needed to come up with a strategy for Alisha that really 
was different from that of Mark, and on Versions A & B where the question was 
asked whether or not Alisha was correct in her strategy. In contrast to results for 
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Marks’ strategy, however, we found that the majority of EPSTs actually had 
questionable responses for Alisha. Of the 75 total subjects, only 37.3% (n = 28) gave 
reasonable responses for Alisha, which was surprising to us. The exact breakdown of 
the numbers of responses by version is given in Table 2. 
As in the reasonable responses to Mark’s strategy, so too did this category of 
responses for Alisha fall across the expected themes for proportional reasoning. For 
example, HP offers the follows thinking on Version B: 

HP: [Has written: (64/6.79~ 9.42562592)( 48/4.69~ 10.23454158)] Alisha is also 
correct because she can look at the two results and see that the bottom ice cream 
is the better buy because it gets more ounces per dollar than the top package. 

He correctly discerns the amount-per-cost involving the unit of one dollar, and 
compares the ounces delivered in terms of each dollar spent. In this case, of course, 
the better buy is associated with the higher number.  
    
 
 

 

 
 

Table 2: EPSTs responses for Alisha’s strategy 
More questionable were the many responses that said, in effect, that Alisha was not 
correct in attempting a different approach, and that the only way to find a better buy 
was to consider cost-per-amount (as in Mark’s strategy in Versions A and B). For 
example, here are some sample responses from Version A: 

AJ: No, you want to find the cost per ounce to see what is the best deal.  
ST: No, because Alisha got a completely different price than Mark did. 
BJ: No, this is incorrect. This equation does not tell them anything about which one 

is better buy. 
LO: No. She is finding the ounce per price which doesn’t really matter. 
JK: Alisha is incorrect because she divided the ounces by the price. The answer she 

got is irrelevant to the problem. Mark’s answer shows how much the ice cream 
costs per ounce. To find that, you divide the total cost by the number of ounces. 
Alisha did it backwards. 

Notice how AJ is still thinking in terms of cost-per-amount, and ST misinterprets the 
computational result as being a price (per amount). BJ can’t see the possible 
relevance of Alisha’s ratios to finding a better buy, and even LO (who correctly 
interprets the ratio as amount-per-cost) can’t relate the results to making an inference 
for which is the better buy. More strident were some of the questionable responses 
for Version B,  

MG: Alisha is not correct because by dividing her way you get ounces/cost and not 
cost/ounce. This will not tell you the better buy. It tells you for every penny 
spent you get so many ounces. 

 Version 
  A B C 
Reasonable 7 12 9 
Questionable 17 16 14 
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JL: Alisha is incorrect because dividing this way doesn’t determine the price per 
ounce. It is incorrect to divide the ounce by price, it is correct to divide the price 
by ounce. 

Especially for MG, who seems to know that Alisha is aiming for “ounces/cost”, the 
implication is that MG cannot make sense of how this might help in inferring the 
better buy. And the flavour that emerges from JL is that Alisha is simply wrong in her 
strategy. Again, as in Mark’s questionable responses, we saw more additive 
structures emerging for Alisha in Version C: 

HG: She could have added the difference between the two to see the cheaper one of 
the two, to see if she was really getting her money’s worth 

TC: [Has written: (64+48 = 112) (6.79+4.69= 11.48) (11.48/112)] 

Neither of these two responses is particularly clear, although they do seem to appeal 
to addition or subtraction as a key factor in making some sort of comparison. 
DISCUSSION 
As we sought to engage our EPSTs in a discussion about mathematics for teaching, 
we gave Ratio Triplets as a way to examine what they knew about proportional 
reasoning and also to promote conversations about different ways of thinking. We 
knew a priori that proportional reasoning is often difficult for students, “especially for 
those who do not understand what is actually meant by a particular proportional 
situation or why a given solution strategy works” (Weinberg, 2002, p. 138). We did 
see evidence of range of reasonable explanations for Mark’s or Alisha’s strategy, 
such as finding common multiples of ounces and comparing costs on that basis, or 
determining how many ounces might be obtained for a fixed cost. There was an 
impressive array of differing strategies that prompted fruitful discussion in class 
about representing mathematical situations in a variety of ways, and especially about 
the importance of communicating one’s own thinking and understanding that of 
others.  
However, it was surprising to us that 18.7% of our EPSTs either gave questionable 
responses for Mark’s strategies (on Versions A and B) or could not come up with a 
proportional strategy for Mark (in Version C). Particularly on Versions A and B, it 
was disturbing to find some these young adults unable to interpret the initial ratio set-
ups that were offered. Moreover, the 62.7% of our EPSTs who gave questionable 
responses for Alisha’s strategies often showed a very limited understanding of 
proportional reasoning. 
In their comments about schoolchildren, Resnick & Singer (1993) point out how “we 
know that ratio and proportion are difficult concepts for children to learn. They 
constitute one of the stumbling blocks of the middle school curriculum, and there is a 
good possibility that many people never come to understand them” (p. 107). As our 
exploratory research suggests, even those preparing to be teachers may not be 
entering their university training with a sufficiently robust conceptual understanding 
in proportional reasoning.  
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While more research is necessary to further unpack the dimensions of thinking 
exhibited by EPSTs in a proportional reasoning context, this research takes important 
first steps toward that process. Of particular importance was the structure of our Ratio 
Triplets task, since the lively class discussions that ensued when debating each 
others’ explanations across the three versions helped foster a better conceptual sense 
of the actual mathematics while also modeling the kinds of pedagogical practices 
we’d like to see carried into the classrooms where these preservice teachers 
eventually will serve.  
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In this paper we present a procedure to describe strategies in problems which can be 
solved using inductive reasoning. This procedure is based on some aspects of the 
analysis of the specific subject matter, concretely on the elements, the representation 
systems and the transformations involved. We show an example of how we used this 
procedure for the tiles problem. Finally we present some results and conclusions.  
The researchers related to inductive reasoning process are usually developed in 
problem solving context (Cañadas, Deulofeu, Figueiras, Reid, & Yevdokimov, 2007; 
Christou & Papageorgiou, 2007; Küchemann & Hoyles, 2005; Stacey, 1989). These 
investigation pay attention to the cognitive process as well as to the general strategies 
that students used to solve the problems proposed.  
In this paper, we present part of a wider investigation (Cañadas, 2007), which is 
focused on the inductive reasoning process and on the specific strategies developed 
by students to solve problems which involved a specific mathematical subject matter. 
One of the methodological contributions of this research consists on a procedure to 
describe strategies in problem solving. We use this procedure to identify and to 
describe strategies of students in problems that involved linear and quadratic 
sequences.  
This paper consists of four main parts. First, we present some theoretical and 
methodological aspects of our research, which are important to introduce a procedure 
to identify and to describe inductive strategies, which conforms the second part. 
Third, we show the application of such procedure for the tiles problems. Finally, we 
present some results and conclusions related to this problem.  
THEORETICAL FRAMEWORK 
Inductive reasoning 
Inductive reasoning is a process that produces scientific knowledge through the 
discovery of general rules starting from the observation of particular cases (Neubert 
& Binko, 1992). Following this idea, we took as starting point the Polya´s proposal 
about induction (1967)1. We consider working on particular cases and generalization 
as two states in the process of inductive reasoning (Cañadas, 2007). One of our 
research objectives was to produce a systematic procedure for exploring the inductive 
reasoning of students in the context of problem solving.  
                                                            
1 Pólya talks about induction in the same sense as we refer to inductive reasoning. This conception is different from 
mathematical induction or complete induction, which refers to a formal method of proof, based more on deductive 
reasoning. 
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Inductive strategies in problem solving  
Problem solving is considered a highly formative activity in mathematics education. 
It promotes different kinds of reasoning (Rico, Castro, Castro, Coriat y Segovia, 
1997), specifically inductive reasoning. Induction is a heuristic and its aim is to 
provide regularity and coherence to data obtained through observation (Pólya, 1967). 
Strategies are the “ways of performing on mathematical tasks, which are executed in 
concepts and relationships representations”2 (Rico, 1997, p. 31). We use the 
expression inductive strategies to refer to the strategies used in problems which can 
be solved through inductive reasoning as heuristic.  
Representation systems play an important role in problem solving because they allow 
expressing the reasoning performed. In our research, we focused on external 
representation used by students in problem solving. We analyzed the way that 
students performed to solve written problems through the external representations.  
Mathematic subject matter  
Given that we choose linear and quadratic sequences as the specific subject matter, 
we needed to describe it to select adequate problems to propose to the students and to 
obtain criteria to describe students´ work on those problems. We based this subject 
matter description on some ideas of the subject matter analysis (Gómez, 2007). 
Through some aspects of this analysis, we obtained useful information about linear 
and quadratic sequences to elaborate a procedure to describe inductive strategies. 
Particularly, we focused on the elements of the sequences, the representation systems 
and the transformations. 
The elements of sequences are the particular and general terms, and the limit. Since our 
interest was inductive reasoning3, we selected particular and general terms to work on. 
Since sequences are a particular kind of functions, we took into account four 
representation systems for functions, following Janvier (1987): Graphic, numeric, 
verbal and algebraic. On the one hand, particular terms can be expressed numerically, 
graphically or verbally. On the other hand, general terms can be expressed 
algebraically or verbally.  
We considered three sorts of transformations:  

• Transformations among different representations of the same element: 
synonymous transformations (Janvier, Girardon, & Morand, 1993).  

• Transformations among the same element inside the same sort of 
representation systems: syntactic transformations (Kaput, 1992).  

• Transformations among different elements expressed in different 
representation systems. 

                                                            
2 My personal translation. 
3 We consider that inductive reasoning is the process that begins with particular cases and produces a generalization 
from these cases. Pólya (1967) adds the idea of validation based on new particular cases to this kind of reasoning. 
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PROCEDURE TO IDENTIFY INDUCTIVE STRATEGIES 
We elaborated a procedure to identify strategies based on representation systems. 
Each strategy is constituted by a sequence of transformations. To identify a 
strategy in a specific problem response, we start from particular terms expressed in 
the statement of the problem and we detect the kinds of transformations 
performed.  
 

Element Particular Term 

  Numeric Graphic Verbal 

Particular 
Term 

Numeric TSN T3 T5 

Graphic T1 TSG T6 

Verbal T2 T4 TSV 

Table 1. Transformations involving particular terms 
In Tables 1, 2 and 3, we collect how we refer to all the possible kinds of 
transformations. Tables 1 and 2 contain transformations from the term in the first 
column to the term in the second column. For example, in Table 1, T6 refers to a 
transformation from a particular term represented graphically to a verbal 
representation of such term. 

 
Element General Term 

  Algebraic Verbal 

General 
Term 

Algebraic TSA T8 

Verbal T7 TSV 

Table 2. Transformations involving general term 

In Table 3, C refers to a transformation from particular term to general term and CB 
to a transformation in the inverse sense. 
 

Element General Term 

  Algebraic Verbal 

Particular 
Term 

Numeric C1 C1B C4 C4B 

Graphic C2 C2B C5 C5B 

Verbal C3 C3B C6 C6B 

Table 3. Transformations involving general and particular terms 
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METHODOLOGICAL FRAMEWORK 
We asked 359 Spanish students to work on a written questionnaire. Students 
belonged to years 9 and 10 in four different schools.  
The questionnaire had six problems which involved linear and quadratic sequences 
that could be solved using inductive reasoning as a heuristic. Given that our interest 
was inductive reasoning, we considered problems that contained information about 
particular cases. One of these problems was the “tiles problem”. 
The tiles problem4 
In the following lines, we present the tiles problem as it was presented in the 
questionnaire: 

Imagine some white squares tiles and some grey square tiles. They are all the same size. 
We make a row of white tiles: 
 
We surround the white tiles by a single layer of grey tiles. 
 
 
- How many grey tiles do you need to surround a row of 1320 white tiles? 
- Justify your answer. 

DATA ANALYSIS 
One example 
In what folows, we will use the described procedure to identify the inductive strategy 
observed in one student´s response to the tiles problem. Figure 3 shows the student´s 
solution  

 
  Figure 3. One solution to the tiles problem. 

We observe that, first; s/he makes a transformation from graphic system of the 
particular term of the statement to numeric system (T1, see Table 1). After that, the 
student makes a transformation in this representation system (TSN, see Table 1). 
Finally, s/he gets the generalization verbally (C4, see Table 3). So, s/he used the 
following inductive strategy: T1-TSN-C4. 

                                                            
4 We present the English version of the problem we posed in our research. 

1320 
x    2 
2640            
2640 + 6 = 2646 tiles 
 
We need the double number of white tiles, plus 3 tiles at each of both ends.  
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Inductive strategies in the tiles problem 
We applied the described procedure to identify inductive strategies for each student’s 
response to the tiles problem. Table 4 shows such strategies, the number of students 
who used each of them, the elements involved, and whether they produced the 
generalization or not. 

Inductive Strategies Freq Elements Generaliz Partial Freq 

No transformations 52   52 

T1 10 

Particular terms No 247 

T1-T5 6 

T1-TSN 151 

T1-TSN-T5 54 

TSG-T1 2 

TSG-T1-TSN 14 

TSG-T1-TSN-T5 3 

TSG-T6 1 

T6 2 

T6-T2-TSN 4 

T1-TSN-C1-TSA 1 

Particular and 
general terms 

 
Yes 60 

T1-C4 9 

T1-TSN-C4 36 

TSG-C1-C1B-T5 1 

TSG-T1-C4 1 

TSG-T1-TSN-C4 7 

TSG-C4-C4B-TSN 2 

T6-C3-C3B-TSN 1 

C5-C4B-TSN 2 

Total    359 

Table 4. Inductive strategies in the tiles problem 
RESULTS 
We identified 19 different inductive strategies in this problem, whether they 
generalized or not. There were 247 students that remained working on particular 
terms (C does not appear in the sequence of inductive strategies). On the other hand, 
there were 60 students who obtained the expression of the general term. 
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T1-TSN, T1-TSN-T5 y T1-TSN-C4 were the strategies used by most students. 
Observing the information in Tables 1, 2 and 3, we deduce that these students 
performed a transformation from the graphical representation to the numeric system 
(T1) and, after that, a syntactic transformation in the numerical representation (TSN). 
Through the different strategies identified, we observe that students used the four possible 
representation systems: numeric, verbal, graphic and algebraic. Although the tendency to 
use the numeric representation is clear, there were 31 students who started their responses 
in the graphic representation (TSG). The verbal representation usually appeared at the end 
of the response (T5, T6, C4 or C5 at the end of the inductive strategies). 
We now describe strategies of students who did not generalize and strategies of 
students who did, separately. 
Students who did not generalize 
Six of the students who answered to the problem started working on the verbal 
representation, as shows the transformation T6 in their strategies (T6 and T6-T2-
TSN). There were 20 students who started with the graphical representation (TSG as 
the first term of the sequence that represent the strategy: TSG-T1, TSG-T1-TSN, 
TSG-T1-TSN-T5 y TSG-T6. 
In general, the numeric system was the most frequent representation used by students 
who did not achieve the generalization (247 students). 
The verbal representation was performed by 70 students, as we deduce from the 
frequencies of strategies that include T5 and T6. 63 of these students used this kind of 
representation at the end of their response, when they tried to justify their answers 
using particular terms.  
Students who generalize 
Of the 60 students who achieved the generalization, just two generalized directly 
from the statement (as reveals strategy C5-C4B-TSN). These students reached the 
generalization without any previous transformation among particular terms. 
There were 55 students that generalized and had previously worked on particular 
term in the numeric representation (T1 precedes C1 or C4) and three students worked 
on particular term in the graphic representation before generalizing (TSG-C1-C1B-
T5, TSG-C4-C4B-TSN). Eight of the students that generalized, combined graphical 
and numeric representation before expressing the general term for the sequence. 
The generalization was expressed algebraically by three students. The respective 
strategies are T1-TSN-C1-TSA, TSG-C1-C1B-T5 and T6-C3-C3B. The remaining 57 
students that get the generalization used the verbal representation to express it.  
As part of the strategies of students who generalized, we paid attention to how they 
used the generalization. On the one hand, two of the three students who expressed the 
general terms algebraically, used the generalization to calculate the particular term 
required by the problem (students who use the strategies TSG-C1-C1B-T5 and T6-
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C3-C3B). The third one got the generalization in the last transformation, so s/he did 
not use the general term for the first task proposed in the problem. This student used 
the general expression as a way to justify her/his response. On the other hand, four of 
the 57 students that generalized verbally, used such expression to calculate the 
particular term that the problem asks for (students who used inductive strategies 
TSG-C4-C4B-TSN and C5-C4B-TSN).  
CONCLUSIONS 
The procedure presented in this paper allowed us to identify and describe strategies 
used by students in the tiles problem. The information obtained through the procedure 
allowed us to get conclusions related to the work on particular cases and the 
generalization, as part of the inductive reasoning process. Moreover, we got data 
about the representation systems used related to these states of inductive reasoning. In 
this paper we have shown some of these results for the tiles problem. 
In the tiles problem, we get some conclusions related to the inductive strategies and 
to the inductive reasoning process. First of all, we highlight that students denote a 
preference for the numeric system, although the four possible representation systems 
are employed by different students. Another general conclusion is that most of the 
students remain working on particular cases. 
Students show a tendency to use verbal representation at the end of their responses. 
This fact reveals us that they use this system in the justification of their responses. 
The verbal representation is also the most frequent way of expressing generalization. 
This is surprising if we consider that students used to express the generalization 
algebraically in their classrooms. The majority of the students that generalize verbally 
tend to do so when they try to justify their answers, and not as a way to calculate new 
particular terms of the sequence. Probably it could be interesting for teaching to 
consider this way of expressing generalization before working on it algebraically.  
The generalization, both algebraic and verbal, is occasionally used to calculate the 
particular term required in the problem.  
The procedure to identify inductive strategies can be useful for other mathematical 
subject matters and maybe for other cognitive processes. In the case of other 
mathematical subject matters, we could consider an analogous procedure based on 
specific elements, representation systems and transformation of such subject matter. 
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RELATIONSHIPS BETWEEN CHILDREN’S EXTERNAL 
REPRESENTATIONS OF NUMBER 
Gabrielle A. Cayton and Bárbara M. Brizuela 

Tufts University 
 

Previous studies of children’s use of notation have pointed to different types of 
notational strategies (Alvarado, 2002; Brizuela, 2004; Cayton, 2007; Scheuer et. al., 
2000; Seron & Fayol, 1994). In a recent study (Cayton & Brizuela, 2007) we found 
that first grade children were producing a great number of unconventional responses 
when writing large numbers. This study follows those same children into grade two to 
see how the children perform after another year of experience with writing larger 
numbers. We also examine the relationship between the children’s written numbers 
and another type of external representation through valued tokens.  
RATIONALE AND PAST RESEARCH 
Studies of children’s numerical understanding over the last decade suggest that there 
are identifiable progressions in how children develop number concepts (Cobb, 1997; 
Fuson, 1997). According to Fuson (1997), children construct meanings for numbers 
through the various interactions that they have with these numbers both in and out of 
school. Elementary school mathematics classrooms encourage or facilitate the 
development of various number concepts through the language that is used by the 
teachers and students, the type of materials that are used, the problems that are 
solved, and the class activities. These components act in concert with one another to 
support children’s construction of meanings for numbers. One important and 
interesting aspect of numbers is that they can be represented in many different 
formats: written numerals, oral numbers, arrays of dots, tallies and more. What are 
the relationships, for children, among these representations of number?  
In relation to written numbers, for instance, Bialystok and Codd (2000) ask, “what do 
children believe that written representations of quantity mean?” (p. 117). To illustrate 
the interconnections between written representations of number and other external 
number representations, studies have found that transcoding zeros within numbers 
proves particularly problematic amongst young children. For example, several recent 
studies (e.g., Cayton, 2007; Cayton & Brizuela, 2007; Scheuer et. al., 2000; Seron & 
Fayol, 1994) highlight that children’s errors point to problems in both implementing 
the representational actions as well as in appropriating the number system itself. 
In the study presented here, we wished to follow up to two previous studies. In 
Cayton and Brizuela (2007), presented at PME 31, we found that at the end of first 
grade, students were still producing a great number of unconventional responses in 
three different systems of external representations of number: oral, written, and a 
third system where numbers are represented by tokens of various colors, each a 
power of ten. In Cayton (2007), we found that two seemingly-similar strategies for 
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written numbers (Full Literal Transcoding [FLT] and Compacted Notation [CN], 
described below) produced by kindergarten and first grade children were, in fact, 
associated with different strategies in token-building: children using CN tended to 
perform similarly to children writing conventional numbers, with a large number of 
children building conventional token arrangements; while children using FLT were 
more likely to form unconventional token arrangements. We wondered if we would 
find this same pattern with older children, who have received more instruction and 
have more experience with written numbers and larger numbers in general. 
METHOD 
Participants 
Twenty-six second grade students (students need to be seven years of age by the time 
they begin second grade) were interviewed individually. The school is located in an 
urban suburb of the United Stated of America. The school is ethnically, racially, and 
socio-economically diverse. In addition, the school provides a two-way bilingual 
education to children. All children in the second grade were invited to participate. 
Only children whose parents consented to their participation were included in the 
study. 
Materials and Procedures 
Interviews were carried out as clinical interviews (Piaget, 1965). During the course of 
the interviews, children were presented with the numbers detailed in Table 1. Our 
goal was to be able to explore children’s oral, written, and nonverbal representations 
of number. Our proposal was to access children’s oral representation through their 
oral naming of numbers; their written representation through their writing of 
numbers; and their nonverbal representations through their construction, through 
tokens, of the “value” of the different numbers.  
Each of the interviews has three tasks: oral, written, and tokens. Each one of these 
tasks has both a production and interpretation mode: when numbers are presented by 
the interviewer in tokens, they can be interpreted through writing or through naming 
orally; when numbers are presented by the interviewer in writing, they can be 
interpreted through construction of tokens or through naming orally; when numbers 
are presented by the interviewer orally, they can be interpreted through construction 
of tokens or through writing. 
Oral task: In this part of the task, children were asked to read from a piece of paper 
or from a token composition the numbers in Table 1.  
Written task: In this part of the task, every child was asked to write at least two 
numbers from each series in Table 1 after being presented the number orally or 
through tokens.  
Tokens task: This part of the task was designed for the purpose of understanding the 
consistencies/inconsistencies in the child’s understanding of our number system 
without the use of notation. Children were presented with tokens of different colors. 
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Tokens were chosen based on the work of Nunes Carraher (1985) performing similar 
tasks in the understanding of place value in young children and illiterate adults. The 
child was told that red tokens are worth 1 point, blue tokens are worth 10 points, 
white tokens are worth 100 points, brown tokens are worth 1,000 points, and maroon 
tokens are worth 10,000 points. The child was asked to compose a number from 
Table 1 with the tokens after being presented the number orally or in writing. 
 

Series Number Type   
Series 1 Three digit – without 0 127 143 
Series 2 Three digit – internal 0 101 207 
Series 3 Three digit – final 0 300 760 
Series 4 Four digit – without 0 1127 3143 
Series 5 Four digit – X0XX 3064 2053 
Series 6 Four digit – XX0X 2101 3504 
Series 7 Four digit – XXX0 1300 3760 
Series 8 Five digit–without 0 21127 13143 
Series 9 Five digit—XX0XX 43064 52053 
Series 10 Five digit—XXX0X 22101 33504 

Table 1. Numbers presented to children in the three different tasks (orally, through 
tokens, or in writing). Numbers were designed based on the work of Alvarado        

and Ferreiro (2002), Power and Dal Martello (1990), and Seron and Fayol (1994) 
Children were randomly assigned to one of six task orders: (a) two possible 
conditions with an oral introduction; (b) two possible conditions with a written 
introduction; (c) two possible conditions with a token introduction. See Cayton and 
Brizuela (2007) for more details on the tasks and conditions. 
ANALYSIS 
All the interviews were videotaped. Transcripts of the interviews were reviewed 
along with any notes made during or after the interview, the written work of the 
children, and the physical manipulations of the children during the tokens tasks as 
documented in the videos. These pieces constituted the data for the study. This paper 
only looks at the analysis of two of the study tasks: written and token. 
Data was arranged into categories for different types of strategies. In the written task, 
responses were classified by the strategy used to produce each written numeral. There 
were eight categories coded:  
A) Idiosyncratic - No discernable strategy used for writing the number. For example, 
in one instance, the number 153 was transcribed as 4033. 
B) Missing Digits - The written numeral is missing digits from the original number, 
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either replaced by zero or deleted entirely. For example, the number 1127 could be 
represented as 1027 or 127. 
C) Digit Transposition - Two or more digits of the number are transposed with one 
another. All of the original digits are still contained in the number. For example, the 
number 1127 could be represented as 1217. 
D) Full Literal Transcoding (FLT) – Child writes out number literally, for example, 
100701 or 10071 for one hundred seventy-one. This category is taken from Seron and 
Fayol (1994). This is similar to the Scheuer et al (2000) category of logogramic 
notation except that Scheuer would only allow for 100701 to be considered in this 
category. I allow for both types of literal transcoding (100701 and 10071) as FLT 
since for children who are conventionally writing 2-digit numbers, “71” has become 
the literal writing of seventy-one. 
E) Compacted Notation (CN) - Child writes extra zeros in numbers but fewer than the 
FLT notation, for example, 1071 for one hundred and seventy-one. This category is 
taken from Scheuer et al (2000). 
F) Error due to incorrect use of comma - This category only pertains to numbers over 
999. The child uses a comma in notation and leaves out zeros. For example, one 
thousand seventy-one would be written 1,71.  
G) Lexical Error - Child replaces one digit of the number with a different digit. For 
example, 137 for 127. 
H) Conventional Response - Number conventionally represented. 
In the tokens task, children were classified by the strategy used to compose the point 
value of the tokens. Composition number strategies were coded separately for each 
type of number. The same eight categories were used for each type of number:  
A) No Response - Child answers “I don’t know” and will not provide a guess. 
B) Incorrect Understanding - Child fails to understand the multiplicative nature of 
the tokens. While in previous studies with Kindergarten and first graders, the most 
common example of this was counting every token as one point regardless of its 
color; this was rarely seen with second graders. The most common example of 
incorrect understanding in second grade was lining up the tokens in a literal order. 
For example, 1300 would become one one-point token, one thousand-point token, 
three one-point tokens, and one-hundred-point token to make “one- thousand - three - 
hundred.” 
C) Counting by ones - Child does show some understanding of token value, but can 
only add up the points by counting by ones (i.e., pointing to a 10-point token and 
counting 1 to 10), always leading to an error when dealing with large numbers. 
D) Incorrect token value - One value of token was replaced entirely with a token of a 
different value. For example, the number 127 could be composed with tokens totaling 
1027. 
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E) Value Missing - One value of token is missing entirely, with the other values all 
having the correct total. For example, the number 1127 could be composed to total 
1027 due to missing one hundred-value token. 
F) Non-canonical, incorrect total - Responses where there were more than nine 
tokens of any single value were classified as non-canonical. In this category, 
responses were both non-canonical and the total value was incorrect. For example, in 
composing the number 127, the response could have twenty ten-point tokens and 
seven one-point tokens, totaling 207.  
G) Non-canonical, correct total - Responses were non-canonical, but the total value 
of the tokens was correct. For example, in composing the number 127, the response 
could have twelve ten-point tokens and seven one-point tokens, totaling the stimulus 
value of 127. 
H) Canonical and correct - Number was represented canonically (no more than 9 
tokens of any given value) and with the correct total value. 
RESULTS 
A total of 494 written numbers and 508 token constructions were produced by the 
twenty-six children. While a majority of written numbers were conventionally written 
by the second graders (375 of 494, 75.9%), the number of conventionally written 
numbers dropped dramatically as the length of the number increased, from 145 of 
150 (96.7%) of 3-digit numbers to 141 of 200 (70.5%) of 4-digit numbers, and finally 
89 of 144 (61.8%) of 5-digit numbers (see Table 2).  
While this may seem logical, given that children have more practice with smaller 
numbers, we could argue that once children have appropriated the rules of the 
number system, numbers of any length should be equally accessible. Further, the 
difference in percentage of responses correct between four- and five-digit numbers 
indicates that this is not due to misunderstanding the word “thousand” or other 
vocabulary as both of these use all of the same terminology. 

Category of Response Three-digit Four-digit Five-digit Total 
Idiosyncratic (Idio.) 2 7 2 11 
Missing Digits (MD) 0 2 16 18 

Digit Transposition (DT) 1 1 2 4 
Full Literal Transcoding (FLT) 0 24 17 41 

Compacted Notation (CN) 2 13 14 29 
Error due to Comma (Com.) N/A 2 2 4 

Lexical Error (LE) 0 10 2 12 
Conventional Response (Conv.) 145 141 89 375 

Total 150 200 144 494 

Table 2. Written number responses by children, n=494 
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The tokens task produced similar results, with only one three-digit number of 156 
total responses not produced conventionally (in fact, the one response was a refusal, 
not an incorrect representation). With 4-digit numbers the conventional rate dropped 
to 179 of 207 (86.5%) and 121 of 145 (83.4%) 5-digit numbers (see Table 3). 
 

Category of Response Three-digit Four-digit Five-digit Total 

No Response 1 1 4 6 

Incorrect Understanding 0 10 10 20 

Counting by Ones 0 3 1 4 

Incorrect Token Value 0 8 4 12 

Value Missing 0 2 2 4 

Non-canonical, Incorrect Total 0 3 3 6 

Non-canonical, Correct Total 0 1 0 1 

Conventional Response 155 179 121 455 

Total 156 207 145 508 

Table 3. Token compositions by children, n=508 

We next compared the tokens results with the written number strategies to 
investigate whether specific strategies in each representational system were 
associated to one another. The entirety of our cross-tabular comparisons will be 
discussed at length in following papers, but for now, we focus our attention to the 
two notational strategies, FLT and CN, in which we found disparities in previous 
studies (see Table 4). 
Table 4 shows FLT and CN responses in relationship to unconventional (all 
categories except for the “Conventional Response” category) and conventional token 
constructions. The results and differences were striking, while 92.6% of CN 
responses were associated to conventional token constructions, only 62.5% of FLT 
responses were associated with conventional token constructions [χ2 (1, N = 67) = 
7.71, p<.01].  
 
 FLT CN Total 

Unconventional 15 (37.5%) 2 (7.4%) 17 (25.4%) 

Conventional 25 (62.5%) 25 (92.6%) 50 (74.6%) 

Total 40 (59.7%) 27 (40.3%) 67 (100%) 

Table 4: Unconventional and conventional token compositions amongst FLT and CN 
written number responses, n=67 
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DISCUSSION 
While these results do replicate our previous findings with younger children in which 
we found that FLT and CN were associated with different strategies in token-
building: children using CN tended to perform similarly to children writing 
conventional numbers, with a large number of children building conventional token 
arrangements; while children using FLT were more likely to form unconventional 
token arrangements; we still consider it to be quite puzzling: why is it that notations 
for numbers of the type CN tend to be related to more conventional number 
constructions (through tokens) than FLT, seeing that both of these strategies are 
incorrect, never taught, and both formed by the over-use of zero in numerical 
notation? In the case of FLT, one could call it the numerical equivalent of sounding 
out the spelling of a word, which children are taught to do in written language. If this 
is the case, it still does not explain the prevalence of CN. Why do children choose to 
eliminate some but not all zeros in a number? Moreover, why do children who are 
performing this way appear to be closer to a conventional understanding of base-ten 
number construction? Seron and Fayol (1994) posit that perhaps children are 
absorbing some rules of notation, such as the “overwriting” of zeros, but are not yet 
grasping the entire concept of the system. 
This leads us to the next obvious question, which is: are numerical notation strategies 
shaped by understandings of number construction or does the notation influence what 
children understand about numbers (i.e. their understanding of the base-ten 
construction of numbers)? The finding that numbers represented by conventional 
token constructions were much more variable in notational strategies than the reverse 
seems to point in the direction of the notation as a reflection of the child’s 
constructional understanding. That being said, we still have much to learn about how 
children understand the unique and global system of numerical notation. The data 
presented in this paper show how much we may be able to learn about how children 
understand various aspects of the number system by looking at their notational 
strategies. 
The data here also indicate that by the end of the second grade, children are still 
having difficulty in representing numbers. This should be a great cause for concern as 
this is the same age in which children begin learning place-value algorithms for 
arithmetic, and yet, they are demonstrating an incomplete understanding of the use of 
place-value and of written numbers and what they represent. 
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The purpose of this study aimed to explore the developmental process of elementary 
beginning mathematics teachers’ efficacy. According to findings, the developmental 
process and transformative trend of beginning teacher efficacy showed a dynamic 
feature and moved back and force among the five gradations concluded from the 
data. Besides, the five developmental gradations were influenced by two-dimensional 
interactions of internal and external factors, which were found in a previous study. 
INTRODUCTION 
Teacher efficacy is “their belief in their ability to have a positive effect in student 
learning” (Ashton, 1985 p.142). Bandura’s (1981) indicated that teachers’ efficacy 
expectations will influence their thoughts and feelings, their selection of activities, 
and the amount of effort they spend, as well as the degree of their persistence while 
facing obstacles. Actually within last 30 years, this concept has developed 
continuously relevant to Bandura’s (1977) theory of self-efficacy and Rotter’s (1966) 
locus of control and currently gained much attention (Pajares, 1992), which reveal the 
significance of teachers’ beliefs in their own capabilities in relation to the effects of 
student learning and achievement. Several studies further reported, “Teacher efficacy 
has been identified as a variable accounting for individual differences in teaching 
effectiveness” (Gibson & Dembo, 1984, p. 569) and had a strong relationship with 
student learning and achievement (Allinder, 1995). Moreover, Bandura (1981) 
mentioned that knowledge and action are two prerequisites, but not limited in, to be 
successful. However, he argued that one might have one kind of knowledge and 
understand what should be done but having an inappropriate action. This result is 
caused by the adjustment of one’s self-referent thought, which is exactly the fountain 
of efficacy (Bandura, 1981), on the relationship between knowledge and action. In 
addition, teacher efficacy is different from teachers’ effectiveness. The latter tends to 
examine how well a teacher performs in the classroom. This performance is defined 
as their external behaviors which are usually composed of three dimensions, i.e. 
cognition, affection, and skill. Nevertheless, teacher efficacy is an internal belief 
above and significantly controlling a teacher’s external behavior and performance 
(Chang, 2003). 
According to the findings of Chang and Wu (2006), beginning mathematics teachers 
with mathematics and science (M & S) background had a significantly higher 
increase in their efficacy ratings (both personal teaching efficacy and teaching 
outcome expectancy) than those who were not both at the beginning and the end of 
the first year. Further, two categories of factors were found influencing beginning 
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mathematics teacher efficacy: teacher’s professional performance (internal factor) 
and assistance obtained from peer interactions and the administration level (external 
factor) (Chang & Wu, 2006). Under the condition of having low teacher efficacy and 
inadequate readiness in teaching, what would be the developmental process of their 
efficacy during their first year of teaching? How would their efficacy development be 
influenced by the internal and external factors mentioned above? Referring to 
Bandura’s (1978) reciprocal determinism, an individual’s mental function is 
determined by a continuous interaction process of three elements, i.e. behavior, 
cognition, and environment. Thus, this interaction should be analyzed qualitatively 
under a process that is combining the three elements with a realistic circumstance. 
Accordingly, a qualitative research should be conducted by entering classrooms of 
the beginning mathematics teachers for answering the questions proposed above. 
PURPOSE AND METHOD 
The purpose of this qualitative case study was to explore the development of 
elementary beginning mathematics teachers’ efficacy. It also intended to compare the 
efficacy development of the two groups of beginning teachers (with and without M & 
S background, coded as “M” and “N”). Interviews, observations, and both 
researchers’ and beginning teachers’ weekly reflection notes (see Table 1) were 
utilized, according to the research model of teachers’ thought proposed by Clark and 
Peterson (1996), in analyzing the change of beginning teacher efficacy. “Mathematics 
Teaching Efficacy Beliefs Instruments” (Chinese version, Chang, 2003) were 
administered for purposefully selecting the research participants from two groups of 
elementary beginning mathematics teachers. Six teachers totally participated in this 
study, where each group has one teacher belonging to each level of teacher 
efficacy—high, medium, and low (numbered as “1, 2, and 3” respectively). Teacher 
specialty, student learning, and teacher-student interaction were the main topics in the 
interview and observation protocols, associated with the internal and external 
influential factors of teacher efficacy. The analysis in context strategy was employed 
for reaching the objectives. 

Source Coding Example Note 

Interview/Observation 941018 IN/OB M1-1 941018 is the date 
Researchers’ reflection note 9410-2 Note N1-1 9410-2 shows the 

week of the month Teachers’ reflection note 9410-4 M1 Note 

Table 1. Coding System 
FINDING AND DISCUSSION 
Dynamic Developmental Process and Transformative Trend of Teacher Efficacy 
Both Fessler (1985) and Katz (1972) considered the developmental process of teachers’ 
profession as a stage model, even though they proposed different kinds of approaches in 
demarcating and defining the developmental stages. These stages could be divided based 
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on different concepts such as cycles, periods, phases, or topics concerned. In this study, 
the data was first analyzed in a processing and recursive approach. According to the 
internal belief, need, feeling, and instructional behaviors of the six beginning 
mathematics teachers, five developmental gradations of their teacher efficacy were then 
generalized, as well as the transformative trends. The findings showed that all six 
teachers experienced the first and the second gradations during the first year of teaching.  
Two medium-efficacy teachers (M2 & N2) reached the third gradation at the end of the 
year.  Both high-efficacy teachers (M1 & N1) exhibited the characteristics of the forth 
phase by quickly passing through the first three gradations.  The only one, M1, who 
possessed M & S background even entered the highest level, the fifth gradation. 

• First Gradation-Disorientation: A teacher fails to notice and realize the 
changes and special situations occurred within the classroom, and usually 
feels lost and does not know what to do; the only thing could be handled is 
the teaching tasks but having lots of difficulties. 

• Second Gradation-Concerning External Teaching Environment and its 
Change: A teacher fails to concern and aware her/his own professional 
development and growth; passively reacting to the instructional problem 
occurred and then usually failing to solve it effectively. The feeling of 
frustrations, recognizing the huge gap between her/his own expectation and 
the realistic situation in the classroom, was another obstacle of being mature. 

• Third Gradation-Self-Attentiveness and Self-Adaptation: A teacher begins to 
concern her/his personal capabilities of classroom management and think 
reflectively to advance self-adaptation. Concerning for the sufficiency of 
instructional activities provided, how well-prepared for delivering the 
content, and then conducting both self-examination and self-adaptation. 

• Forth Gradation-Concerning Instruction Itself and Looking for External 
Resources: A teacher focuses on her/his instructional performance, i.e. the 
content or the curriculum selected, the choice of teaching methods and its 
outcome, and the instructional limitations. Besides, looking for external 
resources and assistances actively for promoting the quality of teaching. 

• Fifth Gradation-oncerning Learning and Outcome Expectancy: A teacher 
cares mostly about the influence of her/his teaching performance on 
students’ learning (i.e. satisfaction of students’ needs and mental/physical 
development) for adjusting the instruction correspondingly. 

Based on the results of data analyses, it was found that beginning mathematics teachers 
who had the same level of teacher efficacy tended to exhibit substantial similarities in their 
developmental processes and transformative trends.  Consequently, the dynamic 
developmental process and transformative trend were presented in three parts. 
A. High-efficacy teachers’ fast development 
Beginning mathematics teachers with high level of teacher efficacy usually had 
adequate confidences in their personal subject-matter knowledge and teaching 
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capability at the beginning of the first year.  For example, “It took me about one 
month for adaptation”, said M1 (941024 IN M1-10).  He controlled both teaching and 
learning situations in such a short period and applied multiple teaching strategies to 
provide various leaning experiences.  This effective teaching performance led to a 
good beginning that his students “had more positive learning attitudes and better 
academic outcomes” (941024 OB M1-7).  Thus, both beginning teachers with high 
efficacy never exhibited the characteristics of the first gradation, crossed the second 
gradation after one month, and then entered the third gradation.  Further, M1 showed 
how he concerned about the preparation of all instructional activities.  He also used 
multiple assessment tools for examining students’ learning outcomes, such as 
“homework of searching stories of mathematicians through the Internet to obtain 
more background knowledge and be prepared for class discussions” (9410-4 Note 
M1-2). However, M1 had a short stay at the third gradation.  As his self-attentiveness 
and self-adaptation continued, he became gradually focusing on the instructional 
activity and content he provided.  Because of his M & S background (internal factor) 
and more teaching experiences gained, M1 started to seek out for extra assistances 
and resources. Consequently, this characteristic of actively looking for external 
resources (external factor) made him entering the fourth gradation at the end of first 
semester. 
At the middle of the second semester, M1 became aware of the influence of his 
personal teaching performance to his students’ learning based on what he performed 
at the third gradation.  Especially in the group discussion activities, he would actively 
asked how well students could comprehend about the discussion topic and 
instructional content, and found out certain students’ learning conditions in particular.  
This kind of formative assessments gave him significant information for further 
adaptation and improvement in his personal teaching ability. Said in his last 
interview,  

…I became realizing that those students who had low academic achievement or who had 
mental or developmental problems deserved to learn differently. So, I was always thinking 
what kind(s) of instructional methods would be better for them. My good teaching 
performance did not guarantee students’ better understandings.  So I had to take care of all 
students, those students who had special needs in particular (950524 IN M1-7). 

This clearly showed that M1 had already entered the fifth gradation at the end of the 
first year.  He concerned all students’ learning conditions and tried to satisfy all 
students’ needs through efforts of adjusting his teaching activities.  He also knew 
how to utilize the integration of instruction and assessment to reach the ultimate goal 
of enhancing students’ learning outcomes. 
Another high-efficacy teacher N1 had fairly similar developmental process and 
transformative trend, even if the final status of their efficacy development was not 
quite the same. Although without M & S background, her great interest, past 
excellent academic achievement, and abundant tutor experiences in mathematics 
resulted in her high level of confidence in teaching mathematics.  Same as M1, she 
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soon entered the third gradation.  Her good classroom management skills and various 
teaching strategies helped her to control the entire learning environment.  We also 
found that the teacher-student(s) interactions happened frequently in her classroom.  
Students expressed their own opinions or raised questions energetically.  However, 
the use of this cooperative learning model also took her about “3 to 4 weeks to adapt 
the whole situation of both teaching and learning in the classroom” (9412-3 Note N-
2). 
In comparison, N1’s characteristics of the third gradation were more obvious which 
made her staying longer. Starting from the beginning of the second semester, she 
“discussed with other teachers for improvement (external factor)” (950308 IN N1-10).  
Besides, she actively “looked for supplemental materials or exercises” (9502-3 N1 
Note) in order to design further instructional activities.  She also wanted her students to 
learn various kinds of problem-solving skills; on the contrary, she “wanted her students 
to share, listen, and/or obtain various opinions through discussions” (950308 IN N1-2). 
This thought and action was the main motivity of her professional development, and 
also kept remaining her the significance of external resources. 
Moreover, N1 liked to use instant reinforcements to give students positive feedbacks, 
especially for those who had special needs.  It seemed that she had some features of 
the fifth gradation. However, her viewpoint and practice on students’ assessment 
contrarily made her teaching quality going backwards.  She said that “paper-pencil 
examination is the main assessment tool” (950508 IN N1-11).  She also thought 
students would learn more effectively under the pressure of examinations, which was 
the best way to evaluate the learning outcome. Consequently, more observations were 
essential for ascertaining other evidences to diagnose whether she reached the fifth 
gradation or not. 
B. Low-efficacy teachers’ slow-moving and vital need of the external factor 
According to the classroom observations, two low-efficacy teachers (M3 and N3) 
could hardly handle the teaching tasks at the first semester.  They usually were found 
lost in the instructional activities and did not know what to do. They used only the 
textbook and its teaching guidebook as the instructional content, while employing its 
exercise book and traditional tests for the evaluation of students’ learning outcomes.  
Besides, they were not conscious of the change occurred in the classroom since the 
lecture was the only teaching method associated with a rigorous rule for classroom 
management.  For instance, “students put their hands on the back during the whole 
class period…and no students-teacher interaction at all or no opportunity provided for 
practice” (941108 OB N3-9).  Accordingly, they were both at the first gradation. 
M3 admitted that he was struggling at the first semester and felt powerless in 
teaching. However, this status changed after being lost in one semester. He could 
explore certain strategies to solve the problem passively, which led him to the second 
gradation at the middle of the second semester. Additionally, he started to look for 
ways of improvement.  But under the limitation of no out-of-school training (i.e. in-
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service education) allowed, he felt a little frustrated.  Fortunately, there were good 
peer interactions within his school.  Active cares and continuous assistances from 
experienced teachers (external factor) and his professional background (M & S, 
internal factor) produced a positive and reciprocal interaction, which pushed him into 
the third gradation. He also began to think reflectively of whether the instructional 
activities provided were adequate and proper, and then reviewed his classroom 
management rules. One big movement was the use of reading; this strategy was 
employed to “help students to better understand the assay question or the actual 
meaning of the mathematical question” (95005-4 M3 Note). However, he stayed at 
the third gradation till the end of this year. 
With regard to the development of N3, she was afraid of mathematics and never achieved 
well all the time.  She “felt terrified” (9501 Note N3-2) while teaching since she was 
“fearful of teaching the content in a wrong way or guiding students to an incorrect 
direction” (9412-4 N3 Note). This caused her a serious problem that she could not 
normally deal with the mathematical teaching problems occurred.  Under the circumstance 
of neither sufficient mathematics education background (internal factor) nor assistance 
from peers and the administration level (external factor), it seemed that the efficacy 
development of N3 was helpless, which kept her at the first gradation till the middle of the 
second semester.  Besides, as described in her weekly reflection journal, she felt that “my 
loading (except teaching) was so huge that made me so busy and having a tremendous 
amount of pressure” (9505-2 N3 Note).  Instead of giving her more opportunities to learn 
how to survive in the classroom, this extra work (i.e. administrative tasks, competitions, 
teaching demonstrations) actually became a negative and heavy burden of her teacher 
efficacy development in this beginning year.  In this poor circumstance, “it was hard for 
her not to be lost in the classroom” (9505-4 Note N3-3).  Fortunately, she finally nerved 
herself to ask one kindly experienced teacher how to teach mathematics, which was an 
irregularly scheduled interaction, at the last two months.  Within this period (last two 
months of the year), we also found that “she started to concern changes occurred in the 
classroom but passively” (950523 OB N3-2), as well as taking the suggestions of that 
experienced teacher for her classroom management problems. Accordingly, she stepped 
into the second gradation at the end of the first year eventually. 
C. Medium-efficacy teachers’ highly similar development 
The efficacy development process of both medium-efficacy teachers (M2 and N2) was 
respectably similar, and both of them reached the third gradation at the end of the first 
year. They both had the feeling of helplessness while first entering the teaching position, 
where N2 had more obvious features of this phase and lasted longer.  N2 mentioned that 
“the only thing I mastered was music, neither mathematics itself nor how to teach 
mathematics!” (9412-4 N3 Note). 
This phenomenon lasted till the beginning of the second semester.  She obtained active 
assistances from two experienced teachers in her school (external factor), where we 
found that “she could discuss her instructional problems while being asked (by those two 
teachers) to raise those problems” (950314 OB N2-14). This positive peer interaction led 
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to a major change of her efficacy development.  Not only making her entering the second 
gradation but also she exhibited some features of the third gradation at the middle of the 
second semester.  She started to “employ group discussion activities” (9504-4 Note N2-4) 
instead of the lecture all the time even though she was still afraid that the learning order 
in the classroom might be worse.  However, this attempt, in fact, did not bring her further 
troubles while teaching mathematics. On the contrary, it inspired her to look for external 
resources more actively for her professional development. 
As regards M2 who had M & S background (internal factor), he showed the 
characteristics of the second gradation after teaching two months. The struggle 
between theories and practices forced him to change his instructional strategies.  For 
example, his pre-service training experience remained him that he could not just 
lecture in the mathematics course even if he worried about the distraction of the 
discussion activities. Therefore, he asked students to discuss in small groups and 
presented their answers (or ways of solving mathematical problems) to other group 
members or the entire class. “I thought I had to use multiple ways to teaching.  As you 
saw, I was still trying to control the order and getting their attentions” (941229 IN M2), 
said M2.  Compared to N2, M2 did not gain enough external assistances and resources 
from his colleagues. Nevertheless, as described previously, his mathematics education 
background stimulated him to rethink what he still needed for improving his teaching 
practice and even more energetically seeking out for help. Because of the contact with 
our research team (i.e. members included elementary and secondary experienced 
teachers and professors), he realized that he might attain external assistances from us. 
He began eager for asking questions while possible and demanding extra instructional 
materials or teaching aids. This external and unexpected support accidentally became 
the inspirational source of his efficacy development.  He said, “you all (i.e. the research 
team members) were truly helpful for me” (9505-1 M2 Note).  It also helped him to 
step into the third gradation and forced him to reflect that “I should actively interact 
with other teachers, within and out of my school, more frequently!” (9505-4 M2 Note). 
CONCLUSION 
In summary, under the influences of two-dimensional interactions of internal and 
external factors, beginning mathematics teachers who had various gradations of teacher 
efficacy showed different developmental processes and transformative trends.  In fact, 
this efficacy development was a dynamic process and exhibited special movement 
patterns. For instance, after quickly entering the third gradation, high-efficacy teachers 
kept moving forward to the forth and the fifth gradation.  In the meantime, they 
repeatedly went backwards and then sequentially moved in these three gradations, 
while facing new difficulties or challenges; same as those who had medium or low 
efficacy.  Consequently, we believed that, concluding from the data, the development 
and transformation of elementary beginning mathematics teachers not only matched 
the characteristics of the stage model mentioned above but also showed a dynamic 
feature and moved back and force among the five gradations.  Echoing to both 
Vygotsky’s (1978) social constructivism and the concept of ‘zone of proximal 
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development’ and Bandura’s (1978) reciprocal determinism, an individual’s learning 
and mental development is dynamic and will be motivated through the acquisition of 
more knowledge and/or higher levels of thinking. This power will definitely help one 
to pursue higher achievement or advanced development.  Therefore, our next task 
should be finding out more specific strategies in assisting all elementary in-service 
mathematics teachers to enhance their teacher efficacy immediately and effectively. 
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MATHEMATICAL KNOWLEDGE FOR TEACHING AND THE 
UNFOLDING OF TASKS IN MATHEMATICS LESSONS: 

INTEGRATING TWO LINES OF RESEARCH 
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This paper reports on an exploratory study investigating whether a particular type of 
teacher knowledge, namely teachers’ mathematical knowledge for teaching (MKT), 
matters for teachers’ selection, presentation, and enactment of tasks. To this end, I 
explored the unfolding of tasks in a series of lessons given by a high- and a low-MKT 
teacher. The analysis of nine videotaped lessons from each teacher and the dissection 
of the curriculum materials these teachers employed in their lessons revealed notable 
differences in the unfolding of tasks in these teachers’ lessons. The results of 
interview data with each instructor in regard to their thinking and reasoning on 
selected mathematical items suggest that the aforementioned differences should not 
be considered unrelated to teachers’ own mathematical knowledge. 
INTRODUCTION 
Engaging students in cognitively demanding tasks is critical to the quality of student 
learning (Hiebert & Wearne, 1993; Stein & Lane, 1996). However, cognitively 
challenging tasks are not self-enacting; what determines student learning is rather 
how these tasks are introduced and worked on during instruction. Teachers’ critical 
role in introducing and enacting these tasks with their students has been 
documented in several studies (e.g., Boaler, 2002; Henningsen & Stein, 1997). 
Capturing this role, the NCTM Principles and Standards for School Mathematics 
(2000) also suggests that  

[w]orthwhile tasks alone are not sufficient for effective teaching. Teachers must … 
decide what aspects of a task to highlight, how to organize and orchestrate the work of 
the students, what questions to ask to challenge those with varied levels of expertise, 
and how to support students without taking over the process of thinking for them (p. 
19).  

A range of factors has been proposed to account for how teachers capitalize on tasks 
to support student learning. These factors include teachers’ beliefs and expectations, 
students’ instructional habits and dispositions, the established classroom norms and 
practices, and a wide array of contextual factors, such as time constraints and 
pressure to cover the curriculum (Doyle, 1988; Watson & Mason, 2007). While 
acknowledging the importance of these factors, this study examines the role of 
teacher knowledge in the unfolding of tasks. Although teacher knowledge has been 
considered a plausible contributor to how teachers introduce tasks in their lessons and 
work on them with their students (cf., Stein, Remillard, & Smith, 2007), the pertinent 
empirical evidence is relatively scarce.  
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THEORETICAL FOUNDATIONS 
To explore the role of teacher knowledge in the unfolding of tasks, this study built on 
work in two research areas that have yielded useful ideas for the teaching of 
mathematics, but have moved in parallel paths. First, drawing on the work of the 
QUASAR (Quantitative Understanding: Amplifying Student Achievement and 
Reasoning) project, the study utilized the Mathematical Tasks Framework (MTF), 
which helped identify three phases during which teachers’ decisions and actions 
appear to affect the cognitive level at which the content is experienced in 
mathematics classes. This framework (Figure 1) suggests that teachers can influence 
student learning by the tasks they select, by the way in which they present these tasks, 
and by the manner in which they work on these tasks with their students.  
 
 
 
 
 

Figure 1.  The MTF (reproduced from Henningsen & Stein, 1997, p. 528). 
To capture the cognitive level of tasks, the QUASAR researchers have proposed the 
Task Analysis Guide (TAG) that classifies tasks into the following four categories 
(see Stein, Smith, Henningsen, & Silver, 2000, p. 16 for more elaboration):  

• Memorization (ME): These tasks require reproducing previously learned 
rules or facts.  

• Procedures without connections (PWOC): These tasks are algorithmic and 
focus on producing correct answers rather than developing mathematical 
understanding.  

• Procedures with connections (PWC): These tasks focus students’ attention 
on the use of procedures for the purpose of developing meaning and 
understanding.  

• Doing mathematics (DM): These tasks require complex and non-algorithmic 
thinking. 

The first two categories correspond to tasks of lower level demands, and the latter two 
to tasks of higher cognitive demand. A fifth category (i.e., unsystematic exploration, 
UE) was also proposed by Stein and Lane (1996) to refer to tasks that could potentially 
engage students in higher level thinking but during their enactment students engage in 
unsystematic explorations and hence fail to develop understanding.  
The second area of research that informed this study is the work of Ball and 
associates (Ball, Hill, & Bass, 2005) on mathematical knowledge for teaching 
(MKT). The focus on MKT to explore the inquiry of this study rests on both 
theoretical and empirical considerations. From a theoretical perspective, MKT 
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captures a unique type of professional knowledge needed for the various aspects of 
teaching mathematics. From an empirical standpoint, recent studies showed that 
MKT is positively associated with the quality of instruction (Hill et al., accepted) and 
with student learning (Hill, Rowan, & Ball, 2005).  
Building on these two research areas, this study investigates whether teachers with 
dissimilar levels of MKT differ in their selection, presentation, and enactment of 
tasks, in terms of the cognitive demands of these tasks. Being exploratory, this study 
did not endeavor to yield conclusive evidence, but rather to make a first step in 
examining whether MKT appears to matter for the unfolding of tasks in mathematics 
lessons.  
METHODS 
This study utilized a multiple-case approach (Yin, 2006), focusing on a purposive 
sample (Patton, 2002) of two cases differing in terms of MKT. In particular, a series 
of eighteen lessons, nine taught by a high-MKT teacher (Karen) and nine by a low-
MKT teacher (Lisa) was analyzed, with respect to the three phases of task unfolding 
(i.e., selection, presentation, and task enactment). Karen and Lisa (both pseudonyms) 
were part of a non-random, large sample of 640 teachers who completed the paper-
and-pencil Learning Mathematics for Teaching test measuring their MKT; they were 
also among 10 teachers who consented to have a series of their lessons videotaped 
three times in each of three cycles (for more information see Blunk, 2007). Karen 
scored in the 93rd percentile of the large sample, whereas Lisa was in the 35th 
percentile. Both were seasoned elementary teachers and taught fifth-grade 
mathematics for most of the lessons under investigation. Three different types of data 
were utilized in this study:  
(a) Videotaped lessons: Nine videotaped lessons for each of the two teachers were 
analyzed. The first step in analyzing the lesson data was to turn the visual and 
auditory images into quantitative and qualitative data. This step required a detailed 
coding protocol to be developed, including guidelines for parsing the lessons into 
meaningful chunks whose beginning and end points could be clearly identified; the 
protocol also detailed how to decide the level of cognitive demand of the content 
during task presentation and enactment. The unit of analysis of the videotaped lessons 
was the task, defined as “a segment of classroom work devoted to the 
development/learning of a mathematical idea” (Stein, et al., 2000, p.7). The cognitive 
demands of the tasks in these lessons were analyzed by the author of this study using 
the Task Analysis Guide (TAG). A random sample of two lessons per teacher was 
coded by two independent coders, yielding substantial inter-rater reliability for both 
task presentation and enactment (Cohen’s kappa, κ>.76).  
(b) Curriculum documents: The TAG was used to code the cognitive demands of the 
available curriculum tasks employed in the lessons. The two independent coders 
coded approximately 15% of the tasks used by each teacher, yielding a perfect inter-
rater reliability for the cognitive demands of the curriculum tasks ( κ= 1.0).  
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(c) Interviews: The two teachers were asked to reflect on how they solved 18 of the 
MKT test items. These interviews were analyzed to identify patterns in the two 
teachers’ thinking and reasoning approaches to these items. 
FINDINGS 
Thirty nine tasks were identified in Karen’s lessons and 30 in Lisa’s lessons. Of these 
tasks, there were available data for all phases of task unfolding for only 21 tasks for 
Karen and 15 for Lisa (i.e., the curriculum materials for the remaining tasks were not 
available, and thus the phase of task selection could not be captured). Thus, in what 
follows, I first consider the tasks for which data were available for all phases of task 
unfolding; I then consider all the 69 tasks (for the phases of task presentation and 
enactment).   
All phases of task unfolding 
In 18 of Karen’s 21 tasks, Karen consistently maintained the cognitive demand of 
the tasks at the level of the curriculum materials during presentation and enactment; 
six of these cases pertained to high-level tasks and 12 to low-level tasks. Only in 
two cases was Karen observed to not maintain the demand of intellectually 
challenging tasks, and these lapses happened during task enactment. She also 
elevated the cognitive demand of one task during its presentation, but failed to 
sustain the challenge during task enactment. Eight of the 15 tasks considered for 
Lisa were presented as cognitively demanding in her curriculum. Of those tasks 
Lisa maintained the intellectual challenge during presentation and enactment in only 
three cases.  
In the remaining five cases, the challenge declined during task presentation (four tasks) 
and enactment (one task). Lisa was not observed to elevate the cognitive demand of 
any task during presentation or enactment; she was consistent, though, at maintaining 
the cognitive demand of 7 tasks at the low level of her curriculum materials.  
Presentation and enactment phases 
Table 1 provides information about the cognitive demands of all the tasks 
presented and enacted in the two teachers’ lessons. About 40% of the tasks in 
Karen’s lessons were presented as intellectually challenging (i.e., DM and PWC), 
compared to only about 16% of the tasks in Lisa’s lessons. This finding should not 
be divorced from Lisa’s failure to maintain the cognitive demand of the tasks 
during task presentation reported above. In fact, Lisa set up most of the tasks (i.e., 
about 84%) at a lower cognitive level, by emphasizing the procedures involved or 
by asking students to recall and apply rules and algorithms. Table 1 also shows 
that Karen was relatively successful in maintaining the cognitive challenge of the 
presented tasks during their enactment:  about 40% of the tasks in her lessons were 
presented as high level and about 30% were enacted at this cognitive level. In 
contrast, only about 13% of the tasks in Lisa’s lessons were enacted at a higher 
cognitive level. 
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Cognitive 
level of tasks* 

Tasks as they were presented Tasks as they were enacted 

    Karen       Lisa      Karen  Lisa 
 f % f % f % f % 

DM 3 7.70 1 3.33 2 5.26 1 3.33
PWC 12 30.77 4 13.33 9 23.68 3 10.00
PWOC 13 33.33 18 60.00 16 42.11 18 60.00
ME 11 28.21 7 23.34 11 28.95 7 23.34
UE 0 0 0 0.00 0 0.00 1 0.03
Total 39 100.00 30 100.00 38** 100.00 30 100.00
* See the Task Analysis Guide (TAG); **No data on the enactment of one of the tasks were available. 

Table 1. The cognitive level of tasks in Karen’s and Lisa’s lessons 
If one considers only the number of tasks in these teachers’ lessons, one could argue 
that the students in both teachers’ classes mainly experienced intellectually 
undemanding tasks (i.e., notice the number of tasks enacted as PWOC and ME). 
However, if one considers the duration of the different types of tasks in the two 
teachers’ lessons, a different picture emerges, as depicted in Figure 2. This figure was 
developed by first calculating the percentage of time allotted to each category of tasks 
within each lesson, and then by averaging these percents over all nine lessons for 
each teacher. Figure 2 shows that, on average, the instructional time in Karen’s 
lessons was about evenly distributed between demanding tasks (DM, PWC) and less 
challenging tasks (PWOC, ME). In contrast, most of the time in Lisa’s lessons was 
allotted to less demanding tasks or unsystematic explorations (81%). Figure 2 also 
shows that whereas in Karen’s lessons PWC tasks were dominant, in Lisa’s lessons 
the dominant tasks were PWOC.  
 

 

 

 

 

 

 

 

Figure 2. Instructional time allotted to different types of tasks                                    
in the two teachers’ lessons.  
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I present one episode from each teacher’s lessons, indicative of the patterns discussed 
above. The episode from Karen’s lessons showcases her emphasis on helping 
students see meaning in the mathematical procedures at hand. The episode from 
Lisa’s lessons exemplifies her focus on remembering and applying rules and 
algorithms.  
The episode considered for Karen is from a lesson on subtracting integers. In the 
previous lessons, students used two different types of representations (number lines 
and plastic tile stoppers shaped as pluses and minuses) and worked on adding 
integers; during this activity, they figured out the sum of two opposite numbers (e.g., 
+3 + (-3)). The lesson under consideration started with students’ reviewing a couple 
of examples on adding integers. Karen then projected five “pluses” tiles on the 
overhead projector and urged students to apply the two different representations they 
were using in previous lessons to figure out the difference “5 - (-4),” which she 
presented as “subtracting minus four from the five ‘pluses’ tiles.” After some time for 
exploration, Karen asked one of the students, Michael, to share his work. Michael 
suggested removing four of the “pluses” tiles, and argued that the difference was one. 
Another student observed that Michael took away “positive four instead of negative 
four.” Karen elicited other students’ ideas. To scaffold their thinking, she 
recommended that they “recall an important idea discussed in previous lessons,” to 
which a student responded by referring to the sum of a negative and a positive one 
being zero. Building on this idea, Karen helped students see that they could add as 
many pairs of opposite numbers to the number with which they started, without 
changing the value of this number. After that, Michael modeled the subtraction on the 
overhead. He first added four pairs of “pluses” and “minuses” tiles to the already 
existing five “pluses”. He then took away all the “minuses” and concluded that the 
difference of 5- (-4) is nine. Karen pressed for an explanation: “How come? We 
started with five and now we have nine.” At this  point, a student mentioned that his 
older brother told him, that “a negative times a negative makes a positive,” to which 
Karen replied that it might be good for students to avoid such rules, and focus on 
making meaning, because “in six weeks you might forget [these rules] and then you 
would be all confused again.” Trying to help her students see the underlying meaning 
of the subtraction of integers, she then asked them to consider several other carefully 
sequenced problems on this operation, insisting quite adamantly that they use both 
their representations to show how they were solving these problems.  
The episode for Lisa is from a lesson on finding the area of triangles. The lesson 
started with Lisa’s presentation of “the snake farm” task, a cognitively demanding 
problem that asked students to figure out the area of a given triangle. Lisa then 
remarked that to solve this task, “we have to know how to find the square area of the 
triangle.” Having said that, she handed out a worksheet that presented a rectangle 
divided into two triangles (by one of its diagonals), and clarified that the area of a 
triangle is half the area of a rectangle. She then noted: “So, here’s a formula you can 
remember. One half of a rectangle equals triangle.” Following that, she directed 
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students’ attention to the word “of”: “Whenever we see ‘of,’ what do we do?” A 
student replied that “we divide,” to which Lisa disagreed. Another student suggested 
multiplication. Satisfied with this answer, Lisa went on to write the formula that gives 
the area of a triangle as “½ x area rectangle” and then “½ x base x height.” She then 
asked students to figure out the area of several triangles of given height and base 
lengths. Finally, students were given time to solve the “snake farm” task, using the 
formula introduced in this lesson.   
Insights from the interviews 
At this point, the critical reader might attribute the differences in the unfolding of 
tasks in Karen’s and Lisa’s lessons delineated above to differences in the two 
teachers’ beliefs about mathematics and its teaching. Although this argument cannot 
be dismissed, the data from the interviews during which the two teachers solved a 
number of MKT items and explained their thinking and reasoning suggest that these 
teachers’ instructional approaches were not unrelated to the manner in which they 
themselves understood the content and solved pertinent mathematical problems. Due 
to space limitations, I consider the teachers’ responses to only one of the MKT items. 
The item under consideration presented a mathematical situation that essentially 
involved determining the fractional part of another fraction (i.e., 1/5 of ½). Although 
both teachers eventually solved the item correctly, their solving approaches and their 
reasoning in solving this item differed remarkably. To reason through the item, Karen 
drew a picture. She first divided this representation into two halves, and then divided 
one of these halves into five equal pieces. She concluded by pointing out: “It was 
very easy. I drew a picture before I did the problem.” Lisa, on the other hand, did not 
use a representation to solve this item; nor did she find the answer to the item right 
away. Initially, she identified 2/5 as the correct answer. Then, on reconsidering her 
answer, she murmured: “this would be half of something.” The word “of” seemed to 
have triggered her mental schema of multiplication: “Oh, I know what it is.” She 
paused for awhile, and then said: “Because he taught one fifth of a half, which is 
multiplication, [the answer] would be one tenth.”    
DISCUSSION   
This exploratory study makes a first step in investigating the role that a distinctive 
type of teacher knowledge, namely their MKT, appears to play in task selection, 
presentation, and enactment. The study showed differences in the unfolding of tasks 
in the lessons of the teachers under consideration. Karen, the high MKT-teacher, 
largely maintained the cognitive demand of curriculum tasks at their intended level 
during task presentation and enactment. She also helped her students see meaning of 
the procedures at hand, by often urging them to use multiple representations; she was 
also adamant in eliciting students’ thinking and explanations. Lisa, the low-MKT 
teacher, on the other hand, often proceduralized even the intellectually demanding 
tasks she was using and placed more emphasis on students’ remembering and 
applying rules and formulas. The study interview data suggest that the patterns 
observed in the two teachers’ presentation and task enactment are not unrelated to 
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how these teachers appear to have understood the content and reasoned through 
pertinent problems. As was originally intended, this study did not provide conclusive 
evidence on whether MKT matters for the unfolding of tasks in teachers’ lessons. 
However, the findings reported suggest that MKT should be seriously considered in 
explorations that aim to capture what informs teachers’ decisions and actions during 
the different phases of task unfolding. It is expected that these findings will also 
catalyze further thought and research on the effect of teacher knowledge on teachers’ 
instructional approaches.  
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YOUNG CHILDREN RECOLLECT THEIR           
MATHEMATICAL THINKING 

Jill Cheeseman 
Monash University 

 
Children were interviewed about their mathematical thinking and asked to reflect on 
their learning as part of a larger study exploring teacher behaviours that challenge 
children to probe their mathematical understandings. Fifty-three interviews were 
conducted in 4 schools with 5- to 7-year-old Australian children. The subjects were 
involved in close conversation with their teachers during the mathematics lesson. 
Video-stimulated recall was used with a conversational interview to prompt 
children’s recollections and reflections. Findings indicate that young children in the 
first years of schooling are able to recall events in their mathematics lessons to 
reconstruct their thinking and reflect on their mathematical learning. 
BACKGROUND  
The theory of social constructivism underpins this research. Cobb, Wood, Yackel and 
McNeal (1992) argued that the construction of knowledge occurs within a social and 
cultural context where discourse is a vital component in establishing an effective 
learning context. The focus of this research is the meaning constructed between the 
teachers and children in classrooms. 
There has been a long history of interviewing young children to describe their 
mathematical thinking (e.g., Donaldson, 1978; Gelman & Gallistel, 1978; 
Hughes, 1996). These interviews often involved children performing 
mathematical tasks to demonstrate their thinking or development. Task-based 
interviews have also been used to assess and plot the growth of the mathematical 
thinking of children over time (Clarke & Cheeseman, 2000). However there 
appears to be little research that reports young children’s reflections on their 
thinking in post-lesson interviews. 
Franke and Carey (1997) conducted interviews to research first-grade children’s 
views about what it means to do mathematics in problem solving classrooms. They 
found that young children were in fact able to reflect on classroom events. 
McDonough (2002) reported procedures that prompted eight to nine year-old children 
to articulate their beliefs about mathematics. Children found it a difficult to talk 
abstractly about learning, however, they “held beliefs about mathematics, learning 
and helping factors and could articulate beliefs when prompted” (p. 270). 
To capture some of the complexities of classrooms settings and to collect rich data, 
the approach termed complementary accounts methodology was used for this study 
(Clarke, 2001). While the methodology used for the large study differed from that of 
Clarke, similar fundamental techniques were used: videotaping the whole 



Cheeseman  

2 - 290                                                                                PME 32 and PME-NA XXX 2008 

mathematics lesson, audio taping participants’ reconstructions of classroom events, 
and an analysis of the multiple data sets. 

METHOD 
In total, 53 children were interviewed on the day their mathematics lesson was 
conducted. The children were aged five to seven years from four classes, each in a 
different Australian school. The selection of students was based on classroom 
observation notes of the researcher. 
The interviews were audio taped for transcription and analysis. A video of the lesson 
was used as a stimulus to recall sections of the lesson directly involving each child. 
Children were asked to recount events where they were in conversation with the 
teacher, to say what they were thinking at the time, and to reflect on what they had 
learned in the mathematics lesson. The interview was conversational in style. While 
there was an interview script, it was adapted in order to elicit responses from each 
child. The scripted questions were: 

• I am interested in the times when teachers talk to children in maths lessons. I 
noticed that your teacher had a talk with you in that maths lesson. Can you 
remember that? Can you tell me what happened? 

• I think that we got that on video. Would you like to see it?  
• What were you thinking about? (Maybe just watch it at first.) 
• Can you say what was happening? 
• What did you learn in maths today? Was there anything else? 

These questions are modelled on those used by Clarke (2001, pp. 13-32) however 
these questions have been simplified for young children. 
Video-stimulus recall 
There appears to be scant literature describing the use of stimulated recall using 
video with young children to investigate their perspective of mathematics lessons. 
There are reports of Year 8 children, using video-stimulated interviews to 
reconstruct the learner’s perspective (e.g., Williams, 2003) and reports of teachers 
video-stimulated recall of the events in their classrooms (e.g., Ainley & Luntley, 
2005) but there seems to be no use of this methodology in mathematics education 
with young children. 
Because little was known about how young children would respond to video-
stimulated interviews, some piloting was undertaken. It became clear that the best 
way to prompt recall was to play a little of the beginning of an incident of interest to 
set the scene for the child then to pause the video and to ask, “Do you remember that, 
what was happening there?” If a child had no recollection of the event, the entire 
video episode involving them in conversation with the teacher was played and used 
as a stimulus to describe their thinking or reflect on their learning. In general, the 
video was used as a starting point only. 
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DATA CODING AND ANALYSIS 
Interviews were digitally recorded. Seventeen interviews were transcribed in full. The 
remaining 36 interviews were coded directly from the audio files. Data were 
considered in terms of the children’s recall of an incident or task, description of 
events, explanation of their thinking, and description of their learning. Categories of 
response emerged from the data. Descriptors of response were listed in increasing 
levels of sophistication, with 1 being the least and 5 or 6 as the most sophisticated 
responses as follows: 
Recall of the incident/task 

1. no recall 
2. child could recall the event only after of the entire video excerpt was 

replayed 
3. recall with the video paused just before the event of interest or with the 

video playing in the background with no audible sound 
4. recall spontaneously with little or no assistance of the video extract 

Description of events 
1. no description of interaction with teacher 
2. describe actions 
3. describe outcomes only, e.g., a work sample 
4. describe the event from their perspective 
5. describe reasoning and/or justify their thinking 

Explanation of their thinking 
1. no explanation 
2. “account for” the videotape e.g., make up a “story”  
3. explicit description of thinking 
4. explain/reconstruct thinking, reasoning, justifying, evaluating thinking 

Description of learning 
1. unable to specify learning 
2. learned “nothing” 
3. learned a behaviour not mathematics e.g., “to share” 
4. remembered factual information e.g., number facts 
5. learned how to do something e.g., “to count by 6s” 
6. described learning at a conceptual level, expressed as a mathematical principle or 

an insight, e.g., “I can count by 1s, 2s, 3s, 4s, 5s, 6s, 7s, 10s, and 100s and 1000s 
…once I can count by ten I can count by all the rest. Like 10, 20, 30, 40, 50, and it 
always has a zero on the end.” 

In general, the highest level of descriptor was coded when evidenced anywhere in the 
interview. Codes were then entered into a statistical analysis program (SPSS) to 
produced descriptive statistics. 
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Reliability of coding 
To improve internal reliability, interviews were re-coded. An independent person, 
skilled at listening to young children describe their mathematical coded a 20% sample 
of the audio data. All points of difference were discussed and an agreed understanding 
of the data was reached. Based on the combined critical analysis, further interviews 
were transcribed in full (17 in total) and category descriptions were refined. The entire 
data set was coded again applying the new protocols without any reference to the 
previous coding. The results of this second coding form the data reported here. 
RESULTS 
Recall of events 
Using videotape of events involving each child in the mathematics lesson of the day 
to stimulate the recall and an account of the episode from the view of the child was 
largely successful. This is evident from Table 1, which summarises the categories of 
responses of children’s recall of events, where only 2% of children were unable to 
recall the events of the lesson. Some children needed to watch the entire replay of the 
videotape where they were in conversation with the teacher in order to talk about it 
(23%). Many children, having watched the video of the lesson leading up to the 
event, could recount their version of what had unfolded after the videotape was 
paused (30%). In addition almost half of those interviewed could recall a 
conversation with the teacher before the video was replayed. 
 

Category of response Frequency as a percent (n = 53) 

1. No recall   2 

2. Recall with video replay of the event 23 

3. Recall with video paused or with no 
audible sound 

30 

4. Recall spontaneously 45 

Table 1. Categories of Response of Children’s Recall of an Event 

Description of event 
An analysis of the children’s descriptions of events revealed an interesting three-way 
split of responses (see Table 2). Some children described only what they did (23%). 
The following example illustrates this category of response. James could be seen on 
the video interlocking blocks but saying nothing: 

Interviewer: So what was happening here?  
James: My brain was counting and I wasn’t. [James, J2.3:25] 

Other children offered a description from their point of view (36%). For example, Ali 
explained his counting of 5 groups of 5 teddies saying, “It goes 10, 20, 30, 40, 50. 
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You have to count the ears” [Ali, G1, 7:30]. It is hardly surprising that 36% of 
children who could remember the event described it from their point of view. In fact 
what was interesting was that such a large proportion described the event with some 
reconstruction of their reasoning at the time (28%). This was perhaps the most 
interesting group of responses. For example, Jessica was explaining how to weigh a 
dog, Joey, who would not stand on bathroom scales: 

Interviewer: Can you tell me about your good idea for maths today please? 
Jessica:  I thought of holding Joey on the scales. I would know how much Joey 

weighed. So I hopped on the scales with him and I holded him. And then we 
took away 19 [from 28] because I was 19 and he was 9 and so that was 9 
kilograms and that’s what he weighed [Jessica, J3, 0:35]. 

 
Category of response Frequency as a percent (n = 53) 

1. No description of interaction with teacher 4 

2. Describe actions 23 

3. Describe outcomes only, e.g., a work sample 8 

4. Describe the event from their perspective 36 

5. Describe reasoning and/or justify thinking 28 

6. Missing 2 

Table 2. Children’s Descriptions of Events 

Explaining thinking 
Table 3 shows the number of children who could explicitly describe their 
mathematical thinking was high (85%).  
Expecting children to be able to communicate their thinking has been an element of 
Australian mathematics curriculum definition for years (Australian Education 
Council, 1991; Board of Studies). Certainly based on classroom observational data 
from the classrooms of the children interviewed here it is a clear expectation of their 
teachers that they explain their reasoning. 
It should be said that these children had been learning mathematics in the classrooms 
of “highly effective” teachers of mathematics (McDonough, 2003) for 8 months. 
Perhaps this would account for their readiness to describe their mathematical 
thinking. Whether children in other classrooms can explain their thinking with this 
frequency is a question that might be explored by further research.  
An example of the type of response that shows a child reconstructing and evaluating 
his thinking is when Tom offered a thinking strategy for his classmates who could not 
count by 4. His idea was to use a count by 2. 

Interviewer: Now Mrs A says that’s a really complicated way to work it out I 
can’t really hear what you were saying. She was looking at a page that had 
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8 legs and 4 things on each leg. How were you trying to work that one 
out? 

Tom:   Oh a different way. You know, when there’s 8 legs and I was thinking if people 
didn’t know how to count by 4, I was splitting 4 in half to make two on each 
side. Then I did 2 X 8 equals 16 then I have to count by 2s up to 32 what it 
equals. I have to count by 2s 16 times [Tom, G1, 1:00]. 

A few children could not explain their thinking and another few gave an explanation 
of their thinking as if telling a story. In examining the knowledge that experienced 
mathematics teachers access to operate effectively, Ainley and Luntley (2005, p.78) 
made a distinction that may be pertinent here. Teachers were shown episodes of 
videotapes of their classrooms and in these interviews some teachers gave an 
“account for” rather than an “account of” their actions. The children who made up a 
story to suit the occasion may be doing the same thing or perhaps there is a different 
mechanism at work. No definitive statements could be made based on the evidence 
collected here all that can be said is that 3 (6%) children made up a fiction to match 
the video. 

Category of response Frequency as a percent (n = 53) 

1. None 6 
2. “Account for” or gave an invented story 6 
3. Explicit description of thinking 43 
4. Reconstructs thinking, justifies, reasons, 

evaluates 
42 

5. Missing 4 

Table 3. Children’s Explanation of Their Thinking 
Specify learning 
Only 15% of children did not know what they learned in the mathematics lesson (see 
Table 4). The category of “nothing” proved unreliable because it became clear that 
young children translated “What did you learn today?” into “What new things did 
you learn today?” and these two questions are quite different. Therefore this category 
will not be discussed. Some children talked about behavioural learning, for example, 
“to share.” Or they referred to non-mathematical things, for example the learning 
context, “talking about tools and building” [Michael, Jk2]. Totalling the first 3 
categories of Table 5 shows that 30% of the children did not specify mathematical 
learning. 
The three categories of most interest were those that made distinctions between 
learning factual information (15%), learning how to do something (23%) and learning 
at a conceptual level (21%). 
About one third of the children who remembered facts talked in terms of numbers. 
For example, Annie who had been talking about measuring with a piece of string 
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when asked what she learned said, “I learned that 9 + 11= 20.” While it is not 
possible to be certain from these data, it raises a question as to what these young 
children think constitutes mathematics learning. Is learning mathematics equated to 
remembering numbers? Certainly the children interviewed for this research described 
their learning in detail. For example, Tom talked about his learning saying,  

Tom: I think I might have leant some new times tables. 
Interviewer: In which times table? 
Tom: I think some were in the, I think some were like 9 X 6. I didn’t know that but 

then I knew it because I just counted by 6 nine times [G1: 6:36]. 

Some children learned how to do something, for example Jordan, who “learned how 
to count by nines.” Another substantial proportion of the children (21%) reflected 
on their learning at a conceptual level. For example, Tahani reflected on a lesson 
where the teacher intended to introduce multiplicative thinking, saying she learned 
“about groups, to make groups and to count them altogether and I learned to count 
by 6s.”  
 

Category of response Frequency as a percent (n = 53) 

1. Unable to specify learning 15 

2. Nothing “new” 9 

3. Learned behaviour/ not mathematics 6 

4. Remembered factual information 15 

5. Learned how to do something 23 

6. Specified a conceptual level of understanding 21 

7. Missing 11 

Table 4. Children’s Learning 

DISCUSSION AND IMPLICATIONS 
Children could recall at least part of their conversations with the teacher during the 
day’s mathematics lesson. These interactions appear to have some lasting effects. 
This is an important finding because I believe that interactions that challenge children 
to think about their mathematical understandings are a critical factor in their learning. 
Therefore knowing that many young children spontaneously remember these 
conversations and can reconstruct their thinking is an important finding. 
The sophistication of their descriptions of events in the classroom were fairly evenly 
split between recounts of actions, descriptions of the event from the child’s 
perspective and a description that involved some recount of their reasoning. It was 
surprising and impressive that such a large proportion of five- to seven-year-old 
children (42%) could reconstruct their thinking and justify it. 
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It is assumed that the experiences offered to children in mathematics classrooms 
contribute to their learning. These data indicate that 59% of children could talk about 
their learning as a result of the lesson--some at a factual level, some at a procedural 
level, and some at a conceptual level. Further research might investigate factors that 
influence different levels of understanding reported by young children. 
It is also important for researchers to know that video-stimulated recall can be 
successfully used with five- to seven-year-old children. 
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ELEMENTARY STUDENTS’ CONCEPTIONS OF STEEPNESS 
Diana Cheng and Polina Sabinin 

Boston University 
 

In this study, we interviewed Boston-area students in Grades 2 through 7 to explore their 
informal knowledge of slope. We are interested in both what these students know as well 
as what their conceptual difficulties are as they develop an understanding of steepness. 
Specifically, this study investigates the question, “Which dimensions do students attend 
to and neglect when describing steepness?” We found that students are able to identify 
the steeper of two ramps or lines quite accurately; however, they have difficulties 
accurately describing how different dimensions of the incline contribute to steepness. 
These results inform teachers and curriculum developers of preconceptions and 
conceptual difficulties students have before taking algebra in middle school. 
INTRODUCTION AND REVIEW OF RESEARCH LITERATURE  
Understanding mathematics can lead to personal and professional success. The 
National Council of Teachers of Mathematics (NCTM, 2000) advocates that all 
students should study algebra. Since 2000, many states have aligned their graduation 
requirements with NCTM guidelines, creating a national expectation for students to 
pass a test covering material learned in an Algebra 1 course ("No Child Left Behind 
Act of 2001", 2002).  
Algebra is a gatekeeper for academic success, and the algebraic topic of linearity is a 
gatekeeper for other algebraic concepts such as quadratic and exponential 
relationships (Yerushalmy, 1997).  Algebra 1 students in the US, Israel, and Korea 
performed most poorly on linearity test questions asking for slope of a line on the 
coordinate plane (Greenes, Chang, & Ben-Chaim, 2007). Other studies found these 
conceptual difficulties: steepness and height are different, steepness is constant along 
an incline, slope is a ratio of differences (Cates, 2001; Lobato & Siebert, 2002).   
Children who have had the opportunity to experiment with steepness may understand 
it to a much better extent than we see in schools. Therefore, we believe we can better 
prepare young children for the study of slope in middle school. The complexity of 
attainable cognitive tasks develops with age (Frye & Zelazo, 1998).  Relational 
complexity (RC) theory defines complexity as the arity of the relation— the number 
of independent dimensions or variables represented concurrently.  Unary relations are 
defined by a single attribute. If steepness is a single variable, then identifying the 
steeper ramp is a binary relationship.  A more formal understanding of slope involves 
three variables: horizontal distance, vertical distance and the numerical value of 
slope. ternary task, attainable at a median age of 5 years (Halford, Wilson, & Phillips, 
1998a). Comparing the steepness of two ramps or lines by comparing their horizontal 
and vertical measures involves a quaternary relation, normally attainable at an age of 
11 years (Wood, 1988).  
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Based on cognitive complexity theory alone, as children enter school, they should be 
developmentally ready to accurately work with the ternary concept of slope of a ramp 
or line. By the end of elementary school, they should be able to compare slopes in 
situations where none of the measurements are held constant. Between grades 1 and 
5, students can explore situations where at least one of the dimensions (hypotenuse, 
vertical or horizontal distance) is constant. Experience with different contexts of 
steepness can increase students’ abilities to understand slope (Halford, Wilson, & 
Phillips, 1998b). 
Most children have had experiences with steepness through building ramps, sliding 
down slides, or riding a bike up hills. Yet, research of teaching practices in the 
elementary schools says that pre-existing knowledge is often ignored when slope is 
introduced, preventing students from making connections between slope and prior 
knowledge (Fuson, Kalchman, & Bransford, 2005).   
The first step in incorporating the mathematics of steepness into elementary schools 
includes creating activities and explorations which prepare the students for their 
middle school study of linearity. First, we need to establish what students in different 
grades know about steepness without instruction.  
METHODOLOGY  
Semi-structured clinical interview is our primary method of data collection. We have 
designed the interview protocol and handouts (See http://web.mit.edu/dianasc/www) 
to guide the interviewer through the required setup of manipulatives and questions to 
ask. Since the questions build one on the other and have an internal conceptual order, 
the protocol is quite prescriptive. However, the interviewers were encouraged to ask 
further questions to elucidate students’ thinking.  
The interview protocol consisted of five sections: an introduction and four categories 
of tasks. The Concrete, Imagine, Picture, and Lines sections asked the student to 
identify which of the two ramps presented was steeper and why. Some of the tasks 
required the student to construct ramps; others also required the student to draw a 
picture of the ramps. The student’s choice of the steeper ramp was coded as correct 
or incorrect. For each task, we asked students to explain how they knew that the 
chosen ramp was steeper in two different ways. We coded their explanations in two 
ways: explanation accuracy and conceptual category. The codes for explanation 
accuracy were correct or incorrect based on whether the student used a plausible 
explanation to support his or her answer. The conceptual category codes included: 
vertical, horizontal, hypotenuse, incline, area/space under ramp, speed, 
combinations, and other vocabulary. We collected information from students through 
several sources: oral descriptions, drawings of the ramps, physical constructions, and 
worksheets. 
We interviewed eight students attending schools in the Boston area. All of the coded 
interviews showed fragile understanding of steepness and provided over 250 
instances of explanations of steepness. There was no evidence of correlation between 
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the number of explanations and students’ grade level (squared Pearson correlation 
coefficient = 0.06).  The number of explanations per task also did not correlate with 
the student’s grade (squared Pearson correlation coefficient = 0.09).  There was no 
evidence of significant differences between the task and explanation accuracy scoring 
schemes (Chi Square statistic = .85, 1 df, p > .35). Using these methods of 
triangulation, we show that we obtained equivalent data from students across grade 
levels and that our two coding strategies showed similar results.  
ANALYSIS  
We found a number of surprising results from our data. We found no evidence of 
correlation between grade level of the student and his or her accuracy on the tasks. 
Task accuracy ranged from 71 to 88% and the squared Pearson Correlation 
Coefficient is less than 0.01.   
Accuracy of explanations ranged from 45 to 90% and was also independent of the 
student’s grade (the squared Pearson Correlation Coefficient was 0.04). We can 
conclude that regardless of age within the Grade 2-7 range, students are relatively 
accurate in determining which ramp is steeper, but have difficulties providing 
accurate explanations.  
Accuracy of explanations did differ drastically from one task category to another. As 
we discussed earlier, the Imagine task was the most challenging for students. This is 
not surprising, as the questions in this category required the students to determine 
what information they would need in order to be able to know which ramp was 
steeper.  
For example in the first Imagine scenario, we asked students whether a 20-inch board 
or a 10-inch board made a steeper ramp. All but one of the students claimed the 10-
inch board was steeper.  The correct answer is that they would need to know at least 
one more measure: angle, vertical height, or horizontal distance. Our second Imagine 
scenario asked if students were able to determine which ramp was steeper: one held 
up by 13 videos or one held up by 12 videos. The correct answer is that they would 
need to know at least one more measure: angle, ramp / hypotenuse length, or 
horizontal distance. All of our interview subjects believed the ramp with 13 videos 
was steeper. 
Our list of the conceptual categories of students’ explanations is: Incline, Vertical, 
Horizontal, Hypotenuse, Combinations, Area/Space under Ramp, Speed, and Other 
Vocabulary.  
The category Incline includes instances where the students used synonyms or 
antonyms of “steep” to explain their reasoning. Sample words are: level, flat, tilt, 
slant, angle, diagonal, steep, pointing up. This category was the most accurately used 
category, with an accuracy level of 94%. 
Explanations in the Vertical category included references to the number of videos in 
the tower or its height. Vertical was the most frequently used category which 
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included 40.3% (104/258) of the responses. Approximately 78% of the times when 
students related steepness to vertical height, they were correct.   
Students used Horizontal distance in their explanations very infrequently (6%) and 
inaccurately (53% correct). The difference between the accuracy of the Vertical and 
Horizontal explanations was significant as shown by the Chi Square test (χ2 = 4.19, 
df =1, p < 0.041), showing that students naturally form a more accurate 
understanding of how the vertical distance affects slope than how the horizontal 
distance affects it.  
Some students focused on the length of the ramp, categorized as Hypotenuse. The 
two boards were the same length, but we created different hypotenuse lengths by 
sliding the board in and up, creating an overhang. In mathematical drawings and 
graphs, lines are assumed to extend infinitely. Arrows are often drawn on the end 
indicating that the lines go on forever. Therefore, basing the slope on the line’s length 
is conceptually inaccurate. In fact, the slope of a line is constant regardless of the 
segment length.  Only 11% of student explanations used the hypotenuse, and these 
were only 59% accurate, showing no significant difference in accuracy from the 
explanations using Horizontal distance (χ2= 0.11, d.f.=1, p>0.7). 
Combinations of categories lead to a more formal understanding of steepness, namely 
slope. Slope is a combination (or a ratio) of the vertical and horizontal distances 
between any two points on a line. Every student, except the 2nd grader, correctly used 
a combination of categories in at least 10% of explanations.  
There are several valid combinations of categories that determine steepness; using 
incline by itself as an explanation is sufficient, so we analyze the correct non-incline 
combinations. The most frequently used correct non-incline combination was vertical 
and hypotenuse (32%), which could be explained by the way we constructed the 
ramps: the only physical objects in our set-up were the board and the tapes potentially 
emphasizing the hypotenuse and vertical measures, respectively. It is possible that 
our manipulatives de-emphasized the horizontal measure.  
21% of the correct combinations described by the students included the vertical and 
horizontal distances. Although none of the students used them in a ratio, this was the 
closest that they came to formalizing their conceptions of steepness into the idea of 
slope. Only 7% of the combinations were between the Horizontal and Hypotenuse 
measures. Explanations including combinations of measurements were 77% accurate, 
which is not significantly different from the accuracy of the Vertical explanations 
(χ2=0.01, df=1, p>0.90).  
Many of the examples of combinations being used incorrectly happened in the 
Imagine part of our interview. In these questions, the students were given insufficient 
information and were asked to determine which of the ramps was steeper. The 
student would need to understand what pieces of information were missing and use 
them to argue their conclusion.  
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Four of the eight students used the Area underneath the ramp to explain at least one 
of the scenarios, with explanation accuracy 45%.  The area underneath two lines is 
not a determining factor of steepness or slope, but in our scenarios with finite board 
lengths, such an explanation could be used correctly.  The danger is that this 
reasoning cannot be extended to more general situations.  
An object’s speed depends also on the time it spends accelerating down the ramp. 
Therefore the object’s final speed depends on the steepness and the length of the 
ramp. Using Speed alone to justify steepness of a ramp is incomplete, and this 
misconception is problematic for infinitely long lines. Only 33% of the responses 
coded under “Speed” were correct; this confirms our idea that the use of speed in 
relation to steepness can confuse students. 
 We tried to limit the amount of responses we coded in the Other Vocabulary 
category.  One example is: “if someone were to be driving a car over it or skating 
over it … they would actually like land right here on the tape.” This response does 
not fit under any other category. 
Our data show that there are a number of dimensions that elementary and middle 
school students use to justify their reasoning about slope. The paths of reasoning are 
displayed in the concept map below. 

 

 
Figure 1. Concept map of the Relationships between Conceptual Categories. 

Starting with the top of the concept map, we see the central mathematical idea in our 
research, steepness or slope. The steepness of a line is a holistic measure of the 
incline of the line. Slope is a mathematically defined measure of steepness: the ratio 
of differences of the y-coordinates (Δy) and x-coordinates (Δx) of two points on the 
line. The angle that a steeper line forms with the horizontal measures closer to 90 
degrees, and has a slope value closer to 1.  A line that is less steep will be ‘flatter’; its 
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angle with the horizontal will be closer to 0 degrees and its slope will be closer to 0.  
Students often supported their answers by discussing a bigger angle, more tilt, more 
diagonal up, etc. They were not looking at the numerical value of slope, but they 
were relying on their intuitive ideas of steepness. 
The bottom of the concept map shows the measures of distance that can be involved 
in the calculation of slope or angle: horizontal, vertical, and hypotenuse distances. At 
least two of the three of these variables must be given in order to make mathematical 
conclusions about steepness.  If one of the variables is held constant between two 
scenarios, only one other variable is needed in order to draw conclusions about the 
relative steepness of the two ramps. For example, if the hypotenuse is held constant 
(as in our questions using two boards of the same length) then the height of two 
ramps alone determines which of the ramps is steeper. 
CONCLUSION AND FUTURE RESEARCH  
The results from this study address the dimensions that students attend to and neglect 
when describing steepness. We showed that students most frequently refer to the 
vertical height of the ramp when explaining their conclusions about steepness. They 
also use the incline of the ramp in their justifications, as well as the hypotenuse 
length. To a lesser extent, they use the horizontal distance, as well as the predicted 
speed with which an object would roll down the ramp. Another explanation of 
interest is the concept of area under the ramp as an indicator of steepness. In addition, 
students also naturally combine some of these dimensions. Some of these 
combinations are redundant, while others can be used as basis for defining the 
mathematical concept of slope as a ratio. 
All of the children had a strong intuitive understanding of steepness in familiar 
contexts and fragile understanding in less familiar contexts. According to RC 
theory, all of the students should have been capable of working with the ternary 
tasks that we presented them in this interview. It is possible that the students who 
did not successfully identify the steeper ramps in the Concrete section had less 
familiarity with the ramps in general. The only tasks that could be classified as 
quaternary were the Imagine questions where none of the dimensions were held 
constant. It is not surprising that students had much more difficulties completing 
the Imagine tasks.  
Even when the students were able to correctly identify the steeper ramp, many used 
only one dimension (ie, Vertical) to describe its steepness, instead of using a 
combination of two features (ie, Vertical and Horizontal).  Identifying two features to 
determine steepness is a much more complex cognitive task. When students 
identified a correct combination of two features, 40% of the time they used the angle 
of the ramp as one of the features, which is redundant. 
This study had weaknesses based on our physical setup of the scenarios. Vertical 
height was created using a three-dimensional stack of videos and the hypotenuse was 
represented by the board. None of the students used grid marks on the interviewing 
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table to describe horizontal distance.  In the future, we could use a product which has 
equally salient horizontal and vertical dimensions. 
A stronger connection needs to be made between students’ experiences with ramps, 
understanding of the components that define steepness, and their understanding of 
slope. Our goal is to prepare students for the study of algebra and we must confirm a 
connection between our suggested experiences and their success.  This study has 
generated many more questions than it answered. However, it has been of 
tremendous value to us in elucidating some of the preconceptions and misconceptions 
that the students bring to our classes.  
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More than one third of Taiwan junior high students do nothing in a 2-steps geometry 
proof question after 5 weeks of geometry formal proof lessons. Our previous study 
show that they are weak in the crucial competence named hypothetical bridging. In 
this study, we develop the step-by-step unrolled reasoning strategy to help these so-
called left behind students. The results show that this strategy can help most of left 
behind students to do 3-steps of familiar computational question. 
INTRODUCTION 
The learning and teaching of geometry argumentation in Taiwan 
The learning content concerning geometry argumentation in Taiwan is considerably 
abundant in the elementary and junior high school. The geometry lessons mainly focuses 
on finding the invariant properties of kinds of geometric figures and apply these properties 
to solve or prove problems. Include that to find out the measure of an angle or segment, to 
judge the relationship of one pair of lines or shapes, or to prove a statement or proposition. 
The formal deductive approach of argumentation in geometry is introduced in the 
second semester of grade 8 after teaching the congruence conditions of triangles. In the 
beginning, students learn how to apply one property to show that a geometry 
proposition is correct, that is, to infer the wanted conclusion by one acceptable 
property under the given condition. If two or more properties are necessary in a proof 
problem the textbook divides the problem into a sequence of single-step proof tasks. In 
the first semester of grade 9 the students learn how to construct a deductive proof with 
two or more steps. In particular, they learn how to chain single steps into a proof. 
The teaching style in Taiwan junior high school is basically lecturing. Most of the 
teachers teach geometry lessons by exposition to about 30 students in one classroom. 
And the geometry proof task is basically treated as writing the reason of a given 
proposition by applying learnt properties. 
In Taiwan, the elementary and junior high education is compulsory, the national 
curriculum ask all level of students to learn geometry argumentation, including 
formal proof. Moreover, there is only one version of items in the Junior High Basic 
Competency Test for entrance into senior high school. In such kind of learning 
environment, even the low level students have to learn formal geometry proof. 
The performance of left behind students in geometry proof 
In December 2002, the National Science Council (NSC) conducted a nation-wide 
survey to investigate Taiwanese junior high students’ competences of mathematical 
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argumentation. The survey asked the grade 9 students, while they had just learnt 
formal proof in geometry lessons, to construct a proof in a 2-steps unfamiliar 
question (as Fig1). Students’ proof was analysed and evaluated by the project team 
members including math educators, mathematicians and school teachers. The results 
show that there is 24.6% of them can construct acceptable proof, 35% of them are 
able to recognize some crucial elements to prove but missing some deductive process 
or the concluding step, and 37.4% of them do not have any response in this question 
(Lin, Cheng and linfl team, 2003). These no response students are named ‘left 
behind’ students. As we know now from the results of national wide survey, they 
learnt nothing in formal proof. 
 

 
Fig1. The 2-steps unfamiliar question in the national-wide survey. 

In our previous study (Cheng, Y. H. and Lin, F. L., 2007), we develop the ‘reading and 
colouring’ strategy to help our grade 9 students to enhance their geometry proof 
performance. The results show that this strategy enhances the quality distribution of 
multi-steps geometry proof. In reading and colouring class, 60.6% of the students are 
coded acceptable in the post test. It is quite better than traditional class (30.3%) and 
than the national survey results (24.6%). Nevertheless, we also find out that this 
strategy is less-effective to lower 40% of students. Although the reading and colouring 
strategy can help them to do more trial reasoning, but no one construct acceptable 
proof in the post test. That is, no matter the traditional or improved reading and 
colouring strategy can not help these left behind students in geometry proof tasks. 
LEARNING DIFFICULTY OF LEFT BEHIND STUDENTS 
The process of constructing a multi-steps proof 
It is clear that the mental processes of constructing a geometry proof depend on 
students’ individual competence and on the requirements of the concrete proof task. 
As described in models of the proving process (Boero, 1999), or in cognitive research 
like conceptual understanding (Vinner, 1991), or constraints in the scientific thinking 
process of students (Reiss & Heinze, 2004) are influencing the process of 
constructing a proof. 
Healy & Hoyles (1998) propose that the process of constructing a valid proof 
involves two central mental processes:(1) to sort out what is given, which properties 
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are already known or can be assumed and what is to be deduced, and (2) to organize 
the necessary transformation to infer the second set of properties from the first into a 
coherent and complete sequence. Duval (2002) propose a two level cognitive features 
of constructing proof in a multi-steps question. The first level is to process one step 
of deduction according to the status of premise, conclusion, and theorems to be used. 
The second level is to change intermediary conclusion into premise successively for 
the next step of deduction and to organize these deductive steps into a proof. 
A standard geometry proof question in junior high geometry lessons and tests is of 
the form ‘Given X, show that Y’ with a figure which the figural meaning of X and Y 
are embedded in (fig(X,Y). When a student face to a proof question, the information 
include X, Y, fig(X,Y), and the status (Duval, 2002) of X (as the premise) and Y (as 
the conclusion). The proof process is to construct a sequence of argumentation from 
X to Y with supportive reasons. This process can be seen as a transformation process 
from initial information to new information with reasoning operators such as 
induction, deduction, visual judgment… (Tabachneck & Simon, 1996). So, we may 
say that to prove is to bridge the given condition to wanted conclusion by acceptable 
mathematical properties. 
In a single step proof question, the student might retrieve a property ‘IF P then Q’ 
which condition P contain the premise X and result Q contained in Y and finish the 
proof. We may say this kind of bridging is simple bridging. 
The proof process in a multi-steps proof question is much more complex. Since there 
is no one property can be applied to bridge X and Y. The student has to construct an 
intermediary condition (IC) firstly for the next reasoning. The IC might be reasoned a 
step forwardly from X. It is an intermediary conclusion (Duval, 2002) inferred from 
X as a new premise to bridge Y. Or, it might be reasoned a step backwardly from Y. 
It is an intermediary premise reasoned from Y as the wanted conclusion to bridge X. 
So, the first step in a multi-step proof may be a goalless inferring from X and 
concluding many reasonable intermediary conclusions. The next step is to go on the 
bridging process to Y by selecting a new premise from the intermediary conclusions. 
Or, it may be a backward reasoning from Y and finding many reasonable 
intermediary premises and the next step is to set up a new conclusion from the 
intermediary premises and going on the bridging process from X. No matter this kind 
of reasoning is constructed by forward or backward reasoning, it is essentially a 
process of conjecturing and selecting/testing. We may say this kind of reasoning 
process is hypothetical bridging. 
In summary, constructing an acceptable geometry proof can be seen as a bridging 
process from given conditions to a wanted conclusion with inferring rules controlled by 
a coordination process. This includes (1) to understand the given information and the 
status of these information, (2) to recognize the crucial elements which associate to the 
necessary properties for deduction, (3) especially in multi-steps proof, to construct 
intermediary condition for the next step of deduction by hypothetical bridging, and (4) to 
coordinate the whole process and organize the discourse into an acceptable sequence. 
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Based on the theoretical analysis presented before we hypothesize that the difficulty 
of typical proof tasks in junior high school can be determined to a large extend by the 
distinction into single-step and multi-steps proof. 
The limitation of left behind students in constructing geometry proof 
It is not easy to analyse the difficulties of left behind students in constructing 
geometry proof because they write down nothing. We find out some cognitive 
characteristics of them in our reading and colouring teaching experiment. 
As we mention above, even the reading and colouring strategy is more effective than 
traditional teaching, there are still 40% of students can not construct an acceptable 
proof after learning it. The post analysis based on the performance of hypothetical 
bridging in the pretest show that the competence of hypothetical bridging is a crucial 
element in learning geometry proof (Cheng, Y. H. and Lin, F. L., 2007). In this sense, 
the performance of students shows that all the acceptable proof constructed by the 
students who are able to reason with hypothetical bridging. No one of non-
hypothetical bridging students can do it. This result shows that if the students’ 
understanding of geometry proof is only restricted in the first level (Duval, 2002) of 
proving, that is applying one theorem to bridge the premise and conclusion, then they 
are not able to learn to construct an acceptable proof. 
STUDY DESIGN 
The aim of the study 
In this study, we develop a teaching strategy to help left behind students to develop 
the competence of hypothetical bridging in geometry argumentation tasks. 
The step-by-step unrolled reasoning strategy 
We design the teaching strategy based on the principle of continuity of learning. That 
is, it takes into account the cognitive characteristics of left behind students. 
Bell(1993) proposed some principles for designing diagnostic teaching for adapting 
students’ misconception. These principles focus on the consideration of cognitive 
status, such as the task should be related to students’ experience and easily to 
promote the misconception, and operative tool for adaptation, such as immediate 
feedback of correctness and intensive activities for consolidating new correct 
concepts. These principles show that designing the learning strategy for enhancing 
left behind students should focus on students’ cognitive status: they are not able to 
construct intermediary condition(s) in multi-steps argumentation. 
Boero (1999) describes an expert model of completing a proof task. This model 
distinguishes different phases of constructing a proof. The phases are (1) the 
production of a conjecture. (2) The precise formulation of the statement. (3) the 
exploration of the conjecture, the identification of mathematical arguments for its 
validation, and the generation of a rough proof idea. (4) the selection and 
combination of coherent arguments in a deductive chain, (5) the organization of these 
arguments according to mathematical standards, and sometimes (6) the proposal of a 
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formal proof. This expert model indicates that the final proof as solution of a proof 
task gives only an incomplete representation of activities performed during the 
proving process. Since the left behind students are weak in hypothetical bridging. We 
should not start the learning activities in the traditional form of “given X, show that 
Y”. In the sense of Boero, some kind of conjecturing activities based on open-ended 
reasoning might be better. 
After exercising a “thought experiment”(Gravemeijer, 2002) between each possible 
strategies reported on the literatures (eg. Antonini, 2000; Hoyles et al, 1995; Douek et 
al, 1999; Reiss, 2005; quoted from Lin, F. L., 2005), we develop the ‘step-by-step 
unrolled reasoning strategy’ for our left behind students. We give the students a 
‘covered’ argumentation task, unroll the first condition to the students, ask students to 
infer what should be true under such given condition. And then we unroll the second 
condition, ask students to infer what should be true under such given conditions and 
conclusion from the first step of inferring, and so on. Moreover, any kind of helpful 
materials are allowed such as coloured pens, ruler and compass, note of geometry 
properties and so on in order to reduce the difficulty in learning the heavy subject. 
The samples 
A questionnaire with four items are developed and tested as pre-test in 5 classes of 
grade 9 students after they learnt the chapter of formal multi-steps geometry proof. One 
of the items are single step and three are multi-steps. The students’ performance in 
these items is coded into three types: hypothetical bridging, simple bridging, and no 
response. We identify a student is left behind if there is not no response in all items and 
without hypothetical bridging performance in any one item. After the analysis of 
performance in the pretest, 40 students are identified as left behind and 25 of them 
agree to join our experiment. We regroup these students in to an extra class after the 
regular lessons. We lose some of them because of the self or family reasons and finally 
11 of them left. In this paper, we only report the results come from these 11 students. 
The process 
The whole experiment divided into 4 sections according to the learning content. They 
are (1) triangle, (2) quadrangle, (3) congruent triangles, and (4) parallel lines. In 
every section, at first we review the geometry properties of this section which taught 
in regular lessons. The second step is a learning activity of a step-by-step unrolled 
reasoning task in one question. It spends about 100 minutes in every section and the 
experiment last 6 weeks. 
A post test is conducted after the 6 weeks of experiment. There are 3 multi-steps 
questions. One item asks the students to construct the formal proof (as Fig.1) and the 
other two asks students to find out the measure of unknown angles (as Fig.2). The 
performance of students is coded into acceptable, incomplete, improper, intuitive 
response, and no response (Lin, Cheng and linfl team, 2003). We code in this way in 
order to know the effectiveness of step-by-step unrolled reasoning strategy in 
constructing geometry argumentation.  
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Fig. 2. The computational questions in the post test. 

After 4 weeks of post test, we conduct a delay post test with three items of multi-
steps of finding out the measure of pointed angles (as Fig.3). The performance of 
students is mainly coded in the number of correct conclusions from inference in order 
to know the retaining effectiveness of hypothetical bridging competence under the 
step-by-step unrolled reasoning strategy. 
 

 
Fig. 3. The computational questions in the delay post test. 

RESULTS 
The step-by-step unrolled reasoning strategy can help 9/11 students to do 3-steps 
question which without complex property or knowledge 
The performance of samples in the post test shows in Table 1. It shows that the 
effectiveness of step-by-step unrolled reasoning strategy is not consistence in the 
three items. In the first question, the formal proof one, only 1 student constructs an 
incomplete proof. We do not category the others’ performance into the coding system 
because the students seem to do some goalless reasoning, they just write down as 
many sentences as possible. It seems that the step-by-step unrolled reasoning strategy 
is not helpful to enhance the performance of constructing formal proof. The 
performances in the two 3-steps computational questions are different. In item (1), all 
the properties and knowledge necessary are familiar to the students and 9/11 of 
students do it correctly. Nevertheless, item (2) is posed in an unfamiliar situation. The 
external circum-angle and its measure are not familiar to the left behind students and 
7/11 of them then do nothing or ‘create’ a property to do this question. From the 
results showed in Table 1 we may say that the step-by-step unrolled reasoning 
strategy can help 9/11 students to do 3-steps question which without complex 
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property or knowledge. Moreover, this strategy seems to be not helpful to formal 
proof task. It tells us to pay more attention to the different features between 
computation and proof task in geometry argumentation tasks. 
 

Item of acceptable incomplete improper not hypothetical

bridging 

2 steps proof  1   

3 steps computation (1) 9  2  

3 steps computation (2) 4   7 

Table 1. The performance of the samples in the post test 

The step-by-step unrolled reasoning strategy can help 9/11 students to develop 
the competence of hypothetical bridging 
The performance of samples in the delay post test shows in Table 2. It shows that 
only 2/11 of samples can not construct intermediary condition for the next step of 
reasoning in item 1. We may say that The step-by-step unrolled reasoning strategy 
can help 9/11 students to develop the competence of hypothetical bridging. The 
number of correct answers shows that the item 1, which modified from the formal 
proof question, is more difficult. The interview shows that many students can not do 
this question because ‘the conditions tell me nothing about the angles, how can it be 
possible to find the measure of angle?’. This response shows an interesting 
conception about mathematics question of our left behind students. It also needs to 
pay more attention to know this level of students. 
 

number of correct conclusions 
from students’ inference 

0 1 2 3 4 correct answer 
in this item 

in item 1 2 3 1 3  3 

in item 2 0 1 8   7 

in item 3 1  2  6 6 

Table 2. The performance of the samples in the delay post test 

DISCUSSION 
We conduct an initial study on left behind students to help them to develop higher 
competence in geometry argumentation. Although the size of samples is small and 
the results seem not so consistent, it is obvious that the step-by-step unrolled 
reasoning strategy is effective in developing the competence of hypothetical bridging. 
In Taiwan, the test format in the Junior High Basic Competency Test, the only one 
test for entrance into senior high school, is single-choice. All argumentation tasks 
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have to transfer into the form of ‘choosing the right answer’. Most of the formal 
proof tasks then have to transfer into the form of ‘finding pointed measure’. Our 
experiments shows that the step-by-step unrolled reasoning strategy can help most of 
left behind students to do 3-steps computational question which without complex 
property or knowledge. So, although is not effective in formal proof task, it is 
valuable in our junior high education for passing the examinations. 
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SAMPLE SPACE: AN INVESTIGATIVE LENS 
Egan J. Chernoff 

Simon Fraser University 
 

This study continues research in probability education by altering a well-known 
problem, and examining students’ responses from novel perspectives. More 
specifically, students are asked to compare the likelihood of sequences for five flips of 
a coin. Alternative set descriptions of the sample space—all of which are based upon 
subjects’ verbal descriptions of the sample space—show that normatively incorrect 
responses to the task are not devoid of correct probabilistic reasoning. The study 
further demonstrates that alternative set descriptions of the sample space can act as 
an investigative lens for research on the comparative likelihood task, and probability 
education in general. 
Jones, Langrall, and Mooney’s (2007) recent synthesis of probability education 
literature in the Second Handbook of Research on Mathematics Teaching and 
Learning (Lester, 2007) states: “With respect to probability content, the big ideas that 
have emerged…are the nature of chance and randomness, sample space, [and] 
probability measurement (classical, frequentist, and subjective)” (p. 915). The 
objective of this article is to explore the union of the three big ideas, and demonstrate 
that they are inextricably linked. Students’ verbal descriptions of events are taken into 
consideration during the analysis of written responses through alternative set 
descriptions of the sample space. In doing so, alternative set descriptions of the 
sample space will be suggested as a possible theoretical framework for research in 
probability education. A task often found in probability education literature—the 
comparative likelihood task—will act as the medium of exploration. 
THE COMPARATIVE LIKELIHOOD TASK 
While the Comparative Likelihood Task, hereafter referred to as CLT, can take on 
many forms, the framework is often essentially the same. Sequences are produced 
from some type of binomial experiment conducted a certain number of times, and the 
chances of either of the outcomes occurring are the same (e.g., flips of a coin, or the 
birth of boys or girls to a family). Two or more sequences are presented in a multiple-
choice format and students are asked to determine which of the sequences are less (or 
more) likely to occur.  
According to Tversky and Kahneman (1974), “[p]eople rely on a limited number of 
heuristic principles which reduce the complex tasks of assessing probabilities and 
predicting values to simpler judgmental operations” (p. 1124). Application of the 
representativeness heuristic—“in which probabilities are evaluated by the degree to 
which A is representative of B, that is, by the degree to which A resembles B” (p. 
1124)—leads to a number of errors, or biases. The representativeness bias known as 
misconceptions of chance is when “people expect that the essential characteristics of 
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the process will be represented, not only globally in the entire sequence, but also 
locally in each of its parts” (p. 1125). For example, Tversky and Kahneman (1974) 
established that subjects found the sequence of coin flips HTHTTH more likely than 
HHHTTT, because the latter sequence did not “appear” random, and HTHTTH more 
likely than HHHHTH, because HTHTTH was a representative ratio of heads to tails. 
The caveat: Normatively, each of the sequences is equally likely to occur. 
Researchers in mathematics education have also worked with the CLT. For example, 
Shaughnessy (1977) found the sequence BGGBGB was considered more likely than 
the sequences: BBBGGG and BBBBGB. With the new “supply a reason” element 
brought to the task, Shaughnessy was able to determine that subjects found BBBGGG 
was not representative of randomness, and BBBBGB was not a representative ratio of 
boys to girls.  
A number of other researchers in mathematics education (e.g., Cox & Mouw, 1992; 
Batanero & Serrano, 1999; Falk, 1981; Green, 1983; Konold, Pollatsek, Well, 
Lohmeier, & Lipson, 1993; Rubel, 2006) have worked with variations of the CLT. 
For example, Falk (1981) determined that randomness was perceived according to 
frequent switches, and thus short runs. As research has continued on the CLT, 
researchers in mathematics education have found that students’ responses for one 
sequence being less likely than another stem from two reasons—the ratio of heads to 
tails, and the perceived randomness of the sequences—each of which stem from the 
representativeness heuristic.  
THEORETICAL FRAMEWORK 
One possible explanation of students’ incorrect responses to the CLT is that “subjects 
hold multiple frameworks about probability, and subtle differences in situations 
activate different perspectives [which] can be employed almost simultaneously in the 
same situation” (Konold, Pollatsek, Well, Hendrickson, & Lipson, 1991, p. 360). In 
recognition of this point, this study contends that the traditional sample space is not a 
sufficient theoretical framework for analysis of the responses to the CLT. Given that, 
“experimenter and subject will conceptualize different sample spaces or different 
frames which may provide the impetus for misinterpretation of the data” (Keren, 
1984, p. 122), the notion of researchers considering the subjects’ different sample 
spaces provides a new perspective to responses from the CLT; and, furthermore, 
shows that incongruous answers to the task are a product of the lens with which they 
are being investigated.  
“Identification of the sample space is extremely important since different sample 
spaces (of the same problem) may lead to different solutions” (Keren, 1984, p. 122). 
Moreover, events, or subsets of the sample space, can have verbal descriptions and 
set descriptions. A verbal description of “flipping at least two tails” corresponds to 
the set description of {{HTT}, {THT}, {TTH}, {TTT}}, and a “a run of two” 
corresponds to {{HHT}, {THH}, {TTH}, {HTT}}. Thus, responses to the CLT may 
be analysed against a variety of set descriptions of the sample space; and the 
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particular sample space used for analysis can be based upon verbal clues provided by 
the student, because “in order to evaluate subjects’ responses it is necessary to know 
what sample space they are employing” (Keren, 1984, p. 123).  
METHODOLOGY: TASK AND PARTICIPANTS 
Participants in this study were thirty-eight prospective elementary teachers enrolled 
in a “Methods for Teaching Elementary Mathematics” course, which is a core course 
in the teacher certification program. The task was presented prior to the introduction 
of probability to the course.  
Students were presented with the following task: Which of the sequences is (are) least 
likely to result from flipping a fair coin five times: (A) H H T T H (B) H H H T T (C) 
T H H H T (D) H T H T H (E) T H H T H (F) All sequences are equally likely to 
occur. Provide reasoning for your response. While the wording is similar to the 
Konold et al. (1993) wording of the task, this new iteration maintains the ratio of 
heads to tails in all sequences in an attempt to control for ratio responses to the task. 
RESULTS 
Of the 38 people who completed the task, 27 stated that all sequences were equally 
likely to occur; however, 5 chose B as least likely and 6 chose D least likely. Sample 
Response Justifications for B (i.e., HHHTT) and D (i.e., HTHTH) are presented. 
Response justifications for HTHTH: 

John:  D is least likely to occur because the chances of having the coin land on the 
opposite side each time to create a pattern of HTHTH are very slim, the longer 
the pattern the less likely it will be. Also, to get 3 H’s in a row [sequence B] is 
probably next least likely.  

Kate: I believe there is a 50/50 chance that the first flip will be a heads or a tails. 
Therefore, I believe that D is least likely to occur b/c the odds of flip a coin 
from heads to tails is fairly slim. 

Jack:  With D, an alternating sequence could occur but not necessarily in this order, H 
+ T are more likely to occur at a more random interval.   

Hurley: Although there is a 50% chance of getting a H or a T. It is very unlikely that 
you can get a sequence of alternating sides randomly. The probability of this 
sequence happening would be the least likely.  

Claire:  1st choice: (F) All have the same likelihood of occurring is what I think. It’s 
random. 2nd choice: (D) The chances of a nice tidy pattern like these seems 
unlikely.  

Sawyer: (D) is least likely to occur because with a 50/50 chance it is unlikely that the 
results will be alternating H/T with each coin flip. It is more likely that the 
results would be random. 

Response justifications for HHHTT: 
Boone:  (B) because getting three in a row of one type is less probable than the other 

options of alternating or only two in a row. 
Libby: (B) b/c what are the chances to get three H’s in a row, and two T’s after 

that? 
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Charlie: because it is very unlikely that there will be the 3H in a row and then 2T. 
Nikki:  I thought that it wasn’t likely to be on one side for three flips and then the other 

for the rest.  
Shannon: 5 times, and chances are most likely to be 3H 2T or 2H 3Ts. For the 

sequences they will more likely to be scrambled, because that’s fact. I’ve tried 
few times, scrambled.  

ANALYSIS OF RESULTS 
“Obviously, it is possible to consider more than one different set of possible 
outcomes for an experiment” (Peck, 1970, p. 115). As such, analysis of “incorrect” 
responses from those who chose HHHTT and HTHTH least likely will be analysed 
via three alternative set descriptions of the sample space: switches, longest run, and 
switches and longest run.  
Switches sample space 
Based upon the verbal descriptions of: John, Kate, Hurley, Claire, and Sawyer a more 
appropriate, or natural, set description for comparison, corresponding to their verbal 
descriptions, would be a sample space partitioned according to switches (shown in 
Table 1), and not to the normative set description (i.e., thirty-two equally likely 
outcomes) of the sample space. 
 

 
Table 1. Switches sample space (S denotes switch) 

John’s verbal response that “the chances of having the coin land on the opposite side 
each time to create a pattern of HTHTH are very slim,” analysed via the switches set 
partition of the sample space, is correct because the probability of having four 
switches in five flips of a coin is 2/32 (i.e., P(4S)=2/32).  In fact, of all the options 
presented in the task (emboldened in Table 1) HTHTH is the least likely sequence to 
occur. Thus, while an incorrect response is derived from the responses being 
compared to the normative set description, a correct response coupled with insightful 
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probabilistic reasoning is found when compared to a more appropriate set description 
based on the verbal description presented. 
Longest run sample space 
Based upon the responses of Boone, and Libby their verbal descriptions of the sample 
space also do not correspond to the normative set description of the sample space. 
The verbal descriptions presented imply a more appropriate set description would be 
a sample space organized according to the length of run, and is shown in Table 2. 
 

 
Table 2. Longest Run sample space (LR denotes longest run) 

When the response that HHHTT is least likely, because a run of length three is less 
likely, is compared to the longest runs partition of the sample space, the response is 
correct in stating that longer runs are less likely (i.e., P(LR5)<P(LR4)<P(LR3)). As 
such, HHHTT would be considered less likely (but not least) among the sequences 
presented. Boone’s response that “three in a row of one type is less probable than the 
other options of alternating [i.e., HTHTH] or only two in a row [i.e., HHTTH, 
THHTH],” is also correct when compared against the longest runs sample space. 
Again, correct responses coupled with insightful probabilistic reasoning are derived 
when responses are compared to set descriptions that more closely correspond to the 
verbal descriptions presented. However, when responses are compared to the longest 
runs sample space HTHTH is in fact least likely, and HHHTT and THHHT are 
equally likely. The latter point is considered with another set equivalent to verbal 
descriptions of the sample space. 
Switches and Longest run sample space 
According to Konold et al. (1991) the multiple frameworks held by a subject activate 
different perspectives, which can be employed almost simultaneously in the same 
situation. Unfortunately, when pitted against the normative set description of the 
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sample space this subtlety is ignored. However, when compared to a set description 
equivalent, based upon verbal descriptions, responses can be shown to possess very 
subtle innate probabilistic reasoning, which considers more than one factor at a time. 
For example, Libby, Charlie, and Nikki’s verbal descriptions of the sample space do 
not correspond to the normative set description of the sample space, nor do they 
correspond to the switches set description, nor to the longest runs set description of 
the sample space. These verbal descriptions correspond to a more nuanced set 
description of the sample space. Based upon, for example, the response “because it is 
very unlikely that there will be the 3H in a row and then 2T,” a set partitioned into 
switches and the longest runs would be a more apt set description for the verbal 
descriptions of Libby, Charlie, and Nikki, as seen in Table 3.  
 

 
Table 3. Switches and Longest Run sample space  

When the response that HHHTT is least likely is compared to the switches and 
longest runs partition of the sample space, the sequence HHHTT is in fact the second 
least likely sequence of the five to occur. Further, when HHHTT is compared to 
THHHT, but switches and runs are taken into consideration (based on the verbal 
descriptions of events) the subjects are correct in saying that HHHTT is less likely 
than THHHT, even though they both possess a run of length three. Moreover, Nikki’s 
response that “I thought that it wasn’t likely to be on one side for three flips and then 
the other for the rest” is correct when compared to the switches and longest runs set 
description corresponding to the verbal descriptions provided by the subjects.  Once 
again, subtle, perhaps innate, probabilistic reasoning is exposed through alternative 
set descriptions of the sample space.  
DISCUSSION 
Certain research found in probability education literature has, at its core, a 
comparison between observed data and the normatively correct answer. Moreover, 
there exists a tone of sacrosanctity to the normative solution, despite the existence of 
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inherent issues (e.g., “the classical definition is essentially circular, since the idea of 
‘equally likely’ is the same as that of ‘with equal probability’ which has not been 
defined” (Lipschutz & Schiller, 1998, p. 88)). Further, responses to the CLT are 
considered correct by stating “that” the sequences are all equally likely to occur, and 
research has not been concerned with the issue as to “why” the sequences are equally 
likely to occur. One possible reason for the “that” and “why” distinction having yet to 
be addressed, is because research in probability education often focuses on incorrect 
responses to the CLT. However, if the focus on research is to remain on the incorrect 
responses, the framework for analysis of the incorrect responses should not be 
“stuck” on the set representation of the normative sample space. In other words, the 
framework for analysis of responses must evolve beyond the normative solution. 
Much like in an experiment involving light, different combinations of light act as a way 
to investigate colour. A red, blue and green flashlight will provide a number of different 
perspectives when the lights are singularly, and in combination, shone on an object. In a 
similar fashion, alternative sample space consideration can shed new light on the CLT. 
By shining the normative light alone, all one can determine is whether a subject is 
correct or incorrect, and there exists little explanatory power. However, by combining 
the lenses of the different partitions of the sample space for analysis of the CLT, it is 
revealed that when students are determining which of the sequences are least likely to 
occur, subjects are, in fact, reasoning probabilistically. Different combinations of lenses, 
along with different numbers of lenses, will allow for multiple perspectives and proper 
investigation to show how subjects are reasoning probabilistically. Perhaps then the call 
put forth, that “we need to know more about how students do learn to reason 
probabilistically” (Maher, Speiser, Friel, & Konold, 1998, p.82) can be addressed. 
CONCLUSION 
Jones, Langrall, Thornton, & Mogill (1997) state: “research evidence with regard to 
sample space is conflicting and highlights the need to study […] thinking in this 
construct more comprehensively, and within a probability context” (p. 105, this 
author’s italics). In line with this point of view, this study would be remiss to 
conclude that individuals who chose sequences HHHTT and HTHTH as least likely 
are wrong. Instead of saying the individuals were wrong, it would be more 
appropriate to say that the individuals are wrong, when comparing their responses to 
the normative solution. In other words, while the CLT has a caveat that, normatively, 
each of the sequences is equally likely to occur, an ensuing caveat is that subjects’ 
responses to the CLT are incorrect only when compared to the one particular sample 
space for which the caveat applies. Alternatively stated: “A simple comparison 
between the normatively correct answer and the observed data has little explanatory 
power” (Keren, 1984, p.127). 
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ISSUES ASSOCIATED WITH USING EXAMPLES 
IN TEACHING STATISTICS  
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Real-world examples, including media items that involve data interpretation, are 
advocated as a motivator for learning statistics. Moreover, students’ ability to 
interpret real-world data is regarded as a significant outcome of statistics education. 
The issues associated with using such examples have, however, received little 
attention. This paper draws on cases from the literature and our own research to 
raise issues associated with the use of real-world examples in the teaching of 
statistical concepts. These reveal the importance of content knowledge and 
pedagogical content knowledge at every step of the process of using an example, but 
also highlight the need for more systematic study of the issues.  
INTRODUCTION 
The use of examples in teaching is a well-established practice. In statistics, teachers 
often utilise a particular data set to illustrate how to calculate measures such as the 
mean or investigate concepts such as correlation. Many educators have advocated 
the use of real-world examples as a motivator for learning and suggest that the 
newspaper, for instance, is a good source of examples for teaching quantitative 
thinking, especially statistics. Many curricula around the world emphasise 
interpreting real-world data and situations, so children’s school experiences should 
include these (associated issues are discussed in Watson, 2006). But how trivial is 
the task of choosing good examples? Real-world examples are not inherently good: 
their real-world status does not always mean useful for teaching or valid 
statistically. In fact, and ironically, some examples from the media that have 
significant statistical shortcomings are especially valuable for teaching. Finally, 
even well-chosen examples are not necessarily easy to implement effectively in the 
classroom. 
In this paper we put forward the case that choosing an appropriate real-world 
example, identifying what opportunities it offers for teaching, and capitalising on 
these opportunities when planning for and implementing the example in the 
classroom, requires complex skills. It certainly involves a deep interplay between 
content knowledge (CK) and pedagogical content knowledge (PCK). We will begin 
by reviewing the definitions of example and affordance, before hypothesising about 
where and how CK and PCK come into play when recognising affordances and using 
examples in the teaching of statistics. As there appear to be no studies that have 
examined the teacher’s role in detail, we will do a simple meta-analysis of situations 
from the literature and our own research to highlight some of the practical 
complexities associated with teachers choosing and using examples.  
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BACKGROUND 
Examples and affordances 
For clarity we define example as “a specific instantiation of a general principle, 
chosen in order to illustrate or explore that principle” (Chick, 2007, p. 5). While there 
is an extensive literature on examples, with a good overview presented by Bills, 
Mason, Watson, and Zaslavsky (2006), these authors also point out that there has 
been very little research done on teachers’ choice of examples. Indeed, this literature, 
and the related literature on model-eliciting activities where students develop a 
mathematical model to address a real-world situation (e.g., Lesh, Amit, & Schorr, 
1997), often focuses on the example/task itself rather than how teachers make use of 
it (see Doerr & English, 2006, for an exception). The role of the teacher, however, 
can be significant; the cases of two teachers who used a probability game in quite 
different ways (see Chick, 2007) illustrate this point. If teachers are being encouraged 
to use contemporary real-world data sets as a stimulus for learning, then their 
capacity to recognise the usefulness of an example and then decide how to exploit 
that example in the classroom is critical.  
To illustrate the issues simply, consider a birthday party, where the ages of people 
attending are 5, 6, 8, 9, 9, 9, 10, 13, 37, 71. This situation can be used to illustrate a 
number of important statistical principles (e.g., measures of central tendency, range, 
variation, the idea of outliers). The significant issue for teaching is whether or not the 
teacher can see the possibilities an example offers, or, alternatively, construct an 
appropriate example to illustrate a desired concept. The term affordances (Gibson, 
1977) is useful here. It refers to the perceived uses that someone can determine for an 
object. The data set above, for instance, has affordances for teaching about how to 
evaluate the median when there is an even number of data points. In Gibson’s 
definition, there is emphasis on the user’s perceptions, and it is likely that there are 
affordances that one person will see and another will not. This is particularly 
significant in teaching. Chick (2007) suggests that it might be useful, especially in 
education, to refer to potential affordances, to highlight that an example may have 
some inherent use that may or may not be noticed, depending on the expertise of the 
user. For instance, some teachers may not identify that the data set above affords the 
opportunity to talk about when the median is a good measure of central tendency.  
Of course, the data set of birthday party ages above only becomes an example when a 
teacher puts it to use in the classroom. There must be an activity involving some 
interaction with the data, and the teacher has to know what that interaction is intended 
to illustrate. It is at this point—where the example is employed and discussed in the 
classroom—that it becomes a didactic object (Thompson, 2002, p. 198), with the 
potential to demonstrate the desired general principle or concept.  
Teaching with examples 
There seem to be three key stages of decision-making for the teacher in using 
examples to teach statistical principles (or principles in general). The first involves 
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choosing the example (or, possibly, constructing one), which requires CK and 
attention to the potential affordances, as well as PCK to determine if the example is 
appropriate for the audience. The second stage involves planning to use the example 
in the classroom, where PCK is needed to turn the example into an effective didactic 
object that illustrates the concept and CK ensures that concepts are addressed 
correctly. The final stage involves implementing the plan in class, and calls on both 
CK and PCK to keep the lesson on course and deal with issues that arise. 
Each stage demands considerable teacher expertise. At the first stage-choosing an 
example-the teacher might be in one of two situations: the required topic/principle 
may be known and what is required is an example to illustrate it, or else the teacher 
might notice a real-world situation and recognise affordances for some topic 
applicable to a lesson in the future. In the first case, CK is required to identify the 
attributes of an example that will illustrate the concept. If the principle is correlation, 
for instance, then data involving two potentially related variables is required, so the 
teacher must construct or find a data set with the required attributes. In the second 
case, CK is required to recognise what principles the found example affords. Just 
finding a newspaper article is not sufficient for teaching effectively; the teacher must 
be able to identify the affordances, and determine its suitability or adaptability for the 
class. Ball (2000), talking about mathematics teaching more generally, discussed how 
tasks (or examples) must be examined by the teacher to determine what they afford 
students. She pointed out that a significant part of a teacher’s work is to decide how 
to make tasks easier or harder-which is an aspect of PCK-or use them to illuminate 
certain ideas (see also Chick, 2007).  
This work continues in the second stage, where CK and PCK is required when 
deciding how to introduce the example and use it effectively in the classroom. In 
particular, the decisions that the teacher makes here will affect how evident the key 
statistical concepts appear—or, in other words, will govern the power of the example 
as a didactic object. This stage is not, however, the final step; the third stage of actual 
teaching brings its own challenges. What a teacher plans to do and then actually does 
may differ because of things that occur in the actual process of teaching. Students’ 
responses and questions may demand unanticipated additional explanation from the 
teacher, which again requires teacher expertise in both CK and PCK. There is also the 
potential for mismatches between intention and implementation: a teacher may, for 
instance, plan to follow the call of Watson and Chick (2004) to model the kinds of 
questions that students ought to consider when examining data, but may do so in only 
a limited way or using poor questions. There needs to be a detailed examination of 
what occurs at each of these stages, and what CK and PCK are required. 
USING EXAMPLES TO TEACH STATISTICS 
In order to conduct a preliminary exploration of the issues associated with the use of 
examples in teaching statistics, we will examine a number of cases arising from 
published studies and our own research. The cases have been chosen to illustrate the 
issues that arise at different stages in the example-using process, as discussed above. 



Chick and Pierce 

2 - 324                                                                                PME 32 and PME-NA XXX 2008 

They involve statistics teaching at the primary and lower secondary level, where we 
know teachers may not always have the content expertise of their more specialist 
counterparts. One reason for looking at a variety of cases is because no one appears 
to have examined, in a systematic way, the role of the teacher in travelling the path 
from choosing an example that can highlight a principle, planning how to use the 
example, and then actually implementing that example in the classroom. We hope 
these cases begin to shed light on areas that require closer investigation.  
Choosing examples: Recognising affordances in a given example (Stage 1) 
In our first case we investigate whether it is easy to recognise affordances inherent in 
an example and identify its potential for teaching. A small study we conducted with 
primary pre-service teachers (PSTs) examined whether they were able to identify the 
possible affordances of a rich real-world example (see Chick & Pierce, 2008). The 
PSTs were provided with an internet resource containing data about water storage 
levels in their locality over time. The researchers felt the data supported a wide range 
of statistical affordances, including graph and table reading, graph and table 
interpretation, hypothesising about explanations for the data, and extrapolation.  
The PSTs were asked to imagine that they were teaching an integrated unit of work 
on “the environment” with a Grade 6 class, and to plan a lesson to teach students 
some aspect/s of statistics using the water data information. In order to help the PSTs 
move towards the planning stage, and to investigate their capacity to see affordances, 
we first asked them to identify statistics topics that could be addressed using the 
water data resource. Whereas all PSTs mentioned some aspect of interpreting or 
producing graphs as possible affordances, in a few cases the suggestions were vague 
or inappropriate. Furthermore, although well over half of the PSTs listed some terms 
associated with measures of central tendency, only one student explicitly identified a 
relevant situation where these concepts were applicable. The PSTs were also asked to 
pose questions that Grade 6 students could consider with the water data. Nearly all 
the PSTs suggested questions involving straightforward data reading and/or 
interpretation. Less than half, however, identified questions requiring higher levels of 
reasoning such as extrapolating the data or considering implications.  
This study showed that PSTs could recognise the straightforward affordances present, 
but struggled to identify the possibilities for higher order thinking. There is implicit 
evidence that the PSTs may have had insufficient CK to interrogate the data well 
enough to understand it themselves and ascertain what they could do with it, although 
we did not explicitly examine their CK. Alternatively, the simple suggestions might 
reflect a tendency to underestimate the capacity of school students (a facet of PCK). 
Choosing examples: Recognising affordances in self-chosen examples (Stage 1) 
Whereas Chick and Pierce (2008) supplied PSTs with an example and had them 
identify affordances, Watson and Moritz (2002) asked their primary and secondary 
PSTs to choose their own example for teaching, as part of a subject assignment. The 
example had to be selected from the media with the view to allowing the PSTs to link 
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quantitative literacy to daily life. Most of the PSTs chose examples that they 
perceived would be interesting and accessible to their students. When topics were 
chosen according to their potential for integration across the curriculum the questions 
posed by the PSTs often had a less mathematical focus. Watson and Moritz also 
noted that not all of the affordances in the media article were identified or brought to 
the fore clearly in the PSTs’ suggested questions for students. This mirrors the results 
and issues of the Chick and Pierce study, despite the fact that this time the PSTs were 
choosing their own example instead of having it imposed on them.  
Choosing examples: Creating an example with particular affordances (Stage 1) 
In the previous cases the examples already existed but their affordances had to be 
identified. In the next case, the general principles were known in advance and the 
teacher (helped by the researchers) had to construct an example with the desired 
affordances. In an eight-week study of primary school students’ thinking about 
distribution (Petrosino, Lehrer, & Schauble, 2003), the researchers and teacher knew 
what mathematical ideas they wanted to convey (ideas of centre and spread) and, 
with this knowledge, set out to construct an example that would suit their purpose. 
When the Grade 4 teacher asked the class to find the length of a pencil and the height 
of a flag pole the purpose was to harness a deep affordance of the example—namely 
how to deal with variations in measurements—and use this to introduce young 
students to the characteristics of distributions as a basis for comparing two sets of 
results. These ideas were later used in the engaging example of comparing the heights 
reached by two different-shaped model rockets.  
Here the teacher’s purpose went beyond the immediate problem of finding the length 
of a pencil or height of a flagpole; rather, these specific examples were used to 
illustrate more general principles, such as variation in measurement and how statistics 
can help deal with this, via central measures and variability measures. The successful 
introduction of these principles depended on the choice of example. The objects 
involved had contrasting size and needed different measuring techniques (ruler and 
“height-o-meter”). This steered students to focus on the possible levels of accuracy, 
and raised the need for a method of finding length from a number of measurements, 
while accounting for variation. The careful choice of the two examples, with different 
units and measuring devices, readily revealed the general principles.  
Planning to use examples (Stage 2) 
In both the Chick and Pierce (2008) and Watson and Moritz (2002) studies the PSTs 
were asked to prepare a lesson plan based on the real-world data example supplied or 
found. Chick and Pierce found that in most of the lesson plans based on the water 
storage data the key concepts were not clearly evident in the written plan. Nearly half 
of the PSTs did not capitalise on the given data at all but used the “rainfall data” 
situation as the impetus to have the class collect and graph their own rainfall data, 
without connecting the outcomes to the supplied data. Only three of the 13 lessons 
used the resource in a sustained and effective way to exemplify key statistical 
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concepts. Watson and Moritz found similar results, also noting a failure to specify 
explicit mathematical content. They commented, however, that the variation in the 
quality of the lesson plans was no more than for other comparable tasks completed by 
the PSTs in their education program, suggesting that the difficulty of capitalising on 
the affordances in an example (assuming teachers have recognised them), and then 
planning to use them to good effect in the classroom is not confined to statistics. We 
acknowledge, however, that a written lesson plan may not reveal all that a teacher 
implicitly has in mind to bring out in the actual lesson. Nevertheless, it is of concern 
that so few deep statistical ideas were clearly articulated in the plans. 
As a simple contrast, consider the case of Claire, a teacher involved in an 
investigation into teachers’ PCK (see Chick, 2007, for part of this data). In one of her 
statistics lessons (not reported elsewhere to date), her plan included having 
“interpreting line graphs” as an explicit learning objective. She used a textbook as the 
source of her example-a graph showing the accumulating ticket sales for a fairground 
over the course of the day-along with some graph interpretation questions for 
students. In addition, however, Claire added her own “story writing” question at the 
end, which required students to describe their day as if they were the ticket seller. 
This plan allowed students to focus both deeply and broadly on interpreting the 
graph, in a more holistic way than the textbook’s narrower questions. Claire’s CK 
and PCK were rich enough to plan to use this example effectively. 
Implementing an example in the classroom (Stage 3) 
The final stage of example use is the actual classroom implementation. In the study 
by Watson and Moritz (2002) reported above the PSTs were meant to trial their 
selected examples and accompanying questions in the classroom. In many cases, 
however, new examples, more closely related to the school curriculum at the time of 
teaching, replaced those the PSTs had initially chosen, planned for, and discussed in 
their assignment. In this case the PSTs’ PCK was sufficient to prompt a change in 
example to suit the current needs of their class. As the actual lessons were not 
observed in this case, the insights into implementing examples here are limited.  
Claire, the teacher who conducted a lesson on graph interpretation, had the capacity 
to deal with issues that arose unexpectedly. During the lesson one student pointed out 
that the graph was always increasing (as it was an accumulating total), but Claire 
asked the students if they could think of a situation that might cause the graph to 
decrease. She also used spontaneously constructed, open-ended questions that helped 
students to focus on both the “big picture” and the more specific detail of the data. 
This reflected her CK, in identifying what concepts to focus on, and also PCK, in 
being able to target questions at her students’ Zone of Proximal Development. 
This task of responding, on-the-spot, to students’ questions and answers in class is 
not trivial. During one lesson in the study of Petrosino et al. (2003) the class 
discussion of measuring spread led to the notion of a spread number to capture 
variation. Some students were unconvinced and suggested using the range instead. At 
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this point the teacher and one of the researchers combined efforts to quickly compose 
a parallel bi-modal example, to illustrate the value of the spread number instead of 
the range as a measure of variability. It is not clear that the teacher could have 
constructed this spontaneously without the assistance of the researchers. This admits 
the possibility that teachers will not always have the CK or PCK required for 
impromptu responses such as this.  
DISCUSSION AND CONCLUSION 
The preliminary discussion and the cases examined above highlight a number of 
critical issues associated with using examples in teaching statistics. These merit more 
systematic study; in particular it would be illuminating to examine, for a number of 
teachers, the whole path from choice of example to classroom implementation. Our 
overview has not examined the extent of student learning that occurred based on the 
use of the example; this should also be a component of a larger study.  
In conclusion, we highlight some of the questions that we have started to address. 
First, are the posited stages as critical as we think? We note that in some 
circumstances there will be overlap of the choosing and planning stages, because a 
teacher may be planning a lesson on a topic and will realise the need for a 
instructional example. That said, however, planning must still occur after the 
example has been chosen, in order to decide how to present/use the example 
effectively in the classroom.  
Second, what kind of PCK and CK is needed at each stage? Because of space 
constraints we have not been explicit about the different facets of CK and PCK that 
are involved in using examples, although some of the cases discussed indicate the 
importance of knowledge such as (a) being able to assess cognitive demand, (b) 
awareness of students’ current thinking, (c) curriculum knowledge, and (d) teaching 
strategies that make the concepts more evident. 
Third, what are the problems associated with using examples? We might hypothesise 
that appropriate levels of CK and PCK are sufficient for effective example use. On 
the other hand, there may be difficulties inherent in the example that reduce its 
effectiveness (e.g., too much data, or data that are too complicated). It would also be 
useful to determine if there are pedagogical decisions that reduce the effectiveness of 
an example for conveying a concept. 
Fourth, how do we empower teachers to use examples more effectively? Doerr and 
English (2006), in the field of model-eliciting tasks, provide an interesting suggestion 
that examples themselves—perhaps with some of the planning decisions already 
made—can develop teachers’ CK and PCK. This, in turn, might increase teachers’ 
capacity to use examples they have found or constructed for themselves.  
Finally, although we have used the domain of statistics, we suspect that most of these 
issues apply across mathematics. The critical aspect here, and in certain areas of 
mathematics, is the existence of real-world examples in the “public” domain that are 
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potentially “good for teaching”. Clearly we require teachers with the capacity to 
identify the affordances in these examples and put them to effective use. 
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This research addresses the impact of language policies on parental engagement in 
their children’s mathematics education. Our work is situated in primarily Mexican 
American working-class communities in the Southwest of the U.S. We focus on the 
implications of a restrictive language policy on immigrant Spanish speaking parents’ 
interactions with their children (and their schools) around mathematics. In particular 
we raise issues about 1) potential loss of connection and even conflict between 
parents and children and 2) the role that language plays in the mathematics 
classroom placements of some of these children. 
INTRODUCTION 
One of the characteristics of reform-based mathematics education is its emphasis on 
communication. Students are expected to communicate their thinking about 
mathematics in writing and orally. Several researchers have written about 
communication and discussion-rich mathematics instruction in classrooms where 
students’ home language is different from the language of instruction (Khisty, 2006; 
Moschkovich, 2002; Setati, 2005). Less has been written, however, about the 
implications of this emphasis on communication on the interactions between parents 
and children, in particular when the parents’ language is different from the language 
of instruction. Setati (2005) writes about the political role of language and points out, 
“we must go beyond the cognitive and pedagogic aspects [of language] and consider 
the political aspects of language use in multilingual mathematics classrooms” (p. 
451). In this report we build on this concept of language as political by looking at the 
impact of language policies on parental engagement in their children’s mathematics 
education, in particular in the case of immigrant parents whose home language is 
different from the language in their children’s schooling.  
CONTEXT 
For over ten years we have been working on issues related to mathematics education 
and parental engagement. Our work is situated in Latino (mostly of Mexican origin) 
working-class communities in the Southwest of the U.S. In our research we have 
addressed several themes that parents bring up in relation to their children’s 
mathematics education, such as differences in the teaching and learning of 
mathematics in Mexico and in the U.S., valorization of knowledge, issues of 
language, and definitions of parental involvement (Civil, Planas, & Quintos, 2005). 
Our work draws on several bodies of research including research on parental 
involvement that critically examines issues of power and perceptions of parents, in 
particular minoritized and working-class parents (Horvat, Weininger, & Lareau, 
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2003; Pérez, Drake, & Calabrese Barton, 2005); and research on parents and 
mathematics, particularly that which takes into account culture, ethnicity, race, and 
context (Abreu & Cline, 2005; Jackson & Remillard, 2005).  
Throughout this decade of working with parents we have witnessed the passing of a 
law that severely restricts bilingual education in the state in which our work takes 
place. The law allows teachers to use a minimal amount of the child’s native 
language for clarification, but all children are to be taught in English and English 
Language Learners (ELLs) receive additional English language instruction. The 
passing of this law has to be seen within the larger political context in which issues 
related to immigration have taken a prominent role. The context of immigration, the 
role played by language, and the general living conditions of minoritized groups are 
realities that need to be taken into account when addressing these children’s 
mathematics education.  
The schools where our research takes place use reform-based materials that are quite 
demanding not only in terms of the mathematics (with topics that parents did not 
study in their own schooling such as data analysis and problem solving strategies), 
but also in terms of the language. Problems tend to be contextualized and often 
require a good command of English. In this report we focus on the implications of a 
restrictive language policy on immigrant Spanish-speaking parents’ engagement in 
their children’s mathematics education.  
METHOD 
Our research spans over two projects specifically aimed at parents (mostly mothers of 
Mexican origin) and mathematics education. We use mathematics workshops, 
courses in mathematics for parents, and mathematical “get-togethers,” as settings to 
engage with parents not only in explorations of reform-based mathematics but also in 
conversations about mathematics education. Our sources of data include video and 
transcripts of many of these sessions; individual interviews as well as focus group 
interviews (audio or video taped); classroom visits in which parents and researchers 
observe a mathematics lesson and follow-up debriefing (video taped). For this paper 
we draw on two sets of data. One set is from the 16 sessions (1.5 hours per session) 
from the last year of the first project with a group of 14 mothers and 1 father. All the 
mothers in this group had been part of our parental engagement project for at least 
one year prior to these sessions. Thus, we had established a rapport with them and 
they had actually indicated that they wanted to continue with the workshops and the 
dialogues. The second set is from our current project and it consists of interviews and 
focus groups with a total of 15 parents from three different schools. 
Our methodological approach is grounded on phenomenology (Van Manen, 1990), 
which relies heavily on participants’ contributions to the experience and then strives 
to triangulate the data through multiple experiences and sources of data. The lived 
experience of each parent is considered significant. All interviews, focus groups, and 
workshop sessions were transcribed and analyzed using Glaser and Strauss (1967) 
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constant comparative method. This process leads to the development of themes that 
inform our overarching research goal, which is to document Latino parents’ 
perceptions about the teaching and learning of mathematics. As Van Manen (1990) 
writes, “themes describe an aspect of the structure of lived experience” (p. 87). A 
recurrent theme in our analysis is the effect of language policy on parents’ 
engagement in their children’s mathematics education. We address this theme first 
through two short cases (vignettes) and then through a more general discussion of 
interactions between parents and children. 
THE CASES OF TWO MOTHERS 
In this section we present two brief cases that illustrate different aspects of language 
policy. The first case highlights parents’ concerns about communication with their 
children about mathematics because of language issues; the second case addresses the 
role of language in placement in mathematics classes. 
The Case of Verónica 
Verónica is a mother who had attended college in Mexico and had some teaching 
experience in that country. She has lived in the U.S. for several years and in fact her 
son had started school in the U.S. She has some understanding of English, but she 
identifies herself as primarily Spanish speaking. Her oldest son was placed in an 
English-only classroom in second grade by school recommendation. School 
personnel told Verónica that her son was getting confused in the bilingual classroom 
and not making progress. This placement affected her ability to participate in her 
son’s schooling: 

I liked it while they were in a bilingual program, I could be involved… When he was in 
kindergarten … I even brought work home to take for the teacher the next day. In first 
grade it was the same thing, I went with him and because the teacher spoke Spanish, she 
gave me things to grade and other jobs like that. My son saw me there, I could listen to 
him, I watched him. By being there watching, I realize many things. And then when he 
went to second grade into English-only and with a teacher that only spoke English, then I 
didn’t go, I didn’t go. 

Although Verónica stopped going to her son’s classroom, she continued to support 
her two sons by attending school meetings, which were usually in English (though 
some translation was provided). About these meetings, she said, “I attend so that they 
[her sons] see that I am interested, but not because I think that I’m going to come 
back with something or that I’m going to understand.” At the time of our study, her 
oldest son was in middle school (11 years old). She told us that she felt confident 
about her knowledge of mathematics to help him with his homework, however, 

When I sit with him to go over what he’s doing, it’s like he feels lazy about translating 
the problem for me. And when it’s hard to translate he tells me that he’ll just go early to 
school or will ask someone else, and that’s something I don’t like…. He is not sure that I 
am understanding the problem because it’s written in English, I don’t know how to read 
it and he doesn’t know how to translate well, because he speaks Spanish, he reads 
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Spanish, but because we have words and questions that we say differently, he thinks that 
I studied differently. … He’s not sure of me because I don’t speak English and he’s not 
sure I am able to help him; “Son, it’s mathematics.” “Yes, mom, but…” I don’t know if 
it’s laziness or maybe he just doesn’t find the words. He knows Spanish but when kids 
learn Spanish here, their vocabulary is not as developed and he doesn’t translate like he 
should so that I’m able to help him. 

The situation is particularly upsetting for Verónica because she feels she knows the 
content and could help her child but her child does not trust her knowledge. 
Underlying this is the issue of academic language. Because her son had been 
schooled in English since 2nd grade, he did not have a command of academic Spanish, 
thus making it harder for him to speak about mathematics in Spanish. This is 
something that we have documented in interviews with children ages 10 -12 who 
speak Spanish at home but have been schooled in English. These children have to be 
able to explain and translate the problems to their parent; this is a process that 
involves proficiency in the mathematics register in two languages (Moschkovich, 
2002). Despite these obstacles, Verónica was determined to support her children. For 
example, she used the school’s after-school tutoring to make sure that they could 
receive the support (in English) that they needed for the homework. 
Verónica’s case highlights several issues that we see reflected in other parents. A 
language policy that basically makes English the language of schooling has limited 
parents’ participation in the schools. We wonder about the equity implications of 
these language policies at a time in which current educational policy asks for 
increased parental involvement and mathematics teaching and learning are 
particularly language rich. 
The Case of Emilia 
Our work takes place in elementary and middle schools. At the middle school 
level, what we see happening is a school within a school in which ELLs are kept 
apart from non-ELLs for many of the core subjects. Almost ten years ago, Valdés 
(2001) described a similar situation and pointed out that through this “two schools 
in one” ELLs had very few opportunities to interact with students whose primary 
language was English. This same situation was echoed recently by Emilia, a 
mother in our project. Emilia arrived almost three years ago to the U.S. We first 
interviewed her and her oldest son (Alberto, 11 years of age) shortly after their 
arrival. At that time, they both talked about how the mathematics he was seeing at 
his current school, he had already studied it in Mexico and that his main problem 
was with learning the language (“and here they teach me things that they taught 
me there; it’s just that here it’s hard because of the English”) (See Civil (2006) for 
more on this case). This was not a surprise to us since our interviews with 
immigrant parents consistently document a feeling among these parents that the 
level of mathematics education in Mexico is higher than what their children are 
studying in their current school. What caught our attention was Emilia’s comment 
about her child learning things that he already knew: 
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That is, for them it’s perfect what they are teaching them because in this way it’s going to 
help them grasp it, to get to the level, because for them, with the lack in English that they 
have, and if to that we were to add, … If they give them all the information, like a lot, 
very dense, too much teaching during this period, to tell you the truth, it would disorient 
them more. Right now, what he is learning, what I see is that it’s things that he had 
already seen, but if he gets stuck, it’s because of the language, but he doesn’t get stuck 
because of lack of knowledge 

How aware are immigrant parents of the process by which their children are placed in 
mathematics classes? We are concerned about the thinking behind these placements. 
Emilia seemed to think that this was good for her son because he would not be 
overwhelmed with having to learn both language and content. This was two years 
ago. More recently, we interviewed Emilia again. She appeared satisfied with her 
children’s progress in mathematics, although as the interview went on she pointed out 
what we mentioned earlier, that her children seemed to be interacting mostly with 
other Spanish-speaking students. She also brought up a concern for how little 
homework her children seemed to be doing and noticed that her two sons who are 
supposedly in different grades would sometimes bring the same homework. The 
reality is that the push for learning English is such that schedules are made around 
this priority, at the expense in some cases of the learning of content such as 
mathematics. As Valdés (2001) points out, “students should not be allowed to fall 
behind in subject-matter areas (e.g., mathematics, science) while they are learning 
English” (p. 153). We do wonder about the (in)equity implications of some of these 
placements. 
 PARENTS’ AND CHILDREN’S INTERACTIONS  
Verónica is concerned about the conflict she feels between her oldest son and herself 
around mathematics. She feels she can help him in terms of her content knowledge 
but language somehow gets in the way. Other parents have brought up the language 
issue in being able to help their children with homework in mathematics:  

Candida: Well, I remember that they would give her homework in English and in 
Spanish, and so I could help her a little more. But when it was all in English, no. Then I 
couldn’t. I felt bad. I would be very frustrated because I couldn’t explain it to them, I 
would have liked to explain it to them and I couldn’t. I was frustrated. 
Selena: Sometimes I cannot explain it to him because I hardly know English. There are 
things that he reads to me and he translates them into Spanish; sometimes I understand 
what he’s telling me in English, but others, definitely I don’t understand anything.  
Lucrecia: it was difficult for us, that the boy did the homework, because we didn’t know 
English and were not able to translate the problem for him. 

As we mentioned earlier the nature of the homework in many of the reform-based 
materials is likely to put demands on parents’ knowledge of mathematics as well as 
of English. We are aware that it is often hard to separate what is due to content and 
what is due to language, but our focus here is on data that illustrate the role that 
(English) language plays in these parents’ access to their children’s tasks. We are 
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not referring just to typical word problems, but tasks in which the instructions are 
rather complex; tasks in which the students are asked to provide written 
explanations; tasks in which they are given graphs, tables and other representations 
that assume a certain knowledge of how to interpret these and that tend to have 
quite complex sentences.  
There is another side to this language policy that we want to address here. So far we 
have talked about how a limited knowledge of the language of instruction (English in 
this case) may affect parents’ participation in their children’s school, the most 
obvious way being as they try to help them with homework. But what about the effect 
of this policy on the children? Interactions between children and parents concerning 
each other’s mathematical knowledge can be a way for all those involved to gain 
knowledge. But these interactions can be made particularly difficult when children 
need to bridge not only school and home knowledge but also different languages. We 
have seen that by not being able to continue to develop their knowledge of content in 
Spanish, they loose the ability to, for example, talk about mathematics in Spanish. 
This affects the communication with their parents. We wonder about the effects of 
this reduced communication on the relationships parents-children and on children’s 
academic achievement. As Worthy (2006) writes, “as linguistic connections with 
their families and roots fade, these children also face a loss of cultural knowledge, 
family values, personal nurturing, and academic support” (p. 140).  
IN CLOSING 
The parents in our research were concerned about limitations to their participation 
and the possibility of a loss of connection with their children due to the “language 
barrier.” Language plays a key role in the learning and teaching of mathematics, 
particularly in reform-based classrooms. It is also true that language is a key 
component of one’s identity. We are aware that in many countries the language of 
instruction is indeed different from many students’ home language. But in our 
local context what we want to highlight is the political and educational 
implications of a change in language policy. It is not about whether we teach 
mathematics in English or in Spanish, but it is about what messages these 
language policies give about the valorization of certain forms of knowledge over 
others. We want to point out, however, that several of these parents were quite 
resourceful in accessing their own networks (Horvat, Weininger, & Lareau, 2003) 
to provide the necessary support to their children (seeking the help of neighbors, 
relatives, or teachers). Our parent workshops, focus groups, and interviews have 
also served as places to network, not just with school personnel and us but also 
among themselves. The conversations provide a context for reflection, as is the 
case of Emilia who in her third interview is starting to question issues related to 
the actual academic achievement of her children. We wonder what Emilia (and 
others like her) can do as they become more aware of the situation. As one of the 
mothers, Esperanza, reminds us, there is a difference between language and voice, 
“Se me fue quitando el miedo y aprendí que tu voz cuenta, aunque no hables el 
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mismo idioma, cuenta” [The fear slowly went away and I learned that your voice 
counts, even if you don’t speak the same language, it counts]. 
Endnote 
This research was supported by the National Science Foundation, grants ESI-
9901275 and ESI-0424983. The views expressed here are those of the author and do 
not necessarily reflect the views of the funding agency.  
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MATHEMATICAL ORALITY IN ASIAN AND WESTERN 
MATHEMATICS CLASSROOMS 

David Clarke and Xu Li Hua 
University of Melbourne 

 
This paper reports research into the nature and occurrence of spoken mathematics in 
some well-taught classrooms in Australia, China (both Shanghai and Hong Kong), 
Japan, Korea and the USA. The methodology of the Learner’s Perspective Study 
(LPS) documented the voicing of mathematical ideas in public discussion and in 
teacher-student conversations and the relative priority accorded by different teachers 
to student oral contributions to classroom activity. The analysis distinguished one 
classroom from another on the basis of public “oral interactivity” (the number of 
utterances in whole class and teacher-student interactions in each lesson) and 
“mathematical orality” (the frequency of occurrence of key mathematical terms in 
each lesson). Classrooms characterized by high public oral interactivity were not 
necessarily sites of high mathematical orality. Of particular interest are the different 
learning theories implicit in the instructional approaches employed in each 
mathematics classroom. 
INTRODUCTION 
The Learner’s Perspective Study (LPS) sought to investigate the practices of well-
taught mathematics classrooms internationally. Data generation focused on sequences 
of ten lessons, documented using three video cameras, and interpreted through the 
reconstructive accounts of classroom participants obtained in post-lesson video-
stimulated interviews (Clarke, 2006a). The post-lesson interviews were designed, in 
part, to address the challenge of inferring student conceptions from video data (Cobb 
& Bauersfeld, 1994). The LPS approach of conducting case studies of classroom 
practices over sequences of at least ten lessons in the classes of several competent 
eighth grade teachers in each of the participating countries offers an informative 
complement to the survey-style approach of the two video studies carried out by the 
Third International Mathematics and Science Study (TIMSS) (Hiebert et al., 2003; 
Stigler & Hiebert, 1999). The criteria for the identification of the competent teachers 
studied in the LPS were constructed locally, specific to each country, in order to 
reflect the priorities and values of the school system in that country. In this paper, we 
report analyses of a subset of the lessons documented in classrooms in Australia, 
China (Hong Kong and Shanghai), Japan, Korea, and the USA.  
Mok has elsewhere suggested that terms such as “teacher-dominating” can be 
misleading as a characterisation of the teaching in some Chinese classrooms (Mok, 
2006). Clarke has similarly challenged the usefulness of the popular dichotomisation 
of classrooms as “student-centred” or “teacher-centred” (Clarke, 2006b). Attention is 
therefore focused on what theoretical framework might support cross-classroom 
comparisons and provide significant insights into essential differences in practice and 
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the principles on which any such differences are based. The distribution of 
responsibility for knowledge generation has been suggested as a suitable framework 
(Clarke & Seah, 2005), but the challenge then became how to operationalise this 
framework in a form that could be applied to classroom data. In this paper, the oral 
articulation of mathematical terms and phrases during classroom whole-class and 
teacher-student discussion is employed as the entry point for our analysis. 
STUDYING SPOKEN MATHEMATICS IN THE CLASSROOM 
The immediate challenge in our recent work has been to interpret the enactment of 
the distribution of responsibility for knowledge generation in terms of actual 
classroom actions undertaken (and “observable”) by teacher and students. By 
focusing on the documentation of spoken mathematical (and pseudo-mathematical) 
terms, through video recording and post-lesson reconstructive interviews, we have 
employed spoken mathematical terms as a form of surrogate variable, indicative of 
the location of the agency for knowledge generation in the various classrooms studied 
(but also of interest in itself) (see Clarke & Seah, 2005). 
This paper reports the first two stages of a layered attempt to progressively focus on 
the significance of the situated use of mathematical language in the classroom. In our 
first analytical pass, an utterance is taken to be a continuous spoken turn, which may 
be both long and complex. We restricted our second-pass analysis to those 
mathematical terms and phrases that referred to the substantive content of the lesson 
(usually designated as such in the teacher’s lesson plan and post-lesson interview). 
An utterance may contain more than one mathematical term, and our second 
analytical pass counted mathematical terms rather than utterances. 
Bakhtin’s use of “utterance” placed emphasis on situating any word, phrase or 
proposition in its spoken and social setting (Bakhtin, 1979). We take the orchestrated 
use of mathematical language by the participants in a mathematics classroom to be a 
strategic instructional activity by the teacher. In this paper, we invoke theory in two 
senses: (i) the (researchers’) theories by which the actions of the classroom 
participants might be accommodated and explained, and (ii) the (participants’) 
theories implicit in the classroom practices of the teacher and the students. A 
particular focus is the role of the spoken word in both. The instructional value of the 
spoken public rehearsal of mathematical terms and phrases central to a lesson’s 
content could be justified by reference to several theoretical perspectives. 
Interpretation of this public rehearsal as incremental initiation into mathematics as a 
discursive practice could be justified by reference to Walkerdine (1988), Lave and 
Wenger (1991), or Bauersfeld (1995). The instructional techniques employed by the 
teacher in facilitating this progression could be seen as “scaffolding” (Bruner, 1983) 
and/or as “acculturation via guided participation” (Cobb, 1994). 
The oral articulation of mathematical terms and phrases by students could be 
accorded value in itself, even where this consisted of no more than the choral 
repetition of a term initially spoken by the teacher. Teachers and students in some of 
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the classrooms we studied clearly attached value to this type of recitation. In other 
classrooms, the emphasis was on the students’ capacity to produce a mathematically 
correct term or phrase in response to a very specific request (question/task) by the 
teacher. In such classrooms, both of these activities accorded very limited agency to 
the learner and the responsibility for the public generation of mathematical 
knowledge seemed to reside with the teacher. By contrast, in other classrooms, the 
instructional approach provided opportunities for students to “brainstorm” or to 
generate their own verbal (written or spoken) mathematics, with very little (if any) 
explicit cuing from the teacher (e.g. the classrooms in Tokyo). In each classroom the 
activity of speaking mathematics was performed a little differently. 
Our attempts at unpacking the distribution of responsibility for knowledge generation 
and its potential as a core precept in instructional theory have been hampered by the 
sheer scale of the logistics of analysing the transcripts of lessons in a wide variety of 
classrooms distributed across many countries. However, the results that are recorded 
in this paper certainly suggest that the teachers in this study differed widely in the 
opportunities they provided for student spoken articulation of mathematical terms and 
in the extent to which they devolved agency for public knowledge generation to the 
students. 
The demonstration of such differences (and we would like to argue that these 
differences are profound and reflect fundamental differences in basic beliefs about 
effective instruction and the nature of learning) in the practices of classrooms situated 
in school systems and countries that would all be described as “Asian” suggests that 
any treatment of educational practice that makes reference to the “Asian classroom” 
confuses several quite distinct pedagogies. This observation is not to deny cultural 
similarity in the way in which education is privileged and encountered in 
communities that might be described as “Confucian-heritage.” But, the identification 
of a one-to-one correspondence between membership of a Confucian-heritage culture 
and a singular pedagogy leading to high student achievement is clearly mistaken, and 
we must look elsewhere than only at culture in our attempts to single out those 
instructional practices that might be associated confidently with the educational 
outcomes that we value. 
THE USE OF MATHEMATICAL TERMS 
The earlier analysis conducted by Clarke and Seah (2005) distinguished between 
primary mathematical terms explicitly identified in the teacher’s lesson plans, 
secondary mathematical terms employed in whole class discussion to explicate the 
primary terms, and transient terms, many pseudo-mathematical (e.g. “steep”), 
occurring typically once only in the conversations of students discussing the lesson’s 
content among themselves or with the teacher. The initial tabular method of coding 
and display (see Clarke & Seah, 2005), though revealing, proved so labor-intensive as 
to be impractical if implemented on the large-scale required by the extensive LPS 
data set. New video-coding software Studiocode has offered a more efficient 
approach, combining basic descriptive coding statistics with a capacity to reveal 
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temporal patterns in a highly visual form. In this paper, “utterance” and 
“mathematical term or phrase” require clear specification (below). 
Figure 1 shows the number of utterances occurring in whole class and teacher-student 
interactions in each of the first five lessons from each of the classrooms studied in 
Shanghai, Hong Kong, Seoul, Tokyo, Melbourne and San Diego. An utterance is a 
single, continuous oral communication of any length by an individual or group 
(choral). Used in this way, the frequency (and origins) of public utterances constitute 
a construct we have designated as public oral interactivity. This does not take into 
account either the length of time occupied by an utterance or the number of words 
used in an utterance (problematic in a multi-lingual study like this one). Figure 1 
distinguishes utterances by the teacher (white), individual students (black) and choral 
responses by the class (e.g. in Seoul) or a group of students (e.g. in San Diego) 
(grey). Any teacher-elicited, public utterance spoken simultaneously by a group of 
students (most commonly by a majority of the class) was designated a “choral 
response.” Lesson length varied between 40 and 45 minutes and the number of 
utterances has been standardized to 45 minutes. 
Figure 1 suggests that lessons in Melbourne and San Diego demonstrated a much 
higher level of public oral interactivity than lessons in Shanghai, Hong Kong, Seoul, 
or Tokyo. There were also substantial differences in the relative frequency of teacher, 
student and choral utterances. This paper does not address temporal length or 
complexity of utterance, which will be investigated in a later analysis. It is worth 
noting that both teacher and student utterances in Shanghai tended to be of longer 
duration and greater linguistic complexity than elsewhere. 
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Figure 1. Number of Public Utterances in Whole Class and Teacher-Student 

Interactions (Public Oral Interactivity). 
The classrooms studied can be also distinguished by the relative level of 
mathematical orality of the classroom (that is, the frequency of spoken mathematical 
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terms or phrases by either teacher or students in whole class discussion or teacher-
student interactions) and by the use made of the choral recitation of mathematical 
terms or phrases by the class. This recitation included both choral response to a 
teacher question and the reading aloud of text presented on the board or in the 
textbook. For the purposes of this paper, those mathematical terms were coded that 
comprised the main focus of the lesson’s content. In the terminology of Clarke and 
Seah (2005), as above, this analysis focused on primary and secondary terms. 
Figure 2 shows how the frequency of public statement of mathematical terms varied 
among the classrooms studied. In classifying the occurrence of spoken mathematical 
terms, we focused on those terms that represented the main lesson content (e.g. terms 
such as “equation” or “co-ordinate”). This meant that our analysis did not include 
utterances that constituted no more than agreement with a teacher’s mathematical 
statement or utterances that only contained numbers or basic operations that were not 
the main focus of the lesson. In the case of the Korean lessons, the frequent choral 
responses by students took the form of agreement with a mathematical proposition 
stated by the teacher. For example, the teacher would use expressions such as, “When 
we draw the two equations, they meet at just one point, right? Yes or no?” And the 
class would give the choral response, “Yes.” Such student statements did not contain 
a mathematical term or phrase and were not included in the coding displayed in 
Figure 2.  
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Figure 2. Frequency of Occurrence of Key Mathematical Terms                                 

in Public Utterances (Mathematical Orality). 
Similarly, a student utterance that consisted of no more than a number was not coded 
as use of a key mathematical term. It can be argued that responding “Three” to a 
question such as “Can anyone tell me the coefficient of x?” represented a significant 
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mathematical utterance, but our concern in this analysis was to document the 
opportunity provided to students for the oral articulation of the relatively 
sophisticated mathematical terms that formed the conceptual content of the lesson. 
Frequencies were again adjusted for the slight variation in lesson length. 
The most striking difference between Figures 1 and 2 is the reversal of the order of 
classrooms according to whether one considers public oral interactivity (Figure 1) or 
mathematical orality (Figure 2). The highly oral classrooms in San Diego made 
relatively infrequent use of the mathematical terms that constituted the focus of the 
lesson’s content. By contrast, the less oral classrooms in Shanghai made much more 
frequent use of key mathematical terms and phrases. Since a single utterance might 
contain several such terms, and it was terms that were being counted in this analysis, 
Figure 2 provides a different and possibly more useful picture of the Chinese lessons, 
where both teacher and student utterances appeared to be longer and more complex 
than elsewhere. Later analyses will address duration and complexity. 
Comparison between those classrooms that might be described as “Asian” is 
interesting. Key mathematical terms were spoken less frequently in the Seoul 
classrooms than was the case in the Shanghai classrooms. Even allowing for the 
relatively low public oral interactivity of the Korean lessons, the Korean students 
were given proportionally fewer opportunities to make oral use of key mathematical 
terms in whole class or teacher-student dialogue. In contrast to the teachers in 
Shanghai and Tokyo, the teachers in the Hong Kong and Seoul classrooms did not 
appear to attach the same value to the spoken rehearsal of mathematical terms and 
phrases, whether in individual or choral mode. While the overall level of public oral 
interactivity in the Tokyo classrooms was similar to those in Seoul, the Japanese 
classrooms resembled those in Shanghai in the consistently higher frequency of 
student contribution, but with little use being made of choral response. The value 
attached to affording student spoken mathematics in some classrooms could suggest 
adherence by the teacher to a theory of learning that emphasizes the significance of 
the spoken word in facilitating the internalisation of knowledge. The use of choral 
response, while consistent with such a belief, could be no more than a classroom 
management strategy. The Hong Kong classrooms made least use of spoken 
mathematical terms of all the classrooms studied and student spoken mathematical 
contribution, whether individual or choral, was extremely low, even though the 
general public oral interactivity of Hong Kong classrooms 2 and 3 was at least as 
high as in Shanghai. 
CONCLUSIONS 
It appears to us that the key constructs Public Oral Interactivity and Mathematical 
Orality distinguished one classroom from another very effectively. Particularly 
when the two constructs were juxtaposed (by comparing Figures 1 and 2). The 
contemporary reform agenda in the USA and Australia has placed a priority on 
student spoken participation in the classroom and this is reflected in the relatively 
high public oral interactivity of the San Diego and Melbourne classrooms (Figure 
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1). By contrast, the “Asian” classrooms, such as those in Shanghai, were markedly 
less oral. However, this difference conceals striking differences in the frequency 
of the spoken occurrence of key mathematical terms (Figure 2), from which 
perspective the Shanghai classrooms can be seen as the most mathematically oral. 
The relative occurrence of spoken mathematical terms is one level of analysis. We 
should also distinguish between repetitive oral mimicry and the public (and 
private) negotiation of meaning (Cobb & Bauersfeld, 1994; Clarke, 2001). 
However, the frequency of public spoken mathematics does appear to distinguish 
usefully between classrooms. 
Despite the frequently assumed similarities of practice in classrooms characterised as 
Asian, the Asian classrooms studied displayed significant differences in the level of 
mathematical orality, particularly with respect to the frequency of spoken 
mathematical terms and phrases employed by students. A further critical 
distinguishing characteristic was the form of prompt by which the teacher elicited 
student spoken mathematics. Students in the Shanghai classrooms had the 
opportunity to articulate their understanding of key mathematical terms through a 
structured process of teacher invitation and prompt that built upon the contributions 
of a sequence of students. The classrooms in Tokyo provided many instances where a 
student made the first announcement of a mathematical term without specific teacher 
prompting. These differences in the nature of students’ publicly spoken mathematics 
in classrooms in Seoul, Hong Kong, Shanghai and Tokyo are non-trivial and suggest 
different instructional theories underlying classroom practice. Any theory of 
mathematics learning must accommodate, distinguish and explain the learning 
outcomes of each of these classrooms. 
Consideration of the non-Asian classrooms is also interesting. With frequent teacher 
questioning and eliciting of student prior knowledge, the students in the Melbourne 
classrooms were given many opportunities to recall and orally rehearse the 
mathematical terms used in prior lessons. In terms of overall mathematical orality and 
level of student contribution, Melbourne 1 resembles Shanghai 1 (without the use of 
choral response). This public orality is potentially augmented by small group 
discussions, in which students draw upon their mathematical knowledge to complete 
tasks at hand. Such student-student conversations occurred much more frequently in 
the Melbourne and San Diego classrooms. For example, in one San Diego lesson 
(US2-L02), the two focus students made 107 and 97 private utterances, many related 
to the lesson’s mathematics content. These non-public exchanges are not part of the 
analyses reported in this paper. Levels of mathematical orality in student-student 
interactions (in which the teacher was not participant) will be examined in a separate 
analysis. The post-lesson interviews may provide the connection between classroom 
mathematical orality and student learning outcomes. We suggest that the empirical 
investigation of mathematical orality (in both public and private domains) and its 
likely connection to the distribution of the responsibility for knowledge generation 
are central to the development of any theory of mathematics instruction. 
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HOW DO A PLANE AND A STRAIGHT LINE LOOK LIKE? 
INCONSISTENCIES BETWEEN FORMAL KNOWLEDGE         

AND MENTAL IMAGES 
Nitsa Cohen 

The David Yellin College of Education 
 

This paper focuses on analysing the ability of pre-service and in-service teachers to 
visualize straight lines and planes. These concepts are abstract concepts which 
cannot be understood by the perception alone. The present paper is based on a 
research which exposed typical misconceptions and a gap between the formal 
knowledge and the mental picture. The results also demonstrate that awareness and 
analytical-visual integration are essential in overcoming those difficulties. 
INTRODUCTION 
This paper focuses on analysing the ability of pre-service and in-service teachers to 
visualize straight lines and planes. These concepts are abstract concepts which cannot 
be understood by the perception alone (both are infinite1 and lack thickness, thus they 
cannot be concrete objects). This study is a part of broad research dealing with those 
concepts and with the interrelations between them. The research findings exposed 
typical difficulties and misconceptions and demonstrated the central role of 
analytical-visual integration in overcoming them. In the present paper, we focus on 
two types of difficulties: 
1A. The difficulty to perceive the infinity of a line2 or a plane. Although the 
subjects usually say that a line or a plane is infinite, they do not really feel it or "see" 
it in their minds. They formally acknowledge the fact, but their behaviors reveal that 
their mental image does not fit this acknowledgement. 
1B. The difficulty to perceive the lack of thickness of a line or a plane (which 
relates to the notions of infinitesimals and density). Here again, subjects state the 
facts but do not "sense" or "see" them. 
THEORETICAL BACKGROUND 
The point, the straight line and the plane are undefined objects. Nevertheless, when 
we deal with Euclidian geometry, those objects are connected to specific figural 
images. According to Piaget & Inhelder (1967), geometrical intuition develops not 
only from perceptions or images, but also from performing some mental operations 
on them. When dealing with abstract geometric concepts, one cannot help thinking 
about a concrete image (such as seeing the point as a tiny round surface or the line as 
a fine thread). But in order to properly understand these concepts, one has to be aware 
that those are only symbols and not the objects themselves. 
                                                            
1 "infinite" means here that the straight line and the plane are not bounded (in the mathematical sense) 
2  from here on, "line" will mean "straight line" 
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Fischbein (1993) sees geometric figures as figural concepts which he defines as 
mental entities, possessing conceptual and figural properties simultaneously. They 
have a strong image aspect, but they also have conceptual aspects, as abstract, ideal, 
logically determinable entities. Even adults, although being aware of the nature of 
geometrical objects, tend to think in terms of figural models and often draw wrong 
conclusions about those objects. Vinner (1981) examined 47 prospective teachers and 
teachers and found that 34% of them believed that geometric concepts are part of the 
physical world. Without conceptual control, says Fischbein (ibid), it is impossible to 
fully comprehend geometrical concepts. 
THE STUDY 
The study utilized both methods of quantitative and qualitative research. The 
quantitative research enabled the identification of beliefs and difficulties, and the 
examination of how prevalent they are. The qualitative research served for 
examination and analysis of participants' perceptions and thinking processes. The 
research's population mainly included prospective teachers who study in a college of 
education in Jerusalem and specialize in mathematics, and, in addition, mathematics 
teachers in elementary or junior high school.  The data collection was carried out in 
several modes: a questionnaire by which the quantitative aspect was examined (341 
subjects); Intensive observations of a "base population" (20 subjects) documented by 
video; Video documentation of another 74 subjects who worked in small groups; A 
post test which was given to 106 subjects. 
In the broad research questionnaire, 3 out of 19 questions involved the direct 
visual image of a plane or a straight line. Earlier, the students were given a 
preliminary brief explanation about the tasks and the concepts, in which we made 
sure that they were aware, at least theoretically, of the infinity and lack of 
thickness of the plane and the line. After collecting the answers of the 
questionnaires the students were asked to deal with the same questions again, this 
time discussing them in pairs, small groups or with the interviewer, and using 
manipulative visual aids. The visual aids included very thin flat plastic surfaces, 
with random “cloud” shapes to illustrate planes and straws or thin rods to illustrate 
lines. Of course, we assured that the students understood that those aids only 
represented infinite planes or lines with no thickness. 
APPROACH AND EMPHASIS IN THE RESEARCH 
Individual's capability to utilize visualization and analysis in an integrated manner is 
referred to in this study as "analytical-visual integration ability". This ability is 
composed, as suggested here, of three main components:  

• (V→A) the ability to analyse visual information (visual→analytical). 
• (A→V) the ability to create a visual image corresponding to analytical 

ideas (Analytical→visual), namely the ability to create a visual image 
(physical or in the mind) out of information which is not visual, such as verbal 
data, abstract relations etc. 
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• (AVF) Analytical-Visual Flexibility which portrays the ability to move 
freely, in a flexible and efficient way between analytical processing and visual 
imaging. This flexibility requires, among other things, a clear knowledge of 
when leaning on a visual example is acceptable and when it is not. 

FINDINGS, ANALYSIS AND EXAMPLES 
Let us have a close look at one of the questions which directly involves the visual 
image of a plane or a straight line. 
 

 
 
When subjects mark a, b or c, one can suspect that they visualize the plane as being 
bounded (not infinite). The answer e can maybe reveal a mental image of the plane as 
having thickness or physical existence. Next, these hypotheses shall be supported by 
examples from the qualitative study. Let's look at the results of this question: 
   

marked 
e 

did not 
mark d 

marked at least 
one of a, b or c 

marked 
c 

marked 
b 

marked 
a 

general success 
(marked only d) 

61% 19% 48% 29% 9% 36% 25% (n=341) 

 
On first glance, it can be seen that the rates of the answers which implicate the 
misconceptions mentioned hereinabove are significant: about half of the subjects 
(48%) chose at least one of the possible answers a, b, or c, which imply 1A, and 61% 
of them chose e, which implies 1B. We shall discuss now these two phenomena 
separately, while examining them also qualitatively. 
1A. The Difficulty to Perceive the Infinity of a Line or a Plane 
 

 
 
As we have seen, about half of the participants chose for the above question, answer 
a, b or c, which imply an error from type 1A. The "popular" choice is undoubtedly a: 
36% of the participants believe that it is possible for two planes to touch each other at 
one meeting point. From watching the video tapes a clear picture arises regarding the 
way in which the subjects visualize such a meeting point: they illustrate the planes as 

• 
• 

 figure 1  figure 2   figure 3  figure 4  figure 5 

• 

1. Two different planes "touch" each other. 
What can be the shape of the intersection? Circle all the possibilities: 

a) one point      b) two points       c) a segment     d) a straight line      e) a surface 
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depicted in figure no. 1, 2 or 3. Those who believe that the meeting point is in the 
shape of a segment (29%) visualize it, as depicted in figure 4 or 5. (Fgures 1,3,4 
correspond to their illustrations with the visual aids, and figures 2, 5 correspond to 
their description of what they had visualized). 
During the group discussion (after collecting the questionnaires) almost all the 
subjects corrected these errors (options a-c). The corrections were made usually after 
one of the subjects in the group had answered correctly, or had reached the correct 
answer while working, and convinced those who were erroneous. Such discourse 
took place in most groups. In cases where such discourse did not take place or in the 
case of personal interviews, the "opposite stand" was presented by the researcher. 
Following are some typical examples for such a discourse: 
Episode 1: Ruth chose option a in question 1 and Einat did not choose it. 

Einat:  it is infinite. 
Ruth:  so what if it's infinite? 
Einat:  it can not be one point. It's planes  
Ruth:  here, a point! (showing with the visual aids something like to figure 1) 
Einat: but that can't be a point, it's infinite, it's a plane 
Ruth:  so what? 
Einat:  what do you mean 'so what' it's also going down, it continues (using her hands 

to show the continuation of the plane) 
Ruth:  where does it continue? 
Einat:  it continues down and up (illustrating) 
Ruth: Yes, down, up, but still… 
Einat:  it is at the least a line. 
Ruth:  I don't know… (at last Einat succeeded in convincing Ruth). 

In this episode Ruth held her erroneous intuition tightly and it was hard for her even 
to see the conflict between the analytical explanation and her image ("so what?"). In 
some other cases, the erroneous subjects acknowledged their errors immediately after 
the analytical aspect was presented to them. For instance: 
Episode 2: Muhamad, on a personal interview (Muhamad = M; Interviewer = I): 

1 Muhamad said that one point is possible and illustrated something like figure 3. 
2 I:  there were some students who claimed that since the plane is infinite, it doesn't 

end there but rather continues. 
3 M:  (contemplating for a while) they are right, they are right. 
4 I:  why are they right? 
5 M:  It may be like this (illustrates "a clear cut situation of an encounter with a line") 

and then we have a straight line, or like this (as in figure 3), but then both 
planes continue and create a line here (illustrates the imaginative intersection 
line). The shape of the intersection is also a straight line.  
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6 I:  now I shall tell you what others have answered. They said: but it can be like that 
(illustrates figure 1). 

7 M:  (unhesitatingly) it is also a straight line, it is not a point, it also creates a straight 
line (illustrating with his hands). 

8 I:  why? 
9 M:  it is infinite, it continues, it continues (illustrating with his hands), it creates 

only a straight line 
10 I:  so there's no option for a point? 
11 M:  not at all. 

The instance of Muhamad enables us to trace thinking processes which exemplify a 
combination of visualization and analysis. At first (1), Muhamad had reached a 
(wrong) conclusion according to what he saw (the visual aids), namely, a V→A 
process. From reaction no. 3 it can be inferred that he acknowledged the fact that the 
plane is infinite, namely his first reaction demonstrated a hidden inconsistency. After 
the interviewer's question, the hidden inconsistency became conscious and was 
solved immediately (as a consequence of analytical consideration). Reaction no. 5 
demonstrates the process of solving the conflict. Muhamad creates a new mental 
image of a plane which took into consideration the fact that the plane is infinite. He 
now visualized the infinite plane. The process here is thus, A→V. In this case the 
awareness brought the correction of the mental image. In reactions no. 7, 9, 11 and in 
all the next lessons, there were no episodes which pointed to a loose knowledge in 
this matter, except one episode in which he corrected himself immediately. 
Out of the 14 video taped episodes which relate to option a in question 1, eight were 
very similar to those presented here. In two other episodes the subjects who were 
erroneous were not convinced, at least until the summarizing class discussion, and in 
four cases there were no errors to begin with. Similar results were obtained also 
regarding two other questions which deal with the infinity of the line and the plane. 
According to this analysis it seems that when the subjects take into consideration 
consciously the infinity matter, they succeed, some easily, others with effort, to 
overcome the erroneous intuitive mental image of the plane as having a rectangular 
bounded shape. In the summarizing discussion, many subjects referred to the process 
they went through regarding the infinity. Following are some typical citations:  

• "We did not pay attention to the fact that the plane continues." 

• "I did not think that a plane is actually infinite, so I imagined that they can meet at 
only one point." 

• "I thought that one point is possible since when you take the visual aids and use 
them, you refer to them and not to what they stand for." 

Except questions which deal directly with the infinity of the straight line and the 
plane, the difficulty regarding this matter was detected also in the subjects' 
performance regarding other questions. Obviously, there are no traces of it in the 
quantitative results, yet, in the qualitative analysis all groups had several episodes 
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which point to it. For instance: in tens of episodes subjects put two straws in 
opposite directions, and treated them as two different straight lines. In the first 
stages of the work they usually corrected themselves after a remark of a friend or a 
question posed by the interviewer. In the next stages, when it happened, they 
corrected it themselves, immediately. Sometimes the lack of awareness to the 
infinity of the straight line or the plane have yielded correct answers based on the 
wrong reasons, for instance, Tali wrote in one of her answers that there are infinite 
planes which are parallel to a given straight line through a given point, but 
illustrated a situation in which she turned the plastic surface around keeping it all 
the time on the same plan she chose.  
1B. The Difficulty to Perceive the Lack of Thickness of a Line or a Plane 
In the quantitative results we saw that 61% of the subjects chose e in question 1, 
according to which it is possible for two different planes to touch each other on a 
plain surface. In this case as well, it happened in most groups, but, not like the 
infinity case, here, except for few cases, those who were right could not convince 
those who were wrong. In some cases each one held his own opinion and could not 
figure out how to convince the other. In other cases those who were wrong convinced 
those who were correct, in their error. In some of the cases the subjects themselves 
could not decide! Here too, like in the infinity case, we witness phenomena of 
inconsistency, in different levels of awareness to it. Following are some typical 
instances in which the subjects had doubts whether it is possible for two different 
planes to be "adjacent", namely, to touch each other in all points, yet not to unite. 
Episode 3: self discourse within the group discourse 

Einat:  on the one hand it doesn't have thickness, but on the other hand it is 
"something"…so I don't know…I tend to believe that it is possible that two 
different planes touch each other (turning to her friend who said before that in 
such a case they shall become the same surface), without them being united! 

(Einat continues to think it over for a few minutes)… 
Einat:  I am actually arguing with my self! 
I:  so what is your answer? 
Einat:  that it is possible (hesitates) but maybe I'm wrong, because it doesn't have any 

thickness, but I believe I am right. 

Einat allows us here to witness her thoughts while she is having a cognitive conflict. 
She sees very clearly the contradiction, yet, she cannot solve it, since the image of the 
plane as "something" which has a physical existence prevents her from understanding 
the abstract concept, which lacks thickness. 
Another instance of an explicit expression of the conflict between knowing that the 
straight line lacks thickness and the intuitive sense that it has a physical extent is the 
next citation after the class discussion: "in my mind I can comprehend what a straight 
line is, but how is a plane created? The plane has to be created as if many straight lines 
compose it, when you say that if they are close they are united, so how can it be?" 
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DISCUSSION: OVERCOMING INCONSISTENCY 
The phenomenon named inconsistency is well known in the mathematics education 
literature, and it is described as cases in which subjects hold conflicting beliefs (e.g. 
Vinner, 1990 Tirosh, 1990). In the instances we examined, different levels of 
awareness to the inconsistency can be traced: one level includes states in which the 
subject does not simultaneously examine the contradictory beliefs. This phenomenon 
is called compartmentalization and it is discussed by Vinner (ibid). This state 
characterizes most episodes in which the subjects did not correct themselves. The 
opposite level includes states in which the subjects identify the conflicting 
components as being inconsistent, treat them as problematic and try to solve the 
inconsistency. This state is defined as "a cognitive disequilibrium" or a "cognitive 
conflict". In many episodes in the present study, a gradual change with time, in the 
awareness level of the subjects, could be traced, which may point to occurrence of 
learning: from a state in which the inconsistency was a hidden one, and was disclosed 
only as a consequence of an external interference (a remark or a question by one of 
the group members or the interviewer), it became more conscious, and the reaction of 
the subject to it became more independent and quick. An evidence for the learning 
process can be also found in the post test which was given three months later. In 
many cases, a stable change in the mental image could be identified. In this matter 
there was a difference between the two types of difficulty: it seems that most of the 
subjects indeed visualized the infinite continuation of the straight line and the plane. 
Only one out of 106 subjects marked this time one of the possibilities a, b or c of 
question 1. In the explanations which were given after completing the questionnaire, 
it seemed that the infinity attribute was internalized properly and became intuitive. 
However, in regard to the lack of thickness, there were still many indications for 
loose knowledge. 30% of the subjects (in comparison to 61% at the beginning) were 
still "taken in" and chose the possibility e (some of them reconsidered their answer 
and corrected it while trying to explain). 
The awareness of the contradiction and the attempt to solve it are actually analytical 
considerations which control the primary intuitive answer. We see here, therefore, 
states in which the combination of the visual-intuitive facet and the analytical facet, 
yields benefits of overcoming misconceptions. 
CONCLUSIONS 
The present study had two main goals: one was to examine the difficulty in 
perception of the concepts "straight line" and "plane", and to expose phenomena of 
inconsistency between the formal knowledge and the mental image of subjects 
regarding these concepts. The second goal was to point to the contribution of the 
analytical visual combination in overcoming the difficulty. As we have seen in the 
instances presented, what usually led to the solution of the conflict was a discourse 
which raised awareness and an attempt to process the data analytically. This 
analytical awareness also enabled a wise use of the visual aids: the analytical thinking 
served as a watchman that reminded the subject the limitations of such aids and the 
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difference between what is seen and what should be visualized. It seems that the 
results of the study show an increasing awareness of the subjects to these limitations. 
Some demonstrated a stable change in the mental image. Others demonstrated an 
unstable knowledge which still needs "analytical reminder". Thus, the analytical-
visual combination is revealed as a supportive factor in the learning process. 
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LONGTERM-STUDY OF AN INTERVENTION IN THE 
LEARNING OF PROBLEM-SOLVING IN CONNECTION WITH 

SELF-REGULATION  
Christina Collet and Regina Bruder 
Technical University of Darmstadt 

 
This article provides an overview of a one-year project on teacher training in 
connection with a material-based teaching concept for the learning of self-regulation 
in normal maths lessons. The results of the study particularly show increased 
performance of students in problem-solving during the year of the project. This 
article focuses on a follow-up-study run with 10 participating classes for one year 
after the end of the project. The results of this study confirm the stability of the 
problem-solving skills of the students and especially the sustainability of the teacher 
training based on this teaching concept.  
BACKGROUND 

Nationally and internationally, the enhancement of problem-solving competencies in 
maths lessons is considered important (cf. e.g. NCTM, 2000). The results of the PISA 
study in 2003 reveal that German students have enough cognitive potential to solve 
problems yet are not making sufficient use of it for the creation of expert competence 
(cf. Törner et al., 2007). This result underlines the importance of integrating problem-
solving in maths lessons. The education standards for mathematics (cf. Büchter & 
Leuders, 2005), established in 2003 by the Standing Conference of German 
Educational und Cultural Ministers (KMK) as a reaction to the results of the 
international comparative studies, list problem-solving as one of six competencies to be 
developed by students at the end of intermediate secondary education. This implicitly 
questions how problem-solving competency can be enhanced in regular maths lessons. 
Since the eighties, a broad range of ideas has been developed in maths didactics for the 
enhancement of problem-solving (cf. Törner et al., 2007). Many of these ideas are 
based on the four-step phase model by Polya as a guideline for problem-solving. The 
studies on problem-solving, which often concentrate on a small group of students, 
confirm that problem-solving can be improved by training programs (cf. e.g. 
Schoenfeld, 1985; Da Ponte, 2007). There are the following research desiderata: 

• At present there is a lack of problem-solving concepts empirically tested 
with a greater number of students (cf. Heinze, 2007), 

• In the didactic research little attention was paid to the way teachers are 
teaching problem-solving in regular maths lessons (cf. Lester & Charles, 
1992). 

Within the framework of a study sponsored by the German Research Foundation 
(DFG), a further training course for teachers was run on the basis of a material-
supported teaching concept for problem-solving learning in connection with self- 
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regulation in maths lessons of secondary school level I (cf. Collet & Bruder, 2006; 
Komorek et al., 2007). The study takes up the above-mentioned research desiderata. 
The field study which was run with 48 teachers (49 school classes) investigates 
effects on students as well as on teachers through quantitative and qualitative 
methods. 
OVERVIEW OF THE TEACHING CONCEPT AND THE FURTHER 
TEACHER TRAINING 

The material-based teaching concept for the learning of problem solving in 
connection with self-regulation integrates the four-step model by Polya (1949), ideas 
regarding the long-term enhancement of problem-solving in maths lessons by Bruder 
(cf. Bruder, 2003), the process model for self-regulated learning following Schmitz 
(cf. Schmitz & Wiese, 2006), which is constructed on ideas by Zimmermann (2000) 
on self-regulation and a theory by De Corte et al. (2000), according to which self-
regulated maths learning and problem-solving are connected with characteristics of 
the person and the environment.  
According to Bruder (2003) the following three learning goals are connected with the 
integration of problem-solving and self-regulation in maths lessons: asking 
mathematical questions particularly in everyday situations, understanding and 
learning to adapt heuristic procedures to work on problems and strengthening the 
willingness to perform and the reflective capability of students. These goals can be 
reached using the teaching concept for problem-solving in connection with self-
regulation (cf. Collet & Bruder, 2006). Problem-solving capabilities are developed in 
connection with self-regulation in four steps, starting with adaptation and awareness 
of heuristic approaches with subsequent exercises on the widened context of strategy 
application.   
 

 
Figure 1. Progress of the further teacher training and instruments used for evaluation. 

This teaching concept was first tested in extra-curricular student training programmes 
with teacher trainees and was positively evaluated (cf. Komorek et al., 2007). A 

 Output Concept integration 

Beginning of SY 04/05 End of SY 04/05  

Instruments: 

repertory grid, 

teacher questionaire,  

student test,  

student questionnaire  

 

Support offered: 

Material on the learning of problem-
solving,  

for the enhancement of self-regulation 

math database www.madaba.de, 

lesson reports, work products 

Input   Follow-up 

End of SY 05/06  

Instruments: 

student test  

Instruments: 

repertory grid, 

teacher questionaire,  

student test,  

student questionnaire  
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further teacher training on this teaching concept run in the school year 2004/2005 was 
intended to evaluate the implementation of the teaching concept in regular maths 
lessons. Fig. 1 shows the progress of the further teacher training and the instruments 
used for evaluation. The participating teachers underwent  training on the teaching 
concept at the beginning of the school year (SY). During the school year different 
supporting tools were put at their disposal, e.g. tasks on problem-solving, lesson 
reports to be kept by the teachers as a monitoring instrument (cf. Collet et al., 2007). 
The teachers were also asked to submit specific teaching material (a work product) to 
the project leaders, to document the implementation of the teaching concept (cf. 
Collet et al., 2007). One year after the further training a follow-up study was run with 
10 of the previously participating project classes to check the stability of student 
performance without further project coaching. 
DESIGN OF THE STUDY AND RESULTS OF THE MAIN STUDY 
As the superiority of combined teaching of problem-solving and self-regulation could 
not be taken for granted, three groups were established to integrate respective aspects 
(problem-solving (PL) or self-regulation (SR) or both in combination (PS)) in the 
lessons. The main study was carried out in a control group design. The participating 
48 teachers were from nine schools with 29 7th classes  and 20 8th classes. The 
teachers were teaching at higher-track schools (Gymnasium) and intermediate-track 
and lower-track schools. The central question of the main study was: 

• What effects has  further teacher training with a given teaching concept on 
the teachers and their students?  

The results of the main study in the project year show that the essential contents of the 
concept were integrated into the lessons by the teachers, e.g. heuristics, elements for 
internal differentiation and aspects of self-regulation. This is documented in the lesson 
reports and by the teaching material of the teachers (cf. Collet et al., 2007) as well as in 
the data provided by the teacher survey (cf. Komorek et al., 2007). The lesson reports 
reveal that coaching within the school year can have positive effects on the 
implementation of the further training content in the lessons. Moreover the teachers’ 
knowledge has increased, as revealed in a qualitative Repertory Grid survey (cf. Collet 
& Bruder, 2006). The students show improved learning efficiency, especially with 
respect to their problem solving capabilities (cf. Collet & Bruder, 2006). No differences 
between the three further training groups were verified. Detailed information on the 
results during the further training year is available in Komorek et al. (2007).  
The follow-up study, one year after the project year, asks the question:  

• will the effects attained by the teachers’ further training concept remain 
stable for more than one school year without intervention? 

DESIGN AND RESULTS OF THE FOLLOW-UP-STUDY 
To analyse the time stability of the intervention effects attained with the teaching 
concept, the problem-solving capability of 10 higher-track school classes of class 7 
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students who had participated in the project was registered in a follow-up-study with 
the further teacher training contents PL, PS and SR one year after the end of the 
intervention with the further training concept, i.e. at the end of class 8. As the 
performance tests developed for the classes 7 and 8 contain 12 continuous test items 
(anchor items) it is possible to study the performance of students at three different 
times (covering almost two years). Table 1 shows the number of the participating 
students in the different groups, split up according to sex.  
 

Further training 
content PL PS SR Total 

Male 57 12 20 89 
Female 40 20 21 81 
Total 97 32 41 170 

Table 1. Follow-up-study: Number of students according to groups and sex 
 

The following results refer to 170 students whose problem-solving capability was 
analysed at three different times. The three periods are defined as follows: 

• Pre-test: t1 (beginning of school year 2004/2005) 
• Post test: t2 (end of school year 2004/2005) 
• Follow-up test: t3 (end of the school year 2005/2006). 

The following example shows the test item (“cinema“) for problem-solving worked 
on by the students during these three different test periods. 

Mike proposes a cinema-riddle: “Only a fifth of the seats are taken by adults. 10 more 
places are taken by boys. Moreover there are 30 girls in the cinema. 20 seats are empty. 
How many seats has the cinema?” 

The students can use different heuristic procedures to solve this problem, e.g. an 
informative figure, a table of systematic attempts, an equation or combined forward 
and backward working. 
PERFORMANCE DEVELOPMENT AND ANALYSIS OF HEURISTICS 
OVER THREE MEASURING TIMES 
The results of the problem-solving capability of the 170 students attained over the 
three test periods were as follows: the students improved their performance 
significantly during the project year. On average they were able to successfully solve 
one to two more tasks. No differences were observed during the project year 
regarding the further training content of the teachers, i.e. all groups (PL, PS, SR) 
developed similarly and showed clear performance development. Significant 
performance improvements were confirmed also in the follow-up-study. Students 
whose teachers had been trained in problem-solving and self-regulation (PS) in the 
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project year achieved the best results between the post test period and the follow-up-
study. 
Heuristic procedures have a central importance in the teaching concept. In order to 
analyse to what extent heuristic procedures had been used as part of the teaching 
concept to work on problem-solving tasks the solution methods for 6 of 12 
continuous test items were analysed with respect to the heuristics used by the 
students. One heuristic point was given per used heuristic. The results of this study 
show that the students in the pre-test are using more or less one heurism. On average 
it was possible to analyse two to three heurisms in the post test period and in the 
follow-up-study. The number of the heuristics used by the students in the follow-up-
study is stable compared with the post test period. The results show that heuristic 
approaches thematized in the further teacher training are reflected in the solutions of 
the students. Frequently used heurisms within certain test items in the post test period 
were also used in the follow-up-study. The number of the heuristic procedures 
adopted by the students is almost maintained in the follow-up-study. 
RESULTS OF TEST ITEM “CINEMA“ 
Performance increases over the three test periods become also evident in the test item 
“cinema“. While only 9% of the students had worked successfully on this test item 
initially, 19% (post test) and 25% (follow-up test) respectively were able to work 
successfully on this test item in the post test period. Both in the post test and in the 
follow-up-study the students mostly applied forward and backwardd working (50 
respectively 59 times), an equation (7 respectively 20 times) or an informative figure 
(4 respectively 8 times) as a heuristic approach. Fig. 2 shows the solution of this test 
item by a student on the basis of an informative figure.  
 

 

 

 

Figure 2. Student solution for the test item “cinema“ - student No. SR_AN09                        
(E: adults, J: boys, M: girls, F: free seats). 

DEVELOPMENT OF PERFORMANCE GROUPS OVER THE THREE TEST 
PERIODS  
In order to analyze the development of performance groups the students were divided 
into three performance groups: low, medium and good attainers, regarding their 
problem-solving capabilities at the beginning of the project in the pre-test. The 
performance groups were established according to the content of the test items. Fig. 3 
shows the development of student performance in the three performance groups after 
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division into these groups depending on their performance in the pre-test for the 12 
anchor items. 
 

 
Figure 3. Development of the performance groups depending                                    

on pre-test performance. 

All performance groups show significant performance increases between pre-test (t1) 
and post test (t2). The students classified as low attainers in the pre-test reached the 
level of medium attainers in the pre-test. Low and medium attainers showed 
significant performance increases between post test and follow-up-study. The 
development of performance groups between post test and follow-up-study is 
basically stable regarding the successful processing of tasks.  
STABILITY CHECK OF PROBLEM-SOLVING CAPABILITY 

A comparison of the results of the student performance at the end of class 8 was 
intended to find out if the students who had been taught according to the teaching 
concept in class 7 showed comparable or better attainment at the end of class 8 than 
students who were  taught with the same teaching concept in class 8. All higher-track 
school students from class 7 whose performance was analyzed over the three test 
periods (N=170) and all students from class 8 who had participated in the pre- and 
post test (N=283) were included. Figure 4 illustrates the development of the 
performance of students from the beginning of class 7 or 8 with regard to the 12 
continuous test items. Both groups developed equally between the pre-test (started at 
the beginning of class 7 or at beginning of class 8) and post test  (finished at the end 
of class 7 or end of class 8) and reached similar performance levels before the 
beginning of the further training. They reached a comparable level of performance by 
the end of class 8 (ANOVA). 
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Figure 4. Performance development of classes for anchor items. 

DISCUSSION 
The present report shows that on the basis of the teaching concept developed for 
problem-solving in connection with self-regulation in maths lessons at secondary 
school level I, teacher competencies for relevant aspects of problem-solving can be 
enhanced and student competencies for problem-solving developed. The results of the 
follow-up study run in 10 former project 7th classes in secondary schools confirm the 
stability of the problem-solving capabilities of the students. This result together with 
the results of the main study can be evaluated as a success regarding the further 
teacher training as well as of the teaching concept. Since 2005 the teaching concept 
has been implemented on the learning platform moodle (www.prolehre.de) for online 
teacher training following a blended-learning-system. 
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EXPANDED TOULMIN DIAGRAMS: A TOOL FOR 
INVESTIGATING COMPLEX ACTIVITY IN CLASSROOMS 

Anna Marie Conner 
University of Georgia 

 
Krummheuer’s adaptation of Toulmin’s model of argumentation has been widely 
used to examine collective argumentation in mathematics classrooms. I propose that 
an expansion of these diagrams provides a useful tool for examining both the role of 
the teacher in facilitating argumentation and levels of complexity in argumentation. 
The use of color or other symbols to denote the contributor of each part of an 
argument along with diagramming sub-arguments as connected to main arguments in 
episodes of argumentation allow more specific information to be recorded in each 
diagram. These expanded diagrams allow different approaches to new and relevant 
questions about learning, teaching, and classroom interaction by highlighting 
distinctions between argumentation in different classrooms. 
COLLECTIVE ARGUMENTATION IN MATHEMATICS CLASSROOMS 
Krummheuer’s (1995) description and adaptation of Toulmin’s (1958/2003) model of 
argumentation has been widely adopted in the mathematics education research 
community for the study of collective argumentation. New questions about the 
learning and teaching of mathematics through argumentation require an extension of 
Krummheuer’s work through an expansion of these diagrams that captures additional 
details of the collective argumentation that occurs within whole-class discussions in 
mathematics classes. These expanded diagrams allow for analysis of classroom 
interactions in contexts beyond those already examined and with emphases on both 
the teachers’ role and student learning.  
Toulmin introduced a structural model of an argument with four main parts (claim, data, 
warrant, and backing) and two parts that concern the strength and applicability of the 
warrant (qualifier and rebuttal). Toulmin’s use of argument is in the classic rhetorical 
sense of an individual who attempts to convince an audience of the veracity of a claim. 
The individual and audience operate in a “field” - such as law, science, or mathematics - 
within which particular backings are accepted as valid. In other words, Toulmin suggested 
that arguments are valid within particular fields because of the validity of the warrants and 
backings in that field, even though the basic form or layout of an argument is consistent 
across many fields (see Figure 1). Toulmin defined each part of an argument as follows: a 
claim is the statement whose truth is being established; data is evidence presented in 
support of the claim; a warrant is a bridge between the data and claim, giving reasons that 
the particular data presented is relevant to the claim; backing, which is usually implicit, is 
support for the warrant’s validity in the particular field in which it is used; a qualifier is 
indicative of the strength of the warrant (usually a word such as “probably”); and a 
rebuttal is a description of circumstances under which the warrant would not be valid.  
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DATA So, 

Since,

WARRANT

On account of

BACKING

QUALIFIER CLAIM 

REBUTTAL
Unless

,

 
Figure 1. Layout or structure of an argument, adapted from Toulmin (1958/2003). 

Krummheuer adapted Toulmin’s model of an argument constructed by an individual 
to one that is appropriate for collective argumentation. Collective argumentation 
occurs when a group of people (often several students and a teacher) work together to 
establish the validity of a claim. In his work, Krummheuer focused primarily on what 
he called “the ‘core’ of an argument” (p. 243), which was composed of a claim with 
relevant data and warrant. Krummheuer used the concept of framing to relate 
Toulmin’s field of argument to the context of a mathematics classroom. Within the 
field of mathematics education, or a particular mathematics education classroom, 
certain warrants may be accepted as valid (while others are rejected), that is, there are 
certain backings that are “collectively accepted basic assumptions” (p. 244). On the 
other hand, individuals have different experiences and different ways of creating 
meaning. Because of these framings, individuals may accept, infer, or imply different 
backings for the same warrant in the same argument. Since backings are usually 
implicit, it is only possible to know what backing an individual intends for a warrant 
if he or she states it explicitly, and even then, one’s understanding of that backing 
may be different from what the individual intended. Krummheuer argued that the 
core of an argument is interactively established by participants in the argumentation, 
and it is the core that is particularly important to thinking about how learning may 
occur, since the backing is generally implicit and is thus not generally accessible to 
an observer. On the other hand, Inglis, Mejia-Ramos, and Simpson (2007) argued that 
qualifiers and rebuttals are important for mathematical argumentation and, as such, 
should be included in analyses of collective argumentation.  
The usefulness of Krummheuer’s (1995) adaptation of Toulmin’s (1958/2003) model 
of argumentation for studying student activity within classrooms that are oriented 
toward problem-solving and class discussions has been well-established. 
Krummheuer’s initial assumption in proposing the analysis of collective 
argumentation was that collective argumentation contributes to student learning in 
such classrooms, and, as such, is worth studying. Whitenack and Knipping (2002) 
used this model to describe opportunities for student learning during collective 
argumentation in a second grade classroom and hypothesized that the learning they 
documented through their study may have been attributable to the episodes of 
argumentation they observed. Yackel (2001) used Toulmin’s structure to examine 
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student learning in second grade and college classes, and she suggested that 
classroom instruction that emphasizes argumentation leads to learning with an 
emphasis on reasoning. 
Several researchers have used Krummheuer’s (1995) adaptation of Toulmin’s 
(1958/2003) model of argumentation to examine the work of the teacher in 
classrooms characterized by an explicit focus on argumentation. Forman, 
Larreamendy-Joerns, Stein, and Brown (1998) suggested that examining classroom 
argumentation allows one to focus on both the students’ contributions to the class and 
the teacher’s roles within the classroom. They also suggested that examining 
collective argumentation may give insight into “the impact of educational reform in 
mathematics” (p. 547). Forman and Ansell (2002) described the main activities of the 
teacher during collective argumentation as soliciting contributions from students, 
asking questions to clarify these contributions, and revoicing their contributions. 
Yackel (2002) has demonstrated the crucial role of the teacher in ensuring that the 
data and warrants for claims are made explicit in the classroom and in guiding the 
discussion in order to highlight appropriate mathematical ideas. 
Krummheuer’s adaptation of Toulmin’s model to collective argumentation in 
mathematics classrooms has been used successfully to examine student learning and 
to describe the roles and activities of the teacher in classes where one of the main 
goals of the teacher was to facilitate argumentation (or learning through 
argumentation). This model, and extensions of this model, may be useful for 
examining aspects of practice even in classrooms where there is no explicit goal of 
promoting argumentation, where the emphasis on small group problem solving is 
less.  
In a recent study1, I used an adaptation of Toulmin’s model, based on Krummheuer’s 
work, to examine the practice of three student teachers, Jared2, Karis, and Lynn. 
These three student teachers did not have specific goals of facilitating argumentation 
and used primarily whole class instruction. My goal was to compare how they 
facilitated or supported argumentation to their conceptions of proof (see Conner, 
2007, for more details). As I examined the teachers’ roles in facilitating 
argumentation, it was necessary to distinguish between parts of arguments 
contributed by the teachers and parts of arguments contributed by their students. In 
addition to finding that the student teachers’ facilitation of argumentation aligned 
with their conceptions of the purpose and need for proof in mathematics, within this 
analysis, I observed, as suggested by Whitenack and Knipping (2002), that arguments 
were often part of longer, more complex episodes of argumentation. I took an episode 
                                                            
1 This paper is based in part on the author’s doctoral dissertation, completed at The Pennsylvania State University under 
the direction of Rose Mary Zbiek, supported in part by the National Science Foundation under Grant No. ESI0083429 
to the University of Maryland with a major subcontract to The Pennsylvania State University and by a research 
initiation grant from The Pennsylvania State University College of Education Alumni Society. Any opinions, findings, 
and conclusions or recommendations expressed in this document are those of the author and do not necessarily reflect 
the views of the National Science Foundation or the College of Education Alumni Society. 
2 All names are pseudonyms to protect the identity of participants. 
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of argumentation to be a claim together with the data and warrants that supported it 
and any sub-arguments that were constructed to support the validity of the data or 
warrants for that claim. Thus, while some episodes contained only one argument, 
others contained up to nine.  
ADDITIONAL INFORMATION FROM MODIFIED DIAGRAMS 
Within published studies, arguments are most often presented individually, with data, 
warrant, and sometimes an inferred backing for each claim. Depending on the study, 
the argument may be marked as being contributed by an individual or parts of the 
argument may be attributed to individuals. I propose that more information about 
collective argumentation, and particularly about roles of the participants in collective 
argumentation, can be contained in and displayed by a modification of the 
commonly-used diagram.  
Use of color and line style to indicate contributions from students or teacher. 
In order to differentiate between the contributors of parts of arguments while still 
maintaining the form of the diagrams, I used color and line-style to differentiate 
between parts contributed by the student teachers, parts contributed by the students, 
and parts interactively contributed by the teachers and students together. Because the 
study was concerned with the role of the teacher in supporting argumentation, it was 
not necessary to distinguish precisely which student contributed each part. If this were 
necessary, using color or line style might become too cumbersome to be efficient, but 
with only three styles used, it was straightforward to differentiate between the 
contributions of students and the student teachers, as illustrated in Figure 2. 
 

The solution to the 
system of equations 

3 2
2 3

y x
y x
= +
= − −

 is (-1, -1). 
The lines intersect 
at (-1, -1) So, 

Since 
Our solution is where 
theyÕre going to intersect. 
The point (-1, -1) makes 
both equations true. 

 
Figure . Example of argument from Jared’s algebra class;                                        
  denotes a student contribution,  denotes a teacher                                      

contribution, and  denotes that both contributed. 

While, like Krummheuer, I only diagrammed the core of each argument, employing 
the concept of framing allowed me to use the warrants that were made explicit along 
with observations of when warrants were left implicit, to infer the backings the 
student teachers were using in the collective argumentation in their classes. Because 
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the analysis centered on the student teachers, it was not necessary to infer the backing 
accepted or implied by the student; it was only necessary to examine the words and 
actions of the teacher within and across episodes of argumentation, accepting that the 
students’ framing would suggest a myriad of possible backings. 
Use of extended diagrams to indicate complexity and depth of argument 
To account for the complexity of argumentation within the observed classes, the 
diagrams were modified to show several levels of sub-arguments while maintaining the 
styles that signified contributors (see Figure 3). While this was sometimes logistically 
difficult, patterns in contributions were apparent in this form that could be seen much 
less readily if each argument was diagrammed separately from the episode in which it 
occurred. For instance, examining the diagrams of episodes of argumentation led to the 
hypothesis that in Karis’ calculus class, Karis tended to contribute more parts of 
arguments when the episode of argumentation was longer, that is, when it included 
more sub-arguments. In addition, these diagrams would allow an analysis of the 
complexity of argumentation in a classroom, and then an investigation of who 
contributed to the complex argumentation. In Jared’s algebra class, it became clear that 
arguments dealing with systems of equations tended to be more complex than those in 
the next unit, involving polynomial expressions, if complexity is measured by number 
of sub-arguments in an episode of argumentation. Of course, simply counting sub-
arguments is not enough to completely characterize complexity. But, an episode of 
argumentation that contains several sub-arguments, supporting several different parts 
of the argument, as well as additional sub-sub-arguments, is likely to be more complex 
than an argument that consists of a claim, a datum, and a warrant.  

F bisects AD So, 

Since 
So,

Since 

So, 

Since 

So,

Since 

So, 

Since 

So, 

Since 

I said F was our 
midpoint 

AF  FD 

AF and FD are 
congruent; BF 
is the other side 

BF  BF It is itself 

Reflexive [property] 

We have two 
triangles that we 
could say have two 
congruent sides. 

Unspecified (AF and 
BF are two sides of 

AFB; FD and BF are 
two sides of BFD) 

We are going to 
use the SSS 
inequality theorem 

We do not have an 
angle measure; we 
know something 
about the sides. 

Unspecified (SSS 
inequality theorem 
requires knowledge of 
3 sides, no angles) 

We have two 
triangles with two 
sides congruent;  
 we can use the 
SSS inequality 
theorem; AB > BD 

AB > BD AB = 5; 
BD = 3

Unspecified (5 > 3) 

m∠AFB > m∠BFD

SSS inequality 
theorem 

MAIN CLAIM

DATA 

WARRANT 

CLAIM 

CLAIM 

CLAIM 

CLAIM 

CLAIM 

DATA 

DATA 

DATA 

DATA 

DATA 

WARRANT 

WARRANT 

WARRANT 

WARRANT 

WARRANT 

Key: Student 

Teacher 

Both 

 
Figure 3. Example of episode of argumentation from Lynn’s geometry class;    

consists of a main argument, three sub-arguments, and two sub-sub-arguments;  
refers to quadrilateral ABDC in Figure 4. 
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A 
3 

3 

4 

5 

F 

 
Figure 4. Quadrilateral ABDC, referenced in the argument diagrammed in Figure 3. 

When the analysis involves diagrams such as Figure 3, it is important to go back and 
forth between individual arguments and their place within the structure of the larger 
episode. For instance, one of the sub-arguments in Figure 3 has a claim (we have two 
triangles that we could say have two congruent sides) and data (AF and FD are 
congruent; BF is the other side), but no specified warrant. However, these data are 
supported by two sub-arguments, each of which has a complete core, and each of 
which refers to the diagram in Figure 4, at least implicitly. This gives credence to the 
inferred warrant for the original sub-argument and serves to begin to illustrate the 
complex nature of the argumentation in this class. To really characterize the complex 
nature of the argumentation and the utility of these diagrams, it would be necessary to 
examine multiple diagrams of episodes of argumentation and compare and contrast 
the various features of them. 
Knipping (2003) used a modified diagram to analyse and compare the structure of 
argumentations in proving situations. These diagrams were similar to the ones 
described, but did not retain the specifics of the argument or the contributor. Instead, 
shapes were used to denote parts of the argument. For instance, a rectangle 
represented the main claim, a circle represented a claim or data, and a square 
represented a warrant or backing. According to her key, the episode of argumentation 
diagrammed in Figure 3 would be diagrammed as in Figure 5.  
 

Key: Claim, Data 

Warrant 

Main claim 
 

Figure 5: Argument from Figure 3 diagrammed according                                       
to Knipping’s (2003) scheme to show structure. 
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I propose that a combination of these modifications would give the most information 
to the investigator, allowing for an investigation of structure, complexity, and roles of 
students and teacher in investigating collective argumentation in mathematics 
classrooms. For instance, a condensed form of argument layout, in which shapes as 
used by Knipping (2003) were enhanced by color or line style, would allow for an 
investigation of teacher contributions while maintaining the structural emphasis, 
allowing for an investigation of, for instance, differences in support for 
argumentation in classrooms with clearly different argumentation structures. On the 
other hand, the use of shapes in the background to denote parts of arguments in a 
diagram such as the one seen in Figure 3 may allow for other pertinent details to be 
brought to the forefront. 
As the study of teaching and learning through collective argumentation begins to be 
situated in classroom contexts where argumentation is not necessarily an explicit goal 
of the teacher’s instruction, it is important to have tools to distinguish between 
structures and patterns of argumentation. Investigating the structure of argumentation 
allows for a characterization of classrooms in which the argumentation is more 
fruitful (if an analysis of student learning is also carried out). These modified 
diagrams and the accompanying extensions of analysis allow investigation of diverse 
and complex questions, including an examination of the teacher’s role in 
argumentation and a search for what components of the teacher’s knowledge, beliefs, 
and experiences may impact the observed patterns, structures, and facilitation of 
collective argumentation within classrooms. 
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This paper reports on a section of the Early Algebraic Thinking Project (EATP) which 
focused on Australian Years 3-4 (age 7-9) students’ abilities to generalise mathematical 
structure in relation to equivalence of expressions (with and without unknowns). It 
focuses on learning activities involving a sequence of representations to show that 
change resulting from addition-subtraction requires the performance of the opposite 
change (subtraction-addition respectively) by the same amount in order to return to the 
original state (e.g., x = x+p–p or x–q+q in algebraic symbols). It shows that children of 
this age can generalise this mathematical structure and that effective teaching for 
generalisation uses creative representation-worksheet partnerships.  
EATP was a five-year longitudinal project that studied a cohort of students progressively 
from Years 2 to 6 deriving from 5 inner city middle class state schools in Queensland. 
The cohort was chosen for their early algebraic thinking, particularly their ability to 
generalise mathematical structure in patterning, function and equation situations. For 
EATP, mathematical structure is built around relationship and change (Linchevski, 
1995; Scandura, 1971) and is constrained by principles i.e. powerful mathematical ideas 
where meaning is encoded in the structure between the components not in the form of 
the components (Ohlsson, 1993). (Note: EATP was funded by Australian Research 
Council Linkage grant LP0348820.)  
An expression is a combination of numbers, operations and/or variables (e.g., 7, 2x5+3, 
4x–3) while an equation is equivalence of expressions (e.g., 13=2x5+3, 4x–3=2x+5). 
Expressions are equivalent if the change from one to another is by addition/subtraction 
of 0 or by multiplication/division by 1. EATP has studied two particular principles 
associated with equivalence of expressions: the compensation principle, which comes 
from a relationship view of structure (e.g., 8+5=8+2+5–2=10+3); and the backtracking 
principle, which comes from a change view of structure (e.g.,?=?+5–5, so ?+5=11 means 
?=11-5). EATP has studied how both these principles can be generalised by Year 3-4 
students; this paper only focuses on the backtracking principle.   
Generalisation and representation. For EATP, early algebra is a way of studying 
arithmetic that develops number sense, algebraic reasoning and deep understanding of 
structure (Carraher, Schliemann, Brizuela & Ernest, 2006; Fujii & Stephens 2001; 
Steffe, 2001). The basis of early algebra (and mathematics in general) is generalisation 
(Kaput, 1999; Lannin, 2005), for example, generalising from tables of values and 
patterns to relationships between numbers and pattern rules; and generalising from 
particular examples in real-world situations to abstract representations, principles and 
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structure. There has been general consensus for some time that mathematical ideas are 
represented externally and internally (Putnam, Lampert & Petersen, 1990) and that 
mathematical understanding is the number and strength of the connections in a student’s 
internal network of representations (Hiebert & Carpenter, 1992). It has long been argued 
that generalising mathematics structures involves determining what is preserved and 
what is lost between the specific structures which have some isomorphism (Gentner & 
Markman, 1994; English and Halford, 1995).  
EATP’s research (Warren, 2006; Cooper & Warren, in press), and that of others (e.g., 
Carraher et al., 2006; Dougherty & Zilliox, 2003), has shown that young students can 
generalise to principles. In developing these generalisations, EATP has been influenced 
by: (i) the reification sequence of Sfard (1991); and (ii) the Mapping Instruction 
approach of English and Halford (1995). In analysing the act of generalisation, EATP 
has used: (i) the three generalisation levels of Radford (2003, 2006), factual (gesture 
driven), contextual (language driven) and symbolic (notation driven); (ii) the two 
components of Radford, grasping and expressing: (iii) the two generalisation forms of 
Harel (2001), results (from examples) and process (with justification); and (iv) the quasi-
variable notion of Fuji and Stephens (2001). EATP’s research suggests that quasi-
variable is extendable to generalisation to give a notion of quasi-generalisation, and that 
the ability to express generalisation in terms of numbers is a step towards full 
generalisation (Warren, 2006; Cooper & Warren, in press). In designing activities to 
enable these generalisations, EATP has been influenced by: (i) the four step sequence of 
Dreyfus (1991), one representation, more than one representation in parallel, linking 
parallel representations, and integrating representations; (ii) the argument of Duval 
(1999) that mathematics comprehension results from coordination of at least two 
representation forms or registers; the multifunctional registers of natural language, and 
figures/diagrams, and the mono-functional registers of notation systems (symbols) and 
graphs; and (iii) the contention of Duval that learning involves moving from treatments 
to conversions to the coordination of registers.  
DESIGN OF EATP 
The methodology adopted for EATP was a longitudinal and mixed method using a 
design research approach, namely, a series of teaching experiments that followed a 
cohort of students based on the conjecture driven approach of Confrey & Lachance 
(2000). It was predominantly qualitative and interpretive (Burns, 2000) but with some 
quantitative analysis of pre-post tests. In each year, the teaching experiments 
investigated the students’ learning in lessons on patterning and functional thinking 
(using the change perspective), and equivalence and equations (using the relationship 
perspective). EATP was based on a re-conceptualisation of content and pedagogy for 
algebra in the elementary school and as such the teaching experiments were 
exploratory in nature. The representations chosen were intended to be inclusive of all 
students; however, the necessity to respond to individual student needs was a position 
acknowledged from the outset. Multiple sources of data were collected and only those 
findings for which there was triangulation were considered in analysis. Adequate 
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time was spent in the field observing the lessons to substantiate the reliability of the 
collected data. The instruments used were classroom observations (video and field 
notes), teacher and student interviews (planned and ad hoc), teacher reflections, 
yearly and pre-post tests, and artefacts (students’ work).   
The particular lessons for this paper encompassed teaching the backtracking principle for 
addition and subtraction as part of the process leading to solving simple addition and 
subtraction problems for unknowns. They were conducted in a Year 3 (22 students) 
classroom in a middle class school and a Year 4 (28 students) classroom in a working 
class school. The Year 3 lesson was conducted following a sequence of lessons 
introducing the balance rule for addition and subtraction and was designed to be taught 
with resources including bags containing objects, representing the unknown, a balance 
beam, and pictures and symbols on worksheets. The Year 4 lesson was undertaken 
before a similar series of lessons. It involved applying the balance rule to simple addition 
and subtraction problems with unknowns, and was designed to be taught with a number 
line and pictures and symbols on worksheets. For both lessons, the worksheets were 
especially developed to reinforce the backtracking principle. Students were asked to 
predict and justify in both lessons with no explicit requests to generalise to any number. 
The lessons used the enquiry approaches of Mapping Instruction (English & Halford, 
1995) to discover similarities across different examples and representations.  
FINDINGS AND DISCUSSION 

The data collected was a combination of audio and video transcriptions, pre-post 
testing, graded worksheets displayed in Excel spreadsheets, field notes and written 
reflections. This information provided rich descriptions of each teaching experiment 
that contained relative information between the teaching action and students learning 
responses, in relation to records of performance and performance change. These 
descriptions were then analysed for evidence of student learning and generalisation 
processes followed for that learning.  
Year 3 lesson. This lesson focused on addition equations, representing them on a beam 
balance with objects (for numbers) and cloth bags containing objects (for unknowns), 
using balance to represent equals (see Figure 1). The representation did not allow for the 
operation of subtraction to be modelled.  
 
 
 
   Equation: 3 + 2 = 5    Equation : ? + 2 = 5 

Figure 1. Beam balance representations for equations. 

Earlier lessons had: (i) connected the beam balance representation with objects to 
number equations (see Figure 5); (ii) introduced the balance rule (i.e. adding or 
removing objects from one side of the equation requires the same action with the same 
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number of objects to the other side); and (iii) introduced the notion of the unknown 
with the cloth bag. The focus lesson discussed how the value of the unknown could 
be found by using the balance rule, that is, for ?+2=5, determining that the inverse of 
the operation, subtracting two from both sides, is the balancing action that will give 
the value of the unknown. This was reinforced by worksheets showing pictures of 
unknowns and counters in a balance situation, requesting the balancing action and 
value of the unknown, followed by a final worksheet requesting balancing action and 
value of unknown, with equations in symbol form. This worksheet contained some 
questions with large numbers and operations other than addition, and one question 
with two operations.  
Evidence collected through video showed that most students could determine the 
unknown for the simple equations represented on the balance. This ability was 
repeated for the picture worksheet. Table 1 shows the number of students who 
successfully gave the inverse action in the final worksheet. The number of correct 
responses was high for addition and for subtraction. The number of correct responses 
reduced markedly for multiplication, division and for two operations, but it should be 
noted that there was no reference to, or focussed teaching on, these operations prior 
to the introduction of the worksheet.  

Item: What do you do to both sides? Correct action 
? + 11 = 36 22 
? – 7 = 6 19 
8 + ? = 3 19 
? – 30 =54 15 
2 x ? = 12 4 
? ÷ 3 = 6 5 
3 x ? + 4 = 19 1 

Table1. Number of correct responses in terms of inverse balancing action (n=22) 

Year 4 lesson. This lesson focused on expressions as well as equations. The students 
first discussed what was required to reach a solution for equations involving addition 
with unknowns, that is, to determine an action that would leave the unknown on its own. 
To do this, the lesson focused on the expression that contained the unknown and the 
operation, and represented the expression in two ways: first by extending the balance 
representation in Figure 1 to expressions by removing the balance and the objects for the 
total and using a number line (see Figure 2).  
        
  Beam balance model      Number line model 

Figure 2. Beam balance and number line representations for different expressions. 

The beam balance activity was similar to the Year 3 lessons, except the focus of 
discussion and worksheets was only on the balancing action, not the unknown’s value. 

?+2  ?–3       ?  ?+4 
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The number line activity was new to Year 4 and required the students to place the 
unknown anywhere and move right for addition and left for subtraction. After this 
skill was achieved through discussion and worksheets, the students were challenged 
to determine the change that would result in returning to the unknown. Discussion 
focused on generalising the principle that the unknown could be reached by the 
inverse operation (–4 for ?+4 and +3 for ?–3), as this was equivalent to adding zero. 
At this point, the learning that had already occurred with regard to functions and 
identifying their inverses (Warren, 2003, and Warren & Cooper, 2003), reinforced 
generalisation as did the Mapping Instruction approach of comparing addition and 
subtraction changes. 
A final worksheet was used to ascertain students’ understanding of the backtracking 
principle. It contained items that asked students to draw, for example, ?+6 on the 
number line and to identify the operation that would result in a return to the 
unknown. The results were overwhelming; all 28 students were successful for all 
items except the final two. Twenty-four students correctly answered the first of these 
items (where the students were requested to draw ?+6 and ? –6 on the same line and 
give both inverse operations) and 22 correctly answered the second of these items 
(where the students were requested to draw ?+10 and ?–8 on the same line and give 
both inverse operations). The number line was a particularly efficacious 
representation tool for inverse.  
However, as a request to write a generalisation was not asked and there were no items 
that referred to, for example, ?+n, the students were only able to show quasi-
generalisation (Fuji & Stephens, 2001) or contextual generalisation (Radford, 2003) 
at best. Viewing of the video tape showed that some children were able to justify 
their answers in discussion in a way that indicates process generalisation (Harel, 
2001).  
Interestingly, the backtracking and balance principles have the opposing actions (the 
“opposite” operation for inverse and the same operation for balance). After the 
successful generalising lesson described above which explicitly identified the 
backtracking principle for expressions with unknowns, some students became 
confused when this principle was joined with the balance principle to solve for 
unknowns in later lessons (this is an example of what EATP is calling a “compound” 
difficulty).  
CONCLUSIONS AND IMPLICATIONS 
It is difficult to pull conclusions and implications from all the teaching experiments in 
EATP without a deeper analysis of all the data occurring, including comparisons across 
generalisations for different principles and structures. However, the two lessons 
described in this paper indicate the following conclusions.  
First, students can learn to understand powerful mathematical structures like the 
backtracking principle, usually reserved for secondary school, in the early and middle 
years of elementary school if instruction is appropriate (at least in language and quasi-
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variable form – Fuji and Stephens, 2001). In EATP, because of separate focus on 
relationship through equations and change through function machines, there was overlap 
with regard to the backtracking principle that reinforced inverse in both perspectives. 
This shows that a teaching focus on structure is a highly effective method for achieving 
immediate and long term mathematical goals, particularly with respect to portability.  
Second, the position that learning is connections between representations (Hiebert & 
Carpenter, 1992) and conversions between registers and domains (Duval, 1999), was 
supported. The combination of balance and number line models was particularly 
powerful. This reinforces the teaching approach of EATP (Warren, 2006) which is based 
on a socio-constructivist theory of learning, inquiry based discourse and the 
simultaneous use of multi-representations to build new knowledge. The major 
representations used in the lesson were effective, particularly in the order that sequences 
of representations were implemented, from acting out with materials through diagrams 
to language and symbols. In particular, beam balances, cloth bags and objects and their 
pictures, integrated with number lines were very effective representations in motivating 
students, solving problems and building principles and structure.  
Third, learning can be enhanced by creative representation-worksheet partnerships. 
Often teachers restrict worksheets to the symbolic register. EATP has shown that 
creative use of pictures and directions can allow a worksheet to reinforce 
understandings (as well as procedures) and to highlight principles.   
Fourth, English and Halford’s (1995) Mapping Instruction teaching approach to 
principle generalisation has proved its efficacy in this and many other EATP lessons. 
It directs us towards comparing activity from different domains (e.g., addition and 
subtraction) and activity from different representations (e.g., balance and length).   
Fifth, although they were developed for older students, some theories regarding 
development of generalisation have application in early generalisation. This is 
particularly so for Radford’s (2003) theory regarding factual and contextual levels of 
generalisation, Harel’s (2001) theory regarding results and process generalisation, and 
Fuji and Stephens (2001) notion of quasi variable (which we have adopted as quasi-
generalisation). Harel directs us towards justifying as well as identifying generalisation, 
Radford towards role of gestures (action, movement) and language in early 
generalisation and Fuji and Stephens towards the acceptability of number-based 
descriptions of generalisations. As well, Radford’s distinction between grasping and 
expressing generalities was important; these are two aspects often confused by the 
teacher. In many instances, students’ problems with generalisation were with expressing 
the generalisation, not grasping it. Students often lacked the language with which to 
discuss generalisation and lessons often became a focus on language development.  
Sixth, some activities necessary for building structure affect cognitive load. This is 
particularly so when large numbers are used to prevent guessing and checking as a 
strategy for determining answers and to direct students towards the principle. Furthermore, 
the example in this paper has shown the “compounding” effect of building structure 
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through small steps, with the conflict that occurred between the balance and backtracking 
principles. It is necessary to build a superstructure into which to place conflicting 
principles such as backtracking and balance for finding solutions of linear equations.  
Finally, although EATP involved creative lesson development and many new activities 
and outcomes, the students’ problems in these lessons as well as in other EATP lessons 
did not really lie with the new work, but with the basic arithmetic prerequisites. As soon 
as numbers appeared, students attempted to close on operations and did not attend to 
pattern and structure to the same extent as in un-numbered situations (similar to findings 
of Davydov, 1975, supported by Dougherty & Zilliox, 2003). Furthermore, students’ 
abilities to interpret and create real world situations in terms of the actions with 
materials, diagrams/figures and symbols of early algebra, lagged behind their abilities to 
process the representations and was a constant difficulty in EATP, a difficulty that 
increased as the cohort of students moved into middle school years.  
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This paper uses Lave and Wenger’s (1991) notion of community of practice as a lens 
to analyse a study in a remote Indigenous Community where Indigenous blocklaying 
students are being supported to learn the mathematics necessary for certification. 
The paper shows that the blocklaying students’ community of practice is rich in terms 
of what is shared amongst the members and with whom they interact, involving a 
sense of service to their community as well as an interest in building. The paper 
concludes by drawing some implications for teaching mathematics to such students. 
As argued in Cooper et al. (2007), Australian remote Indigenous students have the 
lowest retention and performance rates in Australia’s school system (Bortoli & 
Creswell, 2004; Queensland Studies Authority [QSA], 2004) due to racism, 
remoteness, English as a second language (ESL), social factors (Fitzgerald, 2001) and 
systemic issues including non-culturally inclusive forms of teaching, curriculum and 
assessment (Matthews et al., 2005). Thus, Indigenous unemployment is very high in 
remote communities leading to a cycle of welfare dependence, disempowerment and 
the problems identified by Fitzgerald (2001), namely, alcohol and substance abuse, 
poor mental and physical health, low life expectancy, violence and sexual abuse, and 
high incarceration rates; this is occurring even when unfilled high-paying skilled jobs 
in the mining industry are nearby. However, Indigenous Vocational Education and 
Training (VET) programs within these communities have low retention rates (QSA, 
2004) often due to the low education and high anxiety of students with regard to 
mathematics (Department of Employment, Science and Technology [DEST], 2003; 
Katitjin, McLoughlin, Hayward, 2000).  
The Deadly Maths Group at QUT has entered into a partnership with the Indigenous 
Lead Centre (a research group set up by the government VET Technical and Further 
Education [TAFE] Institutes organisation in Queensland) to research and develop 
effective mathematics programs that assist VET lecturers and trade supervisors, who 
are untrained in mathematics education. This has emerged from the perceived 
credibility and success of our work with the Indigenous blocklaying students from the 
Torres Strait (Cooper et al., 2007) which showed the effectiveness of vocational 
contexts, structural learning and positive lecturer-student relationships in Indigenous 
VET mathematics instruction (this research was supported by Australian Research 
Council grant LP0455667). This paper relooks at this study from a community of 
practice perspective (Lave & Wenger, 1991; Wenger, 1998) and identifies the 
particular characteristics and shared practices of the community built within this 
training program that appeared to relate to the training success. 
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Communities of practice and student learning.  
Lave and Wenger (1991) argue that learning is situated, with the context and culture 
in which learning takes place inevitably tied up with the type of learning that occurs. 
They contend that the focus of learning should shift “from the individual as learner to 
learning as participation in the social world, and from the concept of cognitive 
process to the more-encompassing view of social practice” (p. 43). This shift is 
described by Sfard (1998) as a move from an acquisition metaphor, where learning is 
the accumulation and refinement of information into cognitive structures, to a 
participation metaphor, where learning is conceived as a process of becoming a 
member of a certain community and learning activities are never considered separate 
from the context in which they occur. She argues that the shift involves the 
permanence of having, giving way to the constant flux of doing.  
Hagar (2004) describes the shift of learner from individual acquirer to social participant in 
terms of product to process. He describes the product view as seeing the mind as a 
container and knowledge as a type of substance and argues that the stability and 
replicability of the product view provide foundational certainty for marks and grades. He 
contends that the product view supports “front end” models of vocational preparation 
which require students to complete training before qualification and argues that such 
preliminary training is not sufficient for a lifetime of practice and does not prepare trainees 
for workplaces. He argues that learning as a process emphasises changes in learners and 
environments, underlining the impact of social and cultural factors, and best explains 
vocational education. However, Hagar (2004) goes beyond Sfard (1991) in arguing that 
the learning metaphors of acquisition and participation are inadequate on their own in 
understanding the full complexities of vocational learning. He supports the position of 
Rogoff (1995) that a third metaphor of construction-reconstruction is necessary. 
Communities of practice are further elaborated on by Wenger (1998) to include three 
identifiers – domain, community and practice. Wenger (2007) argues that members of a 
community of practice are constituted by an “identity defined by a shared domain of 
interest” (p. 1) where members value each other’s skill sets and are committed to learning 
from each other. Wenger (1998) describes community as a place where members share 
experiences thus building and maintaining relationships that foster learning and skill 
building through personal engagement. Wenger (2007) argues these members collectively 
expand and extend their community’s “repertoire of resources” (p. 2) to develop a shared 
practice (e.g., member knowledge, accounts of the practice problem solving skills).  
Communities of practice as an effective approach to learning is strongly supported  
by Brown, Collins, and Duguid (1989) who explicitly oppose the idea that knowing 
and doing can be separated; they argue that knowing developed only through doing, 
learning is a process of enculturation and community; culture, concepts and learning 
activities are co-dependent:  

The occasions and conditions for use (of a tool) arise directly out of the context of the 
activities of each community that uses the tool, framed by the way members of that 
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community see the world. The community and its viewpoint, quite as much as the tool itself, 
determine how a tool is used (p. 35). 

Brown et al. (1989) argue strongly for authentic mathematics tasks that occur in the 
discipline field under question and have real-life meaning. They contend that 
participation in inauthentic tasks causes students to: 

… misconceive entirely what practitioners actually do. As a result, students can easily be 
introduced to a formalistic, intimidating view of math that encourages a culture of math 
phobia rather than one of authentic math activity (p. 38). 

Communities of practice as effective ways to understand learning, particularly 
workplace learning, have been critiqued by Guile (2006) who argues that the 
approach overlooks relationship between training content and workplace practice. 
Guile argues that although theoretical and everyday are different kinds of knowledge, 
they are still related to each other: theory allows us to see connections and relations 
that everyday knowledge would see as separate, and everyday concepts are the 
foundation for constructing theory. He disagrees with Lave and Wenger’s (1991) 
position that theoretical and everyday practices are equivalent forms of knowledge 
because it discounts mediation between theory and practice and shifts the focus of 
research to workplace learning and away from the relation between the vocational 
curriculum and vocational practice.  
BLOCKLAYING STUDY 
The methodology adopted for the Blocklaying study was decolonising (L. Smith, 
1999) using the Empowering Outcomes research model of G. Smith (1992) where 
research is designed to address the sorts of questions that Indigenous people want to 
know in ways that empower these people. A qualitative and longitudinal intervention 
case study was set up with a building and construction lecturer, called Mack, and his 
blocklaying students at Tropical North Queensland TAFE’s Thursday Island campus 
(see Cooper, Baturo, Ewing, Duus, & Moore, 2007, for a description of this study). 
Deadly Maths researchers worked collaboratively with Mack to develop approaches 
and materials that could effectively teach the mathematics needed for TAFE 
certification. The teaching approach used in the campus was for Mack to be the sole 
teacher of the students, teaching literacy and numeracy as well as blocklaying. As 
described in Cooper et al., he was successful with the students, had built strong 
relationships with them, and emphasized learning to build personal and community 
capacity as much as to gain certification.  
The participants in the study were Mack and the students. Mack was not Indigenous 
but was a highly qualified master builder with builder-training certification. He had 
no training in mathematics education; not surprisingly, he saw mathematics teaching 
in procedural terms. The students were all young (18-26 years old) predominantly-
unemployed Torres Strait Island men. Some students came from the outer islands and 
were selected by their Island’s councils and elders to become builders for their 
communities. Others had just heard about the course. Their mathematics skills were 
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not much more than mid elementary school. The data gathering procedures were 
observations of classes and professional learning (PL) sessions with Mack (video, 
audio and field notes), interviews with Mack and the students (audio-taped), and 
collection of tests results and other examples of students’ work. The procedure 
followed in trialling ideas was four stages: (1) pre-interviews with Mack concerning 
the focus of the intervention and development of possible materials; (2) pre-
interviews with students and PL sessions with Mack (and other TAFE lecturers); (3) 
trial of the ideas and materials with students and observations of lessons (including 
some model teaching by researchers); (4) post-interviews with Mack and students, 
and collection of students’ assessments.  
The theoretical framework for the study is fully described in Cooper et al. (2007). 
The first imperative was that mathematics instruction should be situated within a 
vocational context in line with Baturo and Cooper (2006). This reinforced 
involvement and ownership which have been identified as the single most important 
factor of Indigenous success in VET courses (O'Callaghan, 2005). The second 
imperative was to always take mathematics instruction beyond procedural to 
structural understanding, at the same time contextualising the instruction by 
incorporating Indigenous culture and perspectives into pedagogical approaches 
(Matthews, Watego, Cooper, & Baturo, 2005).  
RESULTS 
The video and audio tapes of the observations and interviews were transcribed and 
combined with field notes and records of students’ work to give a rich description of 
the intervention. These data were analysed in terms of three domains of Lave and 
Wenger (1991), domain, community and practice. The results below are from 
interviews with ten students and Mack. 
Domain 
The students saw themselves as blocklayers and felt that they belonged to this 
domain. However, they expressed another common desire that appeared to be unique 
to them; they wanted to help people who have helped them, or to give back to their 
local community. They saw blocklaying as enabling them to provide for their people 
in ways that, without the course, they would be unable to do. As student P said, I 
want to become a contractor. I want to have a chance to give back to people who 
have helped me. Similarly, when asked for his motivation for undertaking 
blocklaying, student E said, Help the people and help me. Students shared a love of 
building and construction and a desire to have more life opportunities. Students A 
and J put it directly, I like building, and because it’s interesting and I’ve always 
wanted to do building, while P focused on opportunities, to get a good life.  
As mathematics was part of their course, all students had a shared commitment and 
interest in achieving mathematical competence in relation to their blocklaying skills. 
Student P said it straightforwardly, We have to sum all the blocks and pay people’s 
wages. It’s important for most parts of it; while student E described the implications 
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of not knowing mathematics, If you don’t know the maths and you just do it with your 
eye, a couple of months later you might have to go back and do it all again.  
The domain of shared practice to which the students belonged appeared to be wider to 
them than just blocklaying. The links that Mack and the TAFE campus had developed 
with the Torres Strait, and the method of instruction where the students travelled around 
the Islands undertaking building for the Communities, appeared to lead students to see 
blocklaying as part of the wider Torres Strait community. Students such as A had 
entered the course because their local Island Council had nominated them, Student J 
because he had seen the previous students doing work on his Island, and Student P 
because a Mate had suggested it. This was reinforced by the students’ shared interest in 
being of service to their community, and by their strong relationship to Mack. As student 
K said, yeah, he’s all right. He doesn’t discourage us if we do something wrong and 
there’s always encouragement from him. Interestingly, student P saw this as something 
they were growing into; when he was asked why he felt included, he said, because 
everyone’s more mature now.  
Community 
With Mack, the students formed a strong community based on trust, mutual respect and 
practical work; as P said, I reckon it’s pretty good how Mack’s done this. I forgot to say 
that they’re giving us straight up prac. Usually they explain it to you in theory, but here 
they show us in the prac.  
This resulted in unexpected ways of demonstrating learning and strong progress in 
learning; as P said, we’re strong with the prac. We show him that we understand what 
he’s saying by working on the job site. He doesn’t expect that sometimes. The students 
liked that Mack was a good builder himself and was practically based; as student L said, 
you feel stressed sometimes but you practise and you feel better. They liked the 
vocational contexts; as A said about building on site, Sometimes there can be stress. It’s 
hard work. But that’s the only way to go. You can’t go back to paper and do it again, 
there’s only one chance. They began to feel comfortable enough to ask for help not only 
from Mack but also from family and friends, although student K liked this to be one on 
one, it is easier to ask for help when it’s just one person as opposed to when you’re 
sitting in a whole class. There was strong communication from experienced to less 
experienced members of the community, but also back the other way, even to Mack 
from the students; student K summarised, We help each other. If I want help I can ask 
my brother. Particularly, help was needed for language, and mathematics; as student P 
said, we don’t really speak English up here very often, we speak broken English … most 
of the students are dropouts from 8, 9 and 10, they find the maths hard. Overall, the 
strength of the group was relationships, both Mack and the students overcoming 
language and racial barriers to learning through a shared commitment, and willingness to 
build a relationship with each other; as Mack explained, It’s not that bad now because I 
understand their language a lot more. Once I’ve built relationships with them, … then 
they start to relax a bit with me and it’s not that hard at all. … That’s the same with all 
the boys. I have to build a relationship with them before I can get them to do anything. 
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Practice 
 As the year passed, the community built its repertoire of practice and gained a 
mutually shared set of skills that they were able to draw upon for certain tasks. 
Interestingly, their views of mathematics were very vocational; for example, when 
asked how he uses mathematics outside of TAFE, student T said, Sometimes when I 
have to do something for my cousins, sometimes they want me to build a barbecue for 
them. But, the shared aspect of the knowledge is also strong as students S’s and J’s 
discussion of making and levelling mortar shows: 

S Usually you use two cement bags and one sand bag full.  
J  Yeah, we just know what the right mix looks like. Probably just two shovels of 

sand and two shovels of cement and add some water.  
S  When we used the big cement truck we had to chuck in ten cement bags and 

three sand bags. Then fill the water up half way.  
J  Level? It’s too easy. Make sure your bubble’s in between the two lines.  
S  When we first learnt this job, our boss taught us to master the level.  
J  Plumb all the walls. It took about 1 hour to get it straight. 

Again, students’ responses showed that their community of practice, the people 
whom they would go to for blocklaying help, was much wider than blocklayers. It 
was common for students to ask members of family and extended family as well, if 
they found something difficult. The many jobs done by the students on different 
Islands meant that the students’ repertoire of shared practice included contributing to 
local communities. Of course, the Deadly Maths intervention widened the repertoire; 
as Mack described, I guess what [Deadly Maths researcher] has shown us is that 
getting the answer is not as important as how you get the answer. So we’ll certainly 
concentrate more on how to get the answer from now on. But still, no matter the 
repertoire, it sometimes is not enough to understand; as Mack described, I didn’t 
think I could teach him. He showed up everyday for ten weeks, and he was the first 
one to get employed. I don’t know how but he has mastered laying blocks. 

DISCUSSION AND CONCLUSION 
Thinking of the blocklaying course as a community of practice appears to be a lens 
that gives rich detail, too rich for this paper to fully investigate, but tantalising in 
what it appears to say about vocational learning of mathematics. Three conclusions 
are evident.  
First, the domain of the community is not just from a shared interest in building but 
includes a strong sense of community service. This means that mathematics can be 
contextualised to the Torres Strait Communities as well as the vocation of blocklaying, 
and should include respect for the notion that blocklaying is a way of supporting 
community. This means that the blocklaying community of practice can no longer be 
contained within the TAFE site; it shows that the classroom is not the privileged locus of 
learning; as Wenger (2007) states “Schools, classrooms, and training sessions still have a 
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role to play in this vision, but they have to be in the service of the learning that happens 
in the world” (p. 5). It is interesting to speculate that this is a uniquely indigenous 
addition to normal non-Indigenous communities of practice. 
Second, the blocklaying students’ notion of community to which they could turn for 
support was very wide, much beyond people involved in blocklaying. These multiple 
interactions formed a living curriculum for the members of the community. As Wenger 
(2007) stated, “People usually think of apprenticeship as a relationship between a student 
and a master, but studies of apprenticeship reveal a more complex set of social 
relationships through which learning takes place” (p. 3). The blocklayers’ community of 
practice drew experience, advice and skilling from family members who had useful 
knowledge as well as other students, lecturers, and builders. Learning was not just from 
teacher to student but student to teacher, and student to student. The concept of a living 
curriculum, appeared to expand beyond the education institution where the actual course 
was taking place (TAFE) to include family members and situations, work experience 
groups, members of the island’s businesses, and community organisations. This 
expanding and encompassing ethos, cultivated by the members of the group (students 
and Mack) complimented the students’ needs to be involved in a course that addressed 
both personal and community needs, implying that mathematics also teaching needs to 
be seen in both personal and community terms.  
Third, the notion of shared practice as applied to the blocklaying community was much 
expanded, by the involvement of community and by the presence of the Deadly Maths 
researchers. Relationships and trust and respect had important roles, something that is 
often missing from mathematics classrooms. Mathematics was also understood in 
vocational contexts, for example, seeing other uses of mathematics outside of TAFE as 
building a barbecue for his family, and the showing of knowledge through practice. The 
Deadly Maths researchers have become integrated into the community of practice by 
providing additional tools that enable the further learning of the group. They have a 
shared interest in seeing how and why certain techniques of block laying instruction and 
mathematics instruction merge to form good teaching practice and improved student 
understanding, therefore we are active collaborators in the domain of block laying 
learning. They discuss with students and teacher and other members of the community 
why certain techniques of learning work and how to improve that learning. As well, they 
have themselves created a community of practice that sits within and ultimately derives 
from (or was only made possible through) the blocklayers' community of practice. Thus, 
they have developed a shared practice with the researched in their work with lecturers 
and students, interventions and trials, and attempts to refine teaching techniques that will 
lead to improved learning for blocklaying students.  
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RATIO-LIKE COMPARISONS AS AN ALTERNATIVE TO 
EQUAL-PARTITIONING IN SUPPORTING INITIAL LEARNING 
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Fourteen clinical interviews of fourth grade students (ages 9 to 11) from an 
underprivileged social context are analyzed. The interviews included tasks in which 
students were asked to reason about the relative capacity of cups, specifically of how 
many of them could be filled with the milk contained in a milk carton. The analysis 
suggests that these “ratio-like comparisons” could be a viable starting point for 
supporting students around reasoning quantitatively about unitary fractions; a 
starting point that, as we discuss, can be an alternative to the “equal-partitioning” 
(or “equal-sharing”) approach that has been traditionally used, and that several 
authors have judged inadequate for supporting students’ development of 
sophisticated comprehension of fractions.   
Mathematics educators have long been concerned about how to introduce the numeric 
system that expresses quantity as a division of two natural numbers (i.e., a/b), so that 
students can engage in activities that are readily meaningful to them, and that can 
serve as a basis for developing sophisticated understandings about the system (e.g., 
how is it that such numbers can be situated in the number line; Hannula, 2003). The 
preferred activities have been based on the equal partitioning approach, in which 
students are oriented to make sense of denominators as numbers that quantify the size 
of pieces produced by equally partitioning a whole, and of numerators as a number of 
those pieces (see Figure 1). 
 

Figure 1. Representations of a whole, thirds, and 2/3                                            
in the equal partitioning approach. 

Educators’ preferences for this approach have been based on how students can 
readily and meaningfully engage in equal partitioning and equal sharing activities, 
even from an early age (cf. Pitkethly & Hunting, 1996). However, several authors 
have questioned the pedagogical soundness of the approach, both on empirical and 
conceptual grounds. In the former case, there is evidence that equal partitioning 
makes it difficult for many students to develop sophisticated comprehension of 
fractions. For instance, in a broad study that included a survey of 3067 children and 
20 interviews, Hannula (2003) identified that the difficulties experienced by many 
Finish middle-school students in perceiving a fraction as a number on a number line 
seemed to be related to their reliance on faulty equal-partitioning imagery. This 
imagery involved interpreting a fraction such as “3/4” as three out of four, so that the 
denominator became construed as something that expressed cardinality (four things), 
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but not size (segments of such a magnitude that each one is one fourth of a whole). 
Other researchers have previously documented that many students develop similar 
kinds of interpretations. 
In the conceptual arena, Kieren (1980) identified equal partitioning as just one aspect 
of the rational number construct, and considered that instruction should not be limited 
to it. Instead, he recommended including situations in which rational numbers are 
interpreted differently (i.e., as ratios, measures, and operators). Kieren’s ideas have 
been widely accepted (Charalambous & Pitta-Pantazi, 2005; Pitkethly & Hunting, 
1996), and have been taken into consideration in the development of important 
mathematics curricula, such as the Mexican curriculum for elementary schools. 
Nonetheless, students continue to experience many difficulties in dealing with 
situations that involve the notion of fractions (cf. Backhoff, Andrade, Sánchez, Peon, 
& Bouzas, 2006).    
Other authors have altogether questioned the convenience of using the equal-
partitioning approach to introduce fractions. Freudenthal (1983) labeled this approach 
as fraction as fracturer, and considered it to be “much too restricted not only 
phenomenologically but also mathematically” (p. 144) as—in principle— it yields 
only proper fractions. This author regarded fraction as fracturer to be “not only too 
narrow a start,” but also “one sided”, and considered it strange “that all attempts at 
innovation have disregarded this point (p. 147).” He proposed an alternative that 
consists of approaching fractions as comparers, where the big idea is no longer to 
generate pieces by equally partitioning a whole, and to then identify a certain number 
of them, but to “put magnitudes into a ratio with each other” (p. 149).  
Thompson and Sandanha (2003) also expressed concerns about introducing fractions 
to students by using an equal-partitioning approach. For these authors:  

The system of conceptual operations comprising a fraction scheme is based on 
conceiving two quantities as being in reciprocal relationship of relative size: Amount A is 
1/n of the size of amount B means that amount B is n times as large as amount A. Amount 
A being n times as large as amount B means that B is 1/n as large as amount A (p. 107; 
emphasis in the original).  

In their view, the equal-partitioning approach leads students to reason about fractions 
in terms of “additive inclusion—that 1/n of B is one of a collection of pieces—without 
grounding it in an image of relative size” (p. 108). These authors contend that: 

 When students’ image of fractions is “so many out of so many,” it possesses a sense of 
inclusion—that the first ‘so many’ must be included in the other “so many.” As a result, 
they will not accept the idea that we can speak of one quantity’s size as being a fraction 
of another’s size when they have nothing in common. They will accept “The number of 
boys is what fraction of the number of children?,” but will be puzzled by “The number of 
boys is what fraction of the number of girls?” (p. 105).  

Freudenthal’s (1983) and Thompson and Saldanha’s (2003) analyses of fraction 
coincide in regarding the equal partitioning approach as an inadequate base for 
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supporting students’ development of increasingly sophisticated understandings of this 
concept. These authors also coincide in acknowledging that ratio-like comparisons 
should be regarded as the essence of initial fraction instruction. A question then 
arises: What kind of activities would be both compatible with these authors’ 
considerations about the essence of understanding fractions, as well as readily 
meaningful to novice learners?   
Thompson and Saldanha (2003) identified in Steffe’s (2002) research the potential 
nature of such activities. Although the instructional interventions that Steffe reported 
were grounded in the metaphor of equal partition, he oriented students to think about 
the size of single fractional pieces (i.e., unitary fractions) not so much as the outcome 
of equal partition, but in terms of how many iterations (or copies) of it would render 
something as big as a whole. Steffe’s approach is not constrained to orienting 
students to think about the size quantified by unitary fractions in terms of a quotient 
of a partitive division, so that 1/3 of a candy bar becomes construed as the amount of 
candy contained in the pieces that are produced by equally dividing a bar in three (see 
Figure 1). Instead, his approach seeks to orient students to think about unitary 
fractions in terms of multiplicands that satisfy a specific iterative criterion, so that 1/3 
of a candy bar becomes construed as a piece of candy of such a size that having three 
of them would render the same amount as what is contained in a whole bar (see 
Figure 2). 
 
 

Figure 2. “1/3” as a piece of such a size that three of them                                      
would make as much as whole. 

The research by Steffe and his colleagues suggests that activities in which unitary 
fractions are approached more in terms of multiplicands rather than of partitive 
quotients can be the basis for supporting students’ development of relatively 
sophisticated understandings of fractions (e.g., Olive & Steffe, 2002; Tzur, 1999); 
understandings that seem compatible with Freudenthal’s (1983) and Thompson and 
Saldanha’s (2003) conceptual analyses. However, it must be acknowledged that 
Steffe and his colleagues reported working with a very small number of student pairs, 
in non-typical classroom settings that involved intensive use of computers.  
It is also worth mentioning that-as is the case with the vast majority of children that 
participate in mathematics education studies-the students with whom Steffe and 
colleagues worked most probably belonged to communities where children’s 
enrollment in educational institutions at age four or younger is universal; where 
parents typically have nine or more years of formal education, and where school-like 
educational resources (e.g., storybooks, TV shows, toys, educational websites, etc.) 
are readily available to children. Although such contexts are widespread in the 
developed world, they are alien to millions and millions of elementary-school 
students in the developing world. The question then remains in terms of the 
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instructional viability of activities intended to introduce the notion of unitary 
fractions as multiplicands in classrooms; particularly in those attended by children 
who have had limited opportunities for formal education.  
DATA COLLECTION AND METHODOLOGY 
The data that we analyze in this report comes from 14 clinical interviews of an entire 
fourth grade classroom located in the outskirts of a middle size town (population 
100,000), in southern Mexico. The interviews are part of a larger research project 
funded by a Mexican government agency that focuses on understanding how fraction 
instruction could be improved. The purpose of the interviews was to document the 
kind of mathematical resources developed by fourth grade students whose formal 
educational trajectories have taken place among impoverished conditions. Following 
an instructional-design perspective (Gravemeijer, 2004), we were interested in 
gathering information that could be useful in formulating conjectures about the nature 
of activities in which all the students in this kind of classrooms could readily engage. 
We were particularly interested in developing empirically grounded conjectures about 
the nature of tasks that could help pupils make sense of unitary fractions as 
multiplicands. 
The interviews involved six activities, four of which are discussed in this report. They 
were conducted in January 2007 on days 90 and 91 of the 200 days included in of the 
official school calendar. At that point in time, seven of the students were nine years 
old, six were 10, and one was 11.  
Three of the 14 students had not attended preschool. One of the students had repeated 
second grade and another third grade. The students were the children of socially 
underprivileged families. To our knowledge, the parents of only one child had had 
higher education (they were teachers). It is possible that some of the parents had little 
or no formal education. Ten of the children’s families received 140 pesos monthly 
(about 13 USD) for sending their children to fourth grade, as part of a governmental 
program intended to prevent “at risk” students from leaving school at an early age 
because of poverty.  
The interviews lasted between 25 and 40 minutes each. They were videotaped. Two 
researchers were present: one was in charge of presenting the problems to the student 
and making probing questions; the other was in charge of taking notes and 
intervening with clarifying questions when she considered it necessary. The 
interviews were analyzed following the general guidelines recommended by Cobb 
(1986). Important parts of the interviews were transcribed.  
DATA ANALYSIS 
Three of the interview activities were aimed at documenting students’ understanding 
of multiplication. One of them was based on a narrative of the number of “tazos” 
(popular toys that come inside snacks) that several children had. The problem 
involved having to determine how much was twice (“lo doble”), thrice (“lo triple”) 
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and fivefold (“lo quíntuple”) of five; for example: “Olga has five tazos and 
Candelaria has twice as many, how many tazos does Candelaria have?” We decided 
not to use the Spanish equivalent of the word “times” (veces) from the start so as to 
facilitate the emergence of interpretations that involved the use of strategies different 
to repeated addition. However, expressions such as “five times” (cinco veces) were 
used when students seemed not to understand the meaning of “triple” and/or 
“fivefold.”  
All the students were able to readily determine five twice. All the students were also 
able to determine five thrice, although 8 of them used additive strategies in ways that 
did not allow them to give an immediate answer (e.g., adding five to 10 or counting 
five three times). Determining five fivefold became a significantly challenging task 
for four of the students. They seemed to have trouble keeping a double count (e.g., 5-
1, 10-2, 15-3, 20-4, 25-5).  
Students were also asked to find out how many cookies would be in a box if it 
contained 10 packages with 10 cookies in each package. In this case, six students 
gave an immediate answer, apparently by using the multiplication table (i.e., 
10 × 10). Four students solved the problem by successfully counting 10 times 10 (i.e., 
10-1, 20-2, 30-3… 100-10). The remaining four students tried the same strategy but 
seemed to have trouble keeping track of the double count. By and large, at least eight 
of the students seemed to have rather primitive notions of multiplication for their 
grade level.  
Another situation involved a candy bar that was physically presented to the students 
(a rectangle of five by 10 cm). Students were then shown cards with the inscriptions 
1
2

, 1
4

, and 2
4

, and were asked to identify the amount of candy that would correspond 

to each of them on the bar. In the case of 1/4 and 2/4, they were also asked to explain 
if it would be more, less, or the same as 1/2. It is worth clarifying that, according to 
the Mexican curriculum, students should have been familiar with these fractions by 
the end of third grade and, in the months they had been in fourth grade, they should 
have already engaged with thirds, fifths and tenths.  
All the students were capable of identifying a half of the candy bar, although three of 
them did not readily relate the “ 1

2
” inscription to “one half.” Five of the students 

recognized 1/4 of a candy bar as being less candy than a half; six of them thought it 
would be more; and three were not sure. Only one student recognized 2/4 of the 
candy bar as being the same as 1/2. The rest considered it to be more or were not 
sure. By and large, almost all the students seemed to have inadequate understandings 
about the meaning of simple conventional fractions. 
The main interview tasks involved students reasoning about the volume capacity of 
cups relative to how many could be filled with the milk in a carton. Students were 
physically presented with a milk carton like the one shown in Figure 3, but not with 
the cups. The tasks were intended to orient students to think about the capacity of 
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cups in terms of amounts (multiplicands) that satisfy a certain iterative criterion: that 
the amount of milk that so many cups of a specific kind could hold would be the 
same as what the carton contained when being full (e.g. 10 paper cups hold as much 
milk as a carton). As a consequence, the tasks involved comparing the relative size of 
magnitudes that were not part of the same thing (i.e., the capacity of a cup was not a 
part of the capacity of the milk-carton). 
 
 

 

 

Figure 3. Drawing representing the milk-carton (one litter)                                      
used during the interviews. 

Students were first told about plastic cups of such a size that the amount of milk in 
the carton would exactly fill three of them (i.e., servings of 1/3 of the milk in the 
carton). Students were asked to estimate the place where the milk would be in the 
carton after serving one, two, and three cups.  
Students were then told about glass cups of such a size that the amount of milk in the 
carton would exactly fill five of them (i.e., servings of 1/5). They were asked to 
explain if the glass cups could hold more or less milk than the plastic cups (i.e., 1/3 
vs. 1/5). Next, they were asked to estimate the place where the milk would be in the 
carton after serving one, two, three, four, and five cups. 
Finally, students were told about paper cups of such a size that the amount of milk in 
the carton would exactly fill 10 of them (i.e., servings of 1/10). Students were asked 
if the paper cups could hold more or less milk than the plastic and the glass cups (i.e., 
1/10 vs. 1/3 and 1/10 vs. 1/5). Next, they were asked to estimate and mark the place 
where the milk would be in the carton after serving one and five cups, and to explain 
if serving five cups would require more, less, or as much as half of the milk in the 
carton (i.e., 5/10 vs. 1/2).  
The cups-capacity tasks appeared to be readily meaningful to all the students, given 
that the interviewers did not need to give an unusual number of explanations to help 
the students engage with the problems in a sensible way. All of the students identified 
the plastic cups as holding more milk than the glass cups (i.e., 1/3 > 1/5), and the 
paper cups as holding less than the plastic and glass cups (i.e., 1/10 < 1/3 and 1/10 < 
1/5). Ten of the students also articulated sensible explanations as to why this were the 
the case. The following is an example of a comparison between the plastic and the 
glass cups (1/3 vs. 1/5):  

Vicky: Because it’s three for the plastic and five for the glass. 
Interviewer: And what does that mean? 
Vicky: Each one gets a cup, but if you serve five it’s going to hold less. 
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In the case of estimating the place where the milk would be after serving five paper 
cups, students made marks that indicated where the milk would be after serving one, 
two, three, four and five cups. Five of the students’ estimates coincided with half of 
the milk carton, eight exceeded half of the milk carton by not much, one felt short, 
and the remaining exceeded half by a substantial amount.   
With respect to the question of whether serving five paper cups would be more, less, 
or the same as half of the carton (i.e., 5/10 vs. 1/2), the five students whose marks 
coincided with half readily responded that it would be the same. Although it is 
possible that their answers were based on the marks they made, and that they had not 
anticipated that such marks had to coincide with half of the carton, the five students 
were able to justify their answer mathematically (e.g., “because five and five is 10”).  
The other nine students clearly based their answers on the mark they had made on the 
carton, and responded that it would be more or less, depending on where they had 
made their marks. These students were asked next about how many cups it would be 
possible to fill with half of the milk carton. All the students responded that it would be 
five cups. Students were then asked the original question: seven of them now 
responded that serving five cups would be the same as serving half of the milk carton. 
The remaining two students continued to base their answers on the original marks they 
had made. These two students seemed to have trouble reconciling their arithmetical 
understanding about half of ten being five with imagining pouring milk into the cups. 
DISCUSSION 
The analysis of the interviews supports the conjecture that ratio-like tasks could be 
productively used with whole classrooms made up of novice fraction learners, even if 
these learners are children who have had limited opportunities for formal education in 
their lives. The cups-capacity tasks appeared to have been readily meaningful to all 
the students that participated in the interviews, and to have been useful in helping 
them reason about the capacity of cups in terms of multiplicands that satisfy a certain 
criterion (i.e., cups holding a volume of milk of such a size that x many of them 
would amount to the capacity of a milk carton). The tasks also seemed useful in 
supporting students’ reasoning about basic equivalencies (e.g., 1/2 = 5/10). From an 
instructional perspective, we consider the emergence of this kind of quantitative 
reasoning among the interviewed students to be particularly relevant, given that it 
came about regardless of the apparently limited comprehension of multiplication and 
conventional fractions that most of them seemed to have previously developed. 
Our analysis suggests that it is viable to engage novice learners in fraction activities such 
as the cups-capacity tasks, where the focus is in quantifying relationships of relative size 
by means different to equal partitioning. We thus view it feasible to involve students in 
fraction learning paths that circumvent the limitations of the equal-partitioning approach, 
and that can support students’ development of relatively sophisticated understandings 
about rational numbers; understandings that are not typically achieved by pupils, 
particularly in developing countries like Mexico (cf. Backhoff, Andrade, Sánchez, Peon, 
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& Bouzas, 2006; Learning for tomorrow's world: First results from PISA 2003, 2004). 
Specifying the nature of those paths together with the instructional means that would 
support students’ progress along them are important goals of our ongoing research.  
Endnote 
The Mexican CONACYT supported the analysis reported here, under project No. 
53448. The opinions expressed do not necessarily reflect the views of the CONACYT.   
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IMPROVING AWARENESS ABOUT THE MEANING OF THE 
PRINCIPLE OF MATHEMATICAL INDUCTION 

Annalisa Cusi and Nicolina A. Malara 
Università di Modena e Reggio E. 

This work is based on our conviction that it is possible to minimize difficulties 
students face in learning the Principle of Mathematical Induction by means of 
clarifying its logical aspects. Based on previous research and theory, we designed a 
method of fostering students’ understanding of the principle. We present results that 
support the effectiveness of our method with teachers in training who are not 
specializing in Mathematics. 
INTRODUCTION 
The Principle of Mathematical Induction (PMI) represents a key topic in the 
education of teachers in Italy. The approach traditionally used in Italian schools 
devotes little time to the teaching of a solid understanding of the principle. Most text 
books do not cover the PMI in depth and only require students to ‘blindly’ apply it in 
proving equalities. Students learn to mechanically reproduce the exercises but do not 
develop a true understanding of the PMI. We propose that it is important and also 
possible to promote understanding of the PMI, rather than just its application, using 
non traditional methods. In this paper we present some findings from a study that 
used a non-traditional approach to teaching the PMI with 44 pre- and in-service 
middle school (grades 6-8) teachers who were completing a teacher training course. 
Most of these trainees were not mathematics graduates, but had had some exposure to 
the PMI during their studies and therefore are a good sample for both examining the 
‘traces’ of their education history and assessing the usefulness of a non-traditional 
approach to teaching the PMI. In particular, we were interested in promoting 
comprehension and correcting previously learned misconceptions. 
THEORETICAL FRAMEWORK 
Previous research has highlighted difficulties that students encounter learning the 
PMI due to certain misconceptions about it. For example, Ron and Dreyfus (2004) 
argue that three aspects of knowledge are required to foster a meaningful 
understanding of a proof by mathematical induction (MI) are essentially three: (1) 
understanding the structure of proofs by MI; (2) understanding the induction basis; 
and (3) understanding the induction step. Based on our experience teaching the PMI, 
we believe that the third aspect, the induction step, is the most important in fostering 
an understanding of it. Ernest (1984) observes that a typical misconception among 
students is the idea that in MI “you assume what you have to prove and then prove it” 
(p.181). Fishbein and Engel (1989) also stress that many students are “inclined to 
consider the absolute truth value of the inductive hypothesis in the realm of the 
induction step” (p.276). Both Ernest (2004) and Fishbein and Engel (1989) argue that 
the source of this misconception is in students’ lack of understanding of the meaning 
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of proofs of implication statements. They suggest that a proper approach to teaching 
the PMI must include logical implication and its methods of proofs. We (Malara, 
2002) agree with Avital and Libeskind (1978) who suggest that a way to overcome 
students’ bewilderment in front of the ‘jump’ from induction basis to induction step is 
to approach MI by means of ‘naïve induction’, which consists of showing the passage 
from k to k+1 for particular values of k “not by simple computation but by finding a 
structure of transition which is the same for the passage from each value of k to the 
next” (p.431). 
Another conceptual difficulty experienced by students that is highlighted by research 
is that many students look at the PMI as something which is neither self evident nor a 
generalization of previous experience. Ernest (1984) suggests that a way to overcome 
this problem is to refer to the well ordering of natural numbers, that is: if a number 
has a property and “if it is passed along the ordered sequence from any natural 
number to its successors, then the property will hold for all numbers, since they all 
occur in the sequence” (p.183). Harel (2001) also refers to this way of introducing the 
PMI, calling it quasi-induction, but he observes that there is a conceptual gap 
between the PMI and quasi-induction (namely quasi-induction has to do with steps of 
local inference, while PMI has to do with steps of global inference) which students 
are not always able to grasp. 
In addition, Ron and Dreyfus (2004) highlight the usefulness of using analogies with 
students when teaching the PMI for two reasons: (1) analogies illustrate the 
relationship between the method of induction and the ordering of natural numbers 
and (2) they are tools for fostering understanding of the use of MI in proofs. 
RESEARCH HYPOTHESIS AND PURPOSES  
We propose that an effective approach to teaching the PMI requires a combination 
of different points described above. In particular, we propose that the essential steps 
in a constructive path toward PMI should include: (1) a thorough analysis of the 
concept of logical implication; (2) an introduction of PMI through the naïve 
approach, drawing parallels between PMI and the ordering of natural numbers, and 
the use of reference metaphors; and (3) a presentation of examples of fallacious 
induction to stress the importance of the inductive basis. Our hypothesis is that a 
path in which all of these aspects are considered leads to real understanding of the 
meaning of the principle and therefore its more conscientious use in proofs. 
Furthermore, a real understanding of the principle does not necessary mean being 
able to apply it, since many proofs through MI require being able to use and 
interpret algebraic language.  
The purpose of our research is to test the usefulness of this proposed path in instilling 
a deeper understanding of the PMI. We do this by monitoring trainees during a range 
of activities and ending with a final exam designed to assess students’ true 
understanding of the PMI. In this paper we present the experience of one trainee, 
which supports the effectiveness of this approach. 
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METHOD 
The path we propose can be divided into six main phases: (1) An initial diagnostic 
test; (2) Activities which lead students from conditional propositions in ordinary 
language to logical implications; (3) Numerical explorations of situations aimed at 
producing conjectures to be proved in a subsequent phase; (4) An introduction to the 
method of proofs by MI and to the statement of the principle; (5) Analysis of the 
statement of PMI and production of proofs; (6) A final test (given 3 weeks after the 
last lesson). Because of space limitations, we focus on one central phase in the path, 
because it contains the aspects we propose are essential to a meaningful approach to 
teaching PMI. The following proof (table 1), which was a starting point in the 
construction of a lesson, was proposed by a trainee, R., during the numerical 
exploration phase.  
 
R. intended to prove the conjecture she produced on the sum of the powers of 2: 
20+21+22+23+…+2n=2n+1-1.  
After having observed that proving this equality is the same as proving 
20+20+21+22+23+…+2n=2n+1, R. proceeded in this way: 

20+20+21+22+23+…+2n= 2⋅20+21+22+23+…+2n= 

=21+21+22+23+…+2n= 2⋅21+22+23+…+2n= 

=22+22+23+…+2n=2⋅22+23+…+2n=…=2n+2n=2⋅2n=2n+1.1   

Table 1 
We showed to trainees R.’s proof and we observed with them that: the individual 
steps of her proof constitute ‘micro-proofs’ of the individual implications P(0)→P(1), 
P(1)→P(2)…;  the dots testify that she made a generalization. Table 2 illustrates the 
formal aspects we used in this discussion. We discussed the following points with the 
trainees: (1) the structure of natural numbers is such that every number n could be 
obtained from the previous (n-1) adding 1; (2) Every sum Sn is obtained by the 
previous sum adding the nth power of 2, 2n; (3) The terms of the successions have in 
common the property of strictly depending on the terms which precede them. 
These observations allowed the trainees to agree on the fact that every proposition 
could be derived recursively from its prior. Starting with this intuition, we 
highlighted the common structure of R.’s proofs of the ‘particular implications’ and 
guided trainees to observe that this structure can be followed every time it is 
necessary to prove a proposition P(k+1) starting from the previous proposition P(k). 
Trainees became aware that the complete proof of the statement is based on a chain 
of implications, such as the ones highlighted in R.’s proof, that can be ‘summarized’ 
as “P(k)→P(k+1) ∀k∈N”.  Together we constructed the proof of this general 
implication, as a generalization of the step-by-step micro-proofs. Because of the 
                                                            
1 R.’s proof represents what Harel (2001) defines as quasi-induction. 
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previous activities on logical implication, trainees were aware that an implication 
could also be valid when the two components are not valid. It was easy for them 
therefore gradually to become aware that proving “P(k)→P(k+1) ∀k∈N” means 
proving that “P(n) is valid ∀n∈N”, only if the first proposition of the chain, P(0), is 
valid.  
 

P(n): 20+20+21+22+23+…+2n=2n+1  (n≥0) 

20+20+21+22+23+24+…+2n= 

=2⋅20+21+22+23+24+…+2n= 

=21+21+22+23+24+…+2n= 

= 2⋅21+22+23+24+…+2n=

=22+22+23+24+…+2n= 

=2⋅22+23+24+…+2n= 

 

… 

 

 

=2n+2n= 

=2⋅2n= 

=2n+1 

P(0): 20+20=2⋅20=20+1 

P(0)→P(1) 

(20+20)+21=21+21=2⋅21=21+1 

P(1)→P(2) 

(20+20+21)+22=22+22=2⋅22=22+1 

… 

P(k): 20+20+21+22+…+2k=2k+1 

P(k)→P(k+1) 

(20+20+21+…+2k)+2k+1=2k+1+2k+1 

= 2⋅2k+1=2k+2 

… 

                                          

Table 2 
ANALYSIS OF TRAINEES’ WORK DURING THE PATH: THE CASE OF L 
During the activities we proposed them, trainees also worked individually. We 
collected their protocols in order to analyze the evolution of their acquisition of 
meaning of the PMI. In particular, we compared the answers they gave in the initial 
and final tests in order to highlight their effective acquisition of awareness of the 
meaning and use of PMI. The final test consisted in four questions, two following 
Fishbein and Engel’s questionnaire (1989), the other two concerning the proof of two 
statements. The purpose was to verify: (1) whether trainees really understood the 
meaning of the inductive step and the importance of the inductive basis as an integral 
part of the proofs by MI; (2) whether trainees were able to single out what the key-
passages to perform proofs by MI concerning new conjectures are. The results of the 
questionnaires were really satisfactory because almost all trainees produced correct 
proofs and, more importantly, many of them demonstrated having acquired an 
effective comprehension of the sense of the principle. In this paragraph we focus on 
the analysis of the evolution of another trainee, L., because we observed a remarkable 
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difference between the problematical nature of her initial situation and the level of 
awareness and the abilities she displays in her answers on the final test. We present 
two excerpts from her protocols: the first one is taken from the initial test and the 
second concerns an answer she gave in the final test. 
 

Initial test: The excerpt refers to the proof of the inequality 2n>3n+1 (where n≥4). L. 
writes: 

1)  24>3⋅4+1 16>13  ok 
2) 2k>3k+1 k>4 It is true. 

Proof:   2k+1>3(k+1)+1 2⋅2k>3k+3+1 

 2⋅2k>3k+1+3 

→ 2P(k)>P(k)+3, which is always true because the hypothesis is true (∀k≥4)… but it 
something I can see at a glance! 

 
First of all see L.’s erroneous use of the specific symbology; instead of referring to P(k) as 
to the proposition which represents the statement to be proved, she deals with it as 
representing each of the expressions at the two sides of the inequality. Also to be 
considered are the logical aspects involved in the use of the principle; i.e., L. directly 
considers the inequality to be proved, trying to justify it on the basis of the hypothesis, but 
her arguments rely only on ‘evidence’. L.’s difficulties have to be ascribed to a lack of 
knowledge about logical implication, which is also documented in other answers.  
The second excerpt we present refers to a part of the answer L. gave to the following 
question (final test): 
 
“During a class activity on PMI, Luigi speaks to his mathematics teacher in order to 
remove a doubt: We have just proved a theorem, represented by the proposition P(n), by 
MI, but this method is not clear…I am not sure that the theorem is really true because, in 
order to prove P(n+1), we had to hypothesise that P(n) is true, but we do not know if P(n) 
is really true until we prove it! If you were his teacher, how would you answer to Luigi?” 

 
After correctly enunciating the principle, L. commented:  
 

“It is necessary for Luigi to understand that in the inductive step we do not prove either 
P(n) or P(n+1), we only prove that the validity of P(n) implies the validity of P(n+1), that 
is, we prove the implication  P(n)→P(n+1) ”.  

 
Because of space limitations, we do not report the correct proofs L. produced. This 
excerpt, however, demonstrates the level of comprehension she attained during the 
laboratory activities. 
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CONCLUSIONS 
Our observations of the laboratory activities and analysis of trainees’ protocols allow 
us to take some conclusions on the validity of our research hypothesis. L. represents a 
prototype of an individual for whom a traditional way of teaching left only few 
confused ideas on the proving method by MI. The different approach L. adopted and 
her ability both to understand the problem pointed out by Luigi and to respond in a 
synthetic and precise way to his doubts, represents evidence of the effectiveness of 
the choices we made in our approach to teaching the PMI. L. is just one example 
from a large group of trainees who developed a deeper understanding of the PMI in a 
similar way. The positive outcomes on the final tests testify to the validity of our 
research hypothesis regarding the aspects fundamental to a productive introduction to 
the use of PMI as a ‘proving tool’. As a future development of our research, in order 
to test further the effects of this approach, we plan to test the same method in 
secondary school, with students learning the PMI for the first time. In particular, our 
aim is to highlight the role played by the teacher in the management of the lessons. 
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The main purpose of this study is twofold, to confirm a model for the structure of 
fraction addition understanding related to multiple representations flexibility and 
problem solving ability and to investigate its stability across pupils of two different 
grades in primary school. Confirmatory factor analyses (CFA) affirmed the existence 
of seven first-order factors indicating the differential effect of task modes of 
representation, representation functions and required cognitive processes, two 
second-order factors representing multiple representations flexibility and problem 
solving ability and a third-order factor that corresponds to the fraction addition 
understanding. Results provided evidence for the invariance of this structure across 
Grades 5 and 6 of primary schools in Cyprus.    
INTRODUCTION 
From an epistemological point of view there is a basic difference between 
mathematics and other domains of scientific knowledge as the only way to access 
mathematical objects and deal with them is by using signs and semiotic 
representations. Given that a representation cannot describe fully a mathematical 
construct and that each representation has different advantages, using multiple 
representations for the same mathematical situation is at the core of mathematical 
understanding (Duval, 2006).  
Nowadays the centrality of different types of external representations in teaching and 
learning mathematics seems to become widely acknowledged by the mathematics 
education community (e.g. Elia & Gagatsis, 2006). Furthermore, the NCTM’s 
Principles and Standards for School Mathematics (2000) document includes a new 
process standard that addresses representations and stresses the importance of the use 
of multiple representations in mathematical learning. Recognizing the same concept 
in multiple systems of representations, the ability to manipulate the concept within 
these representations as well as the ability to convert flexibly the concept from one 
system of representation to another are necessary for the acquisition of the concept 
(Lesh, Post, & Behr, 1987) and allow students to see rich relationships (Even, 1998). 
Moving a step forward, Hitt (1998) identified different levels in the construction of a 
concept, which are strongly linked with its semiotic representations. The particular 
levels are as follow: 1) incoherent mixture of different representations of the concept, 
2) identification of different representations of a concept, 3) conversion with 
preservation of meaning from one system of representation to another, 4) coherent 
articulation between two systems of representations, 5) coherent articulation between 
two systems of representations in the solution of a problem. However, other 
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researchers (e.g. Presmeg & Nenduradu, 2005) doubt the theoretical assumption that 
students who can move fluently amongst various representations of the same concept 
have necessarily attained conceptual knowledge of the relationships involved.   
In this study which constitutes a part of the medium research project MED19, funded 
by University of Cyprus, we incorporated a synthesis of the ideas articulated in 
previous studies on learning with multiple representations to capture pupils’ 
processes in multiple representations tasks. This may enable us, firstly to gain a more 
comprehensive picture of fraction addition understanding related to multiple 
representations flexibility and problem solving ability; secondly, to understand 
pupils’ multiple representations flexibility in a more coherent way; and thirdly, to 
find out more meaningful similarities in Grade 5 and 6 pupils’ representational 
thinking and problem solving ability. In particular, two hypotheses were tested: a) 
multiple representations flexibility and problem solving ability influence fraction 
addition understanding and b) there are similarities between 5th and 6th graders in 
regard with the structure of their fraction addition understanding.  
METHOD 
The study was conducted among 829 pupils aged 10 to 12 belonging to 41 classes of 
different primary schools in Cyprus (414 in Grade 5, 415 in Grade 6). The test that 
was constructed in order to examine the hypothesis of this study included: 
1. Recognition tasks in which the pupils are asked to identify similar (RELa, RECa, 

RERa, RELb, RERb) and dissimilar (RELc, RERc, RECc) fraction addition in 
number line, rectangular and circular area diagrams. An example is: 

Circle the diagram or the diagrams whose shaded part corresponds to the equation 
3/14 + 5/14. 
 
 
            (RELa)                                      (RECa)                                    (RERa) 
2. Conversion tasks having the diagrammatic and the symbolic representation as the 

initial and the target representation, respectively. Similar fraction additions are 
presented in number line (COLSs) and circular area diagram (COCSs), whereas 
dissimilar fraction additions are presented in number line (COLSd) and 
rectangular area diagram (CORSd).  An example is: 

Write the fraction equation that corresponds to the shaded part of the following 
diagram:          Equation: ............................... (CORSd) 
3. Symbolic treatment tasks of similar (TRSa) and dissimilar (TRSb, TRSc) fraction 

addition. An example is: 1/6 + 4/12 = …..  (TRSb) 
4. Conversion tasks having the symbolic and the diagrammatic representation as the 

initial and the target representation, respectively. Pupils are asked to present the 
similar fraction addition in circular area diagram (COSCs) and in number line 

    0                                 1 
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(COSLs), whereas they are asked to present the dissimilar fraction additions in 
rectangular area diagram (COSRd). An example is: 

Present the following equation on the diagram: 
1/12 + 7/12=….                                               (COfSLs) 
 
5. Diagrammatic addition problem in which the unknown quantity is the summands 

(PD).   
Each kind of flower is planted in a part of the rectangular garden as it appears in the 
diagram below:  
 
 
 
 
 
 
 

Which three kinds of flowers are planted in the 3/4 of the garden?   
6. Verbal problem that is accompanied by auxiliary diagrammatic representation and 

the unknown quantity is the summands (PVD).  
A juice factory produces the following kinds of natural juice:  

• 1/4 of the production is grapefruit 
juice. 

• 5/18 of the production is orange 
juice. 

• 3/36 of the production is tomato 
juice. 

• 2/9 of the production is peach juice. 

• 1/18 of the production is grapes 
juice. 

• 4/36 of the production is apple 
juice. 

 
 
 
 
 
 
Which four kinds of juice make up 1/2 of the production? 

 0    1    

1
24

1
6

1
48

24

1
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1
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7. Verbal problem whose solution requires not only fraction addition but also the 
knowledge of the ratio meaning of fraction (PV). 

Clowns: 1/2 hour 
Dancers: 1/3 hours 

Animals: 1 hour 
Acrobats: 1/6 hour 

Jugglers: 2/1 hour  

Write as a fraction, what part of the total duration of the performance corresponds to 
the jugglers’ program (Evapmib, 2007). 
8. Justification task that is presented verbally and is related to similar or dissimilar 

fraction addition (JV).  
In the addition of two fractions whose numerator is smaller than the denominator, the 
sum may be bigger than the unit. Do you agree with this view? Explain. 
It should be noted, that not any diagrammatic representation treatment tasks are included 
in the test since the students’ ability to manipulate diagrammatic representations is 
examined through conversion tasks in which the target representation is a diagram.  
RESULTS 
In order to explore the structure of the various fraction addition understanding 
dimensions a third-order CFA model for the total sample was designed and verified. 
Bentler’s (1995) EQS programme was used for the analysis. The tenability of a 
model can be determined by using the following measures of goodness-of-fit: 2x , CFI 
(Comparative Fit Index) and RMSEA (Root Mean Square Error of Approximation). 
The following values of the three indices are needed to hold true for supporting an 
adequate fit of the model: 2x /df < 2, CFI > .9, RMSEA < .06. The a priori model 
hypothesized that the variables of all the measurements would be explained by a 
specific number of factors and each item would have a nonzero loading on the factor 
it was supposed to measure. The model was tested under the constraint that the error 
variances of some pair of scores associated with the same factor would have to be 
equal.  
Figure 1 presents the results of the elaborated model, which fits the data reasonably 
well ( 2x /df=1.911, CFI=0.968, RMSEA=0.033). The third-order model which is 
considered appropriate for interpreting fraction addition understanding, involves 
seven first-order factors. The first-order factors F1 to F5 regressed on a second-order 
factor that stands for the multiple representations flexibility. The first-order factor F1 
refers to the similar fraction addition recognition tasks, while the first-order factor F2 
to the dissimilar fraction addition recognition tasks in a variety of diagrammatic 
representations. The first-order factor F3 consists of the similar and dissimilar 
fraction addition treatment tasks. Conversion tasks in which the initial and the target 
representation is similar and dissimilar fraction equation and diagrammatic 
representation, respectively, constitute the first-order factor F4, while the first-order 
factor F5 refers to the similar and dissimilar fraction addition conversion tasks from a 
diagrammatic to a symbolic representation.  
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F4
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.311, .269, .296    

.318, .576, .459  

.474, .648, .576  
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.638, .471, .668  

.605, .577, .642  

.771, .718, .789  

.739, .794, .689  

.581, .562, .558  
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Figure 1. The CFA model of the fraction addition understanding.  

Note: 1. The first, second and third coefficients of each factor stand for the 
application of the model in the whole sample, 5th and 6th graders, respectively. 2. 
Errors of the variables are omitted. 3. MRF=multiple representation flexibility, PSA= 
problem solving ability, FAU=fraction addition understanding 
The majority of tasks which involve number line have higher loadings than the other 
tasks, suggesting that the number line model is more strongly related than the circular 
and rectangular diagrams to multiple representations flexibility. Furthermore, 
dissimilar fraction tasks loadings are higher than the respective similar fraction 
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addition loadings, indicating that in order to be solved extra mental processes are 
required since the fraction equivalence understanding is involved, as well. The 
specific knowledge is also needed to solve similar fraction addition recognition tasks 
which the number of subdivision is double that of the denominator (e.g. RERa). As a 
result, higher loadings are observed in these tasks relative to other similar fraction 
addition tasks. Moreover, the factors loadings indicate that conversion from a 
diagrammatic to a symbolic representation is more closely associated with multiple 
representations flexibility than the other first-order factors are. Nevertheless, the first-
order factor F1 to F4 loadings strength reveal that the flexibility in multiple 
representations of similar and dissimilar fraction addition constitute a multifaceted 
construct in which relations between: a) modes of representation (symbolic, 
diagrammatic), b) functions (recognition, treatment, conversion) that representations 
fulfill and c) relative concepts (similar and dissimilar fractions, equivalence) arose.  
The other two first-order factor F6 and F5 regressed on a second-order factor that 
represents problem solving ability. The first-order factor F6 consists of problems 
having a diagram as an autonomous or an auxiliary representation. Both of them have 
a common mathematical structure since they have the summands as the unknown 
quantity. On the other hand, the verbal problem whose solution requires the 
knowledge of the ratio meaning of fraction and the justification task formed the first-
order factor F7, since in order to be solved different cognitive processes are needed.  
The two second-order factors that correspond to the multiple representations 
flexibility and to the problem solving ability regressed on a third-order factor that 
stands for the fraction addition concept understanding. Their loadings values are 
almost the same revealing that pupils’ fraction addition understanding is predicted 
from both multiple representations flexibility and problem solving ability.  
To test for possible similarities between the two age groups’ fraction addition 
understanding, the proposed three-order factor CFA model is validated for each grade 
separately. The fit indices of the models tested were acceptable and the same 
structure holds for both the 5th ( 2x /df=1.535, CFI=0.954, RMSEA=0.036) and the 6th 
( 2x /df=1.865, CFI=0.940, RMSEA=0.046) graders. However, some factor loadings 
are stronger in the group of the 6th graders, revealing that the strength of the relations 
between these abilities increases across the ages.   
CONCLUSIONS 
The main purpose of this study is twofold, to test whether multiple representations 
flexibility and problem solving ability have an effect on fraction addition 
understanding and to investigate its factorial structure within the framework of a 
CFA, across pupils of two different grades in primary schools. The results provided a 
strong case for the important role of the multiple representations flexibility and 
problem solving ability in 5th and 6th graders fraction addition understanding. 
Specifically, CFA showed that two second-order factors are needed to account for the 
flexibility in multiple representations and the problem solving ability. Both of these 
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second-order factors are highly associated with a third-order factor representing the 
fraction addition understanding.   
CFA also show that five first-order factors are required to account for the 
second- order factor that stands for the flexibility in multiple representations and 
two first-order factors are needed to explain the second-order factor that 
represents the problem solving ability. Thus, the results indicate the differential 
effect of both problem modes of representation and required cognitive processes 
on problem solving ability. Furthermore, the findings provided evidence to 
Duval’s (2006) view that changing modes of representation is the threshold of 
mathematical comprehension for learners at each stage of curriculum since the 
conversion from a diagrammatic to a symbolic representation dimension is more 
strongly related to multiple representations flexibility than the other dimensions 
are. Nevertheless, the factors loadings of the proposed three-order model suggest 
that the flexibility in multiple representations constitute a multifaceted construct 
in which representations, functions of representations and relative concepts are 
involved.  
It is worth mentioning that the high factor loadings in tasks involving number line 
reveal the specific model’s importance in fraction addition and the different cognitive 
processes which are activated in order to handle it relative to other diagrammatic 
representations. In fact the number line is a geometrical model, which involves a 
continuous interchange between a geometrical and an arithmetic representation. 
Operations on real number are represented as operations on segments on the line (e.g. 
Michaelidou, Gagatsis, & Pitta- Pantazi, 2004). That is, the number line has been 
acknowledged as a suitable representational tool for assessing the extent to which 
students have developed the measure interpretation of fractions and for reaching 
fractions additive operations (e.g. Keijzer & Terwel, 2003). Furthermore, the strength 
of factor loadings in dissimilar fraction addition tasks confirm that different mental 
processes are required so as to be solved relative to similar fraction addition since the 
knowledge of fraction equivalence is also needed. The results underline also the high 
association of the fraction equivalence with fraction addition understanding. Besides, 
as Smith (2002) points out in order to develop fully the measure personality of 
fractions pupils need to master the equivalence of fractions.  
Concerning the age, it is to be stressed that the structure of the processes 
underlying the fraction addition understanding is the same across Grade 5 and 6. 
Even though some factors loadings are higher in the group of 6th graders, 
indicating that overall cognitive development and learning take place, the results 
provided evidence for the stability of this structure during primary school years 
represented here. However, it seems that there is still a need for further 
investigation into the subject. Taking into account the problems pupils face during 
the transitions from one educational level to another, it is interesting in future to 
examine possible differences of the proposed fraction understanding structure as 
these pupils move to secondary school.   
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SUBVERTING THE TASK: WHY SOME PROOFS ARE VALUED 
OVER OTHERS IN SCHOOL MATHEMATICS 

David S. Dickerson                     Helen M. Doerr 
   SUNY Cortland                     Syracuse University 
 
This qualitative study on high school mathematics teachers found that some teachers 
perceive that a major purpose of proof in school mathematics is to enable students to 
develop both mathematical and transferable thinking skills and that valid proofs that 
deviate from the intended or expected proof may subvert this purpose by denying the 
development of student thinking. The validity of a proof is not the only factor 
determining what counts as a proof in school mathematics, and in fact may be 
outweighed by the consideration peculiar to school mathematics of how well that 
proof is perceived to support the development of student thinking.  The results of this 
study have implications for teacher training. 
INTRODUCTION 
The two-column proof format that dominates American high school geometry 
classrooms was developed in response to an educational reform around the turn of the 
twentieth century (Herbst, 2002b).  It arose as “a viable way for instruction to meet 
the demand that every student should be able to do proofs” (p. 285).  It has come at 
the cost of “dissociating the doing of proofs from the construction of knowledge” (p. 
307). While proof remains a method of investigating mathematics, proofs are 
sometimes reduced to little more than logical exercises used to verify trivial 
statements.  This difference between proof and proofs has profound implications in 
mathematics classrooms. 
Herbst (2002a, 2003) reported that teachers must negotiate between competing 
demands when teaching non-procedural tasks (including mathematical proof) in their 
classrooms.  Typically, high school students are asked to write proofs because they 
are short and easy rather than because they advance the students’ mathematical 
knowledge.  If the stated purpose of a task is to produce a proof, the teacher is 
expected to support her students in meeting that goal but at the same time, the teacher 
is expected to help her students advance their understanding of the mathematics 
involved in the task.  Herbst describes the proof task as “an opportunity offered by 
the teacher for students to produce the proof” (2002a, p. 197); while at the same time 
recognizing that the mathematical goal within the task “is a statement for which the 
teacher holds students accountable to find a proof” (p. 197).  Producing the (the 
intended) proof, not only establishes the statement in question but might also provide 
an opportunity for the student to demonstrate that he or she has some facility with a 
particular form of proof, with the definitions involved, or with other related concepts.  
Finding a (possibly an alternate) proof still establishes the statement but might not 
provide the same kinds of additional opportunities for students.  This can become a 
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tension between mathematical writing, and mathematical investigation and may place 
competing or conflicting demands on teachers. 
How teachers negotiate these demands depends, in part, on their conceptions of 
mathematical proof including its purposes.  Knuth (2002) investigated the question: 
What constitutes proof in school mathematics?  He found that teachers viewed proof 
as a deductive or convincing argument that conclusively establishes the validity of a 
statement. One of the reasons they articulated for teaching proof in high school 
mathematics was that they believed that proofs help students to develop logical or 
critical thinking skills that are useful beyond the mathematics classroom.  Most did 
not believe proof to be central to the high school mathematics curriculum and some 
questioned whether it was an appropriate topic of study for all high school students.  
He described three levels of argumentation discussed by his participants: formal 
proofs, less formal proofs, and informal proofs.  The formal proofs rigidly adhered to 
“prescribed formats and/or the use of particular language” (p. 71).  The less formal 
proofs were considered to be valid proofs but lacked the formal structure and 
language and so were deemed to be less rigorous than the formal proofs. The 
informal proofs were heuristically based arguments or explanations and not 
considered by the teachers to be valid proofs. 
This paper extends the work of Herbst (2002a, 2003) and Knuth (2002) in exploring 
the relationship between teachers’ perceptions of proof and how they evaluate valid 
proofs.  If a student fails to produce the proof but still produces a proof, it may be 
valued differently by teachers who hold different beliefs regarding the purpose of 
proof in school mathematics. The question this paper will address is: When 
evaluating valid arguments, what do high school teachers believe counts as a proof in 
school mathematics? 
METHODS 
This report is part of a larger study of high school mathematics teachers’ perceptions 
of the purposes of proof in which seventeen high school mathematics teachers were 
recruited and interviewed three times for approximately one hour each time.  The first 
interview was semi-structured and focused on participants’ personal and 
mathematical histories, and their pedagogical conceptions of mathematical proof.  
The second interview was task-based (Goldin, 1999) and participants were asked to 
evaluate a series of fifteen researcher-generated mathematical arguments and to 
discuss whether each argument conformed to what a proof should be, and in what 
contexts the argument was sufficient.  The third interview was semi-structured and 
focused on the participants’ perceptions of the mathematical purposes of proof.  All 
interviews were audiotaped and transcribed.  Both internal and external coding 
schemes were employed in the analysis of the data. 
The participants’ responses to the fifteen task items and their discussions during the 
semi-structured interviews were used to illuminate their perceptions regarding the 
purposes of proof in school mathematics.  Taken together, the interviews sought to 
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find out what the participants believed were the most significant purposes of proof 
and in what contexts they believed that proofs conforming to different structures and 
formats were acceptable, allowed, preferred, and why.  The views of one of the 
seventeen participants (Tracy) will be discussed in detail below.  We have selected 
Tracy because her views brought into focus certain key issues that were articulated by 
other participants.  Tracy was approximately 30 years of age and had majored in both 
mathematics and physics as an undergraduate and held a master’s degree in 
mathematics education. She had been teaching for seven years in an urban high 
school in the northeast and had taught all levels of high school mathematics. 
RESULTS 
The results of this study indicate that teachers’ conceptions of proof include factors 
that are peculiar to school mathematics and that these conceptions play a part in 
determining what counts as proof in school mathematics.  Some teachers indicated 
that a proof requires explicit stepwise reasoning and some teachers indicated that the 
main purpose of proof in school mathematics is not to verify conjectures but to foster 
student thinking.  Valid proofs that did not include stepwise justifications and proofs 
that were perceived to curtail the development of student thinking were sometimes 
deemed by these participants to be unacceptable in high school mathematics. 
Explicit Reasoning Required 
The analysis of the data suggests that some teachers perceive that validity of 
argument is but one concern when determining what counts as a proof in school 
mathematics. Explicit reasoning was considered by some teachers to be vitally 
important when evaluating proofs and arguments that did not justify each step were 
sometimes deemed valid yet still unacceptable. For example, Tracy believed that 
proofs must contain explicit, stepwise reasoning.  In a proof, she said, you can’t just 
make a statement, “you have to give a reason for it.” A proof, she believed, is a 
process that documents a thinking pathway. “It’s not just about the answer…It 
involves [a] thought process.”  When proving a quadrilateral is a rhombus, “you have 
to show [all four sides have the same length] and say ‘A rhombus is something that 
has all four sides the same.” For Tracy, to prove a quadrilateral is a rhombus, it is not 
sufficient to show that all the sides are congruent; one has to state the definition of a 
rhombus (quadrilateral with all sides congruent) and has to show that the definition is 
satisfied. 
Because algebraic derivations are typically written without reasons cited for each 
step, some of the participants perceived algebraic derivations to be somewhat 
different than proofs.  When the participants were shown an algebraic derivation of 
the quadratic formula, six of the seventeen participants indicated either that it was not 
a proof or that they were not sure if it was a proof or not, yet none said it was invalid.  
In particular, because in the statements and reasons do not proceed in lockstep, Tracy 
believed that an algebraic derivation was something other than a proof. “I don’t see 
that as a real proof.”  Later, she said, “I would want a little bit more reasoning for 
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it…That’s all really very good but you would want to state a little bit more.”  When 
asked if she would accept this argument as written from a student she said she would 
but only for partial credit.  “I’d say four out of five…and just say be more specific on 
what you did.” If, however, the student had been asked for a derivation of the 
quadratic formula rather than for a proof, the argument would be acceptable because, 
“Then you don’t need words.”  She believed that proofs need stepwise justifications 
in order to be counted as proofs in school mathematics.  Arguments, such as typical 
algebraic derivations, that fail to justify each step might be valid but were not 
considered “real” proofs. 
Thinking Skills 
Sixteen of the seventeen teachers listed the development of student thinking as a 
purpose for teaching proof in high school mathematics.  The majority discussed both 
mathematical thinking skills (e.g. gaining deeper insight into mathematical content, 
and learning to think mathematically) and transferable thinking skills (e.g. learning to 
think logically, critically, or sceptically).  In the first case, proof is a tool to help 
students learn to understand and appreciate mathematics.  In the second case, proof is 
taught to help students develop their minds so that they can be put to other purposes. 
The use of proof as a tool to develop students’ mathematical thinking skills was 
articulated in at least three distinct ways: (1) proofs may provide students with a 
deeper understanding of the mathematics that they have already learned in middle 
school; (2) proofs may help to solidify mathematical knowledge by helping them to 
remember facts; and (3) proofs may help students to think mathematically.  Tracy 
discussed proof in terms of helping students learn to think mathematically.  Tracy 
said, “I honestly think that’s the most important part of proofs.  It’s not the ‘Can you 
do a geometry proof?’ [it’s] ‘Do you understand the rules of geometry?’”  For Tracy, 
proofs offered students an opportunity to demonstrate an understanding of 
mathematical methods. 
According to the majority of the participants of this study, a significant purpose for 
teaching proof in high school has little to do with mathematics, rather it teaches 
thinking skills that prepare the mind for future activities not necessarily related to 
mathematics.  One participant said about teaching proof, “We’re doing everything in 
the abstract so it can transfer over to any realm of endeavour in the world.”  Tracy 
believed that proofs, while useful in teaching students to think mathematically, are 
not very useful for learning mathematical content.  She said, proofs by themselves 
“don’t give [students] an understanding of geometry, but I think all kids can benefit 
from doing geometry proofs because it develops thinking skills.”  She said, “Some 
kids are never going to use the thoughts of geometry proofs but if they develop the 
ability to think, then the proof itself was helpful.”  Further, “If you never use it again, 
at least you developed your ability to think,” she said.  Learning how to think was of 
primary importance to her.  She believed that the thinking skills developed in high 
school could have life-long benefits to students.  “I don’t think the point of having the 
kids do proof is having kids do proof.  I think it’s developing a line of thinking that 
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will help you later in life because…very few of our kids are going to continue on in 
[math] and do proofs.” In her view, proof writing does not necessarily develop 
students’ understandings of mathematical content, but the skills that can be developed 
from writing proofs are valuable in everyday living. 
Specific Proof Tasks 
The participants were all asked if certain researcher-generated proofs could be 
accepted from high school students.  When they were asked to view the tasks in this 
way, some said that even though the proofs were valid, they could not be accepted.  
Some of the teachers cited the lack of explicit reasoning as reason for the proof’s 
unacceptability, and some cited other concerns.  In evaluating the proof tasks given in 
the second interview, Tracy found some to be valid but said that she could not accept 
them from high school students because she perceived the proofs as written to subvert 
the implied purpose of the tasks. This implied purpose was different from task to task 
but in order for the purpose to be fulfilled, it always required the student to adhere to 
a prescribed line of thought.  We will highlight three of the fifteen tasks to which the 
participants were asked to respond. Completing the Square is a visual argument 
establishing the formula for the completion of the square, Summation is a derivation 
of the formula for the sum of the first n natural numbers, and Odd Squares 
systematically checks cases to establish that if  is odd, then a is odd as well.  For each 
proof, she believed that the argument was valid but believed that the proof subverted 
the implicit intent of a proof task assigned to high school students. 
Completing the Square uses pictures rather than algebraic symbols and language to 
arrive at a formula.  Tracy believed that Completing the Square was a “shortcut” 
around the intended task.  When asked if she would accept this argument from a 
student, she said, “I don’t think it would be the point of the activity so probably not.”  
In her view, the point of proving this formula was not merely to get a formula but to 
develop one’s capability for using algebra in mathematical reasoning.  She felt that 
the intent, implicit in the task, was to derive the formula by algebraic means.  She 
said that if a student had handed in this visual proof, that he probably had not 
understood how to do it by the intended method and that he might later be unable to 
complete either similar or more complex tasks that required him to be able to use 
algebra.  Much like her comments regarding understanding the rules of geometry, she 
perceived that this task asks students to demonstrate an understanding of the rules.  
She described Completing the Square as a use-it-once strategy that gave the right 
answer but that in deviating from the anticipated line of thought, it ran counter to her 
perception of the intent of the assignment. 
Summation is a familiar derivation of a familiar formula that is often proved by 
mathematical induction.  Tracy would have preferred that this proof provide stepwise 
justifications, and further, since the proof does not provide a motivation for adding the 
integers 1 though n in that particular way, she felt that the reasoning underlying this 
proof was somewhat concealed.  These two factors, she said, made the evaluation of 
student thinking difficult.  Consequently, in order for it to be accepted from a student, 
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she wanted to see more of the reasoning underlying the proof.  She believed that 
Summation was just as valid as a proof by mathematical induction but similar to 
Completing the Square, she considered it a shortcut around the intended task.  She said, 
“Generally, you would say ‘Prove by mathematical induction’…You would be testing 
for induction…I don’t think [this] is probably what they would have been going for.”  In 
Tracy’s experience, this claim was most often proved by mathematical induction as an 
exercise designed to help students gain experience in proving statements by this method 
and alternate proofs of this claim subverted the intent implicit in the task. 
Odd Squares systematically checks five cases (natural numbers with ending digits 0, 
2, 4, 6, and 8) rather than employing a more general argument to establish the fact 
that the squares of even numbers are also even.  This fact is then used to establish that 
an odd perfect square is the square of an odd number.  Tracy thought that the case 
checking subverted the intent of the task.  Instead of proving the claim in a general 
way, Tracy felt that the proof dealt too much with specifics. 

[It’s] covering all the bases, but I just don’t like those much…I would think that a reason 
for this question…would be to work with something like [a divisibility argument] so that 
when you get to proofs where you couldn’t [come] up with this, you would be able 
to…start dealing with [divisibility] and stuff…This [proof] wouldn’t help your long term 
understanding of proof. 

As with the previous tasks, the acceptability depended on the goal of the activity.  In 
this case, the point of the activity, she believed, was not to prove the claim but to let 
students practice proof techniques on an easy example.  “Then [students] can refer 
back to this and say ‘OK, what we [did] with the easy stuff…we have to apply to 
[the] more difficult tasks.”  Proving this claim by systematically checking cases does 
not, she believed, develop student’s facility with writing proofs. 
From Tracy’s comments during the interviews, and her voiced opinions regarding the 
tasks, we were able to synthesize certain aspects of her perception of proof and its 
purposes in school mathematics.  Tracy believed that explicit reasoning in a proof 
was required to document a line of thought.  She did not perceive that the specific 
mathematical knowledge gained by writing proofs to be of long-term benefit to most 
of her students but the thinking implicit in proof writing carried life-long benefits.  
Because most students will not continue to take mathematics courses beyond high 
school that involve proof writing, students who are more interested in correct answers 
than in careful thought processes might not develop these transferable thinking skills.  
She said several times over the course of the interviews that the answer is less 
important than the reasoning.  She seems to have viewed the tasks not as 
mathematical claims which need to be proved as much as she viewed them as 
activities to give students practice and experience with particular forms of 
mathematical reasoning or formats of mathematical writing.  In her view, Completing 
the Square, Summation and Odd Squares all subverted an implicit instructional goal 
and employed strategies that were neither general nor reusable.  Students, she argued, 
might then be unable to prove something by algebraic means, by mathematical 
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induction, or by using divisibility arguments at a later date.  The purpose of proof 
tasks was not merely to derive a new formula, or to prove a new theorem, but to 
develop students’ thinking along prescribed lines of reasoning, and thus to develop 
their facility for writing proofs.  By following the intended pathways, students would 
develop the skills needed for future mathematical tasks and would develop a pattern 
of thinking that would benefit them in later life. 
DISCUSSION AND CONCLUSION 
Tracy’s views about proof in school mathematics may be unorthodox but are not 
naïve.  They are well formed and coherent.  They stem from a belief that the reason 
for teaching proof was to enable students to develop thinking skills that were 
transferable to other areas of inquiry.  To that end, a student’s proof should explicitly 
indicate a thinking pathway leading to the assigned conclusion and should 
demonstrate an understanding of the “rules” (e.g. definitions, axioms, theorems, rules 
of inference).  A student’s proof that is not explicit in its reasoning was perceived to 
be insufficient for failing to document their thinking.  Further, a student’s proof that 
deviated from the anticipated line of reasoning might be seen to be a short-cut around 
the intended task – even if the proof was clear, convincing, well reasoned, explicit, 
and valid.  The way that Tracy negotiated between valuing intended and alternate 
proofs followed from her belief that the main purpose of proof in school mathematics 
is to develop thinking skills in her students.  She felt that these skills would be best 
developed when students followed the intended and prescribed formats. 
As Herbst (2002a) pointed out, there are competing demands regarding proof writing 
in school mathematics.  A mathematical claim is not only a mathematical for which a 
teacher might hold students accountable for producing a proof, but also an 
opportunity for students to demonstrate a mastery of mathematical thinking and 
technique.  The way teachers negotiate between the demands of holding students 
accountable for finding a proof and for finding the proof may be influenced by their 
perceptions of the purposes of mathematical proof in school mathematics.  Further, 
these perceptions may account for some of the differences between the formal and 
less formal yet valid proofs described by Knuth (2002).  It seems likely that proof 
would be experienced differently in classrooms in which teachers had different 
perceptions of the purposes of proof in school mathematics.  Understanding teachers’ 
perceptions of proof and its purposes in school mathematics may help to understand 
how teachers evaluate various forms of proof, particularly those that deviate from 
standard, (usually two-column) proofs. 
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ASSESSING PRIMARY STUDENTS’ KNOWLEDGE OF MAPS  
Carmel M. Diezmann Tom Lowrie   

Queensland University of Technology Charles Sturt University 
 
This study explored primary students’ knowledge of maps through a sample of 
mathematics test items. One cohort completed these items annually for three years in 
a mass testing situation. Another cohort was interviewed once on the same map 
items. Mass testing results revealed that students’ performance generally improved 
over time. However, significant gender differences in favour of boys were noted 
annually on each item. Interview results highlighted key difficulties experienced by 
both girls and boys including interpreting vocabulary incorrectly, attending to the 
incorrect foci on maps, and overlooking critical information. Our results indicate a 
need for a focus on extracting and reading information from maps, and analysing 
and interpreting this information. Girls’ achievement should be closely monitored.  
INTRODUCTION 
In contemporary times, the demand and necessity to become proficient with maps has 
burgeoned as representations become more complex (e.g., Google Earth) and the 
desire to traverse unfamiliar environments increases. Hence, the acquisition of 
complex and dynamic mapping knowledge is required in school mathematics (e.g., 
Lowrie & Logan, 2007). The purpose of this paper is to investigate students’ ability 
to interpret maps and to identify issues that influence this knowledge.  
BACKGROUND  
Maps and Information Graphics  
Maps are one of the six basic types of information graphics that variously represent 
quantitative, ordinal and nominal information through a range of perceptual elements 
(Mackinlay, 1999). The other five graphical languages are: Axis Languages (e.g., 
number line), Opposed Position Languages (e.g., bar chart), Retinal List Languages 
(e.g., saturation on population graphs), Connection Languages (e.g., network), and 
Miscellaneous Languages (e.g., pie chart). In maps, information is encoded through 
the spatial location of marks, which are made from a range of perceptual elements 
such as position, length, angle, slope, area, volume, density, colour saturation, colour 
hue, texture, connection, containment, and shape (Cleveland & McGill, 1984). 
Although maps provide an authentic context for learning and assessing mathematical 
knowledge, students do not always find their interpretation straightforward. Wiegand 
(2006), for example, maintained that there are three levels of sophistication involved 
in map interpretation. The initial stage involves extracting information from a map 
and generally reading names and attributes. Analysis involves ordering and 
sequencing information. Finally, interpretation requires higher levels of problem 
solving and decision making involving the application of information.  
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Spatial Tasks, Map Interpretation, and Gender 
Interpreting maps is a spatial task. The literature indicates that on spatial tasks males 
outperform females (e.g., Bosco, Longoni, & Vecchi, 2004) and on map tasks that 
males and females adopt different strategies. Saucier et al. (2002) suggested that 
males employed Euclidean-based strategies to describe directions (e.g., north or west) 
and distance whereas females tended to use landmark-based approaches (e.g., left or 
right) to make sense of information. They also found that males outperformed 
females on tasks that were Euclidean in nature but there were no gender differences 
on tasks that were represented in a landmark-based form. Reasons for apparent 
performance differences between males and females on spatial tasks are often 
associated with confidence and attitudes toward mathematics, classroom interactions, 
psychological factors, the everyday (out-of-school) experiences of students and even 
the manner in which tasks are represented. However, most gender differences are 
attributed to general experiences rather than neurological makeup (Halpern, 2000).  
To examine possible differences between the performance of males and females in 
mathematics, Fennema and Leder (1993) have called on studies to be more focused 
and strategic. They suggest that rather than taking a broad view of mathematics 
performance, more studies should be framed at a micro level rather than across large 
populations. In this investigation we focus on students’ mathematics performance on 
map items that have Euclidean and landmark features. 
DESIGN AND METHODS  
This study is part of a longitudinal investigation of primary students’ ability to 
interpret information graphics. Three research questions are explored: 

• Are there differences between students’ performance on Map items over 
time?  

• Is there a difference between boys’ and girls’ performance on Map items 
over time?  

• What difficulties do students’ experience on Map items?  
The Instrument and Items 
The Graphical Languages in Mathematics [GLIM] Test is a 36-item multiple choice 
test that was developed to assess students’ ability to interpret items from the six 
graphical languages including maps. Test items vary in complexity, require 
substantial levels of graphical interpretation, and conform to reliability and validity 
measures (Diezmann & Lowrie, 2007). The GLIM items were selected from state, 
national and international tests (e.g., QSA, 2002a) that have been administered to 10- 
to 13-year-olds. This paper reports on students’ performance on three of six GLIM 
map items which include Euclidean or landmark features (See Appendix).  
The GLIM map items were administered to different cohorts in mass testing and 
interview situations. The mass testing cohort completed the GLIM test annually for 
three consecutive years. The selected map items were scored as 1 or 0 for 
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correct/incorrect responses. The interview cohort was presented with 12 graphical 
language items annually from the GLIM test including two map items. Students were 
interviewed on one of the three selected map items each year: Item B (Grade 4), Item 
A (Grade 5), and Item C (Grade 6). In the interviews, students selected a multiple 
choice answer and were asked to justify their responses. Interviewers encouraged 
students to explain their thinking but did not provide scaffolding. Students’ responses 
on each item were analysed for difficulties.  
The Participants  
A total of 476 students from two Australian states participated in this study. The 
participants comprised two cohorts. Cohort A and B participated in the mass testing 
and interview components of the study respectively. Cohort A comprised 378 
students (M=204; F=174) from eight primary schools (6 New South Wales, 2 
Queensland). Cohort B comprised 98 (M=44; F=54) students from five different 
primary schools (3 New South Wales, 2 Queensland). The students were in Grade 4 
or equivalent when they commenced in the 3-year study. (Grade 4 in New South 
Wales is equivalent to Grade 5 in Queensland. New South Wales grade levels are 
used throughout this paper for convenience.) Students’ socio-economic status was 
varied and less than 5% of students had English as a second language.  
RESULTS AND DISCUSSION 
Part A: Grade and Gender Differences in Map Performance  
Questions 1 and 2 relating to grade and gender differences were investigated through 
an analysis of Cohort A’s responses to three map items (See Appendix) that were 
presented annually in a mass testing situation when students were in Grades 4 to 6. 
Students’ performance on these items was analysed using a multivariate analysis of 
variance (MANOVA). The dependent variables were Grade (Q. 1) and Gender (Q. 2). 
The MANOVA indicated statistically significant differences between the two 
dependent variables across the items with Grade [F(6, 2092)=11.28, p ≤ .001] and 
Gender [F(3, 1045)=9.91, p ≤ .001]. Table 1 presents the means (and standard 
deviations) for grade and gender over the 3-year period. 
 

 Grade 4 Grade 5 Grade 6 
 Total Male  Female Total Male  Female Total Male  Female 

Item 
A 

.78 
(.42) 

.79 
(.41) 

.76 
(.43) 

.93 
(.30) 

.96 
(.20) 

.91 
(.29) 

.92 
(.28) 

.94 
(.23) 

.89 
(.31) 

Item 
B 

.79 
(.41) 

.81 
(.39) 

.77 
(.42) 

.87 
(.34) 

.92 
(.28) 

.81 
(.39) 

.91 
(.29) 

.92 
(.27) 

.89 
(.31) 

Item 
C 

.63 
(.48) 

.70 
(.46) 

.55 
(.50) 

.73 
(.44) 

.80 
(.40) 

.65 
(.48) 

.75 
(.43) 

.80 
(.40) 

.70 
(.46) 

Table 1. Means (and Standard Deviations) of Student Scores by Grade and Gender 
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Are there differences between students’ performance on Map items over time?  
ANOVAs revealed statistically significant differences between the performances of 
students on each of the three map items Item A [F(2, 1053)=24.7, p≤ .001]; Item B 
[F(2, 1053)=9.3, p≤ .001]; and Item C [F(2, 1053)=7.9, p≤ .001]. Post hoc analysis 
showed that mean scores, in all but one case, increased across each of the three years 
of the study for all three items (See Table 1). It is noteworthy that there were 
statistically significant differences between the performance of the students between 
Grade 4 and Grade 5 (across all three items) but differences were not significant 
between Grades 5 and 6 (on any items). This may be due, in part, to the fact that the 
improvements in scores from Grade 4 to Grade 5 were substantial (with increases 
from 10%-20%) — and thus ceiling effects are evident, especially for Items A and B.  
Is there a difference between boys’ and girls’ performance on Map items over time?  
There were statistically significant differences between the performance of boys and 
girls across all three items: Item A [F(1, 1053)=4.89, p≤ .03]; Item B [F(1, 1053)=7.6, 
p≤ .001]; and Item C [F(1, 1053)=23.5, p≤ .001]. For each item, across each year of 
the study, the mean scores for the boys were higher than that of the girls. These 
results indicated that the boys’ capacity to interpret these map items was 
approximately twelve months ahead of that of the girls (with Grade 6 girls’ means 
between 3%-14% below Grade 5 boys’ means). Generally, girls’ mean scores 
improved at a constant rate across the three years of the study while the boys’ mean 
scores plateaued from Grade 5—although this may be due to very high scores 
achieved by the boys in Grade 5 (particularly on Items A and B with means of .96 
and .92 respectively).  
Our finding that gender differences in favour of boys were evident on map items in 
the middle to upper primary years is consistent with our previous findings on 
structured number-line items (Diezmann & Lowrie, 2007). This trend of gender 
differences on spatial tasks is not confined to the later years in primary school but 
seems to be apparent from the early years of school (Levine, Huttenlocher, Taylor, & 
Langrock, 1999). This study and Levine et al.’s study suggests that girls need to be 
provided with early and ongoing support to develop their map knowledge to a similar 
level to boys in the primary years.  
Part B: Students’ Difficulties with Maps Items  
The final question was explored through an analysis of unsuccessful students’ 
responses from Cohort B on the same three map items as in Part A (See Appendix). 
What difficulties do students’ experience on Map items?  
Students were unsuccessful on these items in the interviews for various reasons 
including guessing responses, misunderstanding the question, interpreting vocabulary 
incorrectly, attending to the incorrect foci, and overlooking critical information. The 
first two reasons for a lack of success are generic errors and are not discussed here. 
Examples of the latter three reasons are presented to provide some insight into 
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students’ thinking on map items. Due to performance differences in favour of boys 
identified in Part A this paper, examples of each of these errors were sought from 
Cohort B girls’ responses. Although a full gender comparison of responses is beyond 
the scope of this paper, differences were consistent across cohorts.  
Interpreting Vocabulary Incorrectly: Some students were misled by their 
interpretation of a key spatial term in the text. For example on Item A (See 
Appendix), Noni incorrectly interpreted “through” as relating to being “included in” 
or being “outside of the bike track” in What part of the Park won’t she ride through 
(emphasis added)?  

Noni:  Because at first I went through all of them and B4, A4 and B5, like, is included 
in the bike track and I stuck with A5 and B5 and I just pick (sic) A5 because I 
thought it’s more outside of the bike track (emphasis added).  

Attending to Incorrect Foci: Although students’ counting was generally accurate, 
they sometimes counted an incorrect item or action. In addition, they did not use 
the map as a referent in their counting. For example on Item B (See Appendix)—
How many times did he (Ben) cross the track?—Bree focussed on the movements 
between landmarks on the map rather than the number of times the track was 
crossed. Thus, she selected the incorrect response of ‘three’ rather than the correct 
response of ‘two’. Her response indicated no reference to the landmarks in relation 
to the track. 

Bree:  I reckon it was three because he went from the gate to the tap (one) and then he 
went to the tap (two) and then to the shed (three) (emphasis added). 

Overlooking Critical Information: Some students only paid attention to part of the 
information given in their responses. For example, on Item C (See Appendix) some 
students focused on the numerical and directional information in isolation rather than 
in combination in a set of instructions. On this item, students were required to 
identify the “second road on the left” rather than simply the second road and the left 
and right turns independently.  

Ellen:  Post Rd (her incorrect answer). Started at the pool, then took right turn (Wattle 
Road) then left turn and it’s Post Rd.  

Analysis of students’ difficulties on the three map items suggests two points of 
interest. First, students’ difficulties relate to each of Wiegand’s (2006) levels of 
sophistication in map interpretation. Extracting information from a map requires 
knowledge of vocabulary (e.g., Item A - “through”). Analyzing information requires 
knowledge of how to interpret complex information (e.g., Item C - “second on the 
left”). Interpreting information requires knowledge of what can and should be 
counted (e.g., Item B). Second, girls’ difficulties on Items B and C suggest that 
Saucier et al.’s (2002) proposal that gender differences can be explained by girls’ 
use of landmark-based approaches (e.g., left or right) and boys’ use of Euclidean-
based strategies (e.g., north or west) is not supported. Both genders (Cohort B) 
experienced difficulties with these items. Boys also outperformed girls on these 
items (Table 1).  
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CONCLUSION  
Our study revealed that some students are making errors on relatively simple map 
items. Difficulties with mathematical know-how (of maps) indicate a need for a focus 
on mathematical practices (Ball, 2004). This focus should address each level of 
sophistication in understanding map information (Wiegand, 2006): extracting and 
reading, analysing, interpreting. Learning opportunities related to these levels need to 
be provided and achievement monitored throughout the primary years especially for 
girls. Our identification of gender differences in the middle to upper primary years 
suggests that research is needed in the early primary years to identify and ameliorate 
early differences and in high school to establish the impact of these differences. 
References  
Ball, D. L. (Chair) (2004). Mathematical P for All Students: Toward a Strategic 

Research and Development Program in Mathematics Eeducation. RAND 
Mathematics Study Panel. Retrieved January 1, 2006, from 
http://Fwww.rand.org/pubs/monograph_reports/MR1643/MR1643.pref.pdf  

Bosco, A., Longoni, A.M., & Vecchi, T. (2004). Gender effects in spatial orientation: 
Cognitive profiles and mental strategies. Applied Cognitive Psychology, 18, 519-
532. 

Cleveland, W. S., & McGill, R. (1984). Graphical perception: Theory, experimentation, and 
application to the development of graphical methods. Journal of the American Statistical 
Association, 79(387), 531–554. 

Diezmann, C. M., & Lowrie, T. J., (2007). The development of primary students’ 
knowledge of the structured number line. In J-H. Woo, H-C Lew, K-S Park & D-Y Seo 
(Eds.), Proceedings of the 31st Annual Psychology of Mathematics Education 
Conference (Vol 2, pp. 201-208). Seoul: PME. 

Fennema, E., & Leder, G. (Eds). (1993). Mathematics and gender. Queensland, Australia: 
University of Queensland Press. 

Halpern, D.F. (2000). Sex differences in cognitive abilities. Mahwah, NJ: Lawrence 
Erlbaum Associates. 

Levine, S. C., Huttenlocher, J., Taylor, A., & Langrock, A. (1999). Early sex differences in 
spatial skill. Developmental Psychology, 35, 940–949. 

Lowrie, T., & Logan, T. (2007). Using spatial skills to interpret maps: Problem solving in 
realistic contexts. Australian Primary Mathematics Classroom, 12, 14-19. 

Mackinlay, J. (1999). Automating the design of graphical presentations of relational information. 
In S. K. Card, J. D. Mackinlay, & B. Schneiderman (Eds.), Readings in information 
visualization: Using vision to think (pp. 66-81). San Francisco, CA: Morgan Kaufmann. 

Queensland Studies Authority [QSA] (2001). 2001 Queensland Year 5 test: Aspects of 
Numeracy. Victoria, Australia: Australian Council for Educational Research. 

Queensland Studies Authority (2002a). 2002 Queensland Year 3 test: Aspects of Numeracy. 
Victoria, Australia: Australian Council for Educational Research. 



Diezmann and Lowrie 

PME 32 and PME-NA XXX 2008    2 - 421 

Queensland Studies Authority (2002b). 2002 Queensland Year 5 test: Aspects of Numeracy. 
Victoria, Australia: Australian Council for Educational Research. 

Saucier, D. M., Green, S. M., Leason, J., Macfadden, A., Bell, S., & Elias, L. J. (2002). Are 
sex differences in navigation caused by sexual dimorphic strategies or by differences in 
the ability to use the strategies? Behavioural Neuroscience, 116, 403–410. 

Wiegand, P. (2006). Learning and teaching with maps. London: Routledge. 

 
Appendix: Map Items 
Deb rides her bike along the 
bike track. What part of the 
park won’t she ride through? 

 

Ben went from the gate to 
the tap, then to the shed, then 
to the rubbish bins. How 
many times did he cross the 
track?  

Bill leaves the pool. He 
drives north and takes the 
first road on the right, then 
the second road on the 
left. Which road is he in? 

Item A (QSA, 2001, p. 16) Item B (QSA, 2002a, p. 11). Item C (QSA, 2002b, p. 7) 
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CONCEPTUAL INTEGRATION, GESTURE AND MATHEMATICS 
Laurie D. Edwards 

Saint Mary’s College of California 
 

The research reported here focuses on an examination of the conceptual 
underpinnings of two areas of mathematical thought, fractions and proof. The 
analysis makes use of the theoretical framework of conceptual integration, and draws 
on spontaneous gesture as an important data source. The question of how gestures 
evoke meaning is addressed within the context of two studies, one involving 
prospective elementary school teachers discussing fractions, and the other involving 
doctoral students in mathematics talking about and carrying out proofs. In both 
situations, gestures and their accompanying language are analyzed in terms of 
conceptual mappings from more basic conceptual spaces. 
INTRODUCTION 
The analysis of mathematical thinking has long distinguished between publicly 
shared and “private” mathematics (e.g., Tall & Vinner’s (1981) distinction between 
“concept definition” and “concept image”). The goal of understanding how learners 
as well as mathematicians conceptualise mathematics is an important aim of the field 
of mathematics education. Over the past decade, research in mathematics education 
has made contact with recent developments in cognitive science that offer fruitful 
methods of both collecting and analyzing data in order to characterize the conceptual 
underpinnings of mathematical thought. The research described here utilized one 
such framework, cognitive linguistics, to examine the ideas of two different groups of 
people involved with mathematics: undergraduate prospective elementary school 
teachers on the one hand, and doctoral students in mathematics at a major research 
university on the other. In each study, the students were interviewed in pairs and 
asked to solve one or more mathematical problems; for the undergraduates, the topic 
was fractions, and for the graduate students, the topic was mathematical proof. The 
overall question guiding the research was: How does gesturing contribute to and/or 
express the ways in which a learner understands a mathematical concept?  More 
specifically, the two studies addressed the question of how mathematical meanings 
are conveyed with the help of gestures,  how we are able to interpret the meaning of 
gestures, and whether gesture can be used as a source of information in uncovering 
the more basic understandings out of which mathematical ideas are constructed 
(Lakoff & Núñez, 2000). 
THEORETICAL FRAMEWORK AND RELATED RESEARCH 
The overarching theoretical framework utilized in the study is embodied cognition 
(Varela, Thompson & Rosch, 1991), that is, the principle that thinking and reasoning 
are grounded in physical experience and the particularities of biological existence. As 
applied to mathematics, research from an embodied cognition perspective 
investigates how humans utilize their embodied capabilities to construct both 
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concrete and abstract mathematical understandings that can be shared within 
classrooms, real world settings, and the professional mathematics community. 
Within the embodied cognition perspective, the current study draws on two specific 
lines of work. The first is the theory of conceptual integration and conceptual or 
mental spaces. Mental spaces, as defined by Fauconnier and Turner, are “small 
conceptual packets constructed as we think and talk, for purposes of local 
understanding and action” (Fauconnier & Turner, 2002, p. 40). Conceptual 
integration or blending is a cognitive mechanism or mapping that  “connects input 
spaces, projects selectively to a blended space, and develops emergent structure” 
(Fauconnier & Turner, 2000, p.89). Conceptual integration can be seen as a general 
mechanism that encompasses more specific mappings such as conceptual metaphor; 
the latter have been used in the analysis of mathematical ideas ranging from 
arithmetic to calculus (e.g., Bazzini, 1991; Lakoff & Núñez, 2000; Núñez, Edwards 
& Matos, 1999).  One of the goals of the current research was to propose conceptual 
mappings that could account for the mathematical ideas discussed by the 
participants. 
The second line of work related to embodied cognition that is integral to the research 
is the investigation of gesture as an important modality of communication and 
cognition. Gesture studies has emerged as an interdisciplinary enterprise drawing 
from linguistics, psychology and other cognitive science fields, and has recently 
attracted the interest of mathematics education researchers. Investigations of gesture 
and mathematics have addressed activities ranging from counting to differential 
equations (e.g., Graham, 1999; Rasmussen, Stephan & Allen, 2004); have been 
examined through time and synchronously (e.g., Arzarello, 2006); and have focused 
on individuals, pairs, small groups and entire classrooms (c.f. Roth, 2001 for a review 
of gesture studies in mathematics and science). Findings of research on gesture and 
mathematics include evidence that gesture and speech can “package” complementary 
forms of information, and can be utilized by the speaker to support thinking and 
problem-solving (Arzarello, 2006; Goldin-Meadow, 2003; Radford, 2003). In several 
studies, learners are able to express their understanding of a new concept through 
gesture before they are able to express it in speech; that is, gesture seems to be an 
indicator of “readiness to learn” the new concept (Goldin-Meadow, 2003). The 
research described here involved participants in both talking about mathematical 
ideas and solving mathematical problems; gesture was used as a clue to how they 
were thinking about the mathematics, and as a modality of expression complementary 
to speech. 
METHODOLOGY 
There were two groups of participants in the study. The first were twelve female 
undergraduate students, approximately 20 years of age, taking a required course in 
number systems, algebra and problem solving for prospective elementary school 
teachers. The course was taught by the author, who offered extra course credit to the 
students who volunteered to participate in the study. 
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The second group of participants were twelve graduate students enrolled in a doctoral 
program in mathematics at a large research university. There were three women and nine 
men; all had had experience as teaching assistants in various undergraduate courses.  
The participants were interviewed in pairs; the interviews were videotapes. Each 
interview consisted of a set of questions about the mathematical topic, followed by 
joint problem solving by the pair of students, and concluding with additional 
questions. The undergraduate students were interviewed about fractions, and the 
questions they were asked included: How did you first learn about fractions? Was 
there anything particularly difficult for you in learning about fractions? What is the 
definition of a fraction? How would you introduce fractions to children?  The 
problems presented included four problems involving arithmetic with fractions and 
one problem comparing two fractions. 
For the doctoral students, the topic of the interview was mathematical proof. The 
students were asked questions such as: Are there any kinds of proofs that your 
students have difficulty with? Would you say there are different kinds of proof? What 
makes a proof difficult or easy for you? The students were then given an unfamiliar 
conjecture and asked to find a proof for it, and were also asked to judge whether a 
particular mathematical argument presented in visual form constituted a proof. 
The sessions were videotaped, and the tapes were transcribed in order to document 
the students’ speech. In addition, the physical gestures displayed by the participants 
were tabulated and categorized, utilizing the dimensions identified by McNeill 
(200*). These dimensions included iconicity (resemblance to the object that is the 
referent of the gesture), metaphoricity (when the referent is an abstraction, thus the 
gesture cannot display physical resemblance directly), and deixis (indication of a 
location either in physical space or “gesture” space, that is, the virtual space 
constructed via gesture and concurrent speech).  
A comprehensive analysis of all of the gestures displayed by the participants in each 
study will not be presented here (see Edwards, in press, for such an analysis of the 
fractions data). Instead, examples will be provided from each study that address the 
central research questions, that is, how do gestures convey mathematical meanings, 
and, along with speech and other modalities, can they provide information on the 
students’ conceptualizations of mathematical ideas? 
 ANALYSIS 
The analysis will focus on two examples, a simple iconic gesture about learning 
fractions, and a gestures displayed when discussing proof. The analysis draws 
directly on the theory of conceptual integration and in specific on work by Parrill and 
Sweetser (2004) applying conceptual blending to the interpretation of gestures.  
Example 1:  An iconic gesture for “cutting” 
Figures 1a and b shows LR, a prospective teacher, describing how she first learned 
about fractions, utilizing a simple “cross-cutting” gesture.  
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Figure 1a. “Like pies, like cutting the pie in like // pieces”. 

  

 
Figure 1b. “and you cut in like eighths”. 

Given that we share common physical and cultural experiences with LR, we easily 
interpret this iconic gesture as referring to the action of cutting or slicing with a knife. 
However, the theory of conceptual integration explains how we are able to make this 
interpretation, and, furthermore, how we are able to understand that LR’s slicing 
gesture does not refer to a culinary activity, but instead to a mathematical idea. 
From the perspective of conceptual integration, LR’s gesture is a blend that draws 
from two input spaces: first, her conceptual understanding of the immediate physical 
world (including the shapes that her hand can make), and second, her mental model 
of the act of cutting with a knife. 
Figure 2 illustrate the conceptual blend that gives rise to this gesture. The two 
inputs are shown on the left and right sides of the diagram. Above, the “generic 
space” refers to elements that the two spaces have in common; these 
commonalities allow our minds to construct the blend, shown in the bottom circle. 
In this case, the generic space includes such features as the perpendicularity of 
both the hand and the knife to the surface of the table, the fact that both are narrow 
relative to their lengths, and that both can be moved up and down. In utilizing the 
affordances of her hand and arm to highlight these commonalities, LR evokes a 
conceptual blend that allows an interlocutor to “see” her hand as a knife being 
used to cut or slice something. 
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Figure 2. Conceptual blend for the iconic gesture of “cutting”. 

Although the blend for this iconic gesture is straightforward, it is notable that most 
participants’ gestures for “cutting” or “splitting” were not as precise as LR’s. In 
Figure 1b, the 45° angle that LR made with her hand was a meaningful part of the 
gesture, resulting in a blended space in which the amount “one-eighth” was embodied 
visually and concretely. These “optional” visual elements, “Hand angle” and 
“Relative size of resulting part,” are shown in parentheses in the blending diagram, in 
order to indicate that they are not found in all gestures for cutting. 
Of course, in the given context, we are not interested in the gesture of cutting in and 
of itself (although in a different context, it might have an important meaning in terms 
of a recipe). In this context, the cutting gesture itself refers to the act of dividing a 
whole (which LR gestured by tracing a circle on the desktop) into equal-sized pieces 
named by specific fractions (hence her precision about the angle of her hand). LR 
produced the gesture when describing how she first learned about fractions; thus, the 
gesture was meant to evoke cutting a pie into equal pieces, which itself was meant to 
evoke the abstract mathematical concept of a fraction. Figure 3 illustrates this “chain 
of signification” (Walkerdine, 1988), where the gesture is one of the inputs to a 
further conceptual blend, in this case, a simple one-way metaphor in which the source 
(cutting a pie) is mapped to the target (a fraction conceived as part of a whole). 
Thus, LR’s gesture of slicing a pie into equal pieces has an iconic dimension, since 
the slicing gesture intentionally resembles the action of cutting with a knife. But it 
also displays metaphoricity, because it ultimately refers to an abstract mathematical 
idea, that of a fraction. The gesture arose through a memory of a classroom learning 
experience, in which realia or manipulatives were used to help students construct an 
understanding of fractions. 

Input 2: Mental Model of Cutting 

Blended Space:  Hand Motion is Cutting 
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Figure 3. “Chain” of conceptual blends for fraction concept. 

The role of tangible materials in this context seems not to be as “representations” of 
mathematical ideas, but rather as objects on which the students act, and from which 
they abstract salient characteristics. Conceptual integration provides a mechanism for 
explaining how this abstraction occurs. 
Example 2: A metaphor for proof 
Figure 4 illustrates a still from a gesture sequence displayed by WG, one of the 
graduate students in the second study. When asked what kinds of proofs he found 
difficult or easy, in part of his reply, he said: 

cause you start figuring out, I’m starting at point a and ending up at point b. There’s 
gonna be some road//where does it go through?  And can I show that I can get 
through there? (bold text indicates synchronization of speech with gesture). 

 
Figure 4: “Proof is a journey” gesture. 

He began the full gesture sequence by closing the fingers of his left hand and 
touching a location near the top of his thigh (“point a”), then opening his right hand 
and pointing as he moved it away from his body (“point b”). He then traced a fairly 
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straight path through the air with his right index finger, returning and pausing briefly 
after “some road.” He then made a small horizontal circle with the same figure, and 
retraced the path between the origin and end of the gesture. 
The metaphor underlying both the gesture and the speech in this example is clear: 
WG is conceptualising proof as a journey. Table 1 summarizes this metaphor (also 
known as a single-scope conceptual blend). 

Source: A Journey  Target: A Mathematical Proof 
Starting point  
Destination 
Possible routes 
“Dead ends” 

Givens 
To prove/conclusion 
Possible sequences of statements 
Sequences that don’t result in the conclusion 

Table 1. “Proof is a journey” metaphor 
The “journey” metaphor was not the only way that this student spoke (and gestured) 
about proof. Just prior to this example, WG said, “And then the question is, well, can 
I fill in those steps that I have ?”, while displaying a series of gestures in front of 
him, with his right hand held horizontal and dropping vertically below itself three 
times. Although his speech, on its own, might be interpreted as referring directly to a 
journey (“steps” could refer to walking), his gesture made it clear that the “steps” he 
was talking about were statements within a proof, written from top to bottom either 
on a piece of paper, or on a blackboard. The underlying metaphor of a journey is 
arguably still there, in that the socially common use of “steps” to indicate logical 
inferences in a proof betrays a grounding in thinking about carrying out a proof in 
terms of motion or travel. However, the most immediate input space for the 
conceptual blend is a written inscription, which in turn refers to the recording of a 
sequence of logical statements, in a second example of a “chain of signification.”  
DISCUSSION 
Clearly, the “journey” metaphor does not provide all of the essential conceptual 
elements of a mathematical proof, nor does the input of “cutting equal parts of a 
whole pie” support a complete understanding of fractions. For one thing, in the proof 
situation, the logical necessity that makes one statement “follow” another (note the 
ubiquity of the metaphor) is not part of the input space or source domain of a journey 
– the steps of a journey are not determined by the prior steps. In fact, the cognitive 
phenomenon of “logical necessity” may originate not (or not only) as a conceptual 
blend, but from more basic cognitive capabilities.  Any individual conceptual blends 
or metaphor is not intended to fully account for the richness of a given mathematical 
concept. Yet the framework of embodied cognition, and the tools of cognitive 
linguistics and gesture analysis can help us discover the ways that both novices and 
more experienced students build and conceptualize mathematical ideas. 
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TEACHING THE SAME ALGEBRA TOPIC IN DIFFERENT 
CLASSES BY THE SAME TEACHER 
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The aim of this study is to examine how a teacher enacts the same written algebra 
curriculum materials in different classes. The study addresses this issue by 
comparing the types of algebraic activities (Kieran, 2004) enacted in two 7th grade 
classes taught by the same teacher, using the same textbook. Data sources include 
lesson observations and an interview with the teacher. The findings show that overall 
the three types of algebraic activity were enacted in both classes in similar 
proportions. But an examination of the whole class work only shows that there was 
more emphasis on global/meta-level activities in one class than in the other. Thus, 
students in one class were learning a different algebra than students in the other 
class during whole class work. This difference is linked to students’ behavior. 
BACKGROUND 
Are students exposed to the same mathematical ideas when a teacher enacts the same 
written curriculum materials in different classrooms? Previous studies of curriculum 
enactment have suggested that different teachers enact the same written curriculum 
materials in different ways (e.g., Cohen & Ball, 2001, Manoucheri & Goodmann, 
2000; Tirosh, Even, & Robinson, 1998). Studying the enacted curriculum in different 
classes of the same teacher, however, has only now started to be the focus of research 
studies (Even & Kvatinsky, 2007; Herbel-Eisenmann, Lubienski, & Id-Deen, 2006; 
Lloyd, in press). These studies highlight contextual factors that contribute to the 
enacted curricula (e.g., student/parent expectations). Still, seldom did the teacher in 
these research studies use the same written materials in the different classes, and the 
focus in these studies was mostly on pedagogy and rarely did they examine the 
mathematics in the enacted curriculum in different classes of the same teacher. This 
study addresses this deficiency in the context of school algebra.  
Kieran (2004) developed a model of algebraic activity that we find to be useful as a 
framework for organizing school-level algebra activities. The framework 
distinguishes among three types of school algebra activities:  

• Generational activities. These activities involve the forming of expressions 
and equations that are the objects of algebra (e.g., writing a rule for a 
geometric pattern). The focus of generational activities is the representation 
and interpretation of situations, properties, patterns, and relations.  

• Transformational activities. These include 'rule-based' algebraic activities 
(e.g., collecting like terms, factoring, substituting). Transformational 
activities often involve the changing of the form of an expression or equation 
in order to maintain equivalence.  
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• Global/meta-level activities. These are activities that are not exclusive to 
algebra. They suggest more general mathematical processes and activities in 
which algebra is used as a tool. They include activities that require students 
to problem solve, model, generalize, predict, justify, prove, and so on. 

Exploring “match trains” (see Figure 1), the following problem (see Figure 2) 
illustrates the three types of algebraic activity described above.  

 
Figure 1. "Match trains". 

Doron said: "For the number of matches required to build a train with r squares, the 
algebraic expression r⋅+ 34  is suitable." Is this algebraic expression suitable? Use 
substitution to check. How many numbers need to be substituted to determine that this 
algebraic expression is not suitable? (Robinson & Taizi, 1997, p. 10) 

 
 
 
 
 

Figure 2. "Match train" problem. 
Analysis of the types of algebraic activity shows that the potential of this problem is 
all three types. To check the suitability of the algebraic expression r⋅+ 34  one may, 
for example, reconstruct the hypothetical process Doron used to form it: four matches 
for the first wagon, and three matches for each of the other wagons, resulting with an 
extra set of three matches (generational). Another way to check would be to 
substitute a specific number in the given expression, build and count the number of 
matches in the corresponding train, and compare the two results (transformational). 
The last part of the problem calls for an examination of the role of examples and 
counter-examples in mathematics proof and refutation (global/meta-level).  
The aim of this paper is to examine, using Kieran’s framework of generational, 
transformational, and global/meta-level algebraic activities, how a teacher enacts the 
same written algebra curriculum materials in two different classes.  
METHODS 
This is a case study of one teacher, Sarah (pseudonym), who taught two 7th grade 
classes, each in a different school, Carmel and Tavor (pseudonyms). Sarah used the 
same curriculum materials (i.e., textbook and teacher guide) in both classes (one of 
the innovative 7th grade mathematics curriculum programs developed in the 1990's in 
Israel).  



Eisenmann and Even 

PME 32 and PME-NA XXX 2008    2 - 433 

Sarah, the teacher, has a B.Ed with emphases in mathematics and biblical studies 
from a teacher college. In the year preceding the research she worked with the team 
that developed the curriculum materials, which are the focus of this study, as part of a 
professional development program. She became very fond of the curriculum and 
decided that she wanted to use it in her teaching. The year of the study was a year of 
several new beginnings for her. It was her first year teaching in 7th grade, and the 
first year of teaching the new curriculum materials. It was also her first year teaching 
in the two schools, Carmel and Tavor. Carmel is a selective single-gender (girls only) 
Jewish religious school. The 7th grade class (with 20 students) that participated in the 
research was characterized by a learning atmosphere with rich and meaningful 
classroom talk. Tavor is a secular junior-high school. Mathematics lessons in the 7th 
grade class (with 27 students) which participated in the research were characterized 
by lack of cooperation – the class was very noisy and there were many disciplinary 
problems.  
Data collection was conducted during one school year (2002-2003). The main data 
sources included video-taped observations of the teaching of the beginning of the 
topic equivalent algebraic expressions – nineteen 45-minute lessons in Carmel, and 
fifteen 45-minute lessons in Tavor (where the first author was a non-participant 
observer), and an audio-taped interview with Sarah that was conducted after all 
observations were completed.  
The data were analysed both quantitatively and qualitatively. First we coded the 
written curriculum materials. The beginning of the topic equivalent algebraic 
expressions was divided into 15 units in the curriculum materials, each suggested for 
a 45-minute lesson. Eleven of these units were enacted (fully or partially) in Carmel; 
ten of them in Tavor. For the purpose of this study, only the 11 units that were 
enacted in at least one of the classes were analysed. In general, each unit started with 
a multi-task assignment for small group work, followed by another multi-task 
assignment for whole class work. Some of the units included also single- or multi-
task assignments to be assigned by the teacher as needed, either to the whole class, or 
to specific students, sometimes in parallel (e.g., to low or high achievers, to slow or 
advance students). The 11 units analyzed included a total of 46 assignments. We 
coded these assignments into one or more of the following categories: generational, 
transformational and global/meta-level algebraic activity, by analysing their potential. 
(Note that only the potential type of a written item can be analysed because the 
enacted activity may not realize its potential, e.g., justification may not be provided 
even tough was asked for.) We also added the time suggested for class work on each 
assignment, as indicated by the written materials. Almost all the assignments were 
composed of several related smaller tasks; the 46 assignments included a total of 367 
tasks. We coded also these 367 tasks into one or more of the above categories. 
After analysing the types of algebraic activity in the written curriculum materials, we 
analysed the types of algebraic activity in the enacted curriculum in the two classes. Using 
a Chi-square test, we then compared between the distributions of algebraic activity types: 
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a) in the curriculum materials and in the enacted curriculum, for each of the two classes; 
and b) in the enacted curricula in the two classes. Comparisons were made, taking into 
account that the categories are not distinct, between the total number of assignments and 
tasks in each category, and on the total time spent on assignments in each category, as all 
are important indications of the nature of students’ algebraic experiences in class. Finally, 
we examined the nature of the class activity and the realization of the potential of the 
suggested algebraic types as well as Sarah’s view on that. 
TYPES OF ALGEBRAIC ACTIVITY IN THE ENACTED CURRICULA 
Analysis of the curriculum materials shows that most assignments and tasks in the 
written materials - about three-fourths - were transformational, and a similar part of 
the class time was suggested to be devoted to these assignments. Still, the written 
curriculum materials included quite a few generational and global/meta-level 
activities (note that the categories are not distinct). About one-half of the assignments 
were generational, and a similar part of the class time was suggested to be devoted to 
them. Moreover, almost one-third of the assignments were global/meta-level, and 
more than 40% of the class time was suggested to be devoted to them.  
In the following we present first the types of algebraic activity that characterize the 
assignments and tasks that the teacher chose to assign students. For this we combine 
small group and whole class activities. Yet, classroom observations suggested that in 
Tavor students often did not work on their assigned small group work, but instead, 
engaged in various non-mathematical activities. Also in Carmel some of the students 
were not always task oriented during small group work. Thus, an analysis that 
combines small group and whole class activities does not necessarily reflects the 
activities that were actually worked on. Therefore, in the second part of this section 
we examine separately the whole class work, which includes only activities actually 
worked on in class. The whole class activities are especially important because, 
according to the written materials, their aim was to advance students’ mathematical 
understanding and conceptual knowledge. Whereas the first part of the section 
includes findings from a quantitative analysis only the second part reports findings 
from both quantitative and qualitative analyses. 
Types of assigned activities 
Analysis of the enacted curricula in each of the two classes showed that Sarah used 
only assignments from the curriculum materials, and rarely used tasks that were not 
from the curriculum materials (only in a few cases of whole class work). Still, not all 
of the assignments and tasks from the written curriculum materials were used, either 
in Carmel or in Tavor. About two-thirds of the assignments and the tasks from the 
written materials were used in Carmel and about one-half of them were used in 
Tavor. Although not all of the assignments and tasks included in the written materials 
were used in the classes, in Carmel statistically significant more time was devoted to 
the teaching of the materials than either the time suggested in the curriculum 
materials or the time devoted to the teaching in Tavor. 
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Analysis of the types of algebraic activity of the assignments and the tasks used in the 
two classes, and of the class time devoted to the different types, showed that in spite 
of the differences in materials’ coverage, there were no statistically significant 
differences between both Carmel’s or Tavor’s assigned assignments and tasks and the 
written curriculum materials, in their overall emphasis on the different types of 
algebraic activity. All three types of algebraic activity appeared in both enacted 
curricula in a similar proportion to that of the written curriculum materials. 
Transformational activities were again more dominant (about three-fourths of the 
activities), and generational and global/meta-level activities also played a 
considerable role, with generational activities being more frequent. Thus, overall, the 
relative distribution of the types of algebraic activities assigned was similar in the two 
classes and it was also similar to the distribution in the curriculum materials.  
Types of whole class activities only 
Analysis of the whole class work showed that statistically significant lesser 
percentage of global/meta-level activities was enacted in Tavor during whole class 
work (three out of 10 assignments, and one out of 48 tasks) compared with Carmel 
(six out of 11 assignments, and nine out of 51 tasks). Moreover, Tavor's students not 
only worked during whole class work on less global/meta-level activities than 
Carmel's students, but they did it only during the first part of the teaching sequence 
whereas Carmel's students did it throughout the teaching of the topic.  
In addition to omitting the global/meta-level activities from the whole class work 
during the second part of the teaching sequence in Tavor, there were several cases 
when the same assignment or task was enacted in Carmel as a global/meta-level 
activity but not so in Tavor (Eisenmann & Even, in press). For example, the whole 
group work in Carmel on the problem in Figure 2 included all three algebraic activity 
types. Led by the teacher, the class examined the situation, formed suitable 
expressions, a generational activity, and by analysing the hypothetical process Doron 
used to form his algebraic expression, showed that his suggestion was inappropriate. 
Working on the task also included substitution in Doron’s expression (r=5) to enable 
a comparison between the numerical result of the substitution (19) and the actual 
number of matches in a five-wagon train (16), a transformational activity. Finally, the 
teacher explained and named an important method of refutation in mathematics 
(counter example), which also made this activity a global/meta-level one.  
In contrast with Carmel, in Tavor the whole group work on this problem included only 
two algebraic activity types. Again, led by Sarah, the class examined the situation, 
formed suitable expressions, a generational activity, and by analysing the hypothetical 
process Doron used to form his algebraic expression, showed that his suggestion was 
inappropriate. An important component of the work on the task in Tavor was 
substitution in Doron’s expression (r=6) to enable a comparison between the numerical 
result of the substitution (22) and the result of the actual counting of the number of 
matches in a six-wagon train (19), a transformational activity. However, unlike the 
work in Carmel, the class activity did not include a global/meta-level aspect. Neither 
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Sarah nor the students incorporated more general mathematical processes and activity, 
such as the role of examples in mathematical proof and refutation. 
The difference in emphasis on global/meta-level activities between the two classes 
seemed to be related to the different characteristics of the two classroom 
environments, namely, discipline problems and lack of student cooperation with 
Sarah at Tavor. In her interview at the end of the observation period, Sarah explained 
how this caused her to change her instructional strategy to implement less thinking-
related activities during whole class work:  

If I had to choose whether to do something or not, there are things, there are things that 
require more thinking and more, eh. In Tavor sometimes I gave up on them. More so, 
later in the year… 
I knew that not everything could work there… Because of the problems that, discipline 
problems, problems of students’ cooperation. 

Observations at Tavor indeed indicated that, during the whole class work, there were 
many discipline problems that caused interruptions in the mathematics activity. An 
examination of the percentage of time in the whole class work devoted to mathematical 
activity vs. non-mathematical activity (mainly discipline interruptions) showed that in 
Carmel, there were rarely any discipline problems (about 2% of whole class time) that 
caused interruptions in the mathematical activities. In Tavor, however, the case was 
quite different; in every lesson during the whole class work, there were interruptions to 
the mathematical activities, totaling 20% of the whole class work time.  
Furthermore, as mentioned earlier, Tavor’s students, in contrast to Carmel’s, often 
did not complete the assigned small group work. Therefore, at Tavor, tasks intended 
for the small group work were repeated during whole class work. Since mathematical 
work at Tavor was interrupted many times, either because of discipline disruptions or 
because of unfinished small group work, Sarah found it more difficult to enact whole 
class activities that required higher-order thinking. Some of these activities were of 
the global/meta-level type. For example, the class in Tavor did not get to generalize 
all the algebraic expressions that the students generated during the small group work 
to a "family" of algebraic expressions with the same character and/or structure, nor 
did they get to demonstrate general mathematical principles, such as refutation by 
using counter examples. Consequently, most of the global/meta-level activities 
recommended to be enacted during whole class work were enacted only in Carmel 
and, as we saw earlier, there were cases when the same assignments/tasks were 
enacted in Carmel as a global/meta-level activity but not so in Tavor. 
DISCUSSION 
Sarah taught the topic equivalent algebraic expressions, using the same curriculum 
materials and teaching sequence, covering by and large the same teaching units, in 
two 7th grade classes in two different schools. Even though significantly fewer 
activities were enacted in both classes than recommended in the written curriculum 
materials, all three types of algebraic activity were enacted in both schools in similar 
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proportions and order, the same as their proportion and order in the written 
curriculum materials. Transformational activities were more dominant, but 
generational and global/meta-level activities also played a considerable role.  
An examination of the whole class work only, which role is to advance students’ 
mathematical understanding and conceptual knowledge, showed that both generational 
and transformational activities were given relatively a similar emphasis in the two 
classes, but in Tavor Sarah enacted less global/meta-level activities during the whole 
class work than in Carmel. Generational and transformational activities are often 
considered to be the heart of school algebra and are the main focus of school algebra 
textbooks. Thus, it may seem that Sarah provided students in the two schools with 
similar algebraic activities. However, the fact that Tavor students had less opportunities 
to engage in global/meta-level algebraic activities during whole class work cannot be 
ignored. This type of algebraic activity is an integral component of algebra. Knowledge 
about mathematics (i.e., general knowledge about the nature of mathematics and 
mathematical ways of work) is not separate from but rather is an essential aspect of 
knowledge of any concept or topic (Even, 1990). Thus, Tavor students were learning a 
different algebra than Carmel students during whole class work; algebra that, in contrast 
with Carmel’s algebra, included less hypothesizing, justifying, and proving.  
Several research studies linked between the curriculum materials enactment and the 
teacher's perception of the curriculum materials and of mathematics teaching and 
learning (e.g., Even & Kvatinsky, 2007; Manoucheri & Goodmann, 2000). Some 
studies added more factors that impact and shape the curriculum material enactment, 
such as, the school’s support of the pedagogical approach of the curriculum materials 
(e.g. Cuban, Kirkpatrick & Peck, 2001), parental expectations and demands of their 
children mathematics studies (e.g., Herbel-Eisenmann, et al., 2006), the need to 
prepare for external evaluation exams (e.g., Freeman & Poter, 1989), and classroom 
norms (e.g., Yackel & Cobb, 1996). This study adds to this growing literature on 
curriculum enactment, by showing that various factors (such as, discipline problems) 
may cause the mathematical ideas dealt in class to change even when the same 
teacher enacts the same written curriculum materials in different classes.  
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FROM COUNTING BY ONES TO FACILE HIGHER DECADE 
ADDITION: THE CASE OF ROBYN 
David Ellemor-Collins and Robert J. Wright 

Southern Cross University 
 
The Numeracy Intervention Research Project (NIRP) aims to develop pedagogical 
tools for use with low-attaining 3rd- and 4th-graders. NIRP involved 25 teachers and 
300 students, 200 of whom participated in an intervention program of approximately 
30 25-minute lessons over ten weeks. The paper overviews the need for intervention 
in the learning of addition and subtraction. The paper describes one intervention 
student's progressive mathematization, from counting to non-counting strategies, and 
from context-bound to formal reasoning. The paper includes (a) descriptions of the 
student's knowledge as determined in initial and final interview-based assessments; 
(b) excerpts from three teaching sessions which highlight the student's progress; and 
(c) insights into instructional procedures and materials used. 
In early number learning, children use strategies involving counting by ones 
(Carpenter & Moser, 1983; Fuson, 1992; Steffe & Cobb, 1988), for example solving 
8+7 by counting on seven from 8, using fingers to keep track. Children make a 
qualitative advancement when they solve additive tasks without counting by ones 
(Carpenter & Moser, 1983; Fuson, 1992; Steffe & Cobb, 1988; Wright, 1994), for 
example 8+7 as ‘8+8 is 16, less 1 is 15’. As in this example, facile additive thinking 
involves four interrelated aspects: (a) the use of non-count-by-ones additive 
strategies, such as near-doubles; (b) a part-whole construction of number; (c) a rich 
knowledge of number combinations, such as knowing 8+8=16; and (d) relational 
thinking, such as connecting the unknown 8+7 to the known 8+8. The development 
from counting strategies to facile non-counting strategies for addition and subtraction 
in the range 1 to 20 is regarded as an important accomplishment of early childhood 
mathematics (Wright, 1994; Young-Loveridge, 2002). As well as facilitating 
calculation in the range 1 to 20, the non-counting strategies are required in efficient 
calculation in the higher decades (Heirdsfield, 2001; Treffers, 1991), for example, in 
calculating 38+7, or indeed 38+27. Further, part-whole thinking, relational thinking, 
and knowledge of number combinations are important aspects of number sense 
(Bobis, 1996; McIntosh, Reys, & Reys, 1992; Treffers, 1991). In short, facility in 
adding and subtracting without counting is a critical goal in early numeracy. 
Some children do not achieve this facility. Instead, they persist with strategies 
involving counting by ones for addition and subtraction in the range 1 to 20, and in 
turn use counting strategies in the higher decades. Persistent counting is characteristic 
of children who are low-attaining in number learning (Denvir & Brown, 1986; 
Gervasoni, Hadden, & Turkenburg, 2007; Gray & Tall, 1994; Treffers, 1991; Wright, 
Ellemor-Collins, & Lewis, 2007). Low-attaining 3rd and 4th grade students might 
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typically solve 17-15, for example, by counting back 15 counts from 17. They often 
show little knowledge of number combinations, for example, finding 8+8 by 
counting, rather than as a known doubles fact. Further, they typically do not relate 
unknown number combinations to known combinations: for example, knowing 6+6 is 
12, but finding 6+7 by counting. Such persistent counting strategies cause 
inefficiency and error (Ellemor-Collins, Wright, & Lewis, 2007), and disable further 
generalisation of arithmetic strategies: persistent counting is a mathematical dead-end 
(Gray & Tall, 1994). Numeracy is a principle goal of mathematics education (e.g. 
Numeracy, a priority for all, 2000), and there are calls for intervention in the learning 
of low-attaining students to bring success with numeracy (Bryant, Bryant, & 
Hammill, 2000; Rivera, 1998). In developing numeracy intervention, there is a 
pressing need to design instructional sequences that are likely to progress students 
from counting strategies to strategies that do not involve counting. Designing such 
sequences is a central goal of the present study. 
NUMERACY INTERVENTION RESEARCH PROJECT 
The Numeracy Intervention Research Project (NIRP) has the aim of developing 
assessment and instructional tools for intervention in the number learning of low-
attaining 3rd- and 4th-graders (Wright et al., 2007). The NIRP adopted a methodology 
based on design research (Cobb, 2003), with three one-year design cycles. In each 
year, teachers and researchers implemented and further refined an experimental 
intervention program with students identified as low-attaining in their schools. The 
program included individual interview assessments, and an instructional cycle 
consisting of approximately 30 25-minute lessons across ten weeks. The assessment 
and instruction addressed several key aspects of number knowledge, including 
number word and numeral sequences, structuring numbers to 20, addition and 
subtraction in the range 1 to 100, conceptual place value, and multiplication and 
division (Wright et al., 2007). Each lesson typically addressed three or four aspects. 
In total, the project has involved professional development of 25 teachers, interview 
assessments of 300 low-attaining students, and intervention with 200 of those 
students. Interview assessments and lessons were videotaped, providing an extensive 
empirical base for analysis. The analysis of the learning and instruction is informed 
by a teaching experiment methodology (Steffe & Thompson, 2000). 
Instructional design 
We find it helpful to describe an intended learning trajectory as progressive 
mathematization from informal, context-bound strategies to more formal, generalised 
strategies (Gravemeijer, Cobb, Bowers, & Whitenack, 2000; Treffers, 1991). In 
accord with the emergent modelling heuristic (Gravemeijer et al., 2000; Wright et al., 
2007), we seek to devise instructional settings in which students can first, develop 
their informal strategies, and then, reflect on their activity, and generalize toward 
more formal reasoning about numbers. For addition and subtraction in the range 1 to 
20, informal non-counting strategies commonly develop around doubles 
combinations, combinations with 5 and 10, and tens-complements (9+1, 8+2, 7+3, 
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6+4, 5+5)(Gravemeijer et al., 2000). We describe the development of knowledge of 
these combinations and the relationships between them as structuring 1 to 10 
(Gravemeijer et al., 2000; Wright et al., 2007). The ten frame is a useful setting for 
these combinations (Bobis, 1996; Treffers, 1991; Young-Loveridge, 2002). The Bob 
card setting can extend ten frames into the range 1-100 (Wright et al., 2007). 
Settings 
Ten frames 1-10. A 2x5 frame with a standard configuration of dots for a number in 
the range 1 to 10 (such as five dots on one row and two on the other). 
Ten frame addition cards. The 36 frames having 0-5 red dots on one row and 0-5 
green dots on the other. 
Bob card. A full ten frame, that is, a frame with 10 dots. 
Expression card. Two addends in the range 0 to 9, in horizontal format (such as 2+7). 
The set of expression cards includes all 100 such expressions. 
Numeral roll. A long strip of card with the numerals from 1 to 100 in sequence. 
Focus of the current study 
The focus of this paper is a case study of a child (Robyn) from the second year of the 
project who progressed from counting to non-counting in her addition and subtraction 
strategies. The purpose of the case study is to document Robyn’s development, and to 
highlight significant aspects of instruction such as settings and tasks. We believe such 
exemplars are of interest to practitioners and researchers. 
THE CASE OF ROBYN 
Robyn was nine years old and in the 4th grade when she participated in the study. Her 
intervention teacher was Anne. Robyn’s initial assessment was in May; the 
intervention included 29 lessons across 10 weeks from July to October; the final 
assessment was in October. Below, we discuss Robyn’s addition and subtraction in 
the ranges 1-10 and 1-100 (a) in her initial assessment; (b) in episodes from weeks 3, 
5, and 6 of her instruction; and (c) in her final assessment. 
Initial interview assessment 
Robyn did not have automated knowledge of tens-complements, or of double 7, 8 or 
9; she attempted these tasks using counting by ones. For one-digit written tasks 6+5, 
7+6, 9+3, 9+6, and 8+7, she solved all by counting on by ones, the last task 
incorrectly. She was not successful with the following tasks presented in a horizontal 
written format: 43+21, 37+19, and 86-24. Her thinking took a long time, she could 
not coordinate the units of tens and ones, and her strategies included some counting 
by ones with her fingers (Ellemor-Collins et al., 2007). 
Lesson 10, week 3 
Tens-complements with ten frames. Anne used a set of ten frame 1-10 cards. She 
flashed a card, and Robyn’s task was to say the number of dots, and the number 
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needed to make ten. By and large Robyn was successful and fluent with these 
tasks. A 3-dot card and 2-dot card appeared to be harder for her than others. Robyn 
reasoned with known combinations and patterns. For example, for the 3-dot card, 
Anne asked “How do you know it was seven?”, and Robyn answered “Because 
there’s five” sweeping the empty row “five empty, and two empty there” pointing 
to the other two empty boxes. A segment followed in which Anne did not use the 
frames. Rather, she stated a number and Robyn’s task was to say the number 
needed to make ten. Robyn was successful and facile on these tasks as well. 
Subtracting from a decuple with Bob cards. Next, Anne presented higher decade 
subtraction tasks using Bob cards and an upright screen. She placed out eight 
cards, and briefly unscreened the cards. With the cards screened again, she 
covered three dots on one card and said “80 cover up 3?”. After Robyn answered, 
Anne unscreened the cards. Robyn then solved 30 take 4, and 50 take 3. For 20 
take 8 she first answered “22”, then Anne lifted the screen, Robyn looked at the 
cards, and said “12”. Her solutions to the next two tasks are described in the 
following. 
50 take 7. Anne lays out five Bob cards, and then lifts the screen. Robyn looks, nods, 
and Anne replaces the screen. 

Anne:  How many dots- how many tens?  
Robyn:  Five. 
Anne:  How many dots? 
Robyn:  Fifty. 
Anne:  Cover up…seven. (She covers seven dots on one card.)  
Robyn:  (After 10 seconds) That’s forty-six…(shakes her head) for...forty-t, -three. 
Anne:   (Lifts the screen. Robyn looks at the cards, and nods.) Well done. 

80 take 2. Anne lays out eight Bob cards, and then lifts the screen. Robyn looks, 
nods, and Anne replaces the screen. 

Anne:  How many tens? 
Robyn:  Eight. 
Anne:  How many dots? 
Robyn:  Eighty. 
Anne: Covering up two. (She covers two dots on one card.) 
Robyn: Eighty-er…sixty-…-ni, -eight. Er, wait, seventy-eight. 
Anne: (Lifts the screen.) 
Robyn: (Looks at the cards and nods.) Yep. 
Anne:  Yep. How did you know that was eight so quick? (Indicates the partially 

covered Bob card.) 
Robyn: Cos I know that eight…plus two equals ten. (Taps her forefinger on the desk 

with each of the five words “eight”, “plus”, “two”, “equals”, “ten”.) 
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The final task that Anne presented was 60 take 6 for which Robyn answered 53. 
We contend that the particular way Anne used the Bob card setting enabled Robyn 
to reason facilely about subtracting numbers less than 10 from a decuple. Robyn 
used her knowledge of tens-complements in solving these tasks. Crucial to her 
doing so, was Anne’s instructional strategy of covering some of the dots on one 
Bob card to correspond with the subtrahend. It was not necessary for Robyn to see 
Anne cover those dots, or to see the cards. With the setting of Bob cards used in 
this way, Robyn could construct a model for reasoning (Gravemeijer et al., 2000). 
By contrast, in a subsequent segment of the lesson, Robyn worked on related 
higher decade tasks without the Bob card setting, and used counting-by-ones 
strategies. Thus, the Bob card setting was important for Robyn’s progress with 
non-counting strategies. 
Lesson 15, week 5 
Combinations < 10. The first instructional activity involved flashing ten frame 
addition cards. Robyn’s task was to say the number of dots (a) on the top row; (b) on 
the bottom row; (c) in all; and (d) needed to make 10. Cards presented were 1+1, 3+2, 
2+1, 4+1, 5+4, 5+1, 4+4, and 1+4. Robyn responded facilely. In the second activity 
Robyn put expression cards with sums in the range 1 to 9, into columns according to 
their sums. She was generally successful. Her responses on these two activities 
indicated that she could now calculate combinations less than ten without counting by 
ones, both in a bare number setting and in the ten frame setting. She had consolidated 
her knowledge of structuring 1 to 10. 
Jumping across decuples. In this lesson segment Anne presented four subtractive 
tasks involving two 2-digit numbers with an unknown difference less than 10. Robyn 
used a jump-through-ten strategy to solve each task and after each solution she used a 
numeral roll to check. After Robyn solved and checked the tasks of 28 to 34 and 39 
to 45, Anne posed the task of 53 to 47. 

Robyn: (Looking ahead for four seconds.) Six. 
Anne: Check it. 
Robyn:  (Unfolding the numeral roll.) 53…wait what was it, 43? 
Anne: 53. 
Robyn: 53. That’s 3 jumps (traces an arc from 53 to 50) and another 3 (traces an arc 

from 50 to 47). 
Anne: Six? 
Robyn: (Nodding) Six. 
Anne: Good. 82 to 75. 
Robyn: (Looking ahead for six seconds.) Seven. 
Anne: Check it. 
Robyn: (Unfolding the numeral roll.) Umm, that’s two (traces an arc from 82 to 80) and 

five (traces an arc from 80 to 75) is seven. 
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For these verbal tasks in the range 20-100, Robyn used her structuring 1 to 10 
knowledge. The jump-through-ten strategy had become the accepted practice 
(Gravemeijer et al., 2000) for solving and checking. 
Lesson 17, week 6 
Anne used expression cards to present tasks such as 9+6, 7+9, 4+9, 8+9, 7+6, 4+8 
and 5+8. Robyn gave facile responses to these tasks using strategies such as jump-
through-ten, compensation, and using a double. She reasoned flexibly about number 
relationships without reference to the ten frame imagery. 
Final assessment 
Robyn’s final assessment included the same additive tasks as her initial assessment. 
In her final assessment, Robyn had automated knowledge of tens-complements and 
of double 5 through double 10. She solved the same one-digit written tasks (6+5, 
7+6, 9+3, 9+6, and 8+7) using the non-counting strategies of near-doubles and 
compensation. She solved the same two-digit written tasks (43+21, 37+19, and 86-
24), and also 50-27 and 138-24, using non-counting strategies. For example, she 
solved 37+19 using a jump strategy: 37+10 47+3 50+6 56. 
DISCUSSION 
Comparing her initial and final assessments, for additive tasks in the range 1-20, 
Robyn progressed significantly from counting to non-counting strategies, developing 
facility with structuring 1 to 10. In the range 20-100, Robyn progressed from 
unsuccessful strategies to successful non-counting strategies. The progress is due in 
part to her use of structuring 1 to 10 knowledge in the higher decade calculations, as 
in the jump strategy for 37+19 above, knowing that 47 to 50 is 3, and that 9 partitions 
into 3 and 6. Referring to Gray and Tall (1994), while Robyn’s additive strategies 
were initially constrained by a preference to think procedurally, her number 
knowledge was able to develop sufficiently for her to think proceptually.  
Important progressions in this learning trajectory are now described. In structuring 1 
to 10, Anne focused on tens-complements, then on combinations less than ten, in 
each case progressing from ten frames to bare number settings. From week 6 onward, 
with written tasks in the range 1-20, Robyn’s thinking took for granted knowledge of 
a network of number relations and combinations (Gravemeijer et al., 2000).  
In higher decade subtractive tasks, Robyn progressed as follows: (a) Weeks 2 and 3 – 
for verbally-stated tasks without materials, (such as how far from 82 to 75), she used 
counting by ones with some errors; (b) Week 3 – in the context of Bob cards, tasks 
subtracting a number less than 10 from a decuple, she solved without counting by 
ones: (c) Week 5 – for verbally-stated tasks without materials, she used jumping-
through-ten. Her progressive mathematization in the range 20-100 was from counting 
to non-counting, and from ten frames to bare numbers. 
We propose an emergent modelling description of the learning trajectory. In the early 
weeks, when Robyn was using counting strategies in bare number contexts, we 
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contend that the ten frames and Bob cards provided settings in which Robyn could 
develop a model of non-counting reasoning (Gravemeijer et al., 2000). Robyn’s 
reflections and explanations consolidated her reasoning in each setting. With Anne’s 
judicious distancing of the settings through flashing, screening, and removal, Robyn 
was generalising her activity toward independence from the settings. 
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AN OPPORTUNITY LOST IN THE HISTORY OF SCHOOL 
MATHEMATICS: NOAH WEBSTER AND NICOLAS PIKE  

   Nerida F. Ellerton and M. A. (Ken) Clements 
Illinois State University 

 
Nicolas Pike is often incorrectly credited with being the first person born in the 
United States to write and have published an English-language arithmetic textbook. 
Although Pike’s (1788) arithmetic text was applauded by numerous dignitaries, some 
later scholars maintained that Pike missed the opportunity to revitalize school 
mathematics. Our paper contrasts the impact of Pike’s book on school arithmetic 
with that of Noah Webster’s texts on school English language studies. We argue that, 
whereas Webster seized the moment and thereby effected lasting change, Pike, by 
proceeding cautiously, held back progress in school mathematics. Another issue, 
concerned with principles of historiography, is discussed briefly: Under what 
circumstances is it fair to criticize a writer for “silence”? 
1780S – THE CHALLENGE TO CHANGE US SCHOOL MATHEMATICS  
The 1780s was a decade of optimism and opportunity so far as the history of 
schooling in the United States was concerned. Having just emerged victorious from 
the Revolutionary War with its former colonial master, England, the fledgling nation 
now looked forward to facing, and conquering, many educational challenges (Ogg, 
1927). There was a strong national consciousness, and a feeling that from that 
moment onwards the nation’s schools should reflect the achievement of 
independence and the opportunity to create a unique and model democracy.  
George Washington, in writing to Nicolas Pike in June 1788, could not have been 
clearer on the matter. With respect to Pike’s Arithmetic, he wrote: 

It seems to have been conceded, on all hands, that such a System was much wanted. Its 
merits being established by the approbation of competent Judges, I flatter myself that the 
idea of its being an American production, and the first of the kind which has appeared, 
will induce every patriotic and liberal character to give it all the countenance and 
patronage in his power. (Washington to Pike, June 20, 1788) 

In those years the young nation’s leaders were prepared to accept structural 
alterations to school curricula which would have been entertained by only a vanguard 
of reformers in the colonial era. Thus, for example, in 1786 Congress officially 
introduced decimal currency, with the United States becoming the first nation in the 
world to decimalize its currency (Pike, 1788; Robinson, 1870; Schlesinger, 1983). 
What was needed in the young nation’s schools was an arithmetic curriculum that 
supported such an important change. One might have expected that textbook authors, 
and those in schools and colleges who were responsible for developing school 
arithmetic curricula, would have thought carefully about how to assist their students 
to make decimal currency “normal”. Furthermore, although Congress had decided 
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only to decimalize currency, one might have expected Pike to have scrutinized the 
old system of measuring lengths, areas, volumes, capacities, and time (Cohen, 2003). 
THE TEXTBOOK CHALLENGE 
Before the Revolutionary War almost all arithmetics used in North American1 
schools were written by European authors. In questions involving money, these 
European texts used European currencies and measurement systems for lengths, 
weights, volumes and capacities, time, etc. In the 1780s, then, a major challenge for 
North American teachers, scholars and writers was to produce more authentic 
textbooks that could replace those previously used in their schools and academies.  
Following the Revolutionary War, school texts written by North American writers 
began to appear. Perhaps the most important of the publishers of these texts was 
Isaiah Thomas (Tebbel, 1972), who would publish Noah Webster’s (1787) famous 
The American Speller and later editions of Pike’s Arithmetic. 
Greenwood’s (1729) Arithmetic, and Other Early English-Language Arithmetics 
Isaac Greenwood, the first Harvard University mathematics professor, is generally 
believed to have authored the first arithmetic text written in English by an American 
and printed in America. Greenwood’s (1729) arithmetic seems to have been used 
very little, if at all, outside of Harvard. In addition to Greenwood’s text, several other 
arithmetics written in English, by American authors, appeared before Pike’s (1788) 
Arithmetic. For example, Alexander M’Donald’s (1785) The Youth’s Assistant: Being 
a Plain, Easy and Comprehensive Guide to Practical Arithmetic, a text with 102 
pages, had five editions between 1785 and 1795 (Karpinksi, 1980).  
Pike’s (1788) Arithmetic 
The first major North American school arithmetic to appear was Pike's (1788) A New 
and Complete System of Arithmetic Composed for Use of Citizens of the United 
States. Pike (1743-1819), a native of New Hampshire, graduated from Harvard 
College in 1766 and in the 1780s was a school teacher in Newburyport, a seaport 
northeast of Boston (Albree, 2002), 
“Old Pike”, as Pike’s Arithmetic came to be known, went through six editions 
between 1788 and 1843 (Karpinksi, 1980). It sold initially for about $2.50 – a price 
which placed it out of the reach of most pupils and teachers (Monroe, 1917). The 
original 1788 publication was a portentous volume of 512 pages. Besides arithmetic 
proper, it introduced algebra, geometry, trigonometry, and conic sections. 
Applications of the arithmetic were made to problems in mechanics, gravity, 
pendulum motion, mechanical powers, and to astronomical problems requiring 
calculations of the moon’s age, the times of its phases, and the date of Easter.  
Most of the text was devoted to narrow forms of traditional arithmetic set out in the 
book’s 200 sections. The book began with rules for elementary operations on 
integers, together with many examples worked out in detail. Then followed sections 
on vulgar fractions, decimal fractions, rules for exchanging currency, tricks for rapid 
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computation, extraction of square roots, computation of interest, commissions, 
annuities, the volumes of particular solids, arithmetic and geometric progressions, 
permutations and combinations, and topics from elementary mechanics. The book 
provided a detailed compendium of techniques, formulas, and worked examples, in a 
wide diversity of practical applications. There were very few, if any, formal proofs. 
The formulae presented for the slightly more advanced topics appeared without any 
detail of their origins. An abridged version aimed at schools, which first appeared in 
1793, omitted any discussion of logarithms, trigonometry, algebra and conic sections. 
In his choice and ordering of content and his methods of handling various topics, Pike 
leant heavily on school arithmetics written and published in England but widely used 
in the American colonies – especially those written by Cocker (1738), Dilworth 
(1762) and Bonnycastle (1778). Naturally, those English texts assumed that English 
“pounds, shillings, pence” currency would be solely used in the schools. Although 
Pike’s (1788) Arithmetic devoted 28 pages (pages 96-123) to currency conversion, 
only three of these (pages 96-98) were concerned with the new Federal currency –  
even though the 1788 edition included a copy of the 1786 Act of Congress which 
created the US Federal Money System. None of the problems involved the new North 
American currency; rather, they were based on the English system. Units used in 
other sections of Pike’s book included measures for cloth, wine, and beer – beer 
measures consisted of pint, quart, gallon, firkin, kilderkin, barrel, hogshead, 
puncheon, and butt – and both troy and apothecary weights.  
Pike’s (1788) Arithmetic offered few examples on how the new Federal currency 
should be applied in farming, trade and business transactions. With a view to 
supplying information needed by merchants, Pike discussed such subjects as United 
States Securities, and rules adopted by the United States, and by State governments, 
on partial payments – topics of only peripheral relevance to most school students. 
AMERICAN SCHOOLS IN THE 1780s AND THE COPYBOOK TRADITION  
Pike’s Arithmetic was superimposed upon an established system of school arithmetic 
that had relied heavily on what has come to be known as the “ciphering” tradition. 
Prior to 1800, most North American schooling took place in one-room school-houses 
with limited resources. Very little of the arithmetic in Old Pike would have been 
useful for instruction in these schools, for often, the teachers were women who had 
never studied arithmetic beyond the four operations. There were no blackboards, 
slates, or maps, and almost all of the school supplies were homemade. The pens were 
goose-quills, and families supplied their children with homemade ink (Cajori, 1890). 
Entries in ciphering books often featured beautiful penmanship and calligraphy, for 
these would be featured on special occasions, especially at the end of a term of work, 
when local committees and parents met to assess the work of the teacher and pupils. 
We have examined about 150 ciphering books generated by individual students 
attending schools in North America between 1702 and 1860. In each manuscript 
many pages related to practical topics such as currency conversion, multiplication of 
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money, profit and loss, length measure, tare, discount, simple and compound interest, 
and annuities. Analysis of entries in these ciphering books suggests that school 
arithmetic did not deal with subject matter of immediate relevance to students. We 
have been able to link many of the ciphering books to actual textbooks – including 
one to “Old Pike” – from which, presumably, students copied. 
THE MARTIN (1897) VERSUS CAJORI (1907) DEBATE 
Martin’s Case Against Nicolas Pike 
Many critics of Pike’s (1788) Arithmetic (e.g., Cobb, 1835) pointed out that the 
numerous rules Pike gave were not comprehensible to most school students. In 
1897 George H. Martin launched an attack on what he perceived to be enduring 
negative effects of Pike’s Arithmetic on schooling in the United States. Martin 
(1897) stated:  

The money units were the English; two pages only are given to Federal money, as it was 
called, which the Congress had just established but which had not come into general use. 
Nine kinds of currency were in use in commercial transactions, and the students of this 
arithmetic were taught to express each in terms of the others, making 72 distinct rules to 
be learned and applied. (p. 102) 

An examination of passages in Pike (1788) suggests that these criticisms were 
warranted. For example, under the title Practice, which is described as “an easy and 
concise method of working most questions which occur in trade and business”, the 
learner is expected to commit to memory a page of tables of aliquot parts of pounds 
and shillings, of hundredweights and tons, and a table of per cents of the pounds in 
shillings and pence. These tables contain more than a 100 relations, and the 
application is in more than 34 cases, each with a rule. The following is Case 12:  

When the price is shillings, pence and farthings, and not an even part of a pound, 
multiply the given quantity by the shillings in the price of one yard, etc., and take parts of 
parts from the quantity for the pence, etc., then add them together, and their sum will be 
the answer in shillings, etc. Or, you may let the given quantity stand as pounds per yard, 
etc., then draw a line underneath, and take parts of parts therefrom; which add together, 
and their sum will be the answer. (Pike, 1788, p. 169) 

After that statement Pike advised the learner “to work the following examples both 
ways by which means he will be able to discover the most concise method by 
performing such questions in business, as may fall under this case” (p. 169). Under 
the topic “Tare and Trett” the following rule is given as Case 4, which is meant to 
relate to the situation “when Tare, Trett and Cloff are allowed”: 

Deduct the Tare and Trett … divide the Suttle by 168, and the quotient will be the Cloff, 
which subtract from the Suttle, and the remainder will be the Neat. (Pike, 1788, p. 194) 

Martin (1897) maintained that Pike’s text “gave tone to all the arithmetic of the 
district-school period” (p. 104), and was “responsible for that excessive devotion to 
arithmetic which has of late been the subject of just complaint” (p. 104). He stated 
that the text had “an almost endless elaboration of cases and prescription of rules” (p. 
104). For example, there were 14 rules under simple multiplication, and in all there 
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were 362 rules in the book. According to Martin, no hint of a reason for a rule was 
given, except in an occasional footnote, and often the problems were very difficult.  
Cajori’s (1907) Defence of Pike 
Florian Cajori, a respected historian of mathematics and mathematics education, 
reacted sharply to Martin’s (1897) criticisms of “Old Pike”. Cajori (1907) argued that 
Pike’s emphasis on local, non-Federal currencies was appropriate because those were 
the kinds of calculations people needed to know how to do if they were to survive 
with dignity in everyday life at a time when the different currencies of the North 
American colonies resulted in much confusion. Cajori pointed out that there was, in 
fact, an abridged version for schools (Pike, 1793). Referring directly to Martin’s 
(1897) criticisms of Pike, Cajori (1907) wrote: 

To us, this [Martin’s] condemnation of Pike seems wholly unjust. … Most of the evils in 
question have a far remoter origin than the time of Pike. Our author is fully up to the 
standard of English authors to that date. He can no more be blamed by us for giving the 
aliquot parts of pounds and shillings, for stating rules for “tare and trett”, for discussing 
the “reduction of coins”, than the future historian can blame works of the present time for 
treating of such atrocious relations as that 3 ft. = 1 yd., 5

2
1 yds. = 1 rd., 30

4
1 sq. yds. = 1 

sq. rd., etc. So long as this free and independent people choose to be tied down to such 
relics of barbarism, the arithmetician cannot do otherwise than supply the means of 
acquiring the precious knowledge. (p. 218) 

Cajori (1907) added that, in the early 1800s, there were three great US 
arithmeticians – Nicholas Pike, Daniel Adams, and Nathan Daboll. He claimed 
that the arithmetics of Adams (1801) and Daboll (1800) paid more attention than 
Pike did to Federal Money, and said that teachers could choose the text they 
wanted. Cajori also pointed out that Pike’s “abridged version” for schools 
continued to be published until the 1830s. The abridged versions had about 200 
pages less than the original Arithmetic, and the publisher’s preface stated that, 
whereas the original Arithmetic was used as a classical book in all the New 
England universities, the abridgements were intended for schools. However, it 
could be argued that the very fact that an abridgment needed to be published at all 
testified to the unsuitability of the original (1788) Arithmetic for schools. From 
this perspective it should be noted that all four recommendations written by 
eminent citizens of Boston and printed in the front of the 1788 edition indicated 
that the text would be very useful in all schools. A certain Benjamin West stated, 
for example, that the 1788 edition would be read “by great advantage by students 
of every class, from the lowest school to the university” (p. 4). But not everyone 
would agree with that assessment. Monroe (1917), for example, in his history of 
the development of arithmetic as a school subject in the United States, stated that 
Pike’s (1788) Arithmetic was “not a text for young pupils” (p. 18).  
Cajori (1907) pointed out that Pike was a practising teacher, a product of a system 
transported from England by which a textbook was expected to state rules which 
students would copy, and attempt to remember. That is what “Old Pike” was intended 
to do. For Cajori, Pike’s (1788) summary of relationships between local currencies 
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was meritorious - indeed, such was the detail provided that the book became an 
authoritative reference for numismatic experts (see, e.g., Mehl, 1933). 

NOAH WEBSTER – VISIONARY, ENTREPRENEUR, AND PATRIOT 
Noah Webster was a contemporary of Nicolas Pike. In the 1780s, he was alarmed by 
the fact that in many Old World countries different dialects had developed to such an 
extent that people in one region could barely understand those in a neighbouring 
region. He saw similar trends in the North American colonies. He recognised that the 
post-Revolutionary period provided the perfect time to develop and publish a scheme 
for standardising the spelling and pronunciation of North American English. He drew 
on his teaching experience, his academic training (at Yale University) and his 
entrepreneurial nature to write and publish spellers and dictionaries that provided the 
foundation for “American English”. In so doing, he risked bankruptcy, for he was not 
a wealthy man. In short, by seizing the moment, he changed the face of the English 
language in the United States of America forever (Morgan, 1975). 
The contrast between Webster’s and Pike’s actions, and the consequences of those 
actions, carries a message for contemporary mathematics educators. Pike had the 
opportunity to lead the new nation by providing a text which could have achieved 
for arithmetic what Webster achieved for American English. The citizens of the 
United States of America needed educating with respect to the new Federal decimal 
currency which had been approved by Congress in 1786. In addition, he missed the 
opportunity to support leaders like Benjamin Franklin and Thomas Jefferson, who 
were strongly inclined towards the proposed French metric system of measurement. 
In attempts to achieve educational change, vision, timing, and willingness to take 
calculated risks are as important today as they were in the times of Webster and Pike. 
SOME FINAL COMMENTS 
Cajori (1907) believed that it was not an arithmetic author’s task to seek to change 
the way people used currencies within society. Rather, an author’s fundamental task 
was to make sure that students learned to cope, arithmetically, with the many and 
varied problems associated with everyday life. Furthermore, Pike’s (1788) emphasis 
on rules was in line with the “best thinking” on teaching and learning at that time. At 
issue was whether Pike, given his contextual constraints, was right to accept the 
existing education settings of his day, and to proceed cautiously; or whether he, as a 
person acting at a pivotal period of history, should have provided leadership by 
seizing the moment and attempting to achieve fundamental change in the arithmetic 
curricula of schools. 
It should be noted, however, that Pike knew that his would be a landmark text, and so 
also did all the notable personalities who provided supporting statements in the front 
of the book. Pike wanted his arithmetic to be the first English-language arithmetic 
text written by a North American citizen. He wanted it to be widely used in the 
schools and colleges in the new nation. One could argue, however, that, as with Noah 
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Webster, his was the responsibility to set a new standard, to break away from 
colonialist fetters that had strangled teaching and learning of arithmetic in the schools 
before the Revolutionary War. But, he failed to grasp his opportunity. Furthermore, 
the abridged versions of Pike’s arithmetic “for schools” were little better than the 
original 1788 text. 
Was it unreasonable to have expected Pike to see beyond the horizons surrounding 
his world and context in the 1780s? That question raises intriguing issues of 
historiography. What principles can historians look to if they want to generate 
faithful, historically accurate accounts of events, and penetrating and insightful 
interpretations of those events? Under what circumstances is it fair to criticize a 
writer for “silence” about ideas and practices of which he was only dimly aware? 
Those kinds of questions are fiercely contested within the world of academic history 
today (see e.g., Macintyre & Clark, 2004; Windschuttle, 1996). 
Endnote 
1. In this paper, the term “North America” refers only to States that ultimately 

became part of the United States of America. 
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