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FROM PRIMITIVE KNOWING TO FORMALISING: THE ROLE OF STUDENT-TO-
STUDENT QUESTIONING IN THE DEVELOPMENT OF MATHEMATICAL 

UNDERSTANDING  

Lisa Warner Roberta Y. Schorr 
Rutgers University-Newark Rutgers University-Newark 

lwarnerb@aol.com schorr@rci.rutgers.edu 
 
In this paper, we examine the development of inner city middle school students’ ideas and the 
student-to-student interactions and questions that contribute to this development within the 
context of the Pirie/Kieren model. We analyze data collected from an inquiry oriented, problem 
based mathematics class in which students were repeatedly challenged to explain their thinking 
to each other, and defend and justify all solutions. In this instance, we document how one student 
was able to move from primitive knowing to formalising. Further, we note that this student (and 
her classmates) were able to use this knowledge several months later when solving a structurally 
similar problem.  
 

Objectives/Purposes  
Prompting students to talk about mathematics is an important goal of education (NCTM 

2000; Sfard, 2000; Dorfler, 2000; Cobb, Boufi, McClain, and Whiteneck, 1997).  Cobb, (2000) 
notes that student exchanges with others can constitute a significant mechanism by which they 
modify their mathematical meanings.  Carpenter and Lehrer, (1999) state that “the ability to 
communicate or articulate one’s ideas is an important goal of education, and it also is a 
benchmark of understanding.” (p. 22)  Researchers such as those cited above (and others, see for 
example, Schorr, 2003; Maher, 2002; Shafer and Romberg, 1999) maintain that it is important to 
provide students with opportunities to discuss their ideas with each other, defend and justify their 
thinking both orally and in writing and reflect upon the mathematical thinking of others.  One 
important component of this involves students’ questioning the mathematical thinking of their 
peers. This report focuses on the impact of student questioning on the development of 
mathematical thinking. We do this within the context of the Pirie/Kieren theory for the growth of 
mathematical understanding (Pirie and Kieren, 1994).  

Our central premise is that when students have the opportunity to question each other about 
their mathematical ideas, both the questioner and the questioned have the opportunity to move 
beyond their initial or intermediate conceptualizations about the mathematical ideas involved.  
As students reflect on their own thinking in response to questions that are posed by their peers 
they have the opportunity to revise, refine, and extend their ways of thinking about the 
mathematics.  As they do this, their earlier conceptualizations and representations become 
increasingly refined and linked.  We stress the role of representations in this dynamic since “the 
ways in which mathematical ideas are represented is fundamental to how people can understand 
and use those ideas.” (NCTM, p.67) In this paper, we will trace the development of ideas (using 
the Pirie/Kieren model) and the student-to-student interactions and questions that contribute to 
this development.   

Theoretical Framework  
In 1988, Pirie discussed the idea of using categories in characterizing the growth of 

understanding, observing understanding as a whole dynamic process and not as a single or multi-
valued acquisition, nor as a linear combination of knowledge categories. In 1994, Pirie & Kieren 
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described eight potential layers or distinct modes within the growth of understanding for a 
specific person, on any specific topic. The inner-most layer, called primitive knowing, is what a 
person can do initially and is the starting place for the growth of any particular mathematical 
understanding.  When a person is doing something to get the idea of what the concept is, he/she 
is working in the image making layer.  A person working in this layer is tied to the action or tied 
to the doing.  Working in the image having layer is when one reaches a “don’t need boundary”, 
where he/she is no longer tied to the action or the doing.  When a person “…can manipulate or 
combine aspects of ones images to construct context specific, relevant properties” and ask 
themselves how these images are connected, one is property noticing (Pirie & Kieren, 1994, 
p.66). When one no longer needs to talk specific and can make a general statement, he/she is 
formalising.  When formalising, “the person abstracts a method or common quality from the 
previous image dependent know how which characterizes his/her noticed properties” (Pirie & 
Kieren, 1994, p. 66). This theory is a way to explain understanding and is a useful tool for 
understanding how understanding grows. The structure of the theory is non-linear, repeating 
itself with many layers wrapped around.  

In 2003, Warner, Alcock, Coppolo & Davis linked this theory to specific behaviors that 
indicate mathematical flexible thought. Briefly stated, a person exhibiting mathematical 
flexibility may be characterized as one who displays some or all of the following behaviors: 
interpretation of their own or someone else’s idea (e.g. through questioning it and thus showing 
it to be valid or invalid; through using, reorganizing or building on it); use of the same idea in 
different contexts; sensible raising of hypothetical problem situations based on an existing 
problem: creating “What if…?” scenarios; use of multiple representations for the same idea; 
connecting representations (Warner, Coppolo & Davis, 2002). In this study, we will illustrate 
movement through the first six layers (described above) as we focus on how the transitions from 
one layer to the next occurred in association with student-to-student interactions and questioning.  
We will also highlight how these student-to student interactions and questions move students to 
new representations and the linking of these representations.     

Methods 
The study took place over the course of 8 months, which involved two visits a week (50 

minutes each session), for the first two months, and 3 to 6 visits a month for the remaining 6 
months, in a diverse eighth grade inner city classroom with approximately 30 students.  The 
visits were part of a professional development project in which the teacher/researcher (first 
author), who is a mathematics education researcher at a local university, routinely met with local 
teachers, planned classroom implementations, and then modeled or co-taught lessons with the 
teacher.  After each lesson, the teacher/researcher would “debrief” with the classroom teacher 
and a University mathematics education professor (the second author) to discuss key ideas 
relating to classroom implementation, the development of mathematical ideas, and other relevant 
issues. During the course of the eight months, several different tasks were explored. The 
teacher/researcher, along with the classroom teacher encouraged the students to exchange, talk 
about, and represent ideas; conjecture, question, justify and defend solutions; discuss 
disagreements and differences; revisit ideas over time; and, generalize and extend their ideas. 
Generally, the students worked in groups of 3-5, and each group discussed, argued, and 
ultimately presented its solutions.  

During each class session, two cameras captured different views of the group work, class 
presentations and associated audience interaction.  In addition, careful field notes were taken 
after each session.  This study focuses on 8 of the 62 videotapes generated in this manner, as the 
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students explore variations of a task. The problem task was as follows: John is having a 
Halloween party.  Every person shakes hands with each person at the party once.  Twenty-eight 
handshakes take place.  How many people are at the party?  Convince us.   

This particular problem entails a context that may suggest a structure that ultimately leads to 
a solution that is generalizable to a larger class of problems.  In this case, such a solution is [n(n-
1)]/2.  

Episodes were transcribed and coded to identify critical events, which in this case were 
determined by student-to-student questions and/or interactions.   

In the sections that follow, we examine the development of a particular student, Aiesha, by 
identifying student-to-student questions and/or interactions in the context of the Pirie/Kieren 
model for mathematical understanding.  

Results  
Moving from Primitive Knowing to Image Making  

Primitive knowing is the starting place for the growth of any particular mathematical 
understanding, what the student can do initially, with the exception of the knowledge of the 
topic. In this case, Aiesha begins by shaking hands with a member of her group and then moves 
to a picture and number representation for her idea (figure 1).  She moves to the image making 
layer (doing something to get the idea of what the concept is), using a picture representation to 
construct an idea of multiplying the number of people by one less than the number of people to 
arrive at the number of handshakes. Every time she multiplies, however, she arrives at double the 
number of actual handshakes in the correct solution. At first, she doesn’t notice this mistake and 
becomes frustrated, explaining that there is no answer.  After another student shares his solution, 
she realizes that the answer is eight and divides her answer to an eight person party by 2. She is 
working in the image making layer because she is “tied to the action or doing”.   

 
Figure 1- Aiesha’s move to image making  
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Moving from Image Making to Image Having  

Two weeks later the students were challenged to begin a new task involving an extension of 
the original task.  In this episode, another group member, Bea, questions Aiesha about her initial 
representation. Aiesha then restructures her knowledge to generate a representation that is more 
understandable to her peers. In doing so, she has developed a new and ultimately more useful 
representation.   

 
Figure 2- Aiesha’s initial strategy for finding the number of handshakes when 11 people are at 
the party  
 
Bea:  When you did the demonstration you did up there, I didn’t get it. [She is referring 

to Aiesha presenting figure 1 to the class a few days earlier.]  
Aiesha:  What do you mean? Bea: All of these lines [pointing to the loops on figure 2].  

What about these people [pointing to all of the circles on the right]?  
Aiesha:   I’m going to show you all.  I am multiplying [writing 11 x 10 = 110].  
Bea:    This person [pointing to the circle all the way on the left] is shaking hands with all  

of these people, and this is all of his shakes.  Right, and how many handshakes is  
right here [pointing to the first circle to the left]?  

Aiesha:   Ten.  
Bea:    And then this one (pointing to the second circle) is going to be nine, right? 
Aiesha:   And then eight, seven, six, five, four, three, two, one.  
Aiesha then begins drawing the chart in figure 3 and explains it to her peers.  

 
Figure 3 - Aiesha’s chart for finding the number of handshakes when 11 people are at the party  
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Aiesha’s explanations indicate that she has moved to the image having layer. “At the level of 

image having a person can use a mental construct about a topic without having to do the 
particular activities that brought it about.” (Pirie & Kieren, 1994, p.66) Aiesha now appears to 
have an “image” of the handshakes, and is no longer tied to the action of showing each 
handshake.  
Moving from Image Having to Property Noticing 

In this episode, two students question Aiesha’s idea.  This helps her to realize that her 
drawing shows each person shaking hands twice. Aiesha now begins to consider why division by 
2 actually works.  
Bianca:  This person [pointing to the second circle on figure 2] won’t shake ten people’s 

hands. But it says every person at the party shakes hands once.  [Bianca notices 
the number 10 written above each circle.]  

Edgar:    Everyone’s not going to shake everyone’s hands two times.  
In this case, the students’ questioning helped Aiesha to notice properties about her 

representations, thereby prompting her movement to the property noticing layer.  This layer may 
be characterized as one in which the individual “…can manipulate or combine aspects of his/her 
images to construct context specific, relevant properties.” (Pirie, & Kieren, 1994) In this case, 
Aiesha noticed that her picture representation had double the amount of handshakes, which 
prompted her to build on her older representation, thereby constructing a new chart (figure 4).  
 

 
Figure 4 – Aiesha’s move to property noticing  

Moving from Property Noticing to Formalising  
After Aiesha sets up a hypothetical situation by asking Bea what she would do if there was a 

500 person party, Aiesha and the other members of her group now spontaneously attempt to 
generate a more generalized symbolic representation that could work for any number of people 
or handshakes.  For this, they revert back to the original problem.  Aiesha draws a chart (similar 
to figure 4) for an eight person party and constructs a number sentence along with a formula 
using both words and standard algebraic notation. Ultimately, Aiesha is able to come up with the 
formula [n(n-1)]/2, which she presents to the class.  
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We suggest this movement to a symbolic representation moves Aiesha to the formalising 
layer, creating a general statement, in which a method or common quality from the previous 
image is abstracted (Pirie, and Kieren, 1994).   
Aiesha:  N equals the number of people at the party.  What I did was n times, well, we’re 

going to do n times n minus one, n minus one in parentheses [tracing the 
parentheses with her marker on figure 5].  First what we have to do, eight, there’s 
eight people, we have to take minus one, so there’s seven [writing 8-1 = 7 on 
figure 5].  So, n times n minus one, then you divide that by two.  You would 
multiply eight by seven, then you would divide that whole answer by two.  

 
Figure 5: Working in the formalising layer  

As Aiesha was presenting her formula, another student, Shaniqua, questioned her and set up 
a hypothetical situation based on the existing problem.  Aiesha showed that her idea was valid, 
using multiple representations to solve the hypothetical situation (words, numbers, symbols, a 
chart, picture representation and acting it out), and was questioned into linking these 
representations to each other.   
Shaniqua:  [Shaniqua raises her hand during Aiesha’s presentation.  Aiesha calls on her.] I 

disagree with something.  She said that there was five hundred people at the party 
and each of those people shake hands with four hundred and ninety nine people’s 
hands [initially directing the comment to the teacher/researcher]. That’s not true 
because if you do that, then you’re saying each person shook [now directing the 
comment to Aiesha]…  Ok, let’s say there is three people at the party…  

Aiesha:  Yeah. 
Shaniqua:   And you are saying that every one of these three people are shaking the same  

three people’s hands?  They are shaking the same people’s hands?  
Aiesha:   Do you want to see how that works with three people?  
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Shaniqua:   Yeah. Aiesha describes how to use the formula for three people.   
Luis:  What’s the n? Aiesha: All right, the n equals the number of people, n, three 

people, right.  What you have to do first is 3 minus one, it gives you two. Then 
you have to do three times two,and it gives you six.  You divide two into six and 
it gives you three.  That’s how many handshakes.  

Aiesha draws the chart for 3 people at the party (see figure 5) and explains it.  
Crystal:   Why do you use the number two to divide? 
Aiesha:   All right, I use two because look, when two people  (shaking Bianca’s hand), it  

gives you two handshakes (pointing to her and Bianca), but normally…  
Aiesha explains that she is initially counting both handshakes, then dividing the second 

handshake out.  She draws the chart (bottom of figure 6) as if she were A and Shaniqua were B.  
She continues by writing a 2 between two circles (which represent people) on her picture to show 
the two handshakes that took place between each set of two people (top of figure 6 and the top of 
figure 2) to answer Crystal’s question.  

                               
                                   Figure 6: Linking representations to each other  

 

Aiesha was able to show how her formula mapped into her original representation involving 
circles and loops, the action of actually shaking hands, as well as her chart with letters. Her 
ability to set up a hypothetical situation about the existing problem, develop multiple 
representations for the same idea, connect the representations to each other, and ultimately 
provide a solution that is generalizable indicates that she has reached the formalising layer. 
Further, some six months later, Aiesha’s class was given the opportunity to investigate a task that 
was structurally similar to this handshake problem. Within a few minutes, Aiesha and her group 
moved through most of the representations they constructed six months earlier, and reconstructed 
the formula to generalize, using the correct symbolic notation.  Interestingly enough, many 
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students around the room also used the formula Aiesha presented six months earlier for this new 
task.  

Conclusions 
We conclude that student-to-student interactions and questions played a central role in 

Aiesha’s movement from primitive knowing to formalising, as well as her movement to linking 
representations to each other. This ultimately led to her ability to retain and retrieve her ideas 
when presented with similar types of problems months later, which is a central goal of the 
teaching and learning process. Of course, we cannot say with complete certainty that these 
interactions were exclusively responsible for the development of the ideas, however, we believe 
that our analysis suggests that they played a key role.  While it is not possible to draw 
overwhelming conclusions based on this limited example, we do believe that an analysis of this 
type has the potential to call attention to the importance of providing meaningful opportunities 
for such student-to-student interaction.  
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Students’ problem solving experiences are fraught with failed attempts, wrong turns, and 
progress that moves in fits and jerks, oscillating between periods of inactivity, stalled progress, 
rapid advancement, and epiphanies. Without proper guidance students will tend to ’smooth’ out 
these experiences and, as a result, present stories in their journals that are less reflective of the 
their process and more representative of their product. In this article I present a framework for 
guiding students’ journaling in such a way that their writing more accurately reflects the erratic 
to-and-fro of their problem solving process. I also provide a very brief outline of some empirical 
research that shows how this more structured form of journaling has been used to track 
preservice teachers’ encounters with mathematical discovery.  
 

For mathematicians, problem solving is a process that incorporates not only the logical 
processes of inductive and deductive reasoning, but also the extra-logical processes of creativity, 
intuition, imagination, insight, and illumination (Csikszentmihalyi, 1996; Davis & Hersch, 1980; 
Dewey, 1938; Fischbein, 1987; Hadamard, 1945; Poincaré, 1952). However, as creative a 
process as problem solving may be, the results of these processes are "encoded in a linear textual 
format born out of the logical formalist practice that now dominates mathematics" (Borwein & 
Jörgenson, 2001). This discordance between the process of problem solving and the presentation 
of its products is nicely summarized in the comments of Dan J. Kleitman, a prominent research 
mathematician.  

In working on this problem and in general, mathematicians wander in a fog not knowing 
what approach or idea will work, or if indeed any idea will, until by good luck, perhaps 
some novel ideas, perhaps some old approaches, conquer the problem. Mathematicians, in 
short, typically somewhat lost and bewildered most of the time that they are working on a 
problem. Once they find solutions, they also have the task of checking that their ideas 
really work, and that of writing them up, but these are routine, unless (as often happens) 
they uncover minor errors and imperfections that produce more fog and require more 
work. What mathematicians write thus bears little resemblance to what they do: they are 
like people lost in mazes who only describe their escape routes never their travails inside.  

(Liljedahl, 2004a, p. 157)  
The discordance between process and product, however, is not a dilemma that is restricted to 

the domain of professional mathematicians. Students of mathematics also have a difficult time 
breaking away from the formalist practices of conventions as delivered to them in the form of 
curriculum, textbooks, and classroom instruction. Adherence to such conventions has resulted in 
the misrepresentation of mathematical activity and has caused many mathematics students to 
believe that full rigour is all that mathematics is about (Hanna, 1989); more specifically, 'doing' 
mathematics is misunderstood to mean 'knowing' mathematics.  

In mathematics education treatment of this dilemma has typically revolved around the 
restructuring of teaching strategies to more accurately reflect the practices of ’doing’ 
mathematics. This has resulted in the popularization of delivery methodologies such as teaching 
through problem solving (Cobb, Wood, & Yackel, 1991), problem posing (Brown & Walters, 
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1983), and discovery learning (Bruner, 1961; Dewey, 1916).  This refocusing of instructional 
strategies only works, however, if they are accompanied by a complimentary refocusing of 
assessment strategies – strategies that value process rather than just product. One popular 
assessment tool that accomplishes this is the problem-solving journal, which can be used to 
capture students' problem solving processes both for assessment (c.f. Else, Thompson, & 
Thompson, 2000) and empirical research (c.f. Zazkis & Liljedahl, 2002). However, as popular as 
this instrument is it is not without its faults. Students' problem solving experiences are fraught 
with failed attempts, wrong turns, and progress that moves in fits and jerks, oscillating between 
periods of inactivity, stalled progress, rapid advancement, and epiphanies. Without proper 
guidance students will tend to 'smooth' out these experiences and, as a result, present stories in 
their journals that are less reflective of the their 'travails inside the maze' and more representative 
of their 'escape route'. In this article I present a framework for guiding students' journaling in 
such a way that their writing more accurately reflects the erratic to-and-fro of their problem 
solving process. I also provide a very brief outline of some empirical research that shows how 
this more structured form of journaling has been used to track preservice teachers' encounters 
with mathematical discovery, the most elusive and intense of aspects of the problem solving 
(Barnes, 2000; Burton, 1999; Davis & Hersh, 1980; Hadamard, 1945; Poincaré, 1952; Rota, 
1997).   

A More Structured Form of Journaling  
As mentioned above, literature that detail mathematician's problem solving efforts is 

unrepresentative of the true process of 'doing' mathematics. One rare exception to this is an 
account written by Douglas R. Hofstadter called Discovery and Dissection of a Geometric Gem 
(1996) that tells the story of a mathematical discovery with amazing sincerity. It is detailed and 
complete, from initiation to verification. It tells the story of being lost in a maze, searching for 
answers, and in a flash of insight, finding the path out. Perhaps the reason that the account is so 
different is that Hofstadter is not a professional mathematician. He is a college professor of 
cognitive science and computer science, and an adjunct professor of history and philosophy of 
science, philosophy, comparative literature, and psychology. As such, he has a unique 
appreciation for tracking his own problem solving processes.   

In analysing Hofstadter's account it becomes clear that one of the reasons that it is so sincere 
is because of the way in which he incorporates the use of three different voices, a trinity of 
personas, in telling his tale. I have come to name these personas the narrator, the mathematician, 
and the participant. These personas are not explicit in Hofstadter's writing in that he does not 
introduce them, annotate them, or even acknowledge them. Instead they are implicit, emerging 
from the active analysis of his writing more so than from the passive reading of his writing. Each 
of these personas contributes to the anecdotal account in a different way. The narrator moves the 
story along. As such, he often uses language that is rich in temporal phrases: 'and then', or 'I 
started'. He also fills in details of the non-mathematical variety seemingly for the purpose of 
providing context and engaging content. The mathematician is the persona that provides the 
reasoning and the rational underpinnings for why the mathematics behind the whole process is 
not only valid, but also worthy of discussion. Finally, the participant speaks in the voice of real-
time. This persona reveals the emotions and the thoughts that are occurring to Hofstadter as he is 
experiencing the phenomenon.   

To demonstrate these personas, I present a portion of the chapter that contains within it all 
three voices. Before I do, however, it would be useful to introduce the general context of his 
mathematical encounter. At the time of writing the chapter, Hofstadter has only recently come to 
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be impassioned with Euclidean geometry and had never been introduced to the Euler line of a 
triangle. When he did learn about it, however, two things immediately struck him: the 
connectivity of seemingly different attributes, and the exclusion of the incentre. So, he began a 
journey of trying to find a connection between the Euler line and the incentre. At the point in the 
passage presented below Hofstadter has just discovered something about the incentre.   

One day I made a little discovery of my own, which can be stated in the following 
picturesque way: If you are standing at the vertex and you swing your gaze from the 
circumference to the orthocentre, then, when your head has rotated exactly halfway 
between them, you will be staring at the incentre. More formally, the bisector of the angle 
formed by two lines joining a given vertex with the circumcentre and with the orthocentre 
passes through the incentre. (A more technical way of characterizing this property is to say 
that O and H are "isogonic conjugates".) It wasn’t too hard to prove this, luckily. This 
discovery, which I knew must be as old as the hills, was a relief to me, since it somehow 
put the incentre back in the same league as the points I felt it deserved to be playing with. 
Even so, it didn’t seem to play nearly as "central" a role as I felt it merited, and I was still 
a bit disturbed by this imbalance, almost an injustice.  

(Hofstadter, 1996, p. 4)  

 
Figure 1: Triangle With Incentre, Orthocentre, and Circumcentre  

Even from this brief excerpt it can be seen how the three personas interact with each other, 
while at the same time presenting different aspects of the mathematical experience. It begins 
with "One day …", a clear indicator that the narrator will be speaking.   

One day I made a little discovery of my own, which can be stated in the following 
picturesque way: If you are standing at the vertex and you swing your gaze from the 
circumference to the orthocentre, then, when your head has rotated exactly halfway 
between them, you will be staring at the incentre.  

Hofstadter is telling us what he has found in an informal yet descriptive way. This is followed by 
his mathematician persona coming in and formalising this finding in a more precise and 
mathematical way.  

More formally, the bisector of the angle formed by two lines joining a given vertex with the 
circumcentre and with the orthocentre passes through the incentre. (A more technical way 
of characterizing this property is to say that O and H are "isogonic conjugates".) It wasn’t 
too hard to prove this, luckily.  

Finally, the participant reveals how he feels about his finding and what thoughts this find is 
precipitating.  
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This discovery, which I knew must be as old as the hills, was a relief to me, since it 
somehow put the incentre back in the same league as the points I felt it deserved to be 
playing with. Even so, it didn’t seem to play nearly as "central" a role as I felt it merited, 
and I was still a bit disturbed by this imbalance, almost an injustice.  

The interplay present in this passage is typical of the first six pages of the chapter. At that point 
in the account Hofstadter makes a profound discovery, which is revealed in his last use of the 
participant’s voice. After this point there is a brief interplay between the narrator and the 
mathematician and then the voice of the narrator also disappears forever. The last seven pages 
of the chapter are comprised of the mathematician articulating and proving his discovery.   

The most interesting thing about Hofstadter’s use of these three voices is what it reveals 
about the type of journals that my students had produced in the past. At best, these journals had 
been a combination of the voice of the mathematician and the narrator. More often than not, 
however, the journals had been the voice of the mathematician along with a logically 
reconstructed narrative that presented the logic of the solution rather than the history of the 
process. Although this had been frustrating I had failed to find a solution to it. Repeated urging 
to be truthful in their writing sometimes resulted in more detailed narratives with more 
descriptions of failed attempts and mistaken assumptions, but often only lead to more details of 
the logical development of the solution. My use of problem-solving journals lacked structure, a 
framework which the students could adhere to. In particular, the voice of the participant was 
missing, but until I read Hofstadter’s account of his discovery I did not even know it could exist. 
In his description was the missing piece that was required to elevate the students’ journaling to 
the level of detail that was needed to really see their mathematical thinking1, and to capture their 
problem solving processes.   

Capturing Students’ AHA! Experiences  
The AHA! experience is a term that captures the essence of the experience of illumination. In 

the context of ’doing’ mathematics it is the EXPERIENCE of having an idea come to mind with 
"characteristics of brevity, suddenness, and immediate certainty" (Poincaré, 1952, p.54). For 
mathematicians they are an expected and accepted part of mathematical activity, but for students 
(especially weak and apprehensive students) they are often an unanticipated and pleasant 
conclusion to a long onerous task or effort (Liljedahl, 2004b, 2002). Although there has been a 
sizeable amount of research done on this subject (Barnes, 2000; Burton, 1999; Davis & Hersh, 
1980; Hadamard, 1945; Poincaré, 1952) most of this research has relied heavily on participants' 
reflective anecdotal comments as data. There are many reasons for this, the most prominent of 
which is the elusive nature of the experience – it can happen anywhere at any time, from 
experiencing illumination in the shower to being awaken in the middle of the night by a good 
idea. As such, real-time capture is difficult. However, if participants were to record these 
epiphanies in their problem solving journals as they occur then something very close to real-time 
capture would be possible. This is the basic premise behind my empirical research in this area.   

I introduced this form of journaling to my students (one group of preservice elementary 
teachers (n=38) and one group of preservice secondary mathematics teachers (n=34)) on the first 
day of the course. That is, I introduced each of the three personas and what their respective roles 
were in documenting problem solving efforts. Although there was no mention in what 
proportions they were to use them, it was made clear that they were expected to incorporate each 
of these three voices in their problem solving journals. Four weeks into the course their problem 
solving journals were collected and one specific homework problem was critiqued. This was 
followed by an in-class formal review of the three personas, examples of their voices, and a 
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review of the expectations regarding the use of the three voices. Other than these moments of 
instruction (totalling no more than 60 minutes) and the critique of the problem solving journals at 
the four-week mark, no further class time was devoted to this topic2. 

They then used this method of journaling to record their efforts, failures, and successes in 
solving a wide variety of challenging problem solving exercises spread throughout a 13 week 
Designs For Learning Mathematics course. At the end of the course, I introduced them to the 
idea of an AHA! experience and asked them to write about any such experiences they may have 
had using a reflective writing style. These reflective accounts were then compared to their ’real-
time’ problem solving journals to see if there was any evidence of such experiences in their use 
of the three personas either through some exclamation by the participant, some accounting by 
the narrator, or some change in reasoning by the mathematician. There was. Of the 36 
preservice elementary teachers claiming to have had an AHA! experience in their reflective 
journals 29 (81%) had clear and discernable evidence of the experiences in their problem solving 
journals. For the 25 preservice secondary mathematics teachers claiming to have had an AHA! 
experience the numbers were slightly less with 18 (72%) of them displayed evidence of the 
experiences in their writing. These numbers were significant in that in previous years there 
existed little if any corroboration between students’ reflective claims of AHA! experiences and 
the actual evidence of such AHA!’s as presented in their problems solving journals. In what 
follows I present some passages form two students problem solving journals as well as their 
reflective journals.  

Stephan and Marie both wrote about their AHA! experiences in the context of the 
Pentominoe Problem3. Stephan comes to the solution of the problem through an AHA! 
experience as seen in his problem solving journal.  

I’ve got it! I’m sure the half dozen beers have helped but I think I’ve solved it. Its simple 
really and I’ve gotten it because of, believe it or not, golf! The explanation may be 
muddled but it makes perfect sense (in my head). In golf there are two values when keeping 
score: the number of shots actually taken and the number of shots relative to par [..] How 
does this apply to the Pentominoes puzzle? [..] When all the blocks are vertical their sum 
divided by five will always be a whole number, no matter where they are on the number 
grid. These vertical blocks are par (E). If you then move a block to the right one then your 
score changes to +1. If you move it left then it changes to –1 …  

His account begins with the participant exclaiming "I've got it!". This is followed by a short 
account by the narrator as to where the idea came from, and then the mathematician takes over 
in trying to articulate how and why it works. Stephan’s AHA! is corroborated by the following 
passage in his reflective journal:  

The AHA! came right after I’d played a round of golf and I was watching golf on TV in the 
clubhouse. On the screen flashed a player’s scorecard and I realized that the very notion 
of par was the solution to the Pentominoe puzzle.   

For Marie the idea came to her in the hot tub.  
Yes! I think I have figured it out! I was sitting in my hot tub when I suddenly got the feeling 
that it wasn’t about the numbers but rather about the specific configuration of the shapes. 
The solution has to do with symmetry! I discovered that the cross is always divisible by 5, 
and I am pretty sure it is because it is symmetrical. Shoot! This doesn’t necessarily work 
because there are other shapes like "Tee" and "Z" that are always divisible. Why! I really 
think that symmetry has  
something to do with it! But wait … "Tee" is only divisible when it is upright …  



 

 444 

It is clear from this passage that something has occurred to her, even though it does not work out 
as nicely has she had hoped. From the exclamation of the participant as well as from the change 
in reasoning be the mathematician it is reasonable to assume that she has had some sudden 
insight, perhaps even an AHA!. This experience is later confirmed in Marie’s reflective journal.  

The most significant AHA! moment that I had so far is during the Pentominoes puzzle. I 
was stuck on trying to figure out what the remainder was going to be just by looking at the 
numbers … I couldn't possibly imagine that you could memorize all of the possible 
combinations. I had been working on the problem all day, and struggling with it, and had 
finally given up trying. I went out for the evening and came home and sat in the hot tub for 
about half an hour. Even though I wasn't consciously thinking about the problem I think 
that the ideas were still in my head. I honestly don't know why the idea came to me … 
perhaps it was because I was so relaxed and tired and not consciously struggling with the 
problem, but all of a sudden the solution came to me. [..] obviously this discovery made me 
feel good because this idea eventually led me to the solution.  

The data was not limited to the quantitative results, however. The use of the three personas in 
their writing also produced a rich set of qualitative data that provided greater insights into 
students’ experiences with this elusive phenomenon.   

Endnotes 
1.  Andrew Waywood (1992) has done work on creating a developmental model of students’ 
mathematical learning through journaling. In this work he identified three types of journaling 
within his subjects. They are recount, summary, and dialogue. Recounting is very similar to what 
I refer to as the voice of the narrator and summarizing is virtually identical to the voice of the 
mathematician. Dialogue, however, is only part of what I refer to as the voice of the participant. 
For Waywood, dialogue is the self-talk that goes on in the journals, through which ideas are 
revealed. He does not, however, stipulate that dialogue contains any expressions of emotions. 
Both of these characteristics, presentation of ideas and emotions, make up the voice of the 
participant. 
2.  In a more recent implementation of this form of journaling the student were, over the course 
of three classes given three problems to solve. The first problem was to be solved and only the 
solution was to be presented in as precise a mathematical language as possible (the voice of the 
mathematician). The second problem was to be solved, but only the story of how they arrived at 
the solution was arrived at was to be presented (the voice of the narrator). The third problem 
was to be attempted, but only the feelings they experienced in attempting the problem were to be 
documented and subsequently presented (the voice of the participant). During the fourth class 
these three journaling styles were discussed and the students proposed that they should be 
allowed to use all three voices in their journaling. This proposal was then formalized. 
3.  If a pentominoe is placed on a hundreds chart will the sum of the five numbers that it covers 
be divisible by five? If not, what will the remainder be? Generalize the solution.  
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The study aimed at investigating what type of mathematical competences are enhanced in 
students’ understanding and solving problems related to definite integral as a result of using 
Derive Software. Results indicated that some students relied on the use of the software as a 
means to validate their paper and pencil work, others used the software to graphically represent 
and calculate approximated areas and a third group of students combined both paper and pencil 
and software approaches to solve problems but often failed to connect concepts that appeared in 
the study of the definite integral with basic ideas (and procedures) previously studied (area of 
simples figures).    
 

Introduction  
This study investigates how first year engineering university students performed after they 

had taken a Calculus course in which they systematically used DERIVE Software to work on a 
series of tasks that involve numerical, graphic and algebraic approaches. Problem solving 
activities that involve the study of definite integral were designed in accordance with research 
results identified in the literature review. In particular, students had the opportunity to use a 
specially designed Utility File as a means to approximate areas of bounded curves (through the 
use of rectangles, trapezoids, and parabolic regions). Thus, the study focuses on documenting the 
extent to which students were able to utilize Derive software in their problem solving 
approaches. In particular, we were interested in analyzing the type of representations used by the 
students to understand and solve different types of problems that involve concepts of area and 
definite integral. Our fundamental research questions were: To what extent do students display 
relationships between graphic, algebraic, and numerical representations in their problem solving 
approaches? And what type of difficulties do students experience as a result of using Derive and 
Utility File? To what extent does the use of Derive Software help students understand concepts 
involved in the study of definite integral? What type of mathematical representations do students 
exhibit to understand and solve non-routine problems related to this topic? What types of 
mathematical competences are enhanced in students’ understanding and solving problems related 
to definite integral as a result of using Derive Software?  

Conceptual Framework  
Basic ideas that helped frame the study recognize that the use of CAS functions as a 

cognitive tool for students not only helps to solve problems but also to make sense of and 
understand mathematical ideas; furthermore, this type of tools provides students the opportunity 
to generate new mathematical representations that help them investigate relationships associated 
with a situation or phenomenon under study and to appreciate the balance between formal and 
informal mathematics (Heid, 2002). Guin and Trouche (2002) introduced the idea of 
instrumental genesis to explain the process of transforming an artifact (a material object) into an 
instrument (when students use it as an instrument to solve problems). They say that this process 
is complex and involves aspects related both to the actual design features of the tool and also to 
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the cognitive process involved in students’ appropriation of the instrument to solve problems (the 
development of instrumentation schema). In this context, it became important to pay attention to 
the design limitations associated with the use of the software that might have interfered with 
students work. Drijvers (2002) identifies local and global obstacles that students often display 
while using a computer algebra environment. In particular, we take the idea that obstacles can be 
seen as an opportunity for students to reflect on their own learning rather than as a barrier to 
achieving understanding of mathematical ideas. In this perspective, to analyse how students 
performed during the study, we followed a conceptual framework in which the use of 
representations plays a fundamental role in students´ construction of concepts (Goldin, 1998). In 
addition, a mathematical competence model was adopted from Socas (2001) and used to explain 
students’ level of understanding of basic ideas related to definite integral in which three related 
phases are identified: the use of a certain language (Semiotic Stage); the use of several registers 
and their corresponding operations (Structural Stage); and the conversion or transition between 
different types of representations or registers (Autonomous Stage). In particular, we focus on 
analysing the type of basic resources and strategies that students utilize when dealing with a 
particular representation of the problem and also the extent to which students were able to make 
the transition from one type to another representation (graphic, algebraic and numeric 
representations). The ideas embedded in this framework played a fundamental role not only in 
analysing students´ work but also influenced the design and structure of the study. In particular, 
the design of a Utility File was based on the idea that students could use the Utility File as an aid 
to calculating a set of definite integrals in which the primitives of the function to be integrated 
could not be expressed through elementary functions. Thus, the use of the Utility File could help 
students develop an image of the integration processes and their relationship with the area 
concept.   

Methods and General Procedures  
Thirty-one first year engineering university students participated in the study. The study was 

carried out in a regular Calculus class during one semester, meeting six hours a week with two 
hours of computer laboratory session. As part of the course, students used DERIVE software to 
work on a series of problems. In particular, a special Utility File was designed to help students 
calculate approximations of areas. The goal here was that students could develop a conceptual 
understanding of integration processes. Ideas like partition, refinements, limits, and 
approximation items appeared as important during the students` use of the software. Here it was 
also important for students to recognize linkages between numerical, algebraic and graphic 
representations associated with the integral concept. To collect data a questionnaire was given to 
the students at the end of the course. In addition, students took part on task-based interviews in 
which they had opportunity to reflect on the use of different representations and the use of the 
software. In particular, the researcher asked students to explain and elaborate their approaches to 
the problems.  

The course was problem solving oriented and students were constantly asked to respond to 
questions concerning to the concept of area and definite integral. In general, three related phases 
distinguish the instructional approach used in this course: (i) The instructor’s presentation and 
discussion with the whole class of ideas around fundamental concepts involved in the definite 
integral themes; (ii) students worked in pairs on a series of problems in which they used the 
DERIVE software to approach them. Students worked in the computer laboratory and each pair 
handed in a written report; and (iii) the instructor reviewed students´ approaches and discussed 
what students did during the session with the whole class. These three instructional phases 
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appeared consistently throughout the course for one semester. Some conceptual ideas that 
emerged during students´ discussions include themes like limit of sums (Riemman´s approach), 
area of bounded regions and their relation to the fundamental theorem of calculus. In particular, 
the relationship between a given function  f(x) (and its integral function F(x) ( ) ( )( )xfxF ='  .In 
addition, students used the software to graphically function F ) (x ( F ) (’ = xf represent functions 
and evaluate definite integrals.  

To analyse students´ understanding of fundamental ideas related to definite integral concepts, 
at the end of the course, students were asked to work on a questionnaire that included 10 non-
routine problems. In general, the problems were organized into three groups in accordance with 
the following characteristics:  

a. Problems in which there was a geometric representation and students were asked to 
determine, whenever possible, the area of some regions (students had to analyse features 
of the graph in order to identify corresponding integration limits). Otherwise, students 
needed to provide a mathematical argument to explain why it was not possible to 
calculate the area.  An example illustrating the type of problem in this group is,  

                      
 

b.  Problems in which students received an algebraic expression to find the integral and it 
was important to graphically represent it in order to solve them. Here, it was important 
for students to identify the location of the region (above or below x-axis) and in some 
cases recognize discontinuities of the function.  An example of a problem from this group 
is,  

Determine the limited area between the x axis and the function  
f(x) =  2x4-2x3-14x2+2x+12 

c.  Problems in which there was a statement and students needed to discuss whether it was 
false or true. An example from this group is,  

Is the next proposition false or true? (justify your response)  

   
In addition to solving the questionnaire both with and without the use of the software, six 
students were later interviewed.  

Results and Discussion 
To characterize students´ competences it was important to analyze what students did in each 

of the items of the questionnaire; in general, three student profiles emerged from the students´ 
responses to the questionnaire. Later, the analysis of the information gathered through the 

Calculate the area of the shaded 
region.  If you think that it cannot be 
done, then explain why not. 
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students´ task-based interviews provided a basis to confirm the presence of those students´ 
problem-solving profiles.   
(1) Students who were grouped in the first profile (E1, E3 and E5) showed a tendency to use the 
software as a tool to carry out algebraic operations or to find points of intersections of the curve 
with X-axis. That is, their use of the software focused mainly on calculating algebraic or numeric 
operations involved in the problem or situation without including a graphical approach. In those 
problems that involved graphic representation, generally they had difficulties making sense of 
the situation and tried to use persistently algebraic methods. However it was important to 
observe that this group of students tried to examine the validity of general relationships (problem 
of the third group) by analyzing particular examples graphically which led us to consider that for 
this group of students the way how the problems were stated influenced their use of the tool. 
Moreover, these students seem to perceive the process of solving definite integral as the 
application of some rules or procedures by taking into account the context of the problem. For 
example, when the student E1 was asked to explain the meaning of  definite integral he 
answered:  
S (Student): If I have the integral  

 
then to calculate it (pointing to the integrand), I would get the primitive, that  is, I would obtain; 
and this means that if I have function (drew 

 
if I solve this (left side) I get this (right side), likewise if I get the derivative of this (right side) I 
get this function (left side).  Thus, I get the derivative of, I would get 
 

 

The student’ comments involved the use of the Fundamental Theorem of Calculus. However, 
he does not rely on those methods widely used in laboratory practices. It might be that class 
instruction did not influence the students’ way of understanding the concept of definite integral.  

(2) A second group of students generally recognized the importance of finding areas of 
limited curves through the idea of approximation. They were aware of the need to get better and 
better approximation by the process of refining a partition within an interval. However, they have 
not developed a clear understanding of how the process of selecting a particular partition on the 
interval was done. Particularly when they tried to do this task without using of software. They 
also associated the definite integral concept with a set of procedures to calculate its value and 
failed to identify particular necessary conditions to apply those procedures. It seems that students 
considered the use of the software a tool that allows them to facilitate those approaches that 
involve only the use of paper and pencil. Indeed, the software was used often as a means to 
support what they had done with paper and pencil. Another important result is that when students 
worked on a problem embedded in a graphical representation, they were often able to identify 
limits of integrations and ways to calculate areas of limited regions; however, when the problem 
was expressed in an algebraic form they seldom relied on graphic representations to solve the 
problem. Here the use of the software seemed to be sufficient to solve the problem. In one 
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problem, that involved calculating the area of a region bounded by simple triangles (calculate 
dxx!" +

4

3

1 ), students immediately began to apply integral definite methods rather than 

calculating the area through simple formula (bh/2); in particular, during the interview one student 
(E6) mentioned that since the topic was definite integral, then they had to solve it in that way.  

(3) A third student profile is associated with those students who successfully apply the idea 
of approximation to determine areas of bounded regions. They were fluent not only in deciding 
what type of partition to take on the interval but also in using algebraic tools to carry out the 
operations involved in calculation of the corresponding areas. This group of students showed a 
clear disposition to use the Utility File designed to approximate areas. In general, they identified 
and properly used important information connected with both algebraic and graphic 
representations in order to calculate definite integrals. There is evidence that these students 
grasped the relationship between area and definite integral concepts. This was evident in the way 
they used the Utility File to approximate bounded areas. Here, students recognized that 
calculating integrals goes beyond applying a set of formulae or using a particular software 
command, it involves a process that they could visualize through the use of the Utility File. 
However, when they were asked to examine general statements about properties of functions and 
their relationships with the definite integral they failed to provide a coherent argument to support 
their claims. In particular, they seemed to lack problem-solving strategies (analyzing particular 
cases, providing counterexamples, or using graphic representations) to make sense or interpret 
this type of problems.  For example, during the interview when the student E2 was asked to 
reflect on a possible relationship between the graphic of two functions and their integrals, he 
provided contradictory arguments:  

R (Researcher):  If you have these two functions  
(see picture) with f(x) > g(x), Is  
the integral of f(x) �  the integral of g(x) 
 in the interval (a, b)?       

S:   this is greater (Pointing to the g region)   
this area is greater than this one (pointing  
to the g region in comparison to f region)  
but it is negative. Here he pauses and seems to be thinking,  

R:   ¿Then what?  
S:   ¿I am checking whether f(x) �  g(x)?  
R:   We have assumed that  f(x) > g(x).  
S:  The values here (pointing at the segment between a and b) when evaluated 

under the function we get positive values (he drew a line under the graph 
of f) These (values) will give you negative Ys (he drew a line above the 
graph of g). Here I can verify that this is true (pointing to the inequality of 
the functions). These values are positive and these are negative values 
(pointing to the graph of f and g)…  

However, it seems that the student is not convinced with his initial response. He confuses the 
use of the inequality sign between the functions and between the integrals seen as area. This 
group showed a strong inclination to use the software to approach all the problems without 
considering a graphic representation which is and often necessary to solve them. This group 
experienced serious difficulties in solving problems that involved proving or rejecting some 
propositions. In addition, they seem to think that the software provides them not only with an 
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efficient way to approach the problem but it also becomes the only way to actually solve the 
problems correctly. Indeed, during the interview when these students were asked to explain 
graphically the meaning of what they had obtained through the software, they were not able to 
explain on their own what happened when the value of the integral was negative. Again, these 
students, in general, seemed to use the software mechanically to make calculations and failed to 
identify and relate embedded representations in order to make the transition between and within 
them. To illustrate this type of behavior, we show part of an interview with a student E4 who 
decided to use the Utility File to approach a problem that can be easily solved directly. During 
the interaction between the researcher and the student it becomes clear that he shows fluency in 
the use of the software but experiences difficulties in interpreting his work.  

To calculate the area limited by the function and the X-axis, the student chose the command 
RECT_EXTREMO_DERECHO(a,b,n) from the Utility File (see Camacho & Depool, 2003a, for 
more details of Utility File) and substitute values of “a” by -1, “b” by 3 and “n” by 10, then 
calculate the matrix and represent the rectangles.  

S:  This is the area taking the right side of this interval (that is the interval [-1,3]), 
here we can draw the rectangle, but we need to provide a number for x.  

R:  Well, you may notice that you are considering from -1 to 3, but we want to find 
the area in the interval from 0 to 3. That is, I am asking  
you to find the area of this shaded region (pointing  
at the figure)  

S:  ¿from 0 to 3?  
R:  Yes.  
S:  I can do that by a numerical method as well.  
R:  What are you doing?  
S:  Calculating numerically (He selects the command 

MEDIDA_EXTREMO_DERECHO (a, b, n)). We are going to do it by drawing 
rectangles. I substitute “a” by 0, “b” by 3 and “n” by 10 and the result is – 0.495 
Why is the value negative?  

R:  I was going to ask you why it is negative  
He tries to use the Utility File again but it does not work, that is, he doesn’t get a response.  
R:  Why do you think you get a positive value on one side and negative value on the 

other side  
S:  Why is that?  
R:  What do you think?  
S:  ...(Silence)  

Students’ tendency to approach the problem through the use of the software is evident. At 
this stage the interviewer directs the dialogue to understand the meaning of this process and 
eventually the student seems to comprehend what he is doing.  

The following table represents a relationship identified in students’ mathematical competence 
and categories (see Camacho & Depool, 2003b) and their profiles. 
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It is important to recognize that the use of the software helped students understand basic 

concepts involved in the study of definite integral. For example, when they used the Utility File, 
students had the opportunity to work on various examples to approximate area values associated 
with bounded regions. Here, they focused on examining aspects that include the relationship 
between the domain of the involved function and feasible partitions to approximate 
corresponding areas. In particular, the use of the Utility File provides students with basic 
elements to visualize the concept of limit involved in calculating definite integrals. In addition, 
students, in general, used the DERIVE software to graphically represent functions and to 
calculate integral. In this context, the software became an important tool for students to identify 
intersections of the graph and x-axis and the position of the region (above or below x-axis). In 
some cases, they utilized the software as a means to validate results that they had obtained 
through paper and pencil procedures.    

An important issue that emerged from analysis of students´ work is that in order to 
comprehend and explore connections and relationships between concepts connected with the 
study of definite integral, they need to make the transition, in terms of meaning, between the 
distinct representations of the concept. For example, when dealing with the graphic 
representation of a function it was important to explain the position of the graph and its relation 
to the sign associated with the value of its integral and also to the process of approximation to the 
value of its area through a numerical approach (area of small rectangles). In addition, students 
need to develop problem-solving strategies that help them think of cases beyond those embedded 
in particular problems. That is, it was evident that when students were asked to work on 
problems that involved general statements, they experienced serious difficulties in constructing 
examples or counter-examples that could help them to understand and explore the situation in 
general terms. In this respect, it becomes important to design and implement instructional 
activities that include the use of the software in problem-solving contexts in which students have 
opportunities to develop basic problem solving strategies (including metacognitive ones). 
Finally, implementation of students learning activities with the use of technology should value 
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the ways in which students present and communicate their results. In this study, the use of task-
based interviews functioned as tools for reflection by which students had opportunities to reveal 
their ideas and at the same time to explain and examine in detail connection between the various 
representations of the problem. At this stage, it was observed that students had not often thought 
of those connections and the very questions asked by the interviewer (researcher) became an 
opportunity for students to enhance their understanding. In this regard, it was important that the 
class itself should be seen as a community that demands constant reflection from each of its 
members. Remarks: Although the use of the software provided an interesting instrument for 
students to free themselves from memorizing formulae or calculation procedures it is also 
important to recognize that students need time to mature and develop a firm conceptual 
understanding of the definite integral. In particular, students need to pay attention to the process 
of transforming and connecting relationships among graphic, algebraic and numerical 
representations. This seems to be a crucial step in order for students to develop deep 
understanding of the definite integral concept. In addition, students need to develop a set of 
problem-solving strategies that would help them decide when to use and monitor the work done 
through the use of the software. Students´ task interviews not only provided important 
information regarding students´ competences but also became a tool for reflection by which 
students had the opportunity to extend their knowledge.   

Endnote 
This work has been partially supported by contract nº 1802010402 from La Laguna University  
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Related rates problems require students to have a strong understanding of differentiation, 
function, and variable, and how these concepts apply beyond strictly computational problems.  It 
has been suggested that students do not fully understand the concepts of differentiation or 
variable (Orton, 1983; White & Mitchelmore, 1996; Clark et al., 1997).  The intent of this study 
was to gain a better understanding of what obstacles calculus students must overcome to gain a 
conceptual understanding of related rates problems and to suggest activities that facilitate 
students’ ability to confront and successfully complete these types of problems.  It was found that 
students do not actively engage in transformational reasoning while solving related rates 
problems.  
 

Calculus is a challenging course for most undergraduate students, and calculus word 
problems appear to be a particular source of trouble (White & Mitchelmore, 1996, Selden, 
Selden, & Mason, 1994; Martin, 1996, 2000; Ferrini-Mundy & Graham 1991).  There are 
particular topics that are usually difficult for students to understand, and even the best students 
have trouble with non-routine problems (Selden, Selden, & Mason, 1994; White & Mitchelmore, 
1996).  Martin (1996) indicated that related rates problems are not only difficult, but that even 
robust problem solvers likely will not achieve a conceptual understanding of these problems 
without sufficient guidance.    

Background  
Problems that apply the concepts of calculus such as those of related rates emerge as a source 

of frustration for students and pedagogical complexity for instructors (White & Mitchelmore, 
1996; Martin, 1996, 2000; Clark et al., 1997).  Martin (2000) conducted a study investigating 
students’ difficulties with geometric related rates problems. In attempting to understand students’ 
difficulties with these related rates problems, Martin broke down the procedure for solving them 
into seven steps.  She then classified these steps as either conceptual or procedural as follows:  

1. Sketch the situation and label (Conceptual)  
2. Summarize the problem and identify given and requested information (Conceptual)  
3. Identify the relevant geometric equation (Procedural)  
4. Implicitly differentiate the geometric equation (Procedural)  
5. Substitute specific values and solve (Procedural)  
6. Interpret and report results (Conceptual)  
7. Solve an auxiliary problem, e.g. solve a similar triangles problem before being able to use 

the volume of a cone formula to relate the variables (Varies) In her study, Martin found that the 
problems that appeared to be the easiest for students were the ones that required only the 
selection of the appropriate geometric formula, differentiation, substitution, and algebraic 
manipulation.  The most difficult questions were those that required Step 7, solving an auxiliary 
problem.  She also indicated that the conceptual steps are more difficult for students than the 
procedural ones.  However, Martin concluded that students’ poor performance on these types of 
problems has links to difficulties with both procedural and conceptual understandings.    
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It should be noted that while Step 3 is listed as procedural, there is a conceptual component 
embedded in it, understanding function composition.  Carlson, Oehrtman, and Engelke 
(submitted) and Carlson (1998) provide evidence that first semester calculus students did not 
have an object view of function composition and experienced frustration when confronted with a 
composition problem.  Step 4 also has an embedded conceptual component, the chain rule.  

Much of Martin’s research supported the findings of White and Mitchelmore (1996).  White 
and Mitchelmore studied students’ understanding of related rates and extrema calculus problems.  
Their study used differently worded versions of four problems: two problems focused on related 
rates, one was a maximization problem, and one was a minimization problem.  The four versions 
of the problems ranged from a word problem that required the student to model the situation and 
come up with the appropriate relation to an almost strictly symbolic version that merely needed 
to be manipulated.  It was found that students performed better when there was less need for 
translation from words to symbols.    

White and Mitchelmore’s (1996) study also showed that students have a tendency for a 
“manipulation focus, in which they base decisions about which procedure to apply on the given 
symbols and ignore the meaning behind the symbols.  Interview comments showed that 
manipulation focus errors were not just bad luck, but that students were actively looking for 
symbols to which they could apply known manipulations.”(p. 88) The researchers also describe 
two other forms of the manipulation focus: 1) the x,y syndrome, in which students remember a 
procedure in terms of the symbols first used to introduce the concept without understanding the 
meaning of the symbols; and 2) the students fail to distinguish a general relationship from a 
specific value.  

Simon (1996) indicated that transformational reasoning is a critical component of 
mathematics learning and understanding.  The idea behind transformational reasoning is that 
students can create a mental model that can be manipulated to see and understand relationships.  
Simon states, “Central to transformational reasoning is the ability to consider, not a static state, 
but a dynamic process by which a new state or a continuum of states are generated.”  (p. 201) I 
conjecture that transformational reasoning is an essential reasoning ability that is needed to 
effectively solve related problems, since students must understand how particular quantities are 
changing in the given problem.  Covariational reasoning as described by Carlson, Jacobs, Coe, 
Larsen, and Hsu (2002) is a particular type of transformational reasoning that focuses on a 
student’s ability to coordinate change in one variable with change in another variable.  

There is substantial research with evidence of students obtaining process-oriented strategies 
(Sfard, 1992; Martin, 1996, 2000; Vinner, 1997) and just attempting to manipulate symbols 
(Orton, 1983; White & Mitchelmore, 1996) to achieve an answer.  Much of this would appear to 
stem from deficiencies in the conceptual understandings of the underpinnings of calculus such as 
the concepts of function (specifically composition), variable, and derivative.  

Theoretical Perspective  
There is evidence that students do not understand the concept of variable, and therefore learn 

processes for solving problems that involve pushing around symbols that have no meaning 
(Martin, 1996, 2000; White & Mitchelmore, 1996).  It has also been suggested that that students 
do not understand the concept of rate of change, average or instantaneous, and thus do not 
understand the concept of derivative, much less the chain rule (Orton, 1983; Clark et al., 1997).  
To successfully solve a related rates problem, students should be proficient with their 
understanding of variable, functions (particularly composition), geometric properties, and 
implicit differentiation (specifically how it is related to the chain rule).  



 

 457 

From the literature review, it appeared that some of the major obstacles students encounter in 
solving related rates problems are: inability to draw a picture that correctly represents the 
situation in the problem; not knowing what geometric relation is appropriate; not understanding 
implicit differentiation, the chain rule (Orton, 1983; Clark, et al, 1997); manipulating symbols 
that have no meaning (White & Mitchelmore, 1996; Sfard, 1992); having a process-focused view 
of mathematics.  These obstacles formed a framework around which in-class and take-home 
activities were developed, intending to enhance the introduction and instruction of related rates.  

Methods  
Dubinsky’s (1991) suggestion for an approach to fostering conceptual thinking in 

mathematics has the following four steps: observe students, analyze the data, design instructional 
materials, and repeat the process until stabilization occurs.  Following this suggestion, students 
were given three activities: one that focused on solving functions for a designated variable 
(finding geometric formulas utilizing composition) and two specific to related rates.  The related 
rates tasks were designed to develop a deeper sense of the problem solving process and to draw 
attention to changing versus constant quantities.  After the unit on related rates was completed, 
student interviews were conducted.  Students were asked to solve two or three related problems 
they had not seen before while being video taped.  

The first two questions directly parallel ones from their homework and serve as a baseline to 
determine understanding the procedural aspects of the problem solving process.  The questions 
the students were given are:  

1.  A plane flying horizontally at an altitude of 3 miles and a speed of 600 mi/hr passes 
directly over a radar station.  When the plane is 5 miles away from the station, at what 
rate is the distance from the plane to the station increasing?  

2. A spherical balloon is to be deflated so that its radius decreases at a constant rate of 15 
cm/min.  At what rate must the air be removed when the radius is 9 cm?  

3.  Coffee is poured at a uniform rate of 20 cm
3

/sec into a cup whose inside is shaped like a 
truncated cone.  If the upper and lower radii of the cup are 4 cm and 2 cm, respectively, 
and the height of the cup is 6 cm, how fast will the coffee level be rising when the coffee 
is halfway up the cup?  

The video recordings were transcribed and analyzed using open and axial coding techniques.  
Results  

Three major student difficulties emerged from the data: algebraic and/or geometric 
deficiencies, student fixation on the procedural steps, and failure to recognize and consider 
general relationships.  I theorize that the thread that binds these together is a lack of 
transformational/covariational reasoning applied to the problem.  Students did not engage in 
mental activities to build a conceptual model of the important relations and did not actively 
engage in covariational reasoning at the beginning of the problem, as is evidenced by their 
construction of static diagrams which appeared to result in their to relying on procedural steps.  
Their reliance on implementing procedures without a rational foundation were also evident in 
what often seemed to me their random use of algebraic techniques and misguided geometric 
associations.  

Students had particular problems recognizing when to use the similar triangle relationship; 
they did not understand the power of substitution and function composition; and they were not 
effective in determining what algebraic procedures to implement to arrive at the most appropriate 
defining relationship. Computational errors led to incorrect solutions; geometric misconceptions 
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led to incorrect models.  As is seen in the transcript excerpt below, Jen wrestled with whether air 
is the same thing as volume in the balloon problem.    

Jen:   Ok.  So, I’m going to start by implicitly differentiating that cause I don’t know 
what else to do (laughs).  And then, we want to know, radius decreases, I know 
dr/dt, and I want to do when r = 9.  So, then I’m solving, but then I’m solving for 
dv/dt, right?  

INT:   Why do you think you’re solving for dv/dt?  
Jen:   At what rate must the air be removed?  So, that would mean, that the volume, that 

the rate at which the volume is getting smaller? INT:  Ok.  Jen:  Or, when the 
radius is 9 cm, yeah, because they gave us the rate at which the radius decreases.  
Hmm. (makes an unhappy face)  

INT:   What do you not like right now? Jen:  That I don’t know dv/dt.  Like I don’t know 
what I’m solving for.  Actually, like if I solve for dv/dt, then I’m going to need to 
do something else, I think.  Because I want to know the rate at which air needs to 
be removed.  And I’ll just know, like if I put in, the things I know, then I’m just 
going to get the rate at which the volume decreases, but how would I find the rate 
at which air needs to be taken out?  Or are they the same thing and I’m just 
making this complicated? 

INT:   Do you think the air is the same thing as the volume? 
Jen:   Well, that’s what the balloon is filled with.  That’s why I guess maybe it’s the 

same thing.  Must the air be removed… 
INT:   Tell me more about this conflict that you have.  
Jen:  Well, I want to know the rate at which air needs to be removed, but I don’t know 

if that’s the same as the volume, the rate at which the volume is decreasing.  Or 
does, no.  It has to be right, because I don’t have anything else to…unless I’m 
totally off.  I don’t have anything else to work with.  Like no other numbers they 
give.  Like I thought maybe it would be dr/dt, but they give me dr/dt so I can’t be 
solving for that.  When the radius is 9 cm.  I don’t know, cause they want to 
know, either the rate at which it’s decreasing or the rate at which air is being 
removed to keep the radius decreasing at a constant rate. I have to keep 15 and I 
have to keep 9, so I must be solving for dv/dt.  

It appears Jen is thinking about how the problem can be solved using her internalized procedure, 
but there are cognitive conflicts in how she understands volume and her experience with 
balloons.  Without a robust conceptual structure of the problem, followed by the active 
engagement of her mind in covariational reasoning, she was only able to apply a procedural 
approach to the problem.  

Students appeared to focus on the three procedural steps that Martin outlined.  They 
generally drew a diagram and labeled the constants, chose a formula and differentiated it, then 
plugged in values.  This abbreviated procedure works well on standard problems, particularly 
ones that do not require an auxiliary problem to be solved as in the balloon problem.  The 
students did not struggle greatly with the plane and balloon problems; this may be the result of 
having seen similar problems before.  

One of the critical components of solving related rates problems is being able to diagram and 
visualize the situation.  Students appeared to be proficient at drawing an appropriate diagram.  
However, difficulties arose when students began their labeling phase.  Students labeled their 
diagrams with the constants given in the problem; however, no attention was given to the 
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quantities that are changing.  After drawing a diagram, students immediately looked for a 
geometric formula that would fit the situation, differentiate it, and plug in values.  The focus was 
on the procedural steps.  What became apparent, particularly in the cup problem, was that almost 
nowhere did students account for the general relationship between the radius and height of the 
cone.  They did not appear to have a model that indicated these two quantities were continually 
changing in relation to each.  This illustrates a lack of covariational reasoning.  

When the students did not know an explicit formula off the top of their heads, they would ask 
the interviewer or want to consult their text; the students lacked confidence about their ability to 
solve these problems during the interviews.  As is evidenced in the data from the cup interview 
problem, students frequently were frustrated when they could not find a formula for that 
particular shape.  When the book did not provide an explicit formula, they frequently went to an 
alternate idea such as viewing the cup as a trapezoid that has been spun around.  After an 
alternate idea didn’t seem to pan out, students were discouraged and some were ready to give up.  
In almost every case, the interviewer needed to prompt the student to consider the whole cone 
before any real progress could be made.  

When a problem required the student to think beyond the classic examples from class 
discussion and homework, the abbreviated procedure did not work so well.  Troubles arose for 
students when a nonstandard question was posed as is supported by the interview excerpts 
below.  

Betty:  Ok, um, so then, how fast will the coffee level be rising when the coffee is 
halfway up the cup?  Um, so that would make the height 3 cm.  So, first thing we 
have to do is take the derivative.  Um, we want to find the change in the height.  
So, um, cause we know the volume, the derivative of the volume.  So, first we’ll 
solve for the height cause that’s what we’re looking for.   

Rather than attending to the dynamic nature of the problem (not engaging in transformational 
reasoning), she jumped right to differentiating her chosen formula.  Betty is demonstrating a 
manipulation focus; she is looking for a formula that she can manipulate to find an answer.  Later 
in the interview, she appeared to experience cognitive dissonance when her attempt to use the 
chain rule resulted in the realization that one could not have two variables in the formula.  

Betty:  Then I  … don’t need to solve for this separate derivative of r.  ‘Cause I think you 
still need to apply the chain rule, I think, don’t you?  

INT:   How are you applying the chain rule?  
Betty:  To that one, right?  
INT:   Um hmm.  
Betty:   Well, we don’t want, this is hard.  We don’t want two variables in our formula…  
INT:   No?  
Betty:   So we need to get rid of one of them.  And I know I want the derivative of h, 

because how fast the height is changing.  Then wait, I’m not, no I am cause how 
fast the level of coffee will be rising when the coffee is halfway…so I know the h 
is 3 here, but I want to be able to put that in.   

Betty’s lack of transformational reasoning causes her to struggle with the algebraic and 
geometric aspects of the problem.  

Another student did not draw diagrams without prompting; he immediately searched for a 
formula to differentiate and plug values into.  His procedure worked for the plane and balloon 
problems, but created a major obstacle when attempting to solve the cup problem.    
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One student, Harry, did solve the cup problem successfully.  He tried numerous approaches 
before reaching his solution.  First he tried to think of it as a whole cone with the bottom 
removed and then decided that was going to be hard, there had to be a “trick.”  

Harry:   And then, um, ah…I know there’s something to do with like, similar triangles in 
this we could say, but then we’re going to lop off this little, this thing doesn’t 
exist for the liquid’s going in there all automatically, so I suppose…yeah.  It 
would make sense to find the dimensions of this cone here, maybe with the full 
volume of it, and then I could subtract this part (the little part at the bottom), and 
then that would give me the volume of just the cup itself.  

He next tries a trapezoid approach.  Eventually, he decides that viewing the cup as a whole 
cone with an adjusted height for the coffee is the way to go.  

Harry:   Well, originally I thought I couldn’t pour coffee into a regular cone, because 
that’s going to change the answer, but it won’t because it’s not going to matter 
because the coffee is always coming in at a constant rate, and even if I poured it 
into this imaginary cone, and it kept going in there, that once it got to this level 
here (bottom of cup), and that’s kinda where the problem starts, you know what I 
mean?  

INT:   Uh, huh.  
Harry:   And then it’s going to increase, so I just need to change the number, so instead of  

finding the height is 3, halfway up there, I could just find it as, um, 9, on the 
whole cone.  

While Harry does solve this problem successfully, he does not begin the process with 
covariational reasoning and must try numerous approaches before coming up with an appropriate 
solution.   

Discussion  
As Martin found, when students were required to solve an auxiliary problem, they struggled 

more.  It is the solving of an auxiliary problem that requires the student to investigate and 
understand the general relationship between changing quantities.  This suggests that the students 
are not using transformational/covariational reasoning in solving the problems; they do not have 
mental models that can be manipulated to play out the situation at hand, and thus merely 
manipulate known symbols without regard for their meaning.  This lack of transformational 
reasoning appears to foster students’ dependence on the procedural steps, which in turn 
highlights students’ deficiencies in basic algebraic and geometric knowledge.   

In the tasks that were developed, an attempt was made to help students become proficient in 
creating an appropriate relationship by focusing on the generalities of the diagram.  The results 
thus far indicate that minimal progress was made in that direction.  Students are still inclined to 
label their diagrams with constants, neglecting the quantities that are changing.  A new activity 
utilizing Geometer’s Sketchpad has been developed that highlights properties of similar figures 
and allows for a physical manipulation of objects.  Supporting tasks will be developed to 
promote their building a mental structure of the situation; including prompts that promote their 
identification of the changing quantities and ability to coordinate the changes in these quantities 
in their mind. They will be piloted in the coming academic year.  There are also plans to revise 
and study the related rates specific activities, as well as further develop tasks focused on function 
composition.    
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Conclusion  
Related rates problems are difficult for calculus students.  A series of tasks was designed to 

help students overcome the difficulties that arise. The difficulties appear to stem from the 
students’ inability to build a conceptual model of the situation, to identify the relevant 
relationships and to appropriately coordinate changes in these objects in their mind; not applying 
transformational/covariational reasoning in solving the problems.  This resulted in their heavy 
focus on applying the procedural steps and ignoring the relationships between quantities that are 
changing in the problem.  This suggests that students’ transformational reasoning skills and how 
they apply them, particularly in the diagramming phase, are critical to the successful completion 
of a related rates problem.  
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The teacher stands before her students and removes four cubes, with side lengths from 1 cm to 4 
cm from her bag.  She then returns the cubes to the bag, shakes it, and slowly withdraws from the 
bag … the four cubes?  No, she withdraws not cubes but a single square block with side length 
10 cm.  It is difficult for the students not to be amazed by this extraordinary feat of conversion of 
4 cubes into a square.  Her students ask, “How is this possible?”  Before answering their 
question, we describe the methods for our inquiry and how the literature on mathematical 
representation and history has influenced our work.  Next, we present an analysis of one of the 
series problems represented arithmetically and geometrically, and our students pre-service math 
teachers) report the rich perspective they developed, of their personal representational schemes, 
from their explorations of these types of problems. 
 

Purpose of the Study 
In this paper we report on the development of geometric understanding by students for series 

problems and the implications for mathematics learning and teaching.  Our work is framed by the 
view that posing and analyzing rich tasks for students provide windows into their thinking with 
ramifications for curriculum and instruction.  As a result of observations of what students say 
and write, and how they represent mathematical situations, researchers make decisions about 
appropriate ongoing investigations to clarify or validate early assertions.   

Studies (e.g., Vinner, 1989; Tall, 1991) have consistently shown that students' understanding 
is typically analytic and not visual.  Two possible reasons for this are when the analytic mode, 
instead of the graphic mode, is pervasively used in instruction, or when students or teachers hold 
the belief that mathematics is the skillful manipulation of symbols and numbers.  It is clear from 
the literature (e.g., Lesh, Post, & Behr, 1987; Janvier, 1987; NCTM, 2000) that having multiple 
ways – for example, graphic and analytic – to represent mathematical concepts is beneficial.   

Our contention is not that one student’s representational scheme is superior to another, only 
that students often construct vastly different personal and idiosyncratic representations which 
lead to different understandings of a concept.  Because student-generated representations provide 
useful windows into students’ thinking, it is productive for teachers to value these personal 
representations.    

Methodology and Data Sources 
Twenty-eight students (pre-service high school mathematics teachers) from one senior-level 

mathematical problem solving class participated in the study.  Analyzing their responses to 
Presmeg’s (1986) theoretical framework, we determined that some of the students were non-
visual learners and that others tended to process information visually.  From the class, we chose 
two students – one visual and one non-visual – for audio-taped interview sessions to develop 
case studies.  Students in the class responded to written and oral tasks and questions, and the case 
studies consisted of students’ responses to questions about the classroom activities.  In general, 
the aims of our study were to arrive at a comprehensive understanding of the role of students’ 
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personal and idiosyncratic representations in their learning and to develop general theoretical 
statements about their learning processes.   

We explored students’ thinking on tasks designed to probe their different ways of 
understanding and representing series problems.  Using multiple sources of qualitative data – 
audiotapes of interviews with students, transcripts of those tapes, researchers’ field notes, 
worksheets of case study students, and two researchers’ journals – case study analyses were 
undertaken to identify patterns and changes in students’ thinking with respect to their 
understanding.  In particular, we report here how their work on these series problems presented 
geometrically influenced the ways they thought about teaching.  Analyses of taped sessions 
included coding of events, triangulation of qualitative data, and identification of distinct strands.  

Mathematical Representation  
Students in sixth-century B.C. Greece concentrated on four very separate mathemata, or four 

subjects of study: arithmetica (arithmetic), harmonia (music), geometria (geometry), and 
astrologia (astronomy).  “This fourfold division of knowledge became known in the Middle Ages 
as the ‘quadrivium’” (Burton, 1997, p. 88).  To these early Greeks, arithmetic and geometry were 
as separate as music and astronomy; mathematicians were to realize, of course, that arithmetic 
and geometry are not separate, and that some intriguing mathematics lies at their intersection.  
This report attempts to explore the beauty and richness of viewing one problem from arithmetic 
and geometric perspectives.  

There is a belief among mathematics educators (e.g., Janvier 1987; Lesh, Post, & Behr, 1987) 
that students benefit from being able to understand a variety of representations for mathematical 
concepts and to select and apply a representation that is suited to a particular mathematical task.  
The National Council of Teachers of Mathematics (NCTM) reinforces this belief: “Different 
representations support different ways of thinking about and manipulating mathematical objects.  
An object can be better understood when viewed through multiple lenses” (2000, p. 360).  
Students develop mathematical power as they learn to operate on mathematical objects and to 
translate from one mathematical representation to another.   

Recently, Aspinwall and Shaw (2002) reported their work with two students with contrasting 
modes of mathematical thinking – Al, whose mode was primarily visual, and Betty, whose mode 
was almost entirely symbolic.  Their contention was that students often construct vastly different 
personal and idiosyncratic representations, which lead to different understandings of concepts.  
Given problems presented graphically, Betty generally found it nearly impossible to think about 
the problem in graphical terms; thus, she translated from the graphic representations to symbolic 
representations, or equations, in order to make sense of the problems.  Once she completed 
analytic operations on the symbols, she translated the problem back to the graphic 
representations required for the tasks.  Al, however, operated directly on the graphic 
representations without having first to translate to symbolic representations.  Betty and Al 
showcased two very different ways of solving problems, but the study suggested that if students 
could move freely between the visual (geometria) and the symbolic (arithmetica), their 
mathematical understanding would be much richer and their problem-solving abilities more 
robust.   

From Cubes to a Square Block: An Arithmetic Perspective 
Let us return now to the question posed by the students: how is it possible that four cubes, 

with side lengths ranging in size from 1 cm to 4 cm, can be magically transformed into a single 
square block with side length 10 cm.  From an arithmetic perspective, this problem can be 
represented by the following equation, 13  + 23 + 33 + 43  = 102.  One can further examine this 



 

 465 

relationship by determining what would happen if only one cube, with side length 1 cm (1 cm3), 
is placed in the magic bag?  What if two cubes, with side lengths 1 cm and 2 cm (1 cm3 and 8 
cm3, respectively), are placed in the bag?  What happens with three cubes, with side lengths 1 
cm, 2 cm, and 3 cm (1 cm3, 8 cm3, and 27 cm3, respectively)?  What if four cubes, with side 
lengths 1 cm, 2 cm, 3 cm, and 4 cm (1 cm3, 8 cm3, 27 cm3, and 64 cm3, respectively), are placed 
in the magic bag?  When we investigate these questions, we notice something intriguing.   

• 1 cube   13 = 1 = 12, which is true. 
• 2 cubes  13  + 23 = 9 = (3) 2, which is true. 
• 3 cubes  13  + 23 + 33 = 36 = (6) 2, which is true. 
• 4 cubes  13  + 23 + 33 + 43 = 100 = (10) 2, which is true. 

Then the students ask, “Does placing consecutively larger cubes into the magic bag always 
produce a square block with this intriguing property; that is, does the following equality always 
hold: 13  + 23 + 33 + · · · + n3 = (1 + 2 + 3 + · · · + n) 2 ?” 

An inductive approach is sufficient to show that this relationship is true for any natural 
number, n.  To use this approach, one must first show that it works for the 1st natural number.  
The second part is the induction step; that is, one must show that if the expression is true for an 
arbitrary natural number, say k, then the equation must be true for the next consecutive natural 
number, k+1.  If this induction step can be proved, we clearly have a domino effect, that is, if the 
equation is satisfied for n=1, then the equation is satisfied for n=2, and if the equation is satisfied 
for n=2, then the equation is satisfied for n=3, and so on throughout all the natural numbers.  

Geometria with Arithmetica 
Let us now explore this generalized problem from a combined arithmetic and geometric 

perspective, which we have termed “geo-arithmetic.”  The problem is shown geometrically in 
Figure 1.  First we consider the square, in Figure 2, that is size (1 + 2 + 3 + · · · + n) x (1 + 2 + 3 
+ · · · + n).  We can divide this large square into smaller squares and rectangles, and calculate the 
areas of these squares and rectangles based on their dimensions – lengths and widths.  But we 
will add the areas separately based on their placement in groups that we will designate as the 
Diagonal, Bricked, Vertical-Line, Dotted-Line, and Horizontal-Line regions.  (See Figure 2)  
Finally, we will demonstrate that the sum of each of these regions is a cube so that the area of the 
square is the sum of the cubes.  
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Figure 2 
 
Sum of the Diagonal Region  
1 = 13 
Sum of the Bricked Regions 
 
      
 
           
 
 
 
 
Sum of the Vertical-Line Regions 
         
 
 
      

 
 
 
 
Sum of the Dotted-Line Regions 

( )

3
2

2
22

21

2

32
2

21212

212221

=!

=!+
!

!

=!++!

=!+!+!

"
#

$
%
&

'

( ) ( )

( )

3

2

3

33

2

2433

2

3243
3

2

32
3

2

43
3

2133213

2313333231

=!

=
+!!

="
#

$
%
&

' !+!
!

="
#

$
%
&

' !
+"

#

$
%
&

' !
!

=+!+++!

=!+!+!+!+!

1 2 3 n-1 n 

1 

2 

3 

n-1 



 

 467 

( ) ( ) ( ) ( )( )
( ) ( ) ( ) ( )( )

( )( ) ( )( )
( )( )( ) ( )( )( )

( ) ( )

( ) ( )

( ) ( )( )

( )3

2

2

2

1

2

121

2

221

2

21

2

121

2

11

2321113211

12131211

11131211

!

=
!!

=
!!

=
!+!

=
!!!

+
!!

=!+"""+++!+!+"""+++!

=!!+"""+!#+!#+!#

+!!+"""+!#+!#+!#

n

nn

nn

nnn

nnnnnn

nnnn

nnnnn

nnnnn

 

Sum of the Horizontal-Line Regions 
( )
( )

( ) ( )

( ) ( )( )

( ) ( )

( )

( )

3

2

2

22

2

2

2

11

2

1

2

1

2

1

2

1

1321321

1321

1321

n

nn

nnn

nnnn

nn
n

nn
n

nnnn

nnnnn

nnnnnnn

=

=
!++

=
!

+
+

="
#

$
%
&

' !
+"

#

$
%
&

' +

=!+(((+++++(((+++

=!)+(((+)+)+)

+)+!)+(((+)+)+)

 

Now, we have as the sum of the areas of the subdivided square: 
+  Sum of the Diagonal Region :   13 
+  Sum of the Bricked Regions:   23 
+  Sum for the Vertical-Line Regions:  33 
+ …  
+  Sum for the Dotted-Line Regions:  (n − 1) 3 
+  Sum for the Horizontal-Line Regions: n3  
=  Area of the square: 13  + 23 + 33 + · · · + (n-1) 3 + n3 = 13  + 23 + 33 + · · · + n3 

We have subdivided the square, used arithmetic, and the area of the square is the sum of cubes.   
Students’ Explorations 

Our work with students is framed by the view that posing and analyzing rich tasks for 
students provide windows into their thinking with ramifications for curriculum and instruction.  
As a result of observations of what students say and write, and how they represent mathematical 
situations, researchers make decisions about appropriate ongoing investigations to clarify or 
validate early assertions.  In this case, we sought to probe the perspectives of pre-service high 
school mathematics teachers for this combination of the arithmetica and geometria. 

The students in our senior-level university mathematical problem-solving course were visual 
and non-visual (as determined by the instructors’ analyses of students’ portfolios) using 
Presmeg’s (1986) theoretical framework.  During the 2003 Fall semester, all 25 aspiring teachers 
in the class had been studying a variety of these geo-arithmetic problems (as we termed them).  
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Our strategy was to present arithmetic representations, which in this case were series problems, 
or a picture of a geometric object that represented a series problem.  After several weeks of 
presenting and assisting students with tasks that required a synthesis of geometry and arithmetic, 
we sought to explore their thinking.  The final project was the problem we have presented here.  
The students did their work in small groups and revealed their new way of thinking as every 
group created representations for the geo-arithmetic.  At the end of the semester, we interviewed 
two students.  We spoke with Ryan, a student who processed mathematical information non-
visually, and with Emily, who processed visually.   

Ryan said he initially was frustrated by our asking him to solve the series problems 
geometrically.  He said he had always thought “in equations.”  During group activity, he reported 
he was able to see how some students process information geometrically as he worked through 
the problems.  What was striking was that as a result of the activities, he felt he would be a better 
teacher in relating to visual and non-visual learners.  “They taught me how to think about a 
problem so that if you are trying to reach someone who does not think just in numbers, [slight 
pause], well, you can help the student to see the problem visually.”   

When asked how he might now approach these visual problems, he said he would “start with 
the equations, then go to the geometry and try to work my way to where I was with the 
equations.”  He justified this by saying, “I guess that’s just the way [symbolically] I have always 
been exposed to learning.  But these problems forced me to approach them visually.”  The visual 
representations for the series problems “opened my eyes to a new way of seeing things that I had 
never been exposed to before.  I consider myself to be not just a better problem solver, but a 
better teacher seeing how other students are going to see things.”  Furthermore, he explained, 
“Before, I was only thinking of the equations, and I thought everyone else was too.  My idea was 
that everyone was going to learn by my [symbolic] teaching.  I wasn’t open to visual teaching.  
Now I’m thinking differently, out of my comfort zone.” 

Emily, the visual thinker, did not experience Ryan’s initial frustration caused by the 
problems presented geometrically.  She stated, “I am sometimes not confident in my algebra 
skills.  I know what I am doing but I am afraid of mistakes in my thinking.  If I can do it visually, 
I know I am on the right track.”  Ryan said his first approach was to try to write an equation; but 
Emily’s approach was much different: “My last resort is to write an equation.  I look at it every 
way that is creative or out of the norm.  It is easier for me to conceptualize it that way.   I was 
struggling with the problems algebraically.”  When we asked her whether she thought these 
series problems were algebraic or geometric in nature, she said, “It was a blend for me.   You 
needed to know the algebra behind it, but you had to have that geometry, spatial sense, in order 
to see the problem.”  When we asked her how she thought about the problem presented above, 
she responded, “With the series problems, I had to picture a physical cube, with them lined up 
next to each other, and figure it out from there.” 

Ryan, the non-visual thinker above, said that being confronted with problems presented 
visually had altered the way he thought about teaching.  Emily, too, had reflected on her future 
teaching practice.  We asked her, “Will this focus on pictures in the class change any thing about 
the way you plan to teach?”  She responded: 

Before these problems, I would have had to just to go by the book.  Teach by breaking the 
equations down into smaller parts algebraically.  After these problems, I want to try to try 
to incorporate this (visual aspects) into my teaching, into as many lessons as possible.  
Because I now know I am that kind of thinker (visual), I know there are others like me.  
Based on this I want to try to accommodate all the different kinds of thinking.  I will have 
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to teach it purely algebraically for those who don’t think visually.  I want to try to 
incorporate as much visual as I can, and that will help the algebra people to see it 
differently too.  Maybe I can create a future engineer.  And the people who are visual need 
to know the numbers, how the equations work and not have to see it visually. 

Conclusion 
Many of our students tended to think symbolically and not visually, and Ryan was typical of 

these learners.  Emily was representative of those students who tended to think visually.  In both 
cases, they felt the ways they would teach had been changed.  We believe students develop 
mathematical power by learning to recognize an idea embedded in a variety of different 
representational systems and to translate the idea from one mode of representation to another.  A 
positive result of multiple instructional representations of concepts is that students who are 
prospective teachers learn to construct and to present representational schemes with which they 
might not be comfortable.   

Again, our contention is not that one student’s representational scheme is superior to another, 
only that students often construct vastly different personal and idiosyncratic representations 
which lead to different understandings of a concept.  Although Ryan and Emily valued two 
different types of representations, we believe students benefit from an ability to recognize an 
idea embedded in a variety of different representational schemes and to translate the idea from 
one mode of representation to another.  A positive result of multiple instructional representations 
of concepts is that students learning to present ideas will become fluent with a variety of 
diagrams, graphs, symbols, and equations.  And when students create and view mathematical 
objects from different perspectives, they develop power in mathematics. Otherwise, students are 
merely confronted with and must interpret a teacher’s representational preference, and then the 
task for students becomes one of memorizing the presentation rather than learning to select or 
create representational schemes suitable to the problems they are trying to solve.  Students 
allowed to present these schemes reveal aspects of their understanding that might not otherwise 
emerge.  Because student-generated representations provide useful windows into students’ 
thinking, it is essential for teachers to value these personal representations.  The challenge then 
for us as teachers is to create learning environments that require students to become fluent with a 
variety of representations. 
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Introduction  

Mathematics education in the elementary grades has undergone a substantial shift in 
theoretical perspective, from a focus on teacher directed procedural instruction to an emphasis on 
student led investigative problem solving (NCTM, 2000).  While “problem solving” has 
traditionally referred to the rote application of algorithms in response to word problems at the 
end of a textbook chapter, this notion has been reconceptualized significantly.  It now 
encompasses the range of complexities inherent in the process of generating increasingly 
sophisticated mathematical representations or models of authentic problems that occur in the real 
world and for which multiple solutions are possible.  

Theoretical Framework  
Two independent but complementary pedagogical approaches that have emerged from this 

shift in perspective are:  mathematical modelling (English & Doerr, 2003; Lesh & Doerr, 2003; 
Woodruff & Nason, 2000) and knowledge building (Scardemalia & Bereiter, in press).  
Mathematical modelling as a pedagogical tool offers students an innovative approach to 
accessing challenging mathematical concepts through meaningful authentic problem solving 
tasks.  Mathematical models have been described as conceptual systems of relationships and 
operations that can be represented by such means as equations, diagrams or computer 
programmes (Lesh & Doerr, 2003).  Further, mathematical modelling has tremendous potential 
to involve students in the theorizing, critiquing and higher order thinking that characterize 
student-led collaborative knowledge building (McNab, Nason, Moss, & Woodruff, in press; 
Scardemalia & Bereiter, in press).  Mathematical modelling has been effectively pioneered with 
older students beyond the elementary grades, but its potential has not yet been fully explored 
with elementary students; knowledge building has been successfully incorporated into the 
science and language arts learning of elementary students, but has not yet been extended 
comfortably to mathematics. These two complementary pedagogical approaches, both 
representing a revisioning of elementary mathematics education theory and practice, informed 
the design of this inquiry.  

Objectives or Purpose  
This study implemented an experimental teaching intervention to investigate the potential of 

a knowledge building approach to mathematics learning in a Grade 5/6 classroom, supported by 
Knowledge Forum computer software, through collaborative mathematical modelling using 
authentic tasks that were relevant and meaningful to the students in this class.  The study focused 
specifically on the Ontario Grade 5/6 mathematics curriculum topics of distribution and central 
tendency (mean, median and mode) in managing numerical data sets, which have been identified 
as persistently problematic for many students at this grade level and beyond (McGatha, Cobb, 
McClain, 2002).    

Confusion existed amongst students around differentiating (defining and applying) the three 
central tendency terms—mean, median and mode—which are routinely taught together, in a 
procedural rather than a conceptual way offering students no means of constructing their own 
understanding.  The deeper need for conceptual understanding implied by this difficulty 
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suggested that these topics might be more effectively addressed through a knowledge building 
approach.  Further, because these particular topics have clear links to real life situations, with the 
potential for student generated data sets and mathematical models within relevant authentic 
problems, they seemed to offer a rich context for student engagement, not only in the 
questioning, theorizing, exploration and discovery of knowledge building, but also in the 
generation, modification and rationalization of mathematical modelling.  This study, then, set out 
to explore the potential of knowledge building and mathematical modelling for elementary 
students’ more effective learning of mean, median and mode.  

A key concern of this study was how transparent the mathematics curriculum content should 
be, given that one important aim of this research was to support the process of knowledge 
building where learning is moved ahead by students’ own curiosity, questions, conjectures, 
theorizing and research, rather than by adhering to an agenda set by an instructor.  The 
mathematical concepts were therefore presented implicitly through an exploration of the issue of 
“fairness” and how most fairly to represent consensus mathematically, using data sets generated 
by the students on topics of interest to them—specifically, in this classroom, establishing a 
rationale for how to generate an overall ranking of small group opinions within the class on the 
relative importance of competing issues in the current election for mayor of the city.  

Methods or Modes of Inquiry  
Participants included 22 students (11 in Grade 5; 11 in Grade 6), ages 9 through 11 years, in 

one Grade 5/6 classroom at the Institute of Child Study in Toronto, Ontario.  All students in this 
study had been provided with laptop computers for use in their classrooms as part of a school 
wide programme, allowing wireless access to Knowledge Forum software and the database 
created for this project. All students were already familiar with Knowledge Forum; however, this 
was the classroom teacher’s first use of laptops and of this software in her classroom.  The 
teacher and a teacher intern were present for all parts of the study.  The lessons were developed 
and taught by a doctoral student, with the support and assistance of a professor of elementary 
mathematics education and a research assistant.  

The research design included a pre-test, teaching intervention and post-test.  The pre-test was 
comprised of a total of 13 items, grouped into three parts:  the first part (4 items) was made up of 
word problems requiring interpretation and understanding of mean (average) to generate values 
with defined relationships, without an explicit request for calculations; the second part (3 items) 
asked for the participant’s own description of what was meant by the terms mean, median and 
mode; the third part (6 items) required application of these terms to unordered numerical data 
sets.  (Prior to administration of the pre-test, this class (both Grade 5 and Grade 6) had completed 
work on the topic of average in the context of a review of long division, although this had not 
explicitly linked the procedural arithmetic calculations of average to the idea of the mean of a 
data set.)  

The teaching intervention was comprised of a series of sixteen lessons, delivered twice 
weekly over a period of two and a half months.  All lessons took place during regularly 
scheduled math periods.  Whole class and small group discussions were video taped and written 
transcriptions made.  Observations were recorded in field notes taken by the teacher intern and 
research assistant.  All classroom artefacts, including entries made by students, researchers and 
teacher on the Knowledge Forum project database and Excel spreadsheets, as well as all lists, 
notes, charts and graphs produced by the students during the lessons, were retained.  

The pre-test was re-administered as a post-test immediately following completion of the 
teaching intervention.  
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Results and discussion  
A preliminary analysis of data indicates that the means of total scores improved significantly 

from pre- to post-test.  Pre- and post-test scores for each of the three parts reveal that students’ 
understanding of average (Part 1), taught previously by the classroom teacher, remained not 
significantly improved by the teaching intervention.  (This is particularly interesting in light of 
investigations by Kirshner et al (2000) which suggest that initial introduction of algorithms in a 
procedural way actually interferes with students’ subsequent ability to construct their own 
conceptual understanding.) However, participants’ grasp of implicitly presented material (Part 2) 
and their ability to transfer this knowledge to new applications (Part 3) were significantly better 
from pre- to post-test, with all students showing significant improvement.  

All but two of the students’ post-test responses to Part 2 (meaning of terms, which had been 
explored but not explicitly taught) produced a range of individual descriptions, all accurate, but 
all differently expressed. One conjecture might be that these terms had acquired a conceptual 
meaning which the students had internalized.    

While both grades showed significant overall improvement, the Grade 6s improved more 
than the Grade 5s.  

Girls’ degree of improvement was greater than that of the boys.  However, the boys remained 
higher scoring overall on both pre- and post-tests, with the difference decreasing from pre- to 
post-testing.    

Transcriptions and field notes indicate that the laptop computers generally, and Knowledge 
Forum more specifically, while used somewhat, proved not to be the main medium for sharing 
ideas amongst students in the class.  Classroom discussions, on the other hand, were animated 
and complex and proved to be the primary forum for collaborative theorizing.  Knowledge 
building took place vigorously in the classroom, and only to a lesser extent within the project 
database.  This may have been partly because the classroom teacher was not experienced or 
comfortable in the use of Knowledge Forum.  A second phase of this study is currently 
implementing the same teaching intervention in a second Grade 5/6 classroom at the same 
school, with a teacher who is highly experienced in the use of laptop computers and Knowledge 
Forum software, in an attempt to illuminate the role of computer support for collaborative 
knowledge building in mathematics learning.  

Both phases of this larger project were designed to investigate the interplay between 
overarching concepts and specific mathematics applications, conducted within a framework of 
knowledge building and mathematical modelling.  Further research is planned that will build on 
this complete study, to compare students’ learning of central tendency in two different Grade 5/6 
classrooms:  in one, the math content will be transparently conveyed in an explicit traditional 
way; in the other, the math content will be embedded within a knowledge building context.  
Additionally, a subsequent study will include a second post-testing of students at the end of the 
school year to provide a comparison of far transfer of knowledge between the two approaches.  

Further, the exploration of effective metaphors that would support students’ appropriate 
developmental understanding of central tendency offers a rich area for investigation that would 
influence the direction of further research on this topic (Kirshner, 2002; Konald & Polatsek, 
2002).  
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To what extent does the systematic use of technology favour students´ development of problem 
solving competences? What type of reasoning do students develop as a result of using a 
particular tool? This study documents features of mathematical practice that students display 
when they use a dynamic software in their problem solving experiences. In particular, the use of 
the software involves the construction of simple geometric configurations that become a platform 
to formulate questions that lead them to the construction or recognition of mathematical 
relationships.  In this process, students can build their own repertoire of mathematical results 
and also utilize their previous knowledge to support, justify, or explain their conjectures. Here, it 
becomes important for students to develop methods and strategies to observe relationships, 
express them using specific notation, and provide arguments to demonstrate their results. 
 

It is well recognized that students need to develop distinct strategies to identify and examine 
relevant information to deal with problems or situations that involve the use of mathematical 
resources. In this perspective, it is common that they pose questions, explore particular 
conjectures, use distinct representations, and develop ways to communicate their ideas or results. 
Here, the presence of technological tools in mathematical classrooms tends to influence not only 
the content and organization of curriculum to study, but also ways in which students will 
approach and learn it (NCTM, 2000). It is also recognized that there are multiples ways in which 
students can employ those technological tools and, as a consequence, there is a need to 
investigate what aspects of mathematical practice are actually enhanced in students’ learning as 
result of using particular tools. This study aims at investigating ways of reasoning exhibited by 
high school students while using dynamic software to construct and examine a set of geometric 
configurations. In this context, it becomes important to characterize types of questions, 
conjectures, explanations, and forms of communication that students develop during their 
problem solving experiences.   

A Problem Solving Scenario: Elements of a Conceptual Framework, Methods and 
Procedures 

Mathematical problem solving has become a central activity in students´ learning of the 
discipline (NCTM, 2000). However, it is important to recognize that there are different scenarios 
in which students can be engaged in problem solving practices. Thus a problem solving approach 
may be based on creating a mathematics microcosm in the classroom where students openly 
discuss a set of well-selected non-routine problems (Schoenfeld, 1998).  What happens when 
students are asked to participate in the process of formulating questions? What is the role of the 
use of technology in achieving this goal?  To what extent do students’ methods for solving 
problems get enhanced when students utilize systematically technological tools? A fundamental 
principle to frame students´ understanding of mathematical ideas is that they need to conceive of 
their learning as an opportunity to pose questions, dilemmas, or problems to be explored and 
solved. That is, students not only generate questions as a means to understand situations or 
problems but also some of these questions eventually become problems to be solved. 
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Once you have learned how to ask questions –relevant and appropriate and substantial 
questions- you have learned how to learn and no one can keep you from learning whatever 
you want or need to know (Postman & Weingartner, 1969, p. 23).  

Thus, the process of understanding particular themes, contents or situations involves the 
formulation and exploration of substantial questions. In this context, the use of dynamic software 
seems to offer students a powerful tool not only to identify potential relationships but also to 
explore and visualize properties of those relationships. 

Eighteen high school students participated in a problem-solving course during one semester, 
meeting four hours a week. An important goal was to ask the participants to use dynamic 
software to work on a series of activities that involve:  

(i) Routine problems that appear in textbooks. The idea here was to discuss the extent to 
which the use of the software helps transform the original nature of the task. That is, 
with the help of the software students were encouraged to explore connections or 
extensions of the initial problem. 

(ii) The use of the software to construct simple configurations that were used as platform 
to identify and explore mathematical relationships.  

Each participant had access to a computer but they were encouraged to work on pairs or 
small groups of three. We also suggest a particular pedagogic approach to encourage students to 
learn through an inquiry process. This instructional approach has emerged from systematic 
implementation of tasks in which it becomes relevant for students to examine mathematical 
themes through questions. Thus, the development of the sessions consistently showed the 
following structure: 

1. The instructor introduces the task to the students and asks them to work on the task in 
groups of three students for about 20 minutes. The role of the instructor here is to monitor 
students’ work and help them clarify (via questions) the statement of the task. Each small 
group hands in a written report showing the students’ approach to the task. 

2. The instructor asks some small groups to present their work to the whole class. During 
each small group presentation, the rest of the group, including the instructor, asks 
questions to explain what it may not be clear or need some elaboration from the small 
groups´ presentation. 

3. The instructor identifies strengths and limitations associated to each small group’s 
presentation and discusses within the whole class mathematical ideas, strategies, concepts 
and distinct representations that are relevant in students’ solution to the task. In addition, 
the instructor may introduce a new concept or analyse extensions or possible connection 
of the original statement of the task or problem. 

4. Students are asked to revise individually the initial task. Here each student has the 
opportunity to incorporate new ideas, concepts, or strategies that he/she has judged to be 
relevant during the development of the session.    

This paper focuses on analyzing what occurred during two- two hour sessions in which one 
of a small group presented a simple construction that eventually led to the recognition of basic 
mathematical results. It is important to mention that even when a small group proposed the task 
and initiated the discussion, more mathematical results came out from the participation of the 
whole class.   

Introducing the Task: The Importance of Posing Questions and Results 
A small group commenced the session by drawing (with the use of dynamic software) two 

points on a Cartesian plane.  They then asked the class “what can we do with two points? And 
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the presenter responded, “you can draw, for example, segment AB, line AB and measure the 
length of segment AB” (figure 1).  You can also observe that the length of the segment varies 
when point A or B is moved. At this stage, the presenter added new elements to this simple 
initial configuration and began to identify and explore particular relationships among the 
components of the emerging construction.   

A

B

 
Figure1. Segment AB, line AB 

 
 

M

A

B

C

 
Figure 2. Perpendicular bisector of 
segment AB and point M 

 
Specifically the elements added to the initial 
segment included midpoint M of segment 
AB and a perpendicular line 

! 

n  to segment 
AB passing by M (the perpendicular bisector 
of segment AB) and locate point C on that 
bisector (figure 2). It was observed that point 
C could be moved along the perpendicular 
bisector (figure 3). 

One of the presenters mentioned that when point C is moved along the bisector, the triangle ACB 
is always isosceles. The immediate reaction from the class was “why”. Here the whole class 
began to examine and justify this statement and eventually accepted it, since it was shown that 
triangles AMC and BMC are congruent. Thus, the first result associate with this construction 
was: 

Given a segment AB and its perpendicular bisector

! 

n , then the triangle ABC (C any point 
on 

! 

n) will always be an isosceles triangle 
This result emerged from observing that the lengths of sides AC and CB is always the same 

for any position of point C. Here students were encouraged to present an argument based on 
congruence of triangles. That is, they eventually showed that triangles AMC and BMC are 
congruent (SAS postulate). 

During the presentation it was also 
observed that when point C is located 
further from M the length of side AC = CB 
increases (figure 3). Here, another question 
was posed by one of the presenter: Where 
point C must be located to have triangle 
ACB equilateral? Students during this 
exploration assigned measures to different 
components of the figure and paid attention 
to what happened to these quantities when 
point C took different positions along the 
bisector. 

n

m!"#$ = 44.66°

m!#$" = 67.67°

m!#"$ = 67.67°

m AC = 7.27 cm

m CB = 7.27 cm

m AB = 5.52 cm

M

A

B

C

C
1

C
3

C
2

 
Figure 3. Three isosceles triangles 
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What properties do equilateral triangles 
have? Students drew a circle with center B 
and radius segment AB and locate point C’ 
as the intersection of the circle with the 
perpendicular bisector. The class agreed 
that triangles AC’B and AC”B were 
equilateral (figure 4). 

    n

C''

C'

M

A

B

C

 

Figure 4. Constructing an equilateral 
triangle 

 
Here a second result was identified:  

The triangle formed by points A, B of segment AB, and a point C on its perpendicular 
bisector located at the intersection of that bisector and a circle with center on either point 
A or B and radius AB is equilateral. 

  Similarly, students also observed that 
when point C is moved along the bisector 
then the measure of angle ACB varies 
depending on how far point C is from point 
M. Here another question was posed: 
Where point C must be located to 
transform triangle ACB into a right 
triangle? 

n

C'

C''

M

A

BC

 
Figure 5. Constructing right triangle ACB 

How to draw a right angle with vertex C? Can we move vertex C in such a way that the two 
sides of the angle pass by A and B respectively? If we drew a right angle ACB, then what 
properties this angle holds? These are examples of the type of questions that the class discussed 
to eventually agree to draw a circle with center point M and radius MA and locate C as the 
intersection point between the circle and the perpendicular bisector. Here, they stated that 
triangle ABC is a right triangle since side AB is the diameter of the circle (figure 5). Thus, 
another result was: 

Triangle ABC is right triangle when point C is located at the intersection of the 
perpendicular bisector of segment AB and the circle with center the midpoint of AB and 
radius half of that segment 

It is interesting to mention that the argument the students used to support this result was 
based on using a result that they had previously studied: If one side of a inscribed triangle is the 
diameter of the circle, then the triangle is a right triangle. At this point, students from the small 
group mentioned that they have completed their presentation; however, this task was again 
addressed during the following session. The idea was to add more elements to this configuration 
and explore the behavior of particular points as a result of moving, in this case, point C along 
line

! 

n . 
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Thus, a small group commenced drawing a 
perpendicular from C to the perpendicular 
bisector of segment AB (

! 

n) and drew the 
perpendicular bisector of segment CB. 
These two lines get intersected at P (figure 
6). Again, the question to examine was: 
What is the locus of point P when point C 
is moved along the perpendicular bisector 
of AB? 

n

P

M

A

B

C

 
Figure 6. Perpendicular to n at C and 
perpendicular bisector of CB get 
intersected at P. 

 
The software became a powerful tool to 
determine the path left by point P when 
point C is moved along perpendicular 
bisector 

! 

n . Again, students rushed to 
mention that the locus of point P was a 
parabola. Here, they were asked to explain 
why that locus was really a parabola. What 
is a parabola? What properties does it hold? 
These types of question led students to 
identify point B and line 

! 

n  as the focus and 
directrix of the parabola and explained that 
distances PB and PC are always the same, 
since P is located at the perpendicular 
bisector of BC (figure 7).  

n

P

M

A

B

C

 
Figure 7. Perpendicular to 

! 

n  at C and 
perpendicular bisector of AC get 
intersected at P. 

At this stage, it was evident that students recognized that the software was a powerful tool to 
identify and explore the behavior of particular relationships. In particular, they realized that the 
general properties of the parabola described before could also be verified by quantifying the 
distance from any point P on the locus to point B (focus) and line 

! 

n  (directrix) was always the 
same (figure 8). 

n

P ' L = 3 . 20 cm

m B P ' = 3 . 20 cm

C P = 6 . 71 cm

m B P = 6 . 71 cm

L

P

M

A

B

C

P '

 
Figure 8. Verifying properties of the parabola 

 
 
Students with the help of the software 
calculated the distance from point P on the 
parabola to line

! 

n  (directrix) and from P to 
point B (focus) and observe that when point P 
was moved along the curve, both distance were 
equal. Figure 8 shows two locations of point P 
(P and P’). 
 
  

When any of the small groups identified a particular curve as a result of exploring the 
behavior of dynamic representations that included new elements added to the initial 
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configuration, they were encouraged to present their construction to the whole class. Thus, the 
class not only examined carefully the construction, but also participated in the process of 
justifying properties that first appear only visually. That is, students eventually recognized that it 
was important to provide arguments to support their conjectures. In addition, it was observed that 
students developed a certain kind of sense to add other elements to the configuration in which 
there was a possibility to generate interesting relationships. For example, in general, they noticed 
that point C located on the perpendicular bisector was a key point to search for potential 
relationships. The fact that there was a triangle in the configuration, for example, led them to 
think of adding to the configuration, elements that include heights, perpendicular bisectors, and 
angle bisectors in that triangle and observe behavior of particular intersection points of this lines.   

 Students worked in small groups and there 
were different suggestions on what 
elements to add in order to identify 
particular relationships. A small group 
drew N as the midpoint of segment BC, a 
line MN and the perpendicular from point 
A to side CB (height) and located R as the 
intersection point between that height and 
line MN (figure 9). What is the locus of 
point R when point C is moved along the 
perpendicular bisector 

! 

n? 
 

n

h

m

R

N

M

A

B

C

 
Figure 9. What is the locus of point R when 
point C is moved along the bisector? 

Students observed that the locus seemed to be a hyperbola. Here, again the class began to 
examine whether the generated locus held basic properties attached to this figure; for example, 
they tried to identify its foci, vertices, center, etc. Here, another result emerged: 

In an isosceles triangle ABC (C any point on bisector 

! 

n), line MN (M is the midpoint of 
side BC) and the perpendicular line to segment BC that passes by vertex A get intersected 
at point R. The path (locus) left by point R when point C moves along the bisector is a 
hyperbola. 

Looking Back 
There are aspects of mathematics practice that appeared as important during the development 

of the activity: 
1. There is no one established or well-defined problem to be solved initially by the students. 
Instead, questions or problems emerge through the process of constructing a particular 
configuration that involves points, segments, bisectors, triangles, heights, etc. Thus, students 
have opportunity to observe and identify properties attached to different components of the 
figure in order to pose and pursue particular questions. 
2. Contents or theorems that students used to relate with particular subjects (triangles, bisectors, 
with Euclidean geometry and conics with analytic geometry) now seem to appear connected. In 
fact, students not only reconstruct some particular relationships but also investigate and 
document new ways to generate particular figures. In addition, students are able to study 
properties attached to those figures. For example, by measuring particular parts of the figure, 
students can verify properties attached to the conic. In this case, any point located at the 
generated locus must satisfy the definition of hyperbola. 
3. Students get involved in cycles of mathematical understanding that include the importance of 
posing questions or conjectures, exploring them, providing mathematical argument to support 
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them, and communicating their results. Hence, students realize that it is not only important to 
observe a particular relationship but also to provide arguments to support it. In addition, they 
value the need to develop a language to communicate their results. 
4. In general, the process of analyzing parts of certain geometric configuration represents a 
challenge for students to observe and document the behavior of family of objects (segments, 
lines or points) within a dynamic representation. Students themselves get the opportunity to 
reconstruct or discover new theorems or relationships. A crucial aspect that emerged in students’ 
problem solving instruction is that with the use of dynamic software they had the opportunity to 
engage in a story line of thinking that goes beyond reaching a particular solution or response to a 
particular problem. 

Remarks 
An important goal of mathematical instruction is to provide an environment for students in 

which they have opportunity to first exhibit their own ideas or ways to deal with mathematical 
problems. These initial ideas need to be challenged and expanded and the use of technological 
tools seems to offer an important ingredient to meet this goal. In particular, students can 
construct distinct types of representations with the help of technological tools that are susceptible 
to be studied in terms of answering or discussing questions or dilemmas posed by the students 
themselves.   
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Good problem solvers typically know many promising approaches to solving a problem and can 
identify some strategies that may be better than the rest. This study is an initial exploration into 
this capacity, with particular emphasis on the development of students’ conceptions of what it 
means for a strategy to be the “best.” 23 sixth graders were taught the basic operators of linear 
equation solving and then left to discover strategies on their own in three one-hour problem 
solving sessions. Students were regularly asked a series of questions designed to assess their 
developing conceptions of what it means for a strategy to be the best. Results indicate that many 
students developed quite sophisticated notions of best strategies, taking into account such 
criteria as length of solution and quickness of execution. Those with sophisticated conceptions 
were also stronger on measures of transfer equation solving, flexibility, and conceptual 
knowledge.   
 

The ability to distinguish between effective and ineffective strategies is one of the key 
competencies that is integral to good problem solving in mathematics (Owen & Sweller, 1989). 
Good problem solvers often know many promising approaches to solving a problem and can also 
identify some that may be better than the rest. This study examines this capacity, with a 
particular focus on the development of students’ conceptions of what it means for a strategy to be 
the “best.”   

Exploring what novice solvers believe it means for a solution method to be better than other 
methods, and how they develop this knowledge, has particular relevance in the present climate of 
reform. Current National Council of Teachers of Mathematics (NCTM) recommendations call 
for teachers to create classroom environments where students can engage in thinking deeply 
about mathematics (NCTM, 2000, p. 18). This form of engagement with mathematics, which 
requires reflection on and evaluation of students’ own strategies and the strategies of peers, is 
believed to enhance the development of mathematical understanding (Lampert, 1986, 1992a, 
1992b). It is proposed that such an approach to learning mathematics makes it more likely that 
students will understand why certain algorithms are standard or the best (Morrow & Kenney, 
1998). However, evidence supporting this claim is only beginning to emerge and is limited to 
research in the elementary grades (e.g., Carpenter & Moser, 1984; Carroll, 2000). This paper 
describes an exploratory study intended to investigate this issue at the middle school level, as 
students initially explore the symbolic procedures of algebra.   

What Makes a Strategy the “Best”? What it means for a strategy to be the “best” may seem 
straightforward at first glance: The best solution method is one that solves the problem in the 
most efficient way. Good problem solvers know multiple ways to approach problems and are 
also able to generate the most efficient solutions.  

However, solution efficiency is a more complex construct than it appears. If the best method 
is the one that produces the solution most efficiently, what does it mean for a solution method to 
be the most efficient? A solution method may be the most efficient for a number of reasons – 
including that it requires the fewest steps, that it is the quickest to do, and/or that it requires the 
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least mental effort to execute – all qualities that may or may not coincide. When these potentially 
defining features of efficiency suggest different choices for the optimal approach, the notion of 
“best” becomes much more complex. Often the most practiced or automatized solution method 
requires the least mental effort to execute, in that it may be the first approach a solver thinks of 
when looking at a problem and also is one that can be executed without a great deal of conscious 
effort. However, it may be the case that a solver can think of another, different strategy that 
results in fewer steps, if she examines the problem for a few moments before jumping in. Which 
solution is better – the one that comes to mind immediately and can be done automatically or the 
shorter one that only comes to mind after a few moments’ reflection?  

For example, consider the linear equation below and the two solutions provided in Table 1. 
Solution A follows what can be considered a standard algorithm in this domain. Many solvers 
who are knowledgeable in this domain can execute this standard algorithm with minimal effort 
and quite rapidly. Yet a solver who carefully examines this problem for a moment may be able to 
generate a more efficient solution, meaning one with fewer steps, as shown in Solution B. Which 
is a better strategy, the one with fewer steps or the one that can be generated and executed most 
rapidly?  

 

Further complicating what “best” means is the idea that solution methods have aesthetics. 
The notion of a best approach may also be related to features that may or may not coincide with 
solution efficiency, including elegance, parsimony, symmetry, coherence, simplicity, and beauty 
(Silver & Metzger, 1989). Even among mathematicians, the aesthetics of solution methods are 
difficult to quantify or categorize (Wells, 1990), yet aesthetic judgments often become the 
primary means of evaluating mathematical work (Penrose, 1974). Some have argued that 
cognizance of the aesthetics of solution methods is a hallmark of mathematical expertise (Silver 
& Metzger, 1989).  

The point here is that what it means for a solution method to be the best is actually quite 
subtle and complex. Nevertheless, this knowledge is integral to what it means to be a good 
problem solver. Of interest here is how this knowledge develops. As novices begin to develop 
knowledge of multiple solution methods in a domain, what do they think it means for a solution 
to be the best?  

Prior Research on Conceptions of “Best” Strategies. Despite recognition of the importance 
of this topic (e.g., Isaacs, 1999; Schoenfeld, 1985; Taplin, 1994), the development of students’ 
conception of best strategies has not been widely and systematically explored, particularly at the 
secondary school level. In elementary school mathematics, a few studies have examined 
students’ conceptions of good and better solution strategies, with the general finding that 
students’ conceptions of best strategies are often implicit and somewhat idiosyncratic. For 
example, Franke and Carey (1997) interviewed first graders about their solution strategies for 
solving the problem 3 + 4. Many participants indicated that their own personal strategy was the 
best one, without being able to articulate what made it better than the example solutions 
provided. Very few students recognized the role of efficiency in determining best strategies. 
Similar results were found in a similar study by McClain and Cobb (2001). It appears that very 



 

 485 

little is known about how and when students ultimately develop a more sophisticated ability to 
differentiate among different solution strategies to determine which strategies are best (and why). 
The present study begins such an exploration.  

Method  
The present study was part of a larger project that aimed to look at the development of 

students’ strategies for solving linear algebraic equations (Star, 2004). During the summer 
between their 6th and 7th grade years, 23 students (12 males and 11 females) attempted a series 
of linear equations on videotape and answered questions about the strategies that they used. 
Students participated for a total of five hours over five consecutive days. On the first day, 
students were administered a pretest to confirm that none had prior knowledge of the four 
transformations used to solve linear equations (adding or subtracting to both sides, multiplying or 
dividing to both sides, distributing or factoring, and combining like terms).   

Following this pretest, students received 20 minutes of instruction, introducing them to these 
four linear equation solving transformations. During instruction, students were not shown any 
worked-out examples of solved equations nor were they given guidance in how transformations 
could be chained together strategically to solve equations; rather, students were provided 
instruction only on how to apply each transformation individually and were left to discover how 
transformations could be used productively in solving equations. Following instruction, students 
participated in three one-hour videotaped problem solving sessions. All students solved the same 
problems in the same order; problems ranged in complexity, including 2(x + 1) = 12 and 3(x + 2) 
+ 9(x + 2) = 6(x + 2). At regular intervals, the interviewer asked students a pre-determined series 
of questions about their strategies. At the end of each day’s work, the researcher asked students 
several concluding questions, including two questions relating to “best” solution methods: (a) 
Suppose your friend told you that he/she had solved an equation in the best possible way. What 
do you think he/she means by the best possible way? and (b) How do you know when you’ve 
solved an equation in the best possible way? Each student was asked these same questions at 
least twice during the study.   

Students completed a posttest on the final day of the study, which was the same as the 
pretest. The posttest contained four types of measures: isomorphic equation solving, transfer 
equation solving, flexibility, and conceptual knowledge of equations. Isomorphic equations were 
problems that were very similar to those that were solved during the problem solving sessions. 
Transfer equations were novel linear equations to assess transfer of solution method; each had a 
feature that would have been unfamiliar to students. Flexibility, defined here as knowledge of 
multiple solution strategies and the ability to use a range of strategies on a given problem, was 
assessed using a series of questions that have been reliably used in prior work (Star, 2001, 2002, 
2004). Conceptual knowledge was assessed with a series of multiple-choice questions relating to 
the concepts of equation, variable, and equivalency.   
Analysis 

Students’ solutions to all posttest problems were graded on correctness of solution. Students’ 
responses to interview questions relating to best solution strategies were transcribed and 
categorized (as described below) by two independent raters.   

Results  
Students’ responses to the best strategy questions fell into seven categories, as shown in 

Table 2. Almost all students (20 of the 23, or 83%) mentioned more than one category in their 
best question responses (with a mean of about three categories mentioned per person).   
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Table 2: Students’ Responses to Questions Relating to Best Solution Strategies  

Category  % responding  
Shortest way, involving fewest steps  65%  

Quickest or fastest way  61%  
Easiest, least complicated, or least confusing way  61%  

Most accurate way, with fewest errors, and arriving at right answer  57%  
Way that I’m more sure, confident, comfortable with, proud of, or happiest  30%  

with   
Way that is most neatly written and organized  9%  

It depends on various things, including the problem, how quickly a solver  9%  
can execute steps, and the preferences or goals of a solver   

 
Note that students as a group captured the complexity of what it means for a solution strategy 

to be the best. As discussed above, determining which of several strategies is the best is quite 
nuanced; for experts, all of students’ responses to this question have some merit. While it is more 
typically the case that the best strategies are those that are the quickest, shortest, or least 
complicated, it is also true that accuracy, neatness, and solvers’ goals and preferences play 
important roles in evaluating the goodness of strategies.   

For analytical purposes, students’ responses were placed into two broad categories, referred 
to here as naïve and sophisticated, in order to identify those students whose views of best were 
more aligned with what would be considered typical or sophisticated in the domain. 
Sophisticated conceptions of best were those that included criteria of quickest, shortest, least 
complicated, or dependent on a variety of conditions, while naïve views included criteria having 
to do with confidence, neatness, and accuracy. (Other than the research cited in the opening of 
this paper, there are no known studies that have surveyed mathematicians’ views on what criteria 
are used to establish the best solution method for a particular problem. However, it is assumed 
here that, although this issue largely depends on the problem and problem solving context, it is 
more generally the case that quicker, shorter, and straightforward solutions are considered to be 
better than longer, overly complex solutions.) Nine percent of participants held views that were 
exclusively naïve, 30% had exclusively sophisticated conceptions, and the remaining 61% had 
views that included a mix of naïve and sophisticated elements.  
Sophisticated Views of Best Solution Strategies 

Almost all students came to hold (at least in part) more sophisticated conceptions of best 
solution strategies; 87% of participants (20 of 23) mentioned at least one of the four criteria 
within this typical view (shortest, quickest, least complicated, and it depends). Recall that 
students saw no worked-out examples of equations and only minimal instruction in how to use 
solving transformations, so their conceptions of best strategies were developed entirely on their 
own, by reflecting on their own problem solving. It is quite striking that so many participants 
identified the same features of best strategies that experts typically use.   

Over one-third (35%) of participants mentioned three of the most typical features of 
sophisticated views (quicker, shorter, least complicated), showing a recognition that these 
features are likely to be correlated. Helen (all names are pseudonyms), whose conceptions were 
exclusively sophisticated, was one of these students; her sense of what it means for a strategy to 
be the best was as follows:  

Doing it the fastest, the easiest. (Tell me more?) Like getting the answers as quick as you  
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can, like if you need it maybe on the math quiz or something, where they are quizzing you 
on algebra and like stuff. They did it the best way or something, that they did it the fastest, 
they got the right answer. (What does easiest mean?) Like the least amount of steps.  

However, most students only mentioned one or two of the more sophisticated components of 
best strategies. For example, three students felt that the best strategy was the way with the fewest 
steps, but did not articulate the connection between a strategy with fewer steps and one that is 
executed the fastest (even when pressed on this point by the interviewers). In contrast, four other 
students all said that the best way was the quickest or fastest way, without realizing (even when 
pressed) that the quickest way usually is the one with the fewest steps. Although intuitively the 
relationship between fewest steps and quickest method may seem obvious, most students did not 
make this connection.  

Two participants (9%) indicated that determining the best solution strategy depended on a 
variety of factors, including the personal preferences of the solver, her goals, and her proficiency 
with equation solving. For example, Cathy (whose views were exclusively sophisticated) 
acknowledged the role of quick solutions with fewer steps, but also felt that personal preferences 
also play an important role in determining the best strategies. In particular, she felt that some 
students may prefer to work more slowly and carefully, while others prefer to go faster, despite 
an increased risk of mistakes:  

Probably the easiest way possible for her. ... So if she called me on the phone at home one 
night and she’s like, I have found the most easiest way to do this problem. Even though it 
takes more time it is so easy, you could just make sure you do not miss one step. And I’ll 
be like, well, that’s great, but I don’t want to be up until 11, doing my homework. So her 
way might be easier than my way because her whole afternoon might be blank. It doesn’t 
really matter to her, she can just go through each problem the longest way possible, but at 
least she would know I’ve only moved one thing so you don’t have to do anything else.  

Naïve Views of Best Solution Strategies 
Despite the prevalence of sophisticated conceptions of best strategies, 70% of participants 

(16 of 23) mentioned at least one of the naïve components, including accuracy of steps or 
solution, personal confidence in or happiness with solution method, and neatness of solution.  

The most common naïve conception of best strategies focused on accuracy; 57% of 
participants mentioned this category at least once. Some students, such as Brad (whose responses 
were a mix of sophisticated and naïve conceptions), focused on the accuracy of the equation 
solving transformations: “Like he used the steps right. And like he added and subtracted right.” 
For other students with this view, final solution accuracy was more central to what it meant for a 
strategy to be the best, as Melanie (whose views were exclusively naïve) notes: “That they used 
each step at the right time, and got down to the correct answer.”  

Personal confidence was mentioned by 30% of participants as playing a role in determining 
the best solution strategy. Students felt that a method in which they felt confidence in, proud of, 
comfortable with, and/or happy with was the best. Tracy (whose views were exclusively naïve) 
felt that the best way was the one that was “just the easiest way for me.” And similarly, Oscar 
(whose responses were a mix of sophisticated and naïve conceptions) noted, “[I know my 
solution is the best] when I am sure, like 100%, it’s the right answer and you’ve done your best.”  

In addition, two students (9%) indicated that the neatness and organization of a written 
solution strategy also played a role in determining whether it was the best one.   
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Relationship Between Conceptions of Best Strategies and Other Posttest Variables 

Also of interest was whether any relationships existed between students’ conceptions of best 
strategies and the variables assessed on the posttest – equation solving skill, flexibility, and 
conceptual knowledge of equations.  

With respect to equation solving skill, despite the brief period of instruction and the absence 
of any worked-out examples to refer to, students became quite proficient at solving linear 
equations. Participants on average solved correctly 73% of the posttest isomorphic equations, as 
compared to only 18% correct on the pretest.   

On isomorphic equations, there was not a relationship between students’ conceptions of best 
strategies and their equation solving skill. In fact, the two students with exclusively naïve 
responses did the best on isomorphic equations, correctly solving all of them, as compared to 
those giving only sophisticated responses (75% correct) and those with mixed conceptions (68% 
correct).  

However, on transfer equations, where students did much less well overall (posttest mean of 
only 7% correct), sophistication of conceptions of best strategies did appear to play a role. 
Neither of the two students with naïve conceptions was able to solve any of the transfer 
equations correctly, as compared to 4% correct for those with mixed conceptions and 14% 
correct for those with the most sophisticated conceptions of best strategies. Similar results were 
found in measures of flexibility and conceptual knowledge, in that those with more sophisticated 
conceptions of best strategies obtained higher scores on flexibility and conceptual knowledge of 
equation solving than those with the most naïve conceptions.   

Note that the present data does not indicate the directionality of this relationship; it is not 
clear whether increased flexibility and conceptual knowledge were responsible for students’ 
more sophisticated conceptions, or vice versa. But the data does suggest a relationship between 
improved transfer equation solving, flexibility, and conceptual knowledge and more 
sophisticated conceptions of best solution strategies.   

Discussion  
This exploratory study investigated the development of students’ conceptions of best 

strategies for solving linear equations. There were two main results. First, many students 
developed reasonably sophisticated conceptions of what it meant for a strategy to be the best, 
including criteria for best strategies such as quickness of execution and the length and 
complexity of the solution method. The sophistication of students’ conceptions was quite 
striking, particularly given the minimal amount of instruction and the discovery-oriented nature 
of problem solving sessions.   

Second, the sophistication of students’ conceptions of best strategies was not related to the 
ability to solve isomorphic equations. Even those students with quite naïve characterizations of 
best strategies became quite good at solving familiar linear equations. However, those with more 
sophisticated notions of best were better on transfer equations and had improved flexibility and 
conceptual knowledge of equation solving, suggesting a relationship between deeper conceptual 
and procedural knowledge in this domain and the ability to execute procedures flexibly and 
strategically (Star, 2000).  
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“What is the oldest problem of pedagogy? The appearance of learning, or ‘illusory 
understanding’, that is, the problem of people who appear to know something that they really 
don't know.” — Lee Shulman (2000, p. 131)  

 
The motivation for this paper comes from the great rewards we—as teachers and 

researchers—experience every time we listen to students’ discussions about mathematics. 
Listening to students talk about mathematics reveals aspects of their understandings and 
dispositions towards mathematics that written work alone does not disclose.  In particular, 
student discussions give us important insights into the students’ relationships with mathematics. 
These relationships include mathematical understanding, agency, and conceptions of the nature 
of mathematics.  Such knowledge is crucial for assessing individuals in the classroom, and can 
be used to help meet goals of effective, equitable teaching.  

In this study we examined videotapes of 40 groups of 3-4 students working on an open-ended 
mathematical task for 90 minutes.  Using first a broad lens of ‘connoisseurship’ (Eisner, 1985) 
we took careful note of what was revealed about students’ relationships with mathematics.  For 
each group, we compared this knowledge to what we learned from the written work students 
completed in response to the task.  Using categories from the New Basics Project of Australia 
(Department of Education and the Arts, State of Queensland, 2001) as a guide, we developed a 
set of categories of relationships with mathematics that are particularly conspicuous in 
discussions.  From these categories, we developed a tool to facilitate teachers in learning from 
student discussions.  Although our tool is inspired and influenced by recently developed fine-
grained research tools for analyzing student discussions (Sfard and Kieran, 2001; Barron, 2003), 
our tool is designed for teachers to use, in real-time, as they negotiate the busy classroom.  Once 
our tool was refined we applied it to the videotaped discussions.  We compared the results to the 
written work of the students, and found that the analysis of the discussions delivered a more 
accurate representation of students’ relationships with mathematics.  

Methodological Frameworks:  
Recent work has demonstrated that researchers can obtain critical knowledge of student 

understandings and dispositions by performing fine-grained analyses of students working 
collaboratively in small groups.  Barron’s (2003) coding scheme for analyzing interactions 
among group members helps isolate many powerful indicators of successful student work.  For 
example, Barron’s discovery that partner responsiveness is more powerful for predicting 
successful student work than prior achievement or accuracy of student ideas, is a rich and 
valuable finding.  Sfard develops a powerful analytic tool (Sfard and Kieran, 2001) for analyzing 
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student discourse during collaborative work.  Like Barron’s analytic method, Sfard’s tool focuses 
on how students respond to one another’s statements.  Sfard and Kieran (2001) and Kieran 
(2001) use this tool to carefully monitor the development of mathematical thinking in pairs of 
students, and to further understand how a student makes use of a partner’s knowledge.     

The convincing findings that materialize from both Barron’s and Sfard’s analytic tools 
suggest that teachers too could learn much from examining student discussions.  Recent literature 
on assessment suggests that teacher must look for student understanding from multiple sources, 
and that student dialogue is an especially fruitful source.  Wiggins & McTighe (1998) introduce 
the powerful concept of “backwards design”, and encourage teachers to “think like an assessor”, 
always looking at student interactions with an eye towards understanding how well students can 
explain, interpret, apply, critique, justify, perceive, and reveal knowledge (p.66-67).  Later, 
Wiggins & McTighe specifically ask teachers to “use dialogue or interaction to assess” (p.85).   
Black and Wiliam (1998) advocate that continuous, everyday assessment of student knowledge 
is critical, and suggest: “Teachers can find out what they need to know in a variety of ways, 
including observation and discussion in the classroom and the reading of pupil’s work” (p.140).  
These recommendations suggest that the knowledge revealed in student discussions is 
particularly valuable for teachers.  

To produce a tool that teachers can effectively use in the busy classroom, it must be versatile 
and adaptable.  It must be designed “through the eyes of the practitioner” (Lampert, 1985, 
p.180).  It cannot rely on fine-grained line-by-line analysis of student discourse; rather, it must 
allow teachers to listen for evidence of mathematical understandings in the moment, as they 
travel between different student discussions.  Thus, our tool is a collection of broad categories 
that are important for understanding students’ relationships to mathematics. It is a guide to help 
teachers broaden the ways they look for evidence of student understanding.  

Assessing Student Discussions: The Development of a Pedagogical Tool  
To guide us in our development of categories of student relationships to mathematics, we 

studied a framework for understanding ‘intellectual qualities’ developed by the New Basics 
Project of Australia.  This framework emphasizes higher-order thinking, deep knowledge, deep 
understanding, substantive conversation, knowledge as problematic, and ‘metalanguage’ as six 
broad categories of intellectual goals for students (Department of Education and the Arts, State 
of Queensland, 2001).  We found these categories to be closely aligned to categories we have 
found in past research to be important for understanding student relationships with mathematics 
(Boaler, 2002a,b).  

As we developed our tool, we honed in on four types of student relationships with 
mathematics (Gresalfi, Boaler & Cobb, 2004).  The first type of relationship is students’ 
conceptual understandings of mathematics. This concerns student knowledge of and proficiency 
with deep mathematical ideas.  The second type of relationship, mathematical agency, concerns 
how students use mathematical knowledge.  How able are they to draw upon diverse types of 
mathematical knowledge and how able are they to use mathematical knowledge to solve 
problems?  Do they confidently see themselves as mathematicians?  The third type of 
relationship to mathematics is students’ conceptions of the nature of mathematics. What do 
students think ‘doing mathematics’ entails?  The fourth type of relationship is mathematical 
authenticity of students’ work. Are students engaging in conversations that are characteristic of 
mathematical work?  Do students ask the kinds of questions mathematicians ask?  

For each of these four types of relationships with mathematics, we developed a set of 
examples from classroom discussions that illuminates features of these student relationships. 
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From these, we developed a set of questions for teachers to ask themselves as they listen to 
student discussions.  Some examples are:  “Is the group able to abstract a problem’s important 
elements?” or, “How precise is the students’ use of mathematical language?” are questions 
teachers can ask to help understand students’ conceptual understandings of mathematics. “How 
confident are the students at delving into the problem?” or “Do the students consider an array of 
different mathematical techniques as possible tools for helping solve a problem?” are questions 
teachers can ask to help understand students’ mathematical agency. “Do the students see 
mathematical techniques as handed-down and unchangeable, or do they consider how these tools 
might adapt to be useful in novel situations?” and “Do the students understand that errors are an 
important part of mathematical progress and discovery?” are questions that will help teachers 
uncover students’ conceptions of the nature of mathematics. “Do the students ask intuitive 
questions first, and then follow up these inquiries with rigorous work?” and “Are students 
comfortable engaging in long-term queries into deep problems?” are questions that help uncover 
the mathematical authenticity of students’ work.  

Results: What We Learned from Student Discussions  
After creating our pedagogical tool, we field-tested it on our video cases of 40 groups of 

students working together on an open-ended task.  These video cases are part of a four-year 
study that is monitoring the understanding of approximately 1000 students who experience 
different mathematics teaching approaches in three high schools.  In two of the schools— 
Greendale and Hilltop—two different approaches to mathematics are offered, one of which is 
open-ended and reform-oriented, and the other of which is more traditional. At the third school, 
Railside, students take the traditional sequence of courses, but the mathematics is presented 
through longer problems that emphasize multiple connections and methods, and the students 
work collaboratively in groups at all times.  In this larger study, we have found that students 
build much different relationships with mathematics depending on the teaching approaches they 
experience.  We are hoping that our analysis of student discussions will be a useful additional 
data point for this analysis.  

The task, called ‘Rocket Boosters’, encouraged students to use their collective knowledge as 
a resource.  It was given to two classes in each of the three different schools; in the schools that 
offer a choice between ‘open’ and ‘traditional’ approaches we gave the task to a comparable 
class within each approach.  The task asked students to determine the area of the region within 
which fuel-carrying rocket boosters would fall after being expelled from a rocket.  This 
ultimately involved finding the maximum area of a triangle with two known sides.  The task was 
challenging as none of the students in any of the classes had previously worked on a problem 
quite like it.  They had sufficient background in trigonometry to solve it, but would need to draw 
upon multiple techniques and ideas.  There was more than one way to solve the problem.  
Students worked on the task in groups of four and produced written answers and explanations to 
the questions we posed.  In our analysis of their mathematical understanding we considered both 
their written work and their mathematical conversations.  

Our analysis of the video-cases revealed valuable information about student relationships to 
mathematics, in each of our four categories. In particular, this information was more accurate 
and detailed than information obtained from the written work alone.  To demonstrate, we will 
compare two groups whose written work looks very similar, but whose mathematical discussions 
reveal very different relationships with mathematics.  Both of these groups performed poorly 
when we scored their written work alone, even with a generous scoring rubric that gave partial 
credit for incomplete solutions and in which the scorers scoured the work carefully for fruitful 
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mathematical ideas.  Group A, which consisted of three girls and a boy and was part of a 
traditional curriculum class at Hilltop, scored 0 out of 9 points on the assessment of their written 
work.  Group B, which consisted of three boys and a girl and was part of a reform curriculum 
class at Greendale, scored 1 out of 9 points on their written work.    
 
 
Conceptual understandings of mathematics 

Despite scoring similarly on the written work, analysis of the discussions of group A and 
group B revealed very different understandings of mathematics.  Dialogue from group A’s 
discussion reveals deep misunderstanding of basic mathematical concepts. For example:  

Girl 1:  I don’t think it can be a right triangle if the angle is 25.  Because aren’t right 
triangles 30-60-90?  

Girl 2:  30-60-90 (confirms)  
Girl 1:  Wait, so the angle of that segment, that we’re actually looking for, is actually the 

height? 
Girl 3:  No, it’s A to B.  
Girl 2:  I believe so. 

In the first two lines of dialogue, we see that Girl 1 and Girl 2 believe that all right triangles must 
be 30-60-90 triangles.  This is a fundamental misunderstanding about the mathematics being 
used here.  The last three lines of dialogue indicate the girls are also confused about the 
difference between measures of segments and measures of angles, another fundamental 
misconception about the basic geometry involved in this problem.  On the other hand, the 
dialogue from group B, of which there are too many examples to include, reveals a solid 
understanding of the basic geometry behind the problem.  
Mathematical agency 

From the discussions we also learned much about students’ mathematical agency.  The 
students in group A did not deliberate over when it was appropriate to use mathematical 
techniques or formulations.  They read formulas as a set of verbatim instructions, and did not 
question the meaning of the whole statement.  For example, in the following statement Girl 2 
tells Girl 1 how to plug numbers into a formula as Girl 1 writes exactly what she says:  

Girl 2:  (reading an equation) So you go 200 times 25, tangent equals... you have to put 
an equals sign... equals 93.  

Girl 1 writes what Girl 2 says, and they do not engage in a conversation about whether or not it is 
appropriate to use this formula in this situation (it is not), and it appears they do understand what 
the output of this formula represents.  

In contrast, group B grapples with the meaning of formulas, and questions the 
appropriateness of their use in each situation:  

Boy 1:  Can’t you use 300 squared plus 200 squared equals…  
Boy 2:  No, ‘cause it’s not a right triangle.  
(Boy 1 examines the formula and a few drawings)  
Boy 1:  Oh, I see  
Boy 3:  Because you have to have a hypotenuse and a right triangle to do it.  

Conceptions of the nature of mathematics 
In analyzing the discussions, we learn a lot about what students believe mathematics is.  The 

students in group A make many comments that indicate they believe mathematics is a set of 
idealized problems passed from teacher to passive student:  
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Boy:  God, why don’t they just make this a regular triangle? (expressing frustration that 
the triangle is not a 30-60-90 triangle.)  

Girl 1:  It’s not like we’re supposed to get the answer, we’re just supposed to try and then 
they take your work.   

 Girl 3:  Yeah, I’m just going to put down any old answer.  (frustrated) 
 
 

In contrast, group B expects problems to be complex, like the real world, and are skeptical of 
problems that are too ‘cleaned up’, as shown by their initial reaction to the drawing that 
accompanies the problem:  

Boy 3:  That’s pretty straight for the Florida coastline; I think it’s a crock.  
After this initial skepticism, the group later thoughtfully demonstrates that they understand this  
problem is, in fact, rich and complex:  

Boy 3:  Alright, so first we use the Pythagorean Theorem.  
Boy 2:  I don’t think we can.  
Boy 3:  Oh, that’s right, because it’s not a right triangle.  
Boy 1:  No, but you can make it a right, can’t you?  
Boy 3:  Right, but then we won’t have the...  
Boy 2:  What do you mean we can make it a right?  
Boy 1:  Cut it in half!  
Boy 2:  It’s not necessarily an equilateral, [I mean an] isosceles triangle.  

Mathematical authenticity of students’ work 
Both group A and group B realize what is difficult about the problem—that the triangle is 

trickier to measure than most they have dealt with previously.  Both groups develop a plan that is 
typical of the way mathematicians work.  Specifically, they compare it to a triangle they know 
how to measure; group A compares it to a right triangle, and group B compares it to a isosceles 
triangle.  However, the groups differ in how they make this intuitive connection rigorous.  Group 
A doesn’t resolve the fact that they altered the problem:  

Girl 2:  (reading the problem) so A and B are stationed five hundred miles…  
Girl 1:  Let’s just pretend that it is a right triangle.  
(about 30 seconds of independent work)  
Girl 2:  Okay, oh, wait a minute—right triangle. 
Girl 3:  Why would it be a right triangle? 
Girl 3:  ‘cause I’m gonna make it one! 

While these comments hint that the group has an enterprising mathematical initiative typical of 
authentic mathematical work, their failure to account for their adjustment indicates a defeated, 
incomplete relationship with math.  Group B, on the other hand, carefully discusses how they can 
compensate for their adjustment of the triangle:  

Boy 3:  Yeah that’s what I was thinking we could, maybe, um, make them both 300 and 
then when we’re done with that we can take the area of the small triangle we add 
on, and take it out.  But I think there’s another way out there to do it, too.    

Then, after a couple minutes of work:  
Girl:  But, how can you change the measurements?  You can’t just make it 300; how do 

you do that?  
Boy 3:  Well, because you need an isosceles triangle to be able to find it, right? So what 

we have right now to start with, is we have this triangle right here we have one 
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side shorter.  Well if we take it and make them both 300, then we can find that 
(pointing to the larger triangle now that one of the sides is extended), then we can 
subtract this triangle that’s 100 (pointing to the small triangle added on after 
extending the side), find this base, then find the area of this triangle, right? 
Subtract that area from the total triangle,  and then we have the area of this 
triangle (pointing to the original triangle).  

Girl:  Oh yeah! Okay, okay.  
Discussion:  What Our Findings Tell Us About the Value of Student Collaboration  

Our analysis led to two important findings.  First, our analysis of the students’ conversations 
produced a wealth of information about student thinking.  Our findings were more consistent and 
more detailed than those obtained by our examinations of written work alone.  In particular, 
groups with similar written work often differed greatly in the quality of their mathematical 
discourse and thinking.  For example, we found that groups who completed the written work 
accurately often had discussions that were fragmented and disjoint.  Some of these discussions 
revealed that the students harbored fundamental misconceptions of mathematical concepts 
(Erlwanger, 1975) and could not carry out a logical argument, despite their success on the 
written assessment.  Similarly, some groups, such as group B above, produced sketchy or 
incomplete written work but had coherent discussions and harbored fewer misconceptions than 
even some high-scoring groups.  These findings are striking and shed important light on the 
recent emphasis of open-ended collaborative work in mathematics classrooms.  While much 
research has already shown that such work is valuable for improving student thinking (Boaler, 
1997; 2002; Schoenfeld, 1985; Silver & Stein, 1997), our findings indicate that such discussions 
are also valuable for giving teachers and researchers critical insights into student understanding.  
Recent research on teaching suggests that teacher insight into student thinking is an important 
part of improving practice (Lampert, 2001).  We were especially struck by the large number of 
student misconceptions that were apparent in the discussions, but not in the written work.  An 
understanding of student misconceptions is highly useful for teachers in facilitating student 
learning (Black & Wiliam, 1998).  Because a teacher does not have the time to analyze student 
conversations to the level of detail that Barron and Sfard and Kieran have, we have produced a 
framework that points to important elements of mathematical work that is useful for teachers 
who want to recognize and record important aspects of mathematical talk.  

Our second finding allowed us to draw a number of parallels between classroom discussions 
of open-ended problems and high-level mathematical research.  For example, many groups 
struggled for much of the time when working on the problem, progressing slowly, with progress 
coming in fits and starts.  This reminded us of Koestler’s (1959) analysis of the development of 
celestial mechanics; Koester describes long periods of no progress followed by short flurries of 
discovery, where great strides were made.  We also saw students trying out ideas intuitively 
before refining them rigorously.  This parallels Archimedes’ (Heath, 1897) and other 
mathematicians’ methods of mathematical discovery. It also shows a trend of intuition preceding 
deduction that is evident in the budding of most fields of mathematics.  Striking examples are 
evident in the genesis of analysis (Grabiner, 1974) and group theory (Kolmogorov, 2001), two of 
the most important developments in mathematics.  We saw students struggle and strain, 
exclaiming that the problem is hard—that it is like nothing they have seen before.  Confrontation 
and strain are evident of all progress in mathematical thought—it is shown by cognitive scientists 
to be indicative of mathematical learning in general (Steffe, 1990), and evident historically in the 
discovery of irrational lengths in ancient Greece (Stillwell, 1989; Heath 1981), and in the 
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invention of algebraic geometry (Stillwell, 1989; Hobbes, 1672) and analytic techniques 
(Stillwell, 1989; Hobbes, 1672) in the seventeenth century.   Finally, we saw students confronted 
with the challenge of inventing new notations and unfamiliar pictures.  This reminded us of the 
development of algebra and complex analysis, two fields which struggled to find a suitable 
notation (Stillwell, 1989; Boyer, 1968).    

The striking similarities between the discussions of open-ended problems in the classroom 
and the development of research-level mathematics helps explain why these practices have put 
students at a cognitive advantage for learning mathematics.  Moreover, it shows that some 
mathematics classrooms are succeeding in providing students with opportunities to authentically 
engage in the subject.  This is an often forgotten goal of education:  to expose students to 
subjects, so that they can decide if they enjoy engaging in them and direct their schooling 
accordingly.  Boaler and Greeno (2000) and Schoenfield (1985) show that traditional classrooms 
often give a dishonest picture of mathematical work.  Tasks that ask students to engage with each 
other over open-ended problems give a more authentic depiction.    

Our findings are particularly important in the potential they have for strengthening 
connections between different groups involved in mathematics education.  A recent issue of 
Educational Studies in Mathematics makes a call for research that connects the theoretical, 
academic work in mathematics education and the practical, in-school work of teachers (Ball & 
Even, 2003).  Our analysis of student discussions has a two-fold utility that enables 
conversations between researchers and teachers.  By illuminating student thinking in case study 
examples of classroom conversations, we present student thinking as a ubiquitous commodity in 
classrooms that harbor discussion—ready to be tapped by the attentive teacher or the systematic 
researcher, and discussed between them. In developing a method for analyzing mathematical 
discussions we hope to provide a useful tool for teachers, which may give them further 
opportunity to engage students in conversations and to formatively assess (Black & Wiliam, 
1998) students’ developing understandings.  Another article in the same issue of Educational 
Studies in Mathematics highlights an unfortunate gap in communication between educational 
researchers and mathematicians (Goldin, 2003).  By demonstrating parallels between classroom 
practices supported by educational research and practices of mathematicians, we will help show 
both groups that there is important common ground upon which they can work together.    
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This study documents what high school students achieved when working with a set of tasks that 
involved different methods of solution in a problem-solving oriented course. During the 
implementation of learning activities students had the opportunity to work in small groups, 
present and defend their ideas to the whole class, and constantly revise their work as a result of 
the criticisms and opinions that appeared during the development of the sessions. The models 
that the students constructed in the processes of solution were documented, focusing on how they 
use distinct resources, representation, strategies and ways of communicating their results.  
 

Introduction  
What type of problems or tasks favors the development and understanding of students’ 

mathematical ideas? What does it mean for students to learn mathematics? What type of 
instruction promotes students’ learning? These are some of the questions that have been part of 
the research agenda in mathematics education during the past fifteen years, and were used as a 
guide in the development of this study. In particular, recent proposals in mathematics curriculum 
suggest the organization of mathematics learning around problem-solving activities (NCTM, 
2000), and it has been recognized the importance for students to develop distinct resources and 
strategies to pose and solve different types of problems. Also, it becomes relevant to consider 
learning scenarios where students have the opportunity to reflect over the use of resources and 
processes in working with mathematics and that allow them to extend and reinforce their 
methods of posing and solving problems (Santos and Sepúlveda, 2003). In these scenarios the 
students present their ideas and listen to and examine the ideas of other students in such a way 
that they constantly reflect over their own ways of understanding mathematical ideas. In this 
study we were interested in documenting the thought processes shown by the students when they 
worked with a set of problems. The problems were designed with certain principles in mind: 
Were easy to understand and interesting for the students, they involve fundamental concepts and 
ideas of the curriculum and were posed in a manner that the work of the students could be 
analyzed and documented (Balanced Assessment Package for the Mathematics Curriculum, 
1999, 2000).  

Conceptual Framework  
Three important themes became relevant and helped organize and structure the development 

of this study:  
1. The idea that learning mathematics involves the development of a disposition on the part of 
the students to explore and investigate mathematic relationships, to use distinct forms of 
representation in order to analyze particular phenomena, and to use distinct types of arguments 
and communicate results. The NCTM suggests that it is important that the students construct 
their own mathematical knowledge as a result of solving distinct types of problems. Thus, 
relevant features that are enhanced in this process include: the motivation to express what they 
know; the encouragement to be open to investigate what they do not know through discussion, 
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experimentation and the exchange of experiences; and the recognition of the importance of the 
thought processes used in their attempts at problem solution.  
2. The recognition that learning mathematics is a continual process that is favored in an 
atmosphere of problem-solving (Schoenfeld, 1998) wherein the students have the opportunity to 
develop ways of thinking that are consistent with the development of the discipline. In this 
context, the students conceptualize the discipline in terms of questions or dilemmas that must be 
examined, explored and solved through the use of distinct strategies and mathematic resources 
(Hiebert, et al., 1996).  
3. The acceptance that significant problems can be incorporated in different contexts (Barrera 
and Santos, 2002): a context of pure mathematics where, from a simple presentation, the student 
must use basic concepts to analyze and solve the problem; an ordinary daily context where the 
student has to interpret a familiar event, use distinct mathematical resources, and establish a 
series of considerations to solve the problem; and an artificial context where the situation is 
constructed from a series of suppositions about the behavior of variables or parameters that 
explain the development of the situation which in the treatment of the problem the student must 
project the use of strategies and representations in the methods of solution.  

Participants, Research Methods and Procedures  
The present study is structured around six problems that were selected, and adjusted from those 
found the Balanced Assessment Package for the Mathematics Curriculum (1999, 2000). Twenty-
four students in the eleventh grade of a public school participated in the course of 16 weeks that 
included the following phases of instruction:  
i) Introduction to the activity. The teacher gave a brief introduction to explain the goals to the 
students and the importance of their participation.  
ii) Discussion in small groups. Students were organized into teams of three students each, with 
students of distinct levels of mathematical skills. At the end of the group work the students 
turned in a report of their solution.  
iii) Student presentations. Each group presented their solution and the other members of the 
group (including the teacher) had the opportunity to ask questions.  
iv) Full class discussion. The teacher promoted collective discussion to analyze the different 
methods of solution presented by the students and when necessary, presented a summary of 
students work and discussed possible extensions of the task.  
v) Individual work. The students had the opportunity to return to the problem and incorporate the 
ideas discussed during the session.  

To work the task students were organized into eight small groups of three students. An 
attempt was made to assure that in every group the levels of mathematical skills and personalities 
of the students were different within each group, according to assessments made in the first 
sessions and the opinions of their previous teachers. The idea was that the small group 
organization would guarantee the participation of the students in the interaction with the other 
members of the group and during the presentation of their ideas to the entire class.  

The sources of information that were used to analyze students’ work came from:  
i) the written reports from the students corresponding to the work in small groups and the 
individual work permitted the identification of the ideas, and application of resources used to 
solve the problem in two distinct moments: the first moment reflects the initial (spontaneous) 
way of thinking of the students about the questions that were posed when they worked in small 
groups; the second moment reflects the level of understanding that was acquired as a result of the 
interaction with the entire class and when they solved the problem individually. This permitted 
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the determination of whether there was an evolution in the understanding of the problem on the 
part of the students.  
ii) Videotapes of the small group work, the students’ presentations, the collective discussions, 
and the students’ interviews. The videos permitted the analysis of the ways in which the students 
participated in the solution of the problem, in the presentations by the small groups, in the full 
class discussions and in the interviews. We could analyze with more detail the behavior of the 
students that helped them to solve the task. We could also identify crucial moments in which 
there were changes in the thinking of the students which allowed them to solve the problem.  
iii) The observations of the teacher. During the development of the course, it was important to 
identify students’ difficulties, ways of interaction in which the students used the resources and 
strategies that were important to analyze students’ competences.  

Some questions that served as a guide to analyze students’ work were: Were there differences 
between the answers given by the students in the reports from the group work and the contents of 
the individual reports? How to characterize those differences? Is it possible to identify what 
refinement processes were presented in the initial responses of the students to the solution of the 
problems and those shown as a result of their participation in a learning community?  

The Problem and Some Considerations  
We will now present one of the problems called “Shadows” from the ordinary context which 

was posed along with Figure 1:  
1.  Alicia is 1.5m tall and is standing 3m from the base of a lamppost that is 4.5m high. How 

long is Alicia’s shadow?  
2.  How does the length of Alicia’s shadow vary when she gets closer or farther away from 

the lamppost? Draw a graph with a system of perpendicular axis. Can you find a formula 
for this graph?  

3. Simon is 2m tall. How can the graph represent the change for his shadow? Compare this 
graph with the one you drew for Alicia. 

              
An important aspect for the understanding and solution of the problem is for the students to 

construct a representation of the situation that will help them find the relationships in the 
information of the problem. For example, the height of the lamppost, Alicia’s height and the 
length of her shadow can be represented with the corresponding segments. In this manner, a 
figure composed of three similar rectangular triangles is obtained: one with the form of the 
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lamppost, one with Alicia’s figure, and one that describes the distance between Alicia and the 
lamppost when a horizontal segment is drawn over Alicia’s head (Figure 2). The relationship of 
similarity leads to the solution to the problem, considering the segment that represents the 
shadow first as a fixed quantity and then as a variable. Effectively, the students drew graphs as 
described, with some variations; however, we observed diverse manners of employment of the 
mathematical relationships.  

Presentation of Results  
First we will present the analysis of the work with students in small groups through the 

written reports and applicable video segments. Then we will go to the presentations of the 
solutions from the different groups and collective discussions that students’ participation 
generated. Thereafter we will present the results of individual work, making a global analysis of 
the interaction offered by this type of instruction. The written reports turned in by the groups 
demonstrated distinct approaches in the students’ attempts to solve the problems. What ideas, 
concepts, strategies and representations were relevant in these answers? In analyzing the written 
reports and the video of the work in small groups, we observed that the approaches to question 1 
were: 
I) Those of groups D and G which assumed that there were two similar triangles (that which is 
formed by the lamppost and that of Alicia in the Figure 1; they remarked that the angles were 
equal: angles in the base of lamppost and Alicia’s feet; angles in the lamp of the lamppost), 
without clearly justifying why this relationship existed, establishing their proportions and 
operations to obtain the answer.  
II) Group E constructed a rectangular triangle (on Figure 1) with the vertices of Alicia’s shadow, 
elongated the shadow, the hypotenuse, and drew it parallel to the lamppost in whose sides of the 
right angle they wrote as 2cm (citing the similarity of the triangle that is formed by the lamppost 
with that constructed; they marked the angles), calculated the acute angle as  

°=== 45,1
2

2
tan !!

cm

cm ; thereby obtaining the length of Alicia’s shadow: 5.1
45tan

5.1
=

°
=x  

 
III) Group C drew a horizontal line over Alicia’s head, forming a triangle with the lamppost (as 
in the Figure 2), saying that it was the same as that formed by Alicia (there are repeated letters, 
they used the symbol of congruence; they marked the angles) and that the sides of the right angle 
were in relation to 1, and from this obtained their solution. 

It is notable that without having expressly established the relation of similarity nor having 
precise arguments, Group D applied the proportionality between the corresponding sides of the 
two similar triangles, Groups E and C constructed similar triangles, one applied trigonometric 
resources and the other used the relation between sides of the right angle of similar isosceles 
triangles.  

IV) Groups B and H assumed and used the expression: 
x

m

m

m 5.1

3

5.4
=  without showing the 

elements that justified their answer. Group F came by this through the schematic application of 
the Rule of Three, writing in a rectangle the quantities 4.5m, 3m, 1.5m, x (obtained of the Figure 
1). However, this approach was later analyzed and changed during the students presentations. 
Based on those approaches, the students gave the following answers: D, G, E C and A coincided 
in that Alicia’s shadow measured 1.5m. B and F affirmed that the shadow measured 1m, while 
group H reported verbally that the shadow of Alicia is the third part of the distance to the 
lamppost. That is to say that group H verbally agreed with groups B and F. During the 
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presentation of Group H in the full class discussion, Andrés made the drawing on the board and 
verbally explained the solution that Alicia’s shadow measured 1m; without finding arguments to 
answer the questions of the teacher and the other students; for example, in the following 
discussion, illustrates Andrés’ confusion in this explanation:  

Andrés:  As this is 4.5 [points to the lamppost] and this is 1.5 [Alicia], then if from here to 
here it is 3 meters… [he stopped to think].  

Teacher: Then how long is the shadow?  
Andrés:  One,…one meter.  
Julio:  How can it be one? [Julio was a member of group D].  
Andrés:  That’s what I don’t understand, but the next part I does [he explains is a low 

voice].  
Teacher: Let’s see, what do you think? Say before Andrés presents the solution to the next 

questions [some students say that the shadow measures 1m and other 1.5m].  
Andrés: …Okay [insecure, he wants to write his answers to questions 2 and 3; he goes 

back to his seat].  
Given that various students showed that they were not in agreement with Andrés, Victoria (of 

Group E) goes to the blackboard, draws the figure as stated and constructs a rectangular triangle 
with sides of 2cm in the vertices of Alicia’s shadow on the floor, marking the right angles of the 
lamppost, from Alicia’s feet and in the constructed triangle; the acute angle in the prolongation 
of the shadow she calls θ . Then she writes what the group has come up with: 

; then says:  
 

Victoria: This angle θ measures 45° [points to the angle].  
Teacher: Explain, why forty-five?  
Victoria: Because this triangle is similar to this one [points to the constructed triangle and 

Alicia’s form]. We measured these sides and used this function, the tangent, and it 
gave us 45°. With this 45° we came up with another formula [points to the 
triangle that Alicia forms] that is tangent. The tangent of 45° is equal to…; 1.5 
divided by the unknown which gives 1.5m. 

Still, the members of Groups F and H are not convinced. Those of Group H, unsure, accepted 
what was wrong because they were confused and they have not completely considered the 
distance from Alicia to the lamppost along with the shadow. At the invitation of the teacher, 
Core of Group F goes to the front, makes a drawing and says:  

Core:  Well, I have these triangles with this angle [marks the angle where the shadow 
ends], these parallel lines and these triangles [marks the right angles of the 
lamppost and Alicia’s feet], then…4.5m is to 1.5m [speaks and writes in 
schematic form the rule of three] as 3m is to x; then… x = 1m.  

Teacher: What do you think?  
Class:  Wrong [The voices of Andrés (Group H) and Rubí (Group D) are distinguished].  
Teacher: Why? Come up [to Group D]. Look people, there are divided opinions, some say 

that Alicia’s shadow measures 1m and other say that the shadow measures 1.5m 
[Rubí goes to the board]. Why is Group F’s solution wrong?  

Rubí:  Ah, well [he explains without writing] because they said that 3m was x…but it 
can’t be 3 meters because they lacked this piece [points to the shadow in Core’s 
drawing].  
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Teacher: Then explain to us your solution here in this part of the board.  
Rubí:  4.5m is to 1.5m [speaks and writes. Assumes from the beginning that the triangles 

are similar without mentioning this explicitly] as 3m plus x is to x, because you 
have to include all of this part because it is not here where Alicia’s shadow ends 
but here. Then we have x, but first we do the division and it gives that 3 is equal 
to 3m plus x over x…, we have x equal to 3 meters divided by 2. That is 1.5m.  

Teacher: What do you think?  
Class:  Very good! [Applause].  

At this time Groups B and H are convinced that their solution was wrong because they had 
not considered the side of the triangle that was formed by the lamppost; in particular, Andrés and 
Karla said that Alicia’s shadow is not 1m but measures 1.5m. “I said it wasn’t 1” commented 
Julio (Group D).  

When Group D presented their solution to question 2 and the class seemed to agree on what 
this group presented, Rubí also changed the distance from Alicia to the lamppost and noted that 
Alicia’s shadow was half the distance to the lamppost, then drew a line that passed at the middle 
of the distance to the lamppost, then drew a line that passed through the points (1,0.5), (4, 2), 

etc., which they got making the substitution in the proportion 
x

xm

m

m +
=
3

5.1

5.4 ; in place of 3m 

they put x (“it varies”), the shadow they now call y in place of x, to obtain 3y = x + y; xy =! 2 ; 

finally they wrote their formula 
2

x
y = Joel, another member of the group, asked to go to the 

front and explain the solution to question 3; over the written portion on the board for question 1, 

he changed 1.5m for 2m, and wrote 
x

xm

m

m +
==
3

25.2
2

5.4  and said that Simon’s shadow is x = 

4.2 m.  After drawing a line for Simon and writing the equation 
25.1

x
y = (the same procedure as 

in question 2, the distance from Simon to the lamppost he called x in place of 3m and the shadow 
he called y).  

It seemed that the form in which Group D made their presentation, clear and orderly, 
contributed to unify the criteria of the other groups, as their arguments were accepted; also, from 
the work in small groups, the Groups C, D, E and G coincided in the answers given for the 
questions.  

Discussion of the Results  
During the presentation of the groups it was appreciated that the students used arguments of 

proportionality or established proportions without justifying them with precise reasoning. 
Although some students’ approaches showed serious inconsistencies, the students had an idea of 
how to identify similar triangles even though they did not provide arguments as to why this 
relation of similarity can be established in a determined pair of triangles and from this 
established the proportionality between the corresponding sides. That is to say that they showed 
difficulties in the use of appropriate language. As a result of the interaction, some of the groups 
reaffirmed and defended their ideas and others modified theirs, as was the case with Groups B 
and H after the presentation of Group D.  

With the presentations, in fact, the collective discussions began, and the students and the 
teacher questioned affirmations, made corrections or asked for clarification from those who were 
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presenting. Many of these interventions came when the students explained their reasoning that 
brought them to consider certain relationships or the use of representations.  

The class discussion was beneficial for the advances of the students, for example, Group D, 
after several questions, clearly posed in the proportion that solved question 1, the distance 
between Alicia and the lamppost is a fixed quantity (3m) but in questions 2 and 3 the distance 
varies, in the proportion they wrote x in place of 3m and they denoted the shadow y, whether it 
was Alicia or Simon. That is to say that they made the change in the designation of the variables 
to express the relationship proportional in the typical notation of the function. Here there was an 
evolution in mathematical understanding of the problem on the part of the members of this 
group; we think that this process could have contributed to the understanding of the students of 
the other groups.  

Remarks  
Two important aspects became relevant during the development of this work:  

i) The importance of designing or reformulating activities in which the students have the 
opportunity to utilize previously studied mathematic resources and the process of solution 
demands from them the extension or consideration of new resources or concepts for the solution 
of problems. Here one must identify the mathematical potential of the activity before using it in 
the classroom. In particular, it was interesting to project the distinct methods of solution.  
ii) The implementation of the activity in the instruction must consider the active participation of 
the students in the distinct phases of solution. In particular we recommend that initially the 
students work in small groups of three; afterwards each group should present their attempts at 
solution to the whole class. In such a way the group that is making the presentation has the 
opportunity to defend their methods of solution and the other students, along with the teacher can 
formulate questions and ask for explanations that help them understand and justify what they 
have presented. In particular the public presentations were a forum for discussing points related 
to the use of certain relationships and the necessity to justify the work in each of the groups.  

In general, during the work the students on this group of problems they experienced 
difficulties as much in the use of the language as in the use of the resources to pose and 
communicate their ideas, but the form of instruction permitted a refinement of their ideas in their 
approximations to the problems, which permitted them to get ever closer to the solution.  
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Theoretical Frame and Purpose of Research 
There is a growing interest in mathematics education to establish more complex ways of 

understanding collectives as learning systems in the classroom (Begg, 2001; Cobb, 1999; Davis 
& Simmt, 2003; Kieren, 2003; Sfard & Kieran, 2001). From an ecological perspective, 
collectives are emergent systems that arise through the mathematical interactions of two or more 
individuals. It is important to understand that while the collective is distinguished as a larger 
cognitive system which possesses self-similar qualities to that of the individuals who come to 
form the pair or group, it cannot be taken to be just a ‘collection’ of individual agents but rather, 
recognized as a cohesive entity in and of itself (Bateson, 1972; Bowers, 1997; Capra, 1996; 
Davis & Simmt, 2003). In the same manner that an individual’s understanding (Pirie & Kieren, 
1989, 1994) or “structure” (Maturana and Varela, 1987) shapes his or her mathematical knowing 
and actions, it is the coherence within the structure of the collective that enables it too to exist 
and function mathematically as a unity. Moreover, given the fact that students work as individual 
learners and members of collectives in the mathematics classroom (Davis, 1996;  Davis, Sumara, 
& Luce-Kapler, 2000), these systems are naturally interconnected and thus, interdependent. They 
are co-existing and  co-evolving cognitive systems.  

Research situated within an ecological perspective such as this not only necessitates the 
inquiry into the sense-making that takes place at an individual level but also, an examination of 
the mathematical ways in which learners become collectives and, how participation within these 
two realms affect and are affected by each other. More specifically, three key implications for 
how mathematical learning is conceptualized arise as a result of framing the collective within the 
discussed theoretical assumptions. These provided the basis for this study. They are as follows: i) 
identification of the mathematics that emerge from students’ collective actions, ii) assessment of 
the mathematical structure(s) within the collective(s), and iii) the coherence and impact of the 
structure(s) on the students’ individual and collective mathematical functioning. 
Data Source 

This research examined the collective mathematics of three fifth grade children. Allan (male, 
10 years), Veronique (female, 9 years), and William (male, 10 years) all spoke English as their 
first language and were considered by their teachers to be meeting the provincial curriculum 
expectations for their grade level in mathematics (Ministry of Education, 1995). The students 
were given a nonroutine (Gonzales, 1994; Lesh, 1979, 1981; Papert, 1972; Saari, 1977) 
mathematical task involving a 3-D multilink cube pyramid. They were presented with three 
“cross pyramids” (see Figure 1) and asked to determine how many cubes were in the first 
pyramid and how many more cubes were required to construct the second through eighth cross 
pyramid. After the introduction of the first three pyramids and tasks, the students were left on 
their own to solve for the remaining five challenges.   

The primary data for this study included the 30 minute videotape which documented the 
students’ work on the pyramid tasks. Videotaping the session enabled the students to work on 
their own without the presence of the researcher. As well, the videotape provided a permanent 
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account of the students’ verbal, written, and physical mathematical (inter)actions. The data also 
included the 3-D cube models and all written records produced by the group. 
Methods and Foci of Analysis 

The first stage of analysis began by viewing the videotape several times from start to finish 
and relevant events in terms of the children’s collective mathematics were identified. 
“Collective” mathematics was defined prior to analysis by the author as the mathematics brought 
forth through the collaboration of two or more students during the cross pyramid tasks. In 
contrast to what was assumed to be “individual” mathematics; that is, concepts or skills brought 
to the group’s work by way of a student’s mathematical actions that were not perceived by the 
collective unity as part of their current understanding, collective mathematics was recognized as 
that which unfolded during student interaction. Evoked by the enactions of a student or students, 
the mathematics then became part of the partners’ or group’s present and/or future mathematics. 
Thus, any new collective mathematics could be located in previous videotaped episodes of the 
students’ work. 

 
 
Figure 1. Digital photographs taken from a “bird’s eye view” of the first, second, and third 3-D 
cube cross pyramids that were presented to the children in the beginning of the session. 
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Once the students’ collective forms of mathematics were identified, a second stage of the 
video analysis was conducted to determine the actual “structure(s)” inherent in each of them. 
Given the nature of the cross pyramid tasks, this involved explicating the spatial and/or 
numerical underpinnings (Battista, 1994, 1999; Battista and Clements, 1996; Hirstein, 1981; 
Piaget & Inhelder, 1967; von Glasersfeld, 1982, 1991) that gave rise to the students’ 
mathematics.  

It was during this stage of the analysis regarding the examination of the students’ conceptual 
structures when it became apparent that the children’s collective ways of being mathematical 
were not uniform in nature but existed in three distinct forms. In addition to the mathematical 
structure(s) within the collectives, what enabled the students to function collectively was 
observed as being dependent on the kind of understanding established between the partner or 
group. The three forms were identified as: adopted, intersecting, and integrated understandings. 
Another structural layer within the collective then, these different forms of understandings 
evidenced in the students’ building, drawing, numbering, gesturing, and verbal (inter)actions too 
defined how Allan, Veronique, and William came to be collaborative unities in solving for the 
pyramid tasks. 

The third stage of analysis centred on the “impact” that each of the collective structures had 
on the individuals and the partner or group itself. Examination focused on explicating key 
aspects regarding the structure(s) within the collective that enabled or disabled the students to 
work as a coherent unity. 

By working exclusively with the videotape for the analysis and by comparing conjectures 
against student artifacts and/or theoretical literature, identification of the children’s collective 
mathematics, the mathematical and conceptual structures that occasioned the collectives to 
occur, and the impact that each structure had on the children’s ability to function as a cohesive 
collective were verified (Pirie, 1996, 1997). It was only in the final stages of the analysis that 
transcripts of the videotape were made. These vignettes serve as illustrative examples of this 
study’s foci. Integral to the transcripts was the recording of the students’ physical actions, 
verbalizations, and the intonations of their voices to ensure that the episodes were portrayed as 
accurately as possible on paper (Clarke, 1998).] 
Results 

The findings of this study highlight how the collectives that were created by Allan, 
Veronique, and William arose as dynamic systems which co-existed and co-evolved in relation 
to the students’ individual ways of bringing forth mathematics. The discussion is organized 
around the three kinds of understandings that characterized the children’s collective 
mathematics. In each of the sections, there is a brief description of the distinguishing aspect(s) of 
the particular understanding and illustrative examples from the video are provided. Following 
this is a discussion of the mathematical structures embedded in the students’ collaborative work 
as well as how their mathematical structure(s) together with their structures of understanding 
impacted the partner or group’s ability to function as a cohesive collective system.  
Adopted Understandings 

Adopted understandings were conceptualizations brought forth by a student or students 
through verbal and/or physical actions that became the way of thinking for the other learner(s).  

This kind of understanding was first observed when the students set to work on the third 
pyramid. William carried forth his previous spatial image1 of the second pyramid’s base as a ring 
of four cubes attached around a middle cube and counting method (see Figure 2) when Allan 
joined him and they arrived at a total of nine more cubes together (see Figure 3). 
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Figure 2. Diagram of the bottom of the 
second pyramid and William’s counting 
strategy.

Figure 3 . Diagram of the bottom of the 
third pyramid and William and Allan’s 
counting strategy.  

 
Here, William’s spatializing and numbering became Allan’s ways of thinking through the task 
and it was these coherences that enabled the two students to work together to determine the 
number of additional cubes required to build the third cross pyramid. 

A second instance of an adopted understanding emerged during Veronique and Allan’s 
conversation about the fourth pyramid (see also Figure 4): 
 
Veronique: There’s one here [pointing to one of the single cubes attached to the middle cube] 

and two here. [pointing to one of the sets of two cubes attached to the middle cube] 
So that equals three. [cubes of four rods attached to the middle cube]  
So three times three times three times three. (sic) 

Allan: Twelve [takes her use of ‘times’ as meaning ‘+’]. 
Veronique: Exactly! Plus one equals thirteen. 
 

 
 
Figure 4. The visualization of the bottom of the fourth pyramid initiated by Veronique. 
 
Veronique’s perception of the pyramid’s base as four rods of three cubes each around a middle 
cube and her number image of four groups of three add one became Allan’s structure for 
thinking. Through repeated  addition, the  students determined that the fourth pyramid would 
have a layer of thirteen cubes. The fact that Veronique verbalized the operation of multiplication 
as “times” and Allan did not multiply the values but added the groups of three together, 
answered “twelve”, and she exclaimed, “exactly!” highlight how the students were thinking 
collectively as one unity. 
Intersecting Understandings 
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Intersecting understandings occurred when the students were solving for a task and used the 
same idea or mathematics but were not making the same individual sense. Unaware of the 
differences in their underpinning spatial or numerical structures, the children were able to work 
collaboratively for a certain period of time. The intersection of their understandings enabled 
them to function together but only temporarily as the collective eventually broke down due to the 
incoherence in their mathematics. 

For example, Allan and Veronique took their conjecture of the fourth pyramid as requiring 
thirteen more cubes and proceeded to physically construct the bottom layer of cubes together. 
What previously existed as an adopted form of understanding; that is, Allan’s adoption of 
Veronique’s image of ‘four rods of three cubes add one’ had now developed into two different 
but intersecting understandings. This was confirmed in the following episode which captures 
how the two students moved on from building the fourth layer of the cross pyramid to generating 
a calculation for it and soon realized that they were not thinking with the same spatial and 
numerical structures but very different ones (see also Figures 5 and 6).  
 
Allan: So four times four times four... (sic) 
Veronique: [focusing on the answer] Is thirteen. 
Allan: No, four times four times four ‘cause the last one..., four times four times four...  
Veronique: Is thirteen. [louder voice] 
Allan: No, no, no, four times four times four because everything has four now. 
 

 
 
Figure 5. Diagram of the bottom of the fourth cross pyramid and Allan’s visualization of three 
groups of four cubes each.  
 
Veronique: This one only has three here. [pointing to one of the sets of three cubes attached to 

the middle cube] 
So that’s the one which is twelve. [moving her finger around the around the outside 
of the base of the pyramid] 
Twelve,  plus one [i.e., the middle cube] equals thirteen.  

 



 

 512 

 
 
Figure 6. Diagram of the fourth cross pyramid’s bottom and Veronique’s visualization of the 
arrangement of the cubes as four groups of three cubes each. 
 

It is clear from Allan’s explanation that he saw the cubes in the pyramid’s base as being 
organized into ‘three’ rings of ‘four’ cubes each. For Veronique however, ‘four’ signified the 
number of rods of cubes while ‘three’ symbolized the number of cubes in each rod. Allan and 
Veronique’s “taken as shared” (Cobb, Yackel, & Wood, 1992) visualization of the pyramid’s 
growth as the addition of a horizontal bottom layer of thirteen cubes can be seen as the 
overlapping characteristic in their understandings that initially allowed the students to build the 
cube base together. And, it is their complementary images of ‘three’ and ‘four’ that do not allow 
them to generate one mathematical expression for the fourth pyramid. 

It is also possible that the group’s numerical solutions for the fifth and sixth pyramids could 
have been episodes of intersecting understandings. Although William and Allan agreed that 
Veronique’s solutions for the fifth pyramid, “four times four times four times four plus one 
equals seventeen” and the sixth pyramid, “five times four plus one equals twenty-one” were 
correct, it would be presumptuous to conclude that the three students had structured their 
thinking for the two expressions around the same spatial image(s). The children did not elaborate 
on the significance of the values within the calculations and because of this, it is not clear 
whether they were in fact, making the same sense at an individual level. Even if each student was 
not conceptualizing the growth of the fifth cross pyramid in the same manner but in terms of 
either strictly numbers or spatially as rods, rings, or even outer layers2, the calculation of “four 
times four times four times four plus one equals seventeen” (sic) (i.e., 4+4+4+4+1=17) fits all of 
these different images. It is also unclear whether Veronique was thinking of the sixth pyramid as 
rings of four cubes or had simply extended her last calculation of 4+4+4+4+1=13 by adding on 
another “4” hence, 5x4+1=21. But because of the shift in her pattern from ‘four times a number’ 
to ‘a number times four’, it accommodates for the ring or outer layer images with which Allan 
and William might have structured their thinking. Given the fact that the group later debated over 
the spatial significance of the values in calculation of the seventh and then the fourth through 
sixth cross pyramids suggests that there did exist a discrepancy not only in their present but also 
in their previous understandings. 
Integrated Understandings 

Unlike intersecting understandings but similar to that of adopted forms, integrated 
understandings were evidenced as the structural coherence established between the children’s 
collective and individual actions. However, instead of one conceptualization becoming that of 
the other learner(s), this kind of understanding was distinguished as the coming together of the 
children’s different spatial and numerical ways of making sense of the pyramid and the 
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generation of new mathematics which extended beyond any one of the individual members 
(Davis and Simmt, 2003).  

An episode in which integrated understandings emerged occurred immediately after Allan, 
Veronique, and William’s unsuccessful attempts to make numerical or spatial sense out of their 
 

 
 
Figure 7. The group’s 2-D diagrams of the bottom layers of the eight cross pyramids and the 
corresponding calculations. 
 
calculations for the fourth through seventh cross pyramids. The confusion that resulted prompted 
the students to draw the bases of the eight pyramids on dot and chart paper (see Figure 6). The 2-
D diagrams not only provided a consistent image with which the group could think but their 
drawings also served to occasion the students’ development of a numerical pattern for all eight 
pyramids.  

Veronique who visualized the pyramid as horizontal layers of four rods of cubes around a 
middle rod continued to enact this in her drawings of the pyramid bases. She did this in the same 
manner each time: First, by drawing one square and then around each of its four sides, she drew 
rods of squares. In contrast to this however, she no longer calculated the bases as ‘four times a 
number plus one’ but in a manner that expressed ‘a number times four plus one’. 
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William who was observed enacting images of outer layers and rings of cubes around a 
middle cube through his methods of building and counting, now was recording more formal 
calculations (e.g., 2x4+1=9, 3x4+1=13, 4x4+1=17, etc.) in keeping with these. Secondly, his 
drawing actions for the pyramid bases were not that of ring-like motions but rather, rod-like ones 
that were identical to Veronique’s.  

Lastly, Allan whose thinking was seen to shift between images of rings and rods and who 
enumerated the fourth pyramid as ‘three groups of four add one’, looked at Veronique’s diagram 
of the fourth pyramid and revealed his integrated understanding of it. Allan described the base as 
being “three squares, three squares, three squares, three squares” and then translated this for the 
group into “three times four plus one equals thirteen”. One might wonder if Allan was not 
structuring his thinking around the notion of rings but with the visualization of three squares, 
four times. However, when Allan moved on to check his calculation by skip counting, “four, 
eight, twelve... thirteen”, he confirmed that he was in fact, also thinking with the image of ‘three 
groups of four’. 

These coherences between the children’s collective and individual actions demonstrate that 
their sense-making of the cross pyramid was not a piecing together of individual structures of 
understandings but a fluid comprehension that effectively integrated spatial and numerical 
images as well as that which gave rise to a generalized pattern for all eight pyramids.  
Conclusion 

The collective mathematics brought forth by these three children’s problem solving of the 
cross pyramid proved to be more complex than upon first glance. Not only was there diversity in 
what evolved in terms of the students’ spatial and numerical structuring of the cross pyramids 
but there were also variations in the kinds of “taken as shared” (Cobb, Yackel, & Wood, 1992) 
structures of understandings that existed among the members within the collectives. These 
characteristics inherent in the students’ partner and group generated work were seen to play key 
roles in their ability to think, act, and exist mathematically as cohesive collective entities. By 
investigating the emergent internal structures that defined Allan, Veronique, and William’s 
collaborative mathematics, this research substantiates the notion that it in order to better 
understand the dynamics of children’s mathematical learning, it is necessary for research to be a 
reflexive examination of both the similarities and the distinguishing qualities of individual and 
collective mathematics which take place in the classroom. 
Notes 
1. “Image” (Pirie & Kieren, 1994) encompasses physical, verbal, and mental representations.  
2. Earlier in the session, William had been building a fourth layer by attaching one cube onto 
each of the exposed faces of the top and sides of the third pyramid.  
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The theoretical constructs supporting this study were developed by Vergnaud (1991), 

Bednarz and Janvier (1994) and Guzmán et al. (1999).  
We used Bednarz and Janvier’s “theoretical tool”, which allows for a classification of verbal 

problems employed in the teaching of arithmetic and algebra. Bednarz and Janvier (ibid) 
separated the mathematical-relational structure from the context elements. In other words, they 
identified the nature of quantities (known and unknown), the relations among them and the 
structure of such relations. Bednarz and Janvier (ibid) detected rate verbal problems; they 
classified the different classes of rate (Guzmán et al., 1999) and found that in general the verbal 
problems for unknown rate are more difficult for the students to solve than those with known 
rate (Guzmán et al., 1999).  

We used Vergnaud’s research study of multiplication verbal problems which are implicated 
by a four quantity relationship: two quantities of a certain type (for example, piles, Figure 1), and 
another pair of another type (for example, oranges, Figure 1). We employed his corresponding 
tables (Figure 1), and hierarchy of complexity of the verbal problems in terms of the operation 
involved. This researcher considered that the easiest for the students to solve were those verbal 
problems that could be approached by way of multiplication, the next being those that require 
division, and lastly, those that necessitate the use of the Rule of Three. Different grades of 
difficulty were established for the problems whose solution require division: there are simple 
problems, if one knows the connection of correspondence between two naturally different 
magnitudes, while there are difficult or complex problems whose unit value is given and it is 
necessary to find the number of unities of the first type that correspond to a given magnitude of 
the second type (problem 1).  

In this study, the simple rate verbal problems are those that involve a relationship of 
comparison between two non-homogeneous quantities (Figure 2). For example:  

Problem 1: Mr. Fermín filled one of the baskets with 325 oranges. How many piles of 5 
oranges did he put into the basket? (Avila et al., 1995, p. 28)  

    
Figure 1. Vergnaud’s scheme    Figure 2. Bednarz and Janvier’s scheme  

We found a high percentage of simple rate verbal problems in mathematics textbooks for 
primary education in Mexico, they were characterized by a known rate (Vargas and Guzmán, 
2000). We designed a questionnaire with six of these verbal problems taken from different 
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levels. We took care that the statements contained only the necessary information sufficient for 
solving the problems, and we also took into account the known or unknown of the rate.  

The participants in the exploratory test were a full class of fifth grade student in a public 
primary school. We gave them the written test, and thereafter selected students to interview.  

We established conjectures related to the difficulty of the simple rate verbal problems in the 
questionnaire and classified these from Vergnaud’s perspective: according to the operation 
involved and whether the useful value was given or not. Also, we classified them in terms of 
known or unknown for the rate involved (Guzmán et al., 1999).  

The number of the students’ correct responses in the questionnaire reveled that the 
percentage of success obtained in solving the verbal problems coincided with the proposal of 
Guzmán et al. (ibid). However, our findings did not agree with Vergnaud’s studies (1991).  

Analysis of the students’ responses showed various procedures and difficulties. There were 
those students who employed pictorial representations, others made mental calculations (did not 
register their operations) when the verbal problem contained small quantities. Various students 
presented as a solution a part of the information given for the verbal problems; others did not 
check their results, and those that did try to see if the selected operation was correct worked with 
trial and error. Some students met with difficulty in understanding their own numerical graphs. 
Occasionally their processes of multiplication and division were incorrect, wherein they used 
quantities that contained a unit or there were various zeros, demonstrating deficiencies in the 
adequate use of the algorithm of division. One notable difficulty was the fact the students did not 
always understand the statement of these verbal problems.  

In conclusion, given that the simple rate verbal problems are a representative class of verbal 
problems identified in the analyzed textbooks, we wished to find more familiarity for the 
students towards them, from the method of approaching the verbal problems to having more 
success in the process of solution.  

If it is true that the type of operations involved in the simple rate verbal problems has an 
influence on the difficulty of their solution for the students, it is not easily determined from only 
this criteria. To attempt to understand this we must consider the known or unknown of the rate, 
along with the quantities involved.  

As to the theories employed as the theoretical framework of this study, we can say that these 
were important tools, as they permitted us to classify a priori the simple rate verbal problems 
and helped us to clarify the difficulties that the students had in the solution of these verbal 
problems.  
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PROBLEM POSING AS A PEDAGOGICAL TOOL: A TEACHER’S PERSPECTIVE  
 

Heidi Staebler  
Illinois State University  

hastaeb@ilstu.edu  
 

This exploratory study examined the use of student problem posing to support the learning of 
mathematics content within a college level mathematics course (precalculus) with a widely-
accepted curriculum and a traditional text. A broad definition for problem posing was utilized, 
and the focus was the teacher’s perspective concerning student problem posing as a pedagogical 
strategy. To facilitate an intimate knowledge of the teacher’s thinking, the researcher was the 
teacher in the study. The presentation will provide an overview of the study including: 
motivation, theoretical framework, methodology, some results, and avenues for future research.  

Mathematics education literature advocates student problem posing, yet it is rarely used in 
the classroom. Few research studies have investigated mathematical problem posing within 
instructional settings. At the university level, mathematics problem-posing pedagogy literature 
has almost exclusively been set in nontraditional course contexts, and it has focused on problem-
solving and problem-posing skills rather than on the acquisition of content knowledge. Thus, this 
study examined student problem posing in a traditional content-focused course.  

The theoretical framework for the study consisted of a “quasi”-grounded theory approach 
informed by Stoyanova’s (1998) problem-posing framework, with the study situated in a 
modified version of Simon’s (1995) constructivist teaching cycle. A Vygotskian socio-cultural 
perspective and the emergent perspective were employed to describe the influence of the 
traditional text and the teacher-researcher’s views of learning respectively. Focused on the 
instructor’s perspective, research questions investigated the following: (a) means of utilizing 
student problem posing to support the learning of mathematics, (b) roles and purposes for student 
problem posing in mathematics instruction, (c) the interplay between instructional situations and 
the nature of problem-posing tasks, and (d) aspects of instructor decision making in the use of 
student problem posing. Data sources included the instructor’s reflective journal, instructor 
planning notes, problem-posing tasks, samples of student work illustrating instructor thinking, 
and transcripts of classroom video footage.   

In data analysis, purpose, context, task, and teacher considerations were dealt with in an 
integrated manner. Problem-posing implementation and purposes differed from those described 
in practitioner literature. Purposes often were content focused, but also included providing 
students with “true” problem-solving experiences rather than exercises, giving students voices in 
the direction of instruction, and providing opportunities for students to reflect on their own 
thinking and understanding.  
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Rationale and Objective of Study  

The notions of “language switching” and “growth of mathematical understanding” are of 
particular interest in our interdisciplinary research practices. Both have currently received much 
attention in our educational community (Qi, 1998; Martin et al., 2000). This paper will examine 
their relationship in the context of middle-school students in Tonga. The students’ first language 
is “Tongan”, and their second language, and the language of instruction at the middle and high 
school levels in Tonga, is English. Based on the work of Fasi (1999), there are two major reasons 
why this investigation is significant. Firstly, there is a rarity of any studies carried out in Tonga. 
Secondly, the middle school level in the Tongan school system is a critical period as their 
bilingual students make the transition from instruction mostly in their native language at the 
elementary school level, to mostly English at the middle and high school level.  

In 1993, NCTM addressed and recognised the roles of language and culture of the minority 
people by publishing a series of manuscripts to help “all readers develop a deeper understanding 
of, become more sensitive to, and stimulate a desire to learn more about Asian and Pacific Island 
students and their unique characteristics” (Edwards, 1999, p. vi). In addition, NCTM in the 
Curriculum and Evaluation Standards for School Mathematics (1989) addressed the same 
interest on problems and the issues concerning such bilingual students’ learning of mathematics 
by announcing that “students whose primary language is not the language of instruction have 
unique needs” (p.142). This paper is therefore set on the premises that we can transform our 
knowledge of how the bilingual students learn and understand mathematics (through both 
languages) to how teachers, educators and researchers might shape the art of teaching and 
instructing of mathematics.  

Theoretical Framework  
The theoretical framework for this study is the Pirie-Kieren Dynamical Theory for the 

Growth of Mathematical Understanding. This theory offers a language and way of observing the 
growth of mathematical understanding of a specific topic, by a specific person, over time. Pirie 
and Kieren (1991) explicitly state that “growth of understanding” occurs through a continuing 
movement back and forth between different layers or modes of understanding to re-member and 
to reconstruct new understanding, based on the learner’s current and previous knowledge. It is 
the dynamical back-and-forth flow between the layers which characterises the uniqueness of the 
theory and defines what is meant by growth of understanding (Pirie & Kieren, 1994). The 
categorisation of the bilingual students’ language switching within the data follows Glaser and 
Strauss’ (1967) “constant comparative method”. The purpose here was to allow categories of 
“sources”, “forms” and “outcomes” of language switching to emerge from the analysis and so be 
grounded in the data.  

Method and Tasks  
In investigating the research question, a set of related tasks were developed to explore the 

growth of understanding of ‘patterns and relations’. Each task consisted of either a pictorial 
sequence involving diagrams made up of square blocks or a sequence made up of cubes, both of 
which were accompanied by a set of related questions. Between September 2001 and October 
2002, two separate but similar studies were conducted using these tasks in four different high 
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schools in Tonga (Manu, 2002). A total of 30 middle school bilingual students (equivalent of 
grades 7-9) were asked to solve the mathematical tasks in pairs or groups of three. As relatively 
little was known about the way language switching affected or enhanced bilingual students’ 
growth of mathematical understanding, the methodological approach was interpretive and based 
on in-depth qualitative case studies and video-recordings. The videotapes form the main data of 
the study, although they are supplemented with audiotapes, field notes, written work of the 
students, together with “video-stimulated recall” – a follow-up session with the students to 
comment on their mathematical working and thinking – to clarify and to elaborate what was 
observed.  

Forms of Language Switching  
Verbal mixing – the integration of words (or phrases) between the two languages – is 

categorised into verbal substitution and verbal borrowing. In ‘verbal substitution’, the 
substituted or ‘embedded’ words have been built-in and stored in the bilingual students’ 
primitive knowing. The kinds of words involved in this ‘replacement’ process are further 
classified into two types, equivalent and Tonganising words. Tonganising words are particularly 
special in substitution, not because they are as interchangeable in nature as the equivalent words, 
but because they were borrowed through ‘transliteration’. Because both of these kinds of 
substituted words are rooted in the bilingual students’ primitive knowing, they become part of 
the bilingual individuals’ existing knowledge in both language and mathematics and therefore 
are easily accessible when involved in group discussion or mathematical discourse.  

Unlike substitution, ‘verbal borrowing’ denotes the process in which words, say, from the 
second language, act as ‘stand-in’ words within the discourse of the bilingual students in their 
first language. The kinds of words involved in this ‘loaning’ process are classified according to 
various degrees defined by the ‘sources’ into three types: non-equivalent words, keywords from 
the task or borrowed words from a peer. The non-equivalent words, mostly from the second 
language (English), do not have direct translation equivalent words in the bilingual students’ first 
language. Keywording demonstrates the ability of the bilingual students to attend to specific 
characteristic of the language or particular image(s).  

Verbal grouping – the alternation between clauses or groups of words – is classified into two 
main forms: “verbal translation” and “verbal shifting”. Verbal translation is characterised by a 
change in the mode of external re-presentation of the given information. The crucial 
characteristic of verbal translation is that it usually involves no additional new information. A 
“direct” translation is seen as a one-to-one correspondence between two languages. An “indirect” 
translation on the other hand can be seen as a many-to-one correspondence between two 
languages. However, the addition of new information is often characterised when a bilingual 
student is said to be “shifting” in his or her language or verbal mode of representation. ‘Verbal 
shifting’ often reflects the competency of the bilingual individuals both languages, and like 
verbal translation, it implies a different cognitive function in both the internalisation and 
externalisation processing.  

Findings and Discussion  
The outcomes of language switching in the growth of mathematical understanding is 

determined by the nature of three interrelated components: (i) The actual ‘form’ of the verbal 
switch a bilingual student is engaged in; these forms were identified as verbal substitution, 
verbal borrowing, verbal translation and verbal shifting; (ii) The ‘mathematical content’ which 
includes the mathematical properties, images, meanings and concepts that are situated in each 
form; and (iii) The ‘usefulness’ of the content in how ‘applicable’ or ‘appropriate’ it is to the task 
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at hand. In other words, the mathematical content of the switch must also be purposeful to the 
task. The effectiveness of language switching in the growth of mathematical understanding relies 
on the individual’s internal awareness. This internal awareness reflects the bilingual individual’s 
attentiveness to his or her available resources, which include his or her primitive knowing and 
existing knowledge, the limitations and obstacles of his or her present mathematical 
understanding and of what kind of verbal and nonverbal actions must be undertaken to use or 
extend them, and a purposeful actions in solving the task for such acts to be useful.  

Verbal translation functions not only in decoding the given information into the preferred 
language but also in determining what information – that is, meaning, concepts and images – are 
re-presented internally and externally in a particular language. The bilingual individual’s growth 
of mathematical understanding is therefore observed to be dependent on and determined by his or 
her own verbal translation or re-presentation of the given information. Verbal shifting not only 
confirms the existing understandings but also informs the mathematical activity in a particular re-
presentation (verbal or nonverbal). The effect of any ‘substituted’ or ‘borrowed’ word lies in 
how it is conceptualised by the bilingual individual. This conceptualisation is either ‘validated’ 
by the use of particular words to confirm, inform and elaborate on one’s existing and current 
understanding, or ‘evoked’ by activating specific images within a particular layer of 
understanding including one’s primitive knowing. There exist a ‘gap’ between spontaneous 
recognition in borrowing and conceptual understanding in substitution. My proposed model of 
“Shared Underlying Conceptualisation” attempts to bridge this gap.  

Conclusion  
Halliday (1978) suggests that since languages “differ in their meanings, and in their structure 

and vocabulary, they may also differ in their paths towards mathematics, and in the ways in 
which mathematical concepts can most effectively be taught” (p. 204). As a result, bilingual 
students appears to pay attention to different characteristic of a particular language and further 
research could be done to explore if ESL students create new pathways towards understanding 
mathematics. Thus, the knowledge of these interdisciplinary findings will further enforced “a 
deeper and better understanding of the psychological aspects of teaching and learning 
mathematics” of bilingual students’ ways of understanding mathematics as imposed by the goals 
set-out by PME-NA.  
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This poster presents results from an ongoing multi-tier design experiment (Lesh, 2002) that 

investigates the parallel development of:   
1.  Middle-school teachers’ understandings of what constitutes “better” teaching of 

mathematical modeling, and  
2. Middle-school students’ understandings of what constitutes “better” mathematical 

models and modeling  
In this case, the primary focus is on the interaction that occurred between the two tiers of 

development during one particularly salient design iteration.    

 
Figure 1:  Interactions between the teacher and student design tiers  

The interaction occurred when the teachers tested out their first conceptions of what 
constitutes good teaching of mathematical modeling, while their students worked in groups on 
Model Eliciting Activities – complex mathematical problem-solving activities that are 
simulations of real-life modeling situations (Lesh et al, 2000).  This involved advising students 
when to use certain problem solving heuristics and metacognitive strategies, as the teachers saw 
fit.  This poster will discuss how the students’ reactions to their teachers’ efforts influenced the 
teachers’ subsequent design revisions.  And conversely, it will show how the teachers’ 
suggestions influenced students’ revisions of what good mathematical models and modeling 
involves.    
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Modeling activities were designed for a first-year engineering course in problem solving and 

mathematical tools (Excel and MATLAB). The activities were designed via collaboration 
between engineering and education faculty and graduate students (Capobianco, Zawojewski, & 
Diefes-Dux, 2004). Through this collaboration, tasks were designed as simulations of real 
engineering contexts which asked teams of four students to report to a client (often an executive 
at a company) with a procedure or method for solving an engineering problem. The generation of 
a procedure meant that students had to explain their mathematical model clearly for someone to 
follow and the procedure had to apply to similar problem situations. For example, in a task 
designed for fall 2003, teams of students had to design a procedure for arranging lights around a 
building such that sidewalks would be illuminated sufficiently and the cost of the lights would be 
economically feasible. The procedure needed to be reused for other buildings around the campus. 
As a result of explaining the procedure, the students should articulate the assumptions they make 
about the problem context as well as revealing the mathematical procedures they employed. In 
this sense, the activities are thought-revealing (Lesh, Hoover, Hole, Kelly, & Post, 2000) by 
requiring the externalization of procedures, algorithms, and mathematical thinking within the 
engineering context.  

As task designers, we adopted the principles for designing model-eliciting activities for 
middle school students (Lesh et al., 2000). However, we had to re-interpret those principles for 
an engineering context and a first-year context. The driving question then became, how can we 
design tasks within an authentic engineering context? As related questions, we also had to 
consider that many students would not have experience with engineering problem solving and 
content. In addition, there was a limited amount of time within the course to introduce students to 
a task context. For instance, in the lighting task, the students need to be introduced to basic 
principles of lighting and the problems that would be inherent in illuminating sidewalks (e.g., 
obstacles, costs, formulas for calculating illumination by a light at a particular height).  

As we have developed a process for task design and analyzed student responses to the 
lighting task and the other tasks, we have begun to classify the types of methods students employ 
to solve the tasks. The analysis of responses serves three complementary purposes. First, the 
analysis improves the task design by revealing whether or not the tasks are eliciting student 
thinking and providing students a meaningful context. Second, the analysis improves the 
instruction by providing feedback about instructional methods for the course. Finally, the 
analysis allows the research community to understand more fully the mathematical thinking of 
engineering students as well as beginning to understand the problem solving experiences 
required for high-quality engineering education.   

The poster will include examples of the tasks we have designed as well as samples of student 
responses.  
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This study examined the interaction between the use of physical models and children’s 
understanding of fractions as demonstrated through their ability to compare and order fractions. 
Clinical interviews and in-class observations and were conducted over a three month period 
with thirteen students from a third, fourth, and fifth grade class. The analysis of the data 
identified the relationships students attended to when comparing and ordering fractions. 
Extending Smith’s (1995) work, these relationships were grouped into eight perspectives 
(Limited, Pieces, Part-Whole, Unit Fraction, Within-Fraction, Between-Fraction, Equivalence, 
and Transform).   
 

The Principles and Standards for School Mathematics (National Council of Teachers of 
Mathematics, 2000) states that, “Representing numbers with various physical materials should be 
a major part of mathematics instruction in the elementary school grades” (p. 33). Yet research 
has demonstrated that children do not automatically understand the relationship between a 
concrete model and the underlying mathematical concept (Gravemeijer, 1997; Thompson & 
Lambdin, 1994), even though these relationships are readily apparent to adults who understand 
the concept (Behr, Lesh, Thomas R. Post, & Silver, 1983; Gravemeijer, 1997; 2000). Ball(1993) 
asserted, “We need more theoretical and empirical research on representations in teaching 
particular mathematical content… We need to map out conceptually and study empirically what 
students might learn from their interactions with [representations]” (p. 190). Even though there is 
an emphasis on using models to teach students about fractions, there is limited research that 
connects the understanding that students develop about fractions with the use of physical models. 
For example, the Rational Number Project focused on children developing conceptual 
understanding (Behr, Wachsmuth, Post, & Lesh, 1984; Cramer, Post, & delMas, 2002; Post, 
Behr, & Lesh, 1986), but did not connect their understanding to specific physical models. We 
need to understand more about the connections between children’s thinking about fractions and 
their use of physical models before we can determine effective ways to use physical models in 
the elementary mathematics class. This study examined the relationships students attended to 
when they were comparing and ordering fractions while using physical models.  

Conceptual Framework  
The framework for examining children’s thinking about fractions when they compare and 

order fractions was based on Smith’s (1995) research. Researchers identified a variety of 
strategies students use for solving order and equivalence problems (Armstrong & Larson, 1995; 
Behr et al., 1984; Cramer et al., 2002; D'Ambrosio & Mewborn, 1994; Post et al., 1986), but 
Smith’s list of strategies are the most detailed. Based on these strategies, Smith labeled four 
perspectives students used for solving comparing and ordering fractions: Parts, Components, 
Reference Point, and Transform. He explained each perspective was “a distinct and relatively 
general way to conceptualize and reason with fractions and rational numbers” (Smith, 1995, p. 
15). These four perspectives provided an overarching framework for describing how students 
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solved order and equivalence problems and were based both on how students described their 
solution strategies and their actions in solving problems.   

Data Collection and Analysis  
To examine how children’s understanding of fractions and their use of physical models 

impacted their ordering and comparing of fractions, I conducted this study in a class where the 
teacher used Cognitively Guided Instruction (CGI) (Carpenter, Fennema, Franke, Levi, & 
Empson, 1999) for teaching mathematics. This class provided a rich learning environment for 
students because the teacher expected them to solve problems using their own strategies, 
required them to justify their thinking, and encouraged them to construct a relational 
understanding of mathematics. The teacher facilitated this development by the problems 
presented and questions posed during class discussions.   

Data collection included clinical interviews, classroom observations, and documentation of 
student work. Thirteen students, consisting of four third-graders, five fourth-graders, and four 
fifth-graders from the same multi-grade class participated in videotaped clinical interviews prior 
to and at the conclusion of the unit. Eight students also participated in interviews approximately 
mid-way through the unit. The interviews included fraction problems with equal sharing, ratios, 
computation, paper folding, and order and equivalence. I used between-method triangulation by 
observing students, talking to them about their strategies for solving problems and keeping 
copies of students’ work. On the clinical interview protocols, I included the same problem types 
with different numbers to allow for within-method triangulation.  

The primary focus of the analysis was order and equivalence questions presented 
symbolically and through story problems during the clinical interviews. I coded the interview 
data based on how students were focusing on the fractions in the problems by recursively 
identifying, describing, reviewing, and revising the emerging categories multiple times using the 
constant comparative method described by Glaser and Strauss (cited in (Erlandson, Harris, 
Skipper, & Allen, 1993). I named the categories, described them, and provided examples of 
student work on tables to further clarify my understanding of each category. After I finished 
coding the data, a mathematics education colleague and I established inter-rater reliability 
through a process of coding, discussing and recoding.   

Results  
In my study, the relationships that students attended to in the physical models shaped their 

developing understanding of fraction concepts. Relationships developed from using physical 
models, and symbolic representations of fractions were important to students in their process of 
understanding fractions and learning to solve fraction problems efficiently. In examining the 
relationships that students used, I found eight perspectives that both overlapped with and 
diverged from Smith’s descriptions. These perspectives, which are summarized in Table 1, are 
organized from least sophisticated to most sophisticated to some degree. Important relationships 
that describe the ways that students thought about the fractions as they made judgments about 
relative size are identified for each perspective. Within each perspective, there were different 
levels of complexity in students’ approaches to solving problems. This provides some 
information about the variability within a single perspective.  
Table 1: Summary of Perspectives for Comparing and Ordering Fractions  
Perspectives Description of 

the perspective 
Key Relationships  Levels of complexity  

Limited  Student does not have an understanding of fractions that allows him/her to  
Perspective  answer questions about comparing and ordering fractions.  
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Perspectives Description of 

the perspective 
Key Relationships  Levels of complexity  

Pieces  
Perspective 

Focus on 
fractions as 

pieces 
independent of 

the whole  

Size of fraction is seen as an 
absolute amount  

 
Relationship of the piece to 
the whole is not mentioned 

 
 May include equivalent 

relationships between pieces  

1) Pieces of a certain size 
or shape represent 
specific fractions  

2) Recreate fraction by 
drawing similar to the 
manipulative 

3) Maintain relationships 
between different-
sized pieces  

Part-Whole 
Perspective 

Focus on 
fractions as parts 

of a whole  

Relationship to the whole is 
always apparent  

 
Initial relationships are 

derived by repeated halving  
 

Use recall facts to make 
equal-sized pieces that 
maintain relationships  

1) Divide whole into the 
correct number of 
pieces  

2) Try to make equal-
sized pieces  

3) Use facts to create 
equal-sized pieces  

  

Unit fraction is based on  

1) Only compare unit 
fractions  

2) Extend to non-unit 
Unit 

Fraction 
Perspective   

Focus on unit 
fractions 

how many pieces in whole  
 
Iterate the unit fraction to 
make a composite fraction  

      fractions 
3) Recognize when 

insufficient data to 
make comparisons  

Within-
Fraction 

Perspective  

Focus on the 
relationship 
between the 

numerator and 
denominator  

Numerator is half of the 
denominator, equals ½ 
AND Numerator and 

denominator are equal, 
equals 1 whole  

1) Exact relationship 
between numerator 
and denominator 

2) Approximate 
relationship between  

 

           

Approximate relationship to 
compare to 0, 1/2, 1 

      numerator and   
      denominator  

Between-
Fraction 

Perspective  

Focus on the 
relationship 

between 
numerators 

and/or 
denominators 

         

Identification of relationship 
between like terms (i.e. 

numerators)  
 

Relationships maybe 
additive or multiplicative  

1) Double/halve 
numerator and 
denominator  

2) Maintain ratio 
relationship  
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Perspectives  Description of 
the perspective 

Key Relationships  Levels of complexity  

Equivalence 
Perspective  

Focus on the 
relationship 

between 
equivalent 
fractions  

Relationships between 
fractions in the physical 

materials  
 

Relationships derived by 
extending beyond the 

physical materials  

1) “Recall facts” based 
on relationships from 
physical models  

2) Relationship between 
unit fraction and 
dividing it in two parts  

3) Extend relationships 
based on recall or 
generated facts 

Transform 
Perspective  

Focus on using 
rules to compare 

and order 
fractions  

Use of other perspectives 
to explain why 

transformation rules  

1) Multiply/divide by n/n 
to compare or generate 
equivalent fractions  

2) Convert to common 
denominator to 
compare fractions  

 
Comparison to Smith’s (1995) Perspectives  

Since Smith’s (1995) perspectives provided the framework for this study, I compared the 
related perspectives that emerged from my data to this framework and previous research. The 
primary overlap was in the transform perspective, although Smith (1995) observed it more 
frequently. This was probably due to the fact that his students were in fifth grade or higher, in a 
traditional mathematics class, and his analysis of the textbook confirmed that transform 
strategies were explicitly taught.  

My results indicated two approaches for solving order and equivalence problems embedded 
in Smith’s (1995) parts perspective. The less sophisticated approach that emerged from my data 
was the pieces perspective. The primary relationships were based on the fraction as pieces, and 
students did not make connections between the pieces and the wholes. The pieces perspective 
was manifested in both students’ use of the physical materials and their drawings. For example, 
one student drew a large rectangle and divided it into half and called it two-thirds. He was more 
concerned with making the two pieces, and he labeled the pieces thirds. Armstrong and Larson 
(1995) found similar results where students used direct comparison of the parts. The more 
sophisticated approach was the part-whole perspective aligned with Smith’s description of the 
parts perspective. Although Smith required equal-sized parts, many students in my study did not 
use equal-sized parts and were successful at creating equal-sized parts only when they drew upon 
other mathematics facts to help them such as using the multiplication fact 2 x 3 = 6 to make 
sixths by first making halves and then dividing each half into three additional sections.  

Smith (1995) defined the components perspective based on students’ use of natural number 
relationships either within or across numerators and denominators whereas I divided these into 
two perspectives since students focused on different relationships with each of these approaches. 
Students who used a within-fraction perspective recognized that the relationship between the 
numerator and denominator was important. I included benchmark strategies in the within-
fraction perspective because students considered the whole number relationships between the 
numerator and denominator before they could make a comparison. The students in my study 
divided the denominator in half and often referenced the half-way point. For example, half of 
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five is two and a half, so one half equals two and a half fifths. Using reference points or 
benchmarks strategies is well documented in the literature (Behr et al., 1984; Post et al., 1986), 
but Smith include this strategy in the separate reference point perspective.   

Students with a between-fraction perspective used relationships across numerators and across 
denominators to make comparisons. Research has shown that student initially use doubling or 
halving strategies for generating equivalent fractions (Brinker, 1997; Smith, 1995; Streefland, 
1993). Similar to previous findings (Behr et al., 1984; D’Ambrosio & Mewborn, 1994; Post et 
al., 1986; Wearne-Hiebert & Hiebert, 1983), I found that students used both additive and 
multiplicative reasoning for within-fraction and between-fraction relationships.  
Extension of Smith’s (1995) Perspectives  

I identified three additional perspectives that were not included in Smith’s (1995) framework: 
limited, unit fraction, and equivalence. The limited perspective demonstrated students did not 
have valid relationships to help them solve order and equivalence problems, especially on the 
pre-interview. Some of these students did not seem to have a physical or mental representation 
that they could connect with the fraction terms. Other students relied on whole number 
relationships, similar to results from previous studies (Ball, 1993; Behr et al., 1984; Streefland, 
1993; Vance, 1986). Students also used additive relationships instead of multiplicative 
relationships (Behr et al., 1984; Post et al., 1986; Smith, 1995; Wearne-Hiebert & Hiebert, 
1983). For example, Christina decided that she could find other equivalent fractions by adding 1 
to both the numerator and denominator so 8/12 was equal to 9/13 and 2/3 was equal to 3/4. Smith 
identified strategies that were invalid or limited, but he categorized them into his parts and 
components perspectives. I chose to keep them as a separate perspective because students 
demonstrated they needed to learn new relationships to help them compare fractions.  

Smith (1995) described several strategies in both the parts and components perspectives that 
I believe belong in their own category, which I called the unit fraction perspective. Students used 
the inverse relationship between the number in the denominator and the size of the fraction to 
order problems with the same numerator (Behr et al., 1984; Smith, 1995). This understanding 
was based on the part-whole relationship: each piece is smaller as there are more partitions, 
which students expanded to compare fractions with different numerators. During a class 
discussion, Mark explained that 4/7 was larger than 3/8 because 1/7 was larger than 1/8 and there 
were more sevenths. When these conditions were not met, some students used qualitative 
reasoning to decide whether the size of the piece or the number of pieces had a greater effect 
(Behr, Harel, Post, & Lesh, 1992; Smith, 1995). For example, Bobby compared 6/10 and 7/15 by 
explaining, “This is 6/10 and that's almost the same as 7. And so, 10 is way smaller than 15. Not 
way, but smaller. So I know that fraction [pointing at 6/10] is bigger than that fraction [pointing 
at 7/15].” Since the numerators were only one apart, Bobby reasoned that the larger size of the 
tenths made up for having one less piece. Even though this strategy worked for some problems, it 
was insufficient for comparing other fractions. Bobby decided 3/5 and 4/6 were equal because, 
“Six is one more than 5 so that would be a smaller fraction, but it has 4 and that only has a 3,” 
but Mark realized that he did not have enough information to compare these fractions. As 
students considered both the numerator and denominator, they treated composite fractions as 
iterated unit fractions. Behr et al. (1983) claims this understanding helps “children develop a 
stronger quantitative notion of rational numbers” (p. 123). The Fraction Project hypothesized that 
students needed to develop this understanding of fractions as an iterable unit fraction so they 
planned instruction that focused on this concept (D'Ambrosio & Mewborn, 1994; Tzur, 1999). 
By teaching fractions using the Stick microworld, Tzur (1999) found that students understood 
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fractions “as a single quantity,” which he expressed demonstrated a stronger understanding than 
the “parts of a whole” meaning of fractions. My study demonstrated that students can construct 
their understanding of composite fractions based on iterating unit fractions.  

Smith’s (1995) study did not address the equivalence perspective in his framework. He 
mentioned the recalled fact strategy in his dissertation, but he observed it so infrequently that he 
did not include it in any of the perspectives (Smith, 1990). Students in my study remembered 
facts, often due to their work with physical models. Students tended to use the relationship that 
resulted from splitting a unit fraction into two equivalent pieces, such as 1/5 equaled 2/10. 
Students built on these relationships by incrementing, so if 1/5 equaled 2/10 then 2/5 equaled 
4/10 and 3/5 equaled 6/10. On the mid-interview, I asked students to compare 2/8 and 3/12 
knowing that they only had a physical model for only one of these fractions. After talking quietly 
to herself and moving around manipulatives, Christina said that 1/4 was equal to 3/12. She 
explained, “I know 1/2 is 6/12. And I know that a half of a half is 3/12. So I knew that a fourth is 
a half of half, so I put a fourth on here,” as she pointed at the 1/4 piece on the half. Since 
Christina did not have the fraction pieces for twelfths available in her kit, she figured out 
equivalent relationships beyond the physical materials. Even though using equivalent 
relationships was a powerful approach for the students in my study, I have not found similar 
strategies documented in the literature.  

Conclusion  
This study demonstrated both the similarities and difference between the perspectives that 

Smith (1995) and I identified. Some of the differences are due to how we categorized students’ 
general approaches. Many of the variations between the results of our studies were due to the 
differences in the settings and participants. First, the students in my study were younger, so they 
were still developing their understanding of fraction concepts. Secondly, since the students in my 
study were in a constructivist class, they were learning mathematics in a very different manner 
from students in a traditional class. Lastly, through the interaction of grade levels and the 
learning environment, students used physical models including manipulatives and drawings as an 
integral part of how they were learning about fractions. The students in my study who moved 
between different perspectives and chose efficient strategies were more successful in solving 
problems and in explaining their answers, thereby demonstrating the importance of using number 
relationships to understand fraction concepts.   
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Many students experience great difficulty when studying topics related to fractions, especially 
division of fractions. One explanation for this may be that learning how to divide fractions is 
often taught devoid of meaning. The lack of sense making in carrying out algorithms without 
making connections to concrete or other types of representations contributes to the inability of 
students to use previously taught algorithms to solve new problems, especially after long periods 
of time have elapsed. In this paper we explore the flexibility and durability of knowledge that 
students acquire when they study this topic in a way that encourages understanding. 
 

Introduction 
The difficulties that many students have experienced while solving problems involving 

fractions have been well documented (cf. Tzur, 1999; Davis, Hunting, and, Pearn, 1993; Davis, 
Alston, and Maher, 1991; Steffe, von Glasersfeld, Richards and Cobb, 1983; Steffe, Cobb and 
von Glasersfeld, 1988). It is therefore particularly important to find ways to help students 
overcome these difficulties. Fortunately, many researchers have also documented instances in 
which students have successfully been able to build ideas relating to fractions (c.f. Steencken, 
2001; Steencken and Maher, 2002; Ma, 1999; Cobb, Boufi, McClain and Whitenack, 1997, 
Kamii and Dominick, 1997). In particular, Bulgar (2002; 2003a; 2003b; Bulgar, Schorr & 
Maher, 2002) 1 reports on the conceptual development of ideas relating to division of fractions 
amongst fourth grade students participating in a teaching experiment. Further, Bulgar reports that  
when this teaching experiment was replicated as part of the regular teaching practice in another 
classroom (her own), similar outcomes were achieved.  

In this paper we report on the latter group of students, with a particular focus on how they 
extended, modified, revised and ultimately generalized their ideas relating to division of fractions 
during the following school year. This is done with a focus on mathematical flexibility, and the 
nature of the models that were used, and how they evolved during the following school year. In 
particular, we focus on how students initially used continuous linear models, how these models 
evolved into discrete area models and how these students moved easily back to linear models 
when they found them to be more appropriate. 

Theoretical Framework 
Our framework for analysis is based primarily upon a models and modeling perspective with 

a specific focus on the durability and flexibility of the models that are built over time. Briefly 
stated (see Schorr & Koellner-Clark, 2003, for a more complete description) a model can be 
considered to be a way to describe, explain, construct or manipulate an experience, or a 
coordinated variety of experiences. A person interprets a situation by mapping it into his or her 
own internal model, which helps him or her to make sense of the situation. Once the situation has  
been interpreted into the internal model, transformations, modifications, extensions, or revisions  
within the model can occur, which in turn provide the means by which the person can make  
predictions, descriptions, or explanations, for use in the situation at hand. Models help us to  
organize relevant information and consider meaningful patterns that can be used to interpret or 
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reinterpret hypotheses about given situations or events, generate explanations of how information 
is related, and make decisions about how and when to use selected cues and information.  

We wish to distinguish between the conceptual “models” that are embodied in the 
representational media that students use, and the “mental” models that reside inside the minds of 
learners (Lesh and Doerr, 2003) to which we refer above. In this work, we will be attending to 
both, with an emphasis on the nature of the mental models that are born out in the 
representational media that the students use, especially as evidenced in their mathematical 
flexibility. We document the nature of the models that the students have built in terms their 
“mathematical flexibility” not just during or shortly after the instruction took place, but rather 
over a more extended period of time. We address flexible thought in the context that follows, and  
because it is relevant to this study.  

Carey (1991) describes flexibility by saying "… children become more flexible in their 
choice of solution strategy as a result of changes in their conceptual knowledge, so that they can 
solve problems using a variety of strategies that do not model directly the action in the problem" 
(p. 267). Heirdsfield (2002) notes that flexibility is the capacity of students to exhibit various 
invented strategies or a large repertoire of problem-solving strategies over time. She referred to 
the use of a single strategy consistently as inflexibility. Further, Gray and Tall (1994) describe 
flexible thinking in terms of an ability to move between interpreting notation as an instruction to 
do something (procedural use of notation) and as an object to think with and about (conceptual 
use of notation). Flexibility, as denoted in the work by Spiro & Jehng (1990) entails the ability to 
spontaneously restructure one’s knowledge, in adaptive response to changing situational 
demands. Krutetskii (1969) characterizes flexible thinking as reversibility of thought—another 
much needed characteristic for students as they consider ideas related to fractions over time. 
Other researchers including Warner, Alcock, Coppolo & Davis (2003) and Warner and Schorr 
(in progress) emphasize that a critical aspect of mathematical flexibility is the ability of students 
to use multiple representations for the same idea, and to link, extend, and modify those 
representations to a broader range of situations, involving a broader range of models. Since the 
goal of our instruction was not simply to have students retrieve facts or procedures, or to display 
understanding only for very specific situations and for limited time periods, we believe that 
mathematical flexibility is particularly relevant, as defined by all of the researchers above.  

Mathematical flexibility is particularly important if students are to use knowledge across a 
wide spectrum of ideas. Fosnot and Dolk (2001) note, “The generalizing across problems, across 
models, and across operations is at the heart of models that are tools for thinking.” (p.81). They 
report on a class in New York City wherein a third grade teacher provided students with three 
different contexts that lent themselves to different models but produced the same answer. In each  
case the children produced different models that were closely linked to the context. Fosnot and  
Dolk go on to state that it is easy for students to notice that the answers are the same but that the  
important issue is for them to see the connections among the models to develop a generalized 
framework for the operations. In the work that follows, we focus on the nature and type of 
representations that students build, retrieve, and use over time, and how this relates to their 
mathematical flexibility.  

The students in these studies had, essentially, used three main strategies to solve a particular 
series of problems (Bulgar, 2002; 2003a; 2003b; Bulgar, Schorr & Maher, 2002). There were no 
strategies other than these three observed in either the classroom-based studies or the teaching 
experiment. 

These strategies consisted of the following: 
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1. Reasoning involving natural numbers 
2. Reasoning involving measurement 
3. Reasoning involving fraction knowledge 

The predominant solution method observed in the fourth grade study of the same students (see 
Bulgar, 2002, 2003a, 2003b) consisted of reasoning involving natural numbers. Essentially, these 
students built models that converted the meters to centimeters, thereby substituting the fraction 
division with natural number division, a topic generally prominent in fourth grade mathematics 
curricula in New Jersey (NJ Mathematics Coalition and NJ State Department of Education, 
2002). However this solution method was seen in the work of only one fifth grader in the 
replicated study, and even when it did appear, there was a claim by the student that it was 
developed after the problem was solved using reasoning involving fraction knowledge (Bulgar, 
2003a, b). All of those students in the fifth grade who drew representations, created linear 
models to represent the division of a piece of ribbon into various-sized bows.  

Methods and Procedures 
Background, Setting and Subjects 

The study currently addressed took place during the 2001-2002 school year, when the 
subjects, thirteen girls, were in sixth grade. Twelve of these students had been taught 
mathematics by the same teacher, the first author of this paper, during fifth grade. The students 
attended a small parochial school in New Jersey, which attracts children from several 
surrounding communities. A fundamental premise of the instructional environment was that in 
order to build mathematical ideas, students needed to be engaged in mathematical activities that 
promote understanding (Davis & Maher, 1997; Maher, 1998; Cobb, Wood, Yackel & McNeal, 
1993; NCTM, 2000; Klein and Tirosh, 2000; Schorr, 2000; Schorr and Lesh, 2003). Therefore, 
conditions established during the fifth grade, were set up to create a classroom community in 
which student inquiry and discovery were of paramount importance. The classroom environment  
was one in which students’ ideas were always respected. Students were questioned and  
encouraged to explain their solutions, developing their own sense of accuracy. Alternate 
strategies were encouraged, shared and discussed, as students were invited to discuss their 
thinking and to submit ideas in writing. Students were not taught algorithms. When they 
recognized patterns and could justify that these patterns were valid, they created generalizations, 
which they could apply to future problems. Questions were used to elicit explanations, to guide 
students towards persuasive justifications of their solutions and to redirect them when they were 
engaged in faulty reasoning. Justification of solutions became a part of the classroom culture. 

Because essentially the same group of students who were taught by the first author in fifth 
grade were grouped together again in sixth grade, (Twelve of the students were from the original 
group and there was an addition of one new student.) and taught mathematics by the same 
teacher, an opportunity was presented to closely examine longitudinal development of 
mathematical ideas within the framework of regular teaching practice. The Tuna Sandwiches 
task, the problem that is the subject of this paper, was the first one assigned as these students 
began sixth grade.  
Data 

The data examined here consist of artifacts of actual student work, which were collected over 
the course of approximately six weeks. Written notes from the teacher were attached to some of 
the work, usually in the form of questions and answers to these questions also appear in the 
students’ writing. 
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Tasks 
The primary task studied here, “Tuna Sandwiches”, was created by the first author to be 

isomorphic with the problem done during the previous year called “Holiday Bows”2, which 
introduces division of a natural number by a common fraction. The Tuna Sandwiches problem 
follows. 

Mr. Tastee’s restaurant serves four different kinds of sandwiches. A junior sandwich 
contains 1/4 lb of tuna; a regular sandwich contains 1/3 lb of tuna; a large sandwich 
contains 1/2 lb of tuna and a hero sandwich contains 2/3 lb of tuna. Tuna comes in cans 
that are 1lb, 2 lb, 3lb and 5 lb. How many of each type of sandwich can you make from 
each size can? Find a clear way to record your information. You will need to write a letter 
to the restaurant owner, Mr. Tastee, and give him your findings. 

One of the goals in creating the “Tuna Sandwiches” problem was for it to lend itself to be 
represented by an area model rather than a linear model, as was the case with “Holiday Bows”. 
Fosnot and Dolk (2001) state that just because we create a problem with certain models in mind, 
we cannot be assured that this model will be used by students. By creating a problem that was 
essentially isomorphic to the “Holiday Bows” problem, (the one that was completed by both the 
fourth graders in the teaching experiment and the fifth graders in the regular classroom of the 
first author), yet embodied in a different type of representation, an area model, the notion of 
flexibility could be explored as well as an examination of the durability of the knowledge the 
students had demonstrated during the previous year. 

Results and Discussion 
All of the sixth grade students solved the problem using the approach of reasoning involving 

fraction knowledge. That is, they reasoned that if a sandwich requires 1/4 of a pound of tuna, 
four such sandwiches could be made from every pound of tuna, so what was necessary in order 
to find the solution was to multiply the number of pounds of tuna in a can by four. In both the 
fourth grade and the fifth grade studies, dividing by the non-unit fraction, 2/3, had proven to be 
more problematic. One might conjecture that the linear model used by students would be more 
conducive to solving problems such as 2 ÷ 2/3, because it is a continuous model. Yet, several 
fourth and fifth grade students who had used reasoning involving fraction knowledge had 
difficulty with this because it was arduous to give meaning to the piece that was “left over”; it 
was not clear how many two-thirds there were in one. One student in the fourth grade group 
stated the following when explaining how many bows, each 2/3 meter in length could be made 
from a piece of ribbon that is 2 meters long. 

Alex:  There’s three thirds [in one meter] so there’s two-thirds and one-third and one-
third that’s two-thirds and you still have one two thirds left over…[while drawing 
picture] ... so then... so you only have one third so then you have to get the other 
third. This is two thirds so then you have two more [one] thirds left over. 

Jon:  [pointing to Alex’s drawing] And there are six ones [1/3] is in each, and it would 
be two-thirds is one [bow], two-thirds is again [a bow] and two [one] thirds left. 

Alex:  I think it’s 4 [bows]. 
Alex looked at the two one-meter parts of his two-meter ribbon as two discrete entities. He did 
not seem to realize that the two one-third meter pieces that remained at the end of each meter 
could be used to make another bow. Although all of the fifth grade students eventually were able 
to find out how many bows, each 2/3-meter in length could be made from the various lengths of 
ribbon, they also had greater difficulty with this set of problems than they had when dividing by 
the unit fractions.  
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None of the thirteen sixth graders used a linear model to solve the Tuna Sandwich Problem. 
Ten of the thirteen students actually drew area models to represent their solutions and three 
merely explained their thinking without referring to a model. It is interesting to note that each of 
these area models included discrete drawings for each pound of tuna. One would think that the 
problems involving the hero sandwiches, those which each required 2/3 lb. of tuna, would be 
more difficult to solve when using discrete area models. Yet, there was no mention of greater 
difficulty. In fact, several students stated that each one-pound of tuna would yield one and one-
half hero sandwiches. It appeared that the shift in unit was made seamlessly. One-third pound of 
tuna was recognized to be one half the quantity needed to make a hero sandwich, which required 
two-thirds pound of tuna. 

Though they were not asked to do so, most of the sixth graders spontaneously formed some 
kind of graphic organizer to structure their results. Seven of the thirteen students formed a matrix 
indicating the amount of tuna required (for each sandwich) as one dimension and the different-
sized cans of tuna as the other dimension. Four of the students indicated their solutions in an 
organized listing. One of these students had both an organized listing and a matrix. 

Since the students specified their solutions using reasoning involving fraction knowledge by 
looking first at how many sandwiches of each type could be made from a one pound can of tuna, 
it is interesting to note that very few used proportional reasoning, using multiplicative structures 
to arrive at solutions involving multiple-pound cans of tuna. Most used additive structures. 
Stephanie begins by alluding to proportional reasoning when she writes the following as she 
explains her solutions for finding out how many regular sandwiches, those requiring 1/3 pound 
of tuna, could be made from each of the various sized cans. 

Stephanie:  [sic] You can only make 3 sand. With one lb of tuna because 3 thirds make 1.  
(3/3=1) With one more lb of tuna (2lb) you can make twice as many sand. So 
you have 6 sand. With 3 lb of tuna you can make 3 more sand. (9 altogether) 
because you have one more lb of tuna which make 3 sand. Because 3 thirds 
(3/3) =1. Now with 5 lb. you add not 3 sand. But 6 because it is not 4 lb, but 5 
lb of tuna. 

Stephanie seems to be going back and forth between multiplicative ideas and additive ones, 
adding on multiples of three sandwiches. When Stephanie explains her solution to the hero 
sandwich problem, the one involving division by a non-unit fraction, she states the following. 

Stephanie:  [sic] So with a 1 lb can you can make 1 sand. and a 1/2 of another because it is 
/3 of a lb of tuna [required for each hero sandwich] so you have 2/3 left which 
is 1/3 left which is 1/2 of 2/3. A 2 lb can of tuna you can make 3 sand. easily 
and the excess is 1/3 from both so that makes 3… Now for a 5 lb. can you can 
make 6 ½ sand. Because you can make 5 easily and 2  1/2 more with the extra 
of each lb. 

Though Stephanie’s solution of 6 1/2 sandwiches is not consistent with her explanation, she 
has demonstrated an understanding that 1/3 of a pound of tuna represents 1/2 of a hero sandwich, 
an idea that students had more difficulty understanding the previous year when they worked with 
the linear model suggested by the Holiday Bows problem. It would appear that she is first 
counting the complete sandwiches that can be made from each pound, the ones she refers to as 
being made “easily”, and then is gathering up the remaining 1/3 pounds from each can to 
combine them in order to make additional sandwiches. This kind of thinking was also observed 
in the representations of other students, such as Gabriella, Lynn, Amy, Sarah and Bea, who drew 
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connecting lines to the “leftover” one-third pound of tuna in each representation of a one-pound 
can. 

After completing a lengthy explanation of her solutions, Eve wrote the following reflection 
on her work. 

Eve:  P.S. When I was figuring this out for you I noticed something interesting. I 
noticed [sic]  That by the junior sandwich (1/4 lb.) you added 4 by every can of 
tuna. This is because every  time the can get bigger by 1 lb (from which you can 
make 4 sandwiches) so you just add another  4 and the 5 lb., it is 2 more lbs. So 
you add 8 instead of 4. 

Though Eve used reasoning involving fractional knowledge, she applied additive reasoning 
to get the solutions. 

Sarah used multiplicative reasoning in finding the solutions. She wrote the following. 
Sarah:  [sic] Out of 3 pound you can make 12 junior. There is 4 in each and 4 x 3 = 12. 

Sarah included a diagram of 3 circles divided into four sections or fourths. She numbered the 
sections from one to twelve. She used this structure for all of her solutions.  

Gabriella also used multiplicative reasoning. She drew five circles, divided them in half 
vertically and stated the following. 

Gabriella:  [sic] How much large sandwiches can you make from 5 pounds. Let’s try 
those imaginary pounds [her drawings]. Well 2 in each of the 5 pounds 5x2 = 
10! 

In the summative class discussion of the Tuna Sandwiches Problem, students talked about the 
problem and how it was just like the problem they had done the previous year called “Holiday 
Bows”. Those who did not recognize it at first agreed when their peers noted the isomorphism. 
They recognized that the problem required division of fractions and easily explained their 
solutions using symbolic notation. For example, when summarizing that three hero sandwiches 
could be made from two pounds of tuna, they were able to create the number sentence, 2÷2/3 =3. 
Some of the number sentences that the students provided were recorded on an overhead projector 
transparency. These number sentences are seen as solutions representing conceptual 
understanding derived from the use of student-generated models, rather than as algorithmic 
answers. Once the students agreed that they had solved these problems involving division of 
fractions, they were assigned numerical problems, one at a time. The first problem was 2 ÷ 3/4. 
They were told to build a model to solve the problem and to explain how the model can be used 
to find the solution. Some (Michelle, Amy and Rose for example) wrote the problem as “How 
many 3/4’s are in 2?” This would indicate an understanding of the meaning of division. 
Subsequent to providing solutions for this problem, students worked on the problem, 5/8 ÷ 2 1/2. 
What is interesting to note here is that when drawing models to solve these problems, students 
invariably went back to linear representations. Many referred specifically to Cuisenaire Rods® 
when they discussed their linear models. They had worked with these materials early in fifth 
grade to build basic concepts about fractions. The activities in which they were engaged using 
these materials were modeled after those used and documented in another study (Steencken, 
2001). 

Conclusions 
Students in the sixth grade were able to retrieve ideas they had built about division of 

fractions during the previous school year, and these ideas were used and extended appropriately. 
Many students demonstrated flexible thought in the way they indicated their grasp of division of 
fractions and extended their understanding to more complex division of fractions problems. 
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When first confronted with a task involving division of a natural number by a fraction in fifth 
grade, they made use of linear continuous models. Our results show that when a similar problem 
was given to the same students a year later, one that lent itself to an area model, students 
demonstrated flexible thinking in their ability to seamlessly move to a discrete area model and 
durability of the ideas they built the previous year in their ability to effortlessly move from linear 
models to area models and back to linear models as needed. Many recognized and verbalized that  
the Tuna Sandwiches Problem was “the same” as the Holiday Bows Problem. They revealed 
their flexible thinking in their ability to use a variety of representations for the same idea, 
division of fractions, and to link, extend and modify those representations to a variety of 
situations (Warner, Alcock, Coppolo, 2003; Warner & Schorr, in progress). They moved easily 
back and forth between area models and linear models as they worked on contextual tasks and 
used models to solve numerical problems. This is significant because as Fosnot and Dolk (1991) 
indicate, models represent strategies used to solve problems and thereby develop into 
mathematical tools. Generalization is characteristic of this development.  

Endnotes 
1. This research was supported in part by grant MDR 9053597 from the National Science 
Foundation and by grant 93-992022-8001 from The NJ Department of Higher Education. The 
opinions expressed here are those of the authors and are not necessarily the opinions of the 
National Science Foundation, The NJ Department of Higher Education, Rutgers University or 
Rider University. 
2.  For a full description of this task and results see Bulgar, 2002; Bulgar, 2003a; Bulgar, 2003b; 
Bulgar, Schorr & Maher, 2002. 
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LEARNING TO USE FRACTIONS: EXAMINING MIDDLE SCHOOL STUDENTS’ 
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There is a large body of literature, both empirical and theoretical, that focuses on what is 
involved in learning fractions when fractions are the focus of instruction. However, there is little 
research that explores how students learn to use what they have learned about fractions outside 
instruction on fractions. In response, this research explores how middle school students learn to 
use fraction knowledge, the fraction concepts and skills studied in formal curriculum units, in 
mathematical instructional settings where fractions are not the main focus of study, but rather 
support the development of other mathematical content. The purpose of this paper is to describe 
the practices a class of sixth-grade middle school students engaged in when using knowledge 
learned about fractions in two contexts: (1) area and perimeter and (2) decimal operations.   
 

Theoretical Framework  
I draw upon Scribner and Cole’s (1981) practice account of literacy where literacy is best 

understood as a set of social practices people draw upon and use in certain situations. Rather than 
focus on the separate skills that underlie reading and writing, studying literacy involves studying 
the social practices associated with a particular symbol system. In this study, fraction literacy can 
be thought of as a shift from studying the separate skills that underlie fractions (i.e., fraction 
addition or equivalent fractions) toward understanding how students make use of fractions.  

Data Sources and Analysis  
The participants were a class of 23 sixth-grade students and their teacher. The middle school, 

located in a small middle-class mid-western community, used the Connected Mathematics 
Project curriculum. Data collection across nine lessons included field notes, copies of students’ 
written work, video-recordings of whole class conversations and small-group interaction of one 
group of four focus students. Two audio-recorded interviews were done with each focus student.   

When studying literacy, literacy events and literacy practices are the basic units of analysis 
(Barton, 1994). I define fraction literacy events as situations where students have to use their 
fraction knowledge and fraction literacy practices as stable identifiable patterns of behavior 
students make use of during these events. The focus of data analysis was to identify the fraction 
literacy practices students engaged in as part of learning to use fraction knowledge.   

Results  
Across all nine lessons the teacher and students engaged in the practice of determining 

appropriateness. The conversations indicated that students were trying to understand how 
fractions and the context in which they were being used interacted. Students were not asking how 
to add or how to find equivalent fractions. Rather, the conversations indicated that students were 
trying to determine what was an appropriate way to use fractions in the problem situation. These 
questions capture what students thought about and made sense of when trying to use fractions.   

•  Do concepts used in whole number settings apply when fractions are used in that setting?  
•  Can fractions be used to make sense of mathematical ideas when not explicit in the  

problem?  
• Is it appropriate to use the standard multiplication algorithm in this situation?  
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• Is it appropriate to use equivalent forms (mixed or improper) in this situation?  
• What is the appropriate way to represent a fraction with a repeating decimal, or one that 

involves using a decimal approximation when operating?  
• Is it appropriate to use a decimal representation in this situation?  
The last two questions are reflective of a whole-class discussion about a problem that 

involved finding the width of a rectangular storm shelter with a floor area of 24 square meters 
and a length of 5 1/3 meters. A lengthy conversation took place where various decimals were 
offered to represent 5 1/3 when operating to find the missing width. As possible solutions and 
solution paths were offered and rejected I argue that students were trying to determine the 
appropriate way to represent and use 5 1/3 in this situation.  

Cathy:  I did 5.3 × 4.5 and got 24.3.  
Bryan:  I did 5.3 × 4.5 and got an even 24.  
Trevor:  Well 5 1/3 is not equal to 5.3. It is 5.3 with a line over it. So let’s say that times 

4.5 which equals 23.99999. It is pretty close to 24.  
Here Trevor rejects his own approach because it does not produce exactly 24. The 

conversation shifts to looking at division as an approach. A student, Corey, offers that he divided 
24 by 5.333 and got 4.528. Next, a student showed that if you use fractions that 5 1/3 × 4 1/2 is 
exactly 24.   

Teacher: So that works. 5 1/3 rows of 4 1/2. But how did you get that? 
Corey:  Maybe like I did. [Recall that he offered 24 ÷ 5.333] 
Teacher: Okay, but you got 4.528. What would explain that? 
Corey:  I rounded off.  
Teacher: That’s the problem with sometimes switching to a decimal. If I don’t I can get the  

exact answer.  
In the end approaches were rejected because using approximations for 5 1/3 did not lead to 

an exact area of 24. Although there are many situations where using decimal form rather than 
fraction form is appropriate, in this situation where you want an exact measure switching 1/3 to 
decimal form to operate is not appropriate.   

Conclusions  
These findings support a practice account of literacy (Scribner & Cole, 1981), in this case 

fraction literacy, where literate use of fractions develops out of understanding situations where 
fractions are used. These situations extend beyond ones typically developed when learning about 
fractions. When students learn about fractions, conversations often center around how to do 
something (i.e.: add fractions or make equivalent fractions) as well as why ideas make sense. 
One might ask “Are these two forms equivalent?” rather than “Are these two forms equivalent 
here?” It is through making sense of situations where fractions are used and coming to realize the 
potential for using fractions that students learn to use them as a tool.  
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FRACTIONS  
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The purpose of this paper is to describe the growth of mathematical understanding in a class 
of twenty-five fourth-grade students in a suburban New Jersey school. These students were 
invited to investigate the comparison of pairs of fractions as part of a yearlong teaching 
experiment.  Despite never having been taught the formal, traditional algorithms for fractions, 
students were able find the differences and to express their answers with equivalent fractions by 
constructing multiple models of different lengths with the Cuisenaire Rods™.  This research 
builds upon the work of Steencken (2003) and Bulgar (2003), who examined components of this 
teaching experiment.  

Led by Carolyn A. Maher and assisted by Amy Marino from Rutgers University in New 
Brunswick, NJ, this classroom experiment was designed under the premise that with the 
appropriate conditions, students could develop a deep understanding of mathematical ideas as 
they actively participate in their learning.  These children were challenged with mathematical 
explorations and given both the opportunity to construct concrete models and the time and 
conditions to think deeply about their ideas. This study focuses on the class as it determines 
which, if either, of a pair of fractions is bigger and by how much.  

Five sessions (approximately 60 - 90 minutes each) from October will be described and 
analyzed. In addition to multiple videotapes of each session, other data include students’ 
drawings of the models that they built, students’ written explanations and researcher field notes.  
The videotapes were analyzed following the model proposed by Powell, Francisco and Maher 
(2003).  

Students worked in pairs and small groups to construct models using the Cuisenaire Rods™ 
to find the difference between the fractions.  Using number knowledge and their emerging 
fraction schemes (Steffe, 2002), students then built other constructions for the same pair of 
fractions and were encouraged to look for clues that would help them build future models. 
Through these hands-on activities and the ensuing mathematical discourse, students often made 
conjectures about the relationship between the fractions and then tested their ideas through 
model-building.  For example, when comparing two-thirds and three-fourths a student was able 
to argue convincingly that the shortest model that they could build would have a length 
equivalent to twelve white rods.  By analyzing their constructions, students discovered a 
generalized solution that enabled them to build and to envision other representations. They 
showed evidence of developing ideas of ratio and proportion as they realized that by doubling 
the length of a model they could generate additional models.  This insight allowed them to 
determine that the difference between two-thirds and three-fourths was one-twelfth, two twenty-
fourths or four forty-eighths. They realized that if they could build “trains” (putting multiple rods 
end-to-end) for their “one” unit, then they could also use “trains” to represent unit fractions. This 
discovery enabled them to build models that were four times as long as their original.  
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The purpose of this study is to test and validate four levels of proportional reasoning, (e.g. 

the Hypothetical Learning Trajectory (HLT)) proposed by Carpenter et al. (1999). The research 
questions were:  

1. How well does the HLT describe the pathway of a population of Icelandic girls before, 
during, and after they have engaged in a unit focused on proportional reasoning?  

2. What evidence is there for the existence of Level 2, Level 3, and Level 4 ways of 
reasoning in students’ verbal protocols?  

Many studies on children’s proportional reasoning provide evidence of various influences on 
students’ thinking about proportion. Among these is the numerical structure, which refers to the 
multiplicative relationship within and between ratios in a proportional setting. A “within” 
relationship is the multiplicative relationship between elements in the same ratio,1 the “between” 
relationship is the multiplicative relationship between the corresponding parts of the two ratios.  

Researchers have hypothesized that students’ learning of proportional reasoning can be 
described as a learning trajectory (Carpenter et al., 1999; Inhelder & Piaget, 1958; Karplus et al., 
1983). By learning trajectory, I am referring to the path that student reasoning travels as 
students’ understanding of proportion develops. As students reasoning develops, so too does 
student ability to solve increasingly complex problems and their strategies get more complex and 
mathematically sophisticated.  

The literature on proportional reasoning reveals a broad consensus that proportional 
reasoning develops from qualitative thinking to multiplicative reasoning (Behr, Harel, Post, & 
Lesh, 1992; Inhelder, & Piaget, 1958; Kaput & West, 1994; Karplus et al., 1983; Kieren, 1993; 
Resnick & Singer, 1993; Thompson, 1994). While earlier research on students’ reasoning relied 
on within-ratio and between-ratios strategies to analyze students’ thinking (Abramowitz, 1975; 
Karplus et al., 1983; Vergnaud, 1983) Lamon (1993a; 1993b; 1994; 1995) offered a different 
lens through which to understand students’ development of proportional reasoning. Lamon 
proposed two processes, unitizing and norming, as central to the development of proportional 
reasoning. Unitizing involves the construction of a reference unit from a given ratio relationship. 
Norming refers to the reinterpretation of another ratio in terms of that reference unit (Lamon, 
1994; 1995).  

Lamon’s (1993a; 1993b; 1994; 1995) ideas provided a basis on which to create a more 
complete picture of students’ developmental pathway, known as the Hypothetical Learning 
Trajectory (HLT). Using Lamon’s (1994, 1995) operation of unitizing and norming, Carpenter et 
al. (1999) identified four levels of students’ proportional reasoning.   

Level 1, students showed limited ratio knowledge. Level 2 is characterized by the perception 
of the ratio as an indivisible unit. Students at this level are able to combine the ratio units 
together by repeated addition of the same ratio to itself or by multiplying that ratio by a whole 
number, but they cannot solve proportion problems in which the given ratio has to be partitioned 
such as, problems in which the target ratio is a noninteger multiple of the given ratio (e.g., 

x
or

x

2

3

842

12

8
== ).  
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Level 3, the given ratio is thought of as a reducible unit. Therefore, students at Level 3 can 
scale the ratio by nonintegers. An example of a Level 3 strategy combines the reduction of the 
given ratio with a buildup strategy by using either addition or multiplication. Students at Level 4 
think of ratios as mere than just as unit quantities. They understand the proportion in terms of 
multiple relations. They recognize the relation within the terms of each ratio and between the 
corresponding terms of the ratios. They are able to look for the integral relationships that will 
make the computation easiest.  

The subjects of this study are the 26 fifth-grade2 girls in two classrooms at one of 
Reykjavik’s public schools. I observed every math class throughout the course of the study, 
taking on the role of “participant observer”. During data collection, students worked on 24 
problems that were created during instruction. Each set of problems was composed of three 
problems with the same contextual structure but with different multiplicative relationships in the 
proportion. The numbers were chosen to further students’ understanding of proportion and to aid 
their recognition of the multiplicative relationships in the two ratios in the proportion. By 
varying the multiplicative relationship in the problems, sets of problems were created to 
distinguish between Level 2 and Level 3 students and between Level 3 and Level 4 students  

The pretest and the posttest were created using the same criteria as the instructional problems 
in regard to the number structure of the problems. The pretest comprised of 18 problems in three 
sets with different multiplicative relationships. The posttest comprised 12 problems. Students’ 
problems solutions strategies were collected. I collected all their written work from both tests. 
During instructions students worked both individually and in groups on their problems. All the 
written work the students produced and artifacts from their work were collected. Also all whole-
classroom discussions were videotaped and transcribed. Approximately 40 percent of students 
participating in a group work at any given time were videotaped or audiotape and transcribed.   
The four-level model of proportional reasoning proposed by Carpenter et al. (1999), proved to be 
a beneficial tool to analyze their work. Analyzing the pretest the classification of students’ 
solutions resulted in the creation of a transitional level “emerging Level 3”. On both pre- and 
posttest the results show a perfect fit; students on Level 2 were not able to solve any of more 
complex problems that emerging Level 3 students were able to solve successfully, nor were the 
emerging Level 3 students able to solve any of the most complex problems that Level 3 students 
were able to solve with success.  

The problems were structured to discriminate between students at different levels of 
reasoning. Problems that could be solved by students reasoning on Level 2 had an integer 

relationship between the ratios and involved enlarging (e.g., 
248

2 x
= ). Students reasoning on 

Level 3 could solve problems that were previously mentioned as well as problems that have a 

noninteger relationship between the ratios (
x

x 6

10

15
,

216

5
== ). Problems that proved to be 

transition problems from Level 2 to Level 3 were the problems that had a scale-down number 

structure such as 
x

2

24

8
= .  The difference between Level 2 and Level 3 reasoning is the need to 

scale down the given ratio. During the emerging Level 3 stage, students are able to scale down 
by whole numbers but they cannot use their knowledge of scaling down within other number 
structures. Strategies that students used to solve the problem distinguished between Level 3 and 
Lev el 4 reasoning.   
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On the pretest, 35 percent of the girls displayed Level 1 reasoning. Around 40 percent 
exhibited Level 2 reasoning. Twenty-three percent of the girls were emerging Level 3. One girl 
showed Level 3 reasoning on her pretest.   

On the posttest only 3 girls reached Level 4 thinking, whereas more than 80 percent reached 
Level 3 thinking. Therefore, it is evident that reaching Level 4 thinking involves a very complex 
thinking that most of the girls had not yet adopted.  

Throughout the course of the study, girls were thinking about the given unit as a single entity 
that they then operated on to reach their target number. The buildup strategy, the most common 
strategy, provides clear evidence of the ways in which students understand the given ratio as a 
single unit that they can then build up or build down. Common explanations from the girls were 
related to the idea that everything they did had to apply to both terms of the ratio. Following is an 
example of a Level 2 girl’s strategy and explanation to support that argument. 

 
Student:   I did it—like, here is 8 and then 5 cans of food, and then again—then there 

is 8 and 16 cans of food until I…reached 48 cats, and then the answer is 
30 cans of cat food. 

Teacher:    How did you know that you should have 8 groups? 
Student:   Well, I did not know that because I did 8:5 and 8:5 and 8:5 and added the 

8s together until I had 48. 
She explained her strategy in terms of the unit as an entity. She operated on the unit of 8:5 

until she reached her target number of 48. She did not think in advance about the number of 
groups she had to use; rather, as she is building her units, she is adding on until she know where 
to stop.  

Endnotes 
1.  Here I define ratio as the relationship between two quantities that have two different 

measure units.  
2.   Fifth grade in Iceland refers to the same age group as in the U.S. 
 

 

               
488

5 x
=  

 
It is lunch hour at the humane 
society. The staff members have 
found out that 8 cats need 5 large 
cans of cat food.  How many large 
cans of cat food would they have to 
have if they were to feed 48 cats? 
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REASONING STRATEGIES IN THE SOLUTION OF GEOMETRIC PROBLEMS 
THROUGH CABRI GÉOMÈTRE 

Ivonne Twiggy Sandoval Cáceres 
Universidad Autónoma de Coahuila, México 

Departamento de Matemática Educativa, Cinvestav, México 
isandoval@mate.uadec.mx; isandova@mail.cinvestav.mx  

 
The goal of this paper is to show some of the reasoning strategies that students use when solving 
geometric problems with Cabri Géomètre (Cabri). The experimental phase was performed with 
high-school students who did not have any previous experience with the Cabri method. This 
phase was developed in two stages: familiarizing them with Cabri and the experimentation itself. 
Each work session the students were put to work in teams, and afterwards there was a plenary 
session.  
 

Introduction 
One of the topics of interest among Mathematics Educators over the past years is related to 

the proving processes in school context (Arzarello et al., 1998; De Villiers, 1999; Balacheff, 
1999; Hanna, 2001; Furinghethi et al., 2001, 2002; Olivero & Robutti, 2001, 2002).   

Nowadays, problems are put forward that have always been focused on by geometric 
teaching, for example, the confusion between the drawings and the geometric objects. The 
corresponding difficulties to the problem in this study are considered as related with the 
interaction between the ideas of drawing and constructing, and the different ways of interpreting 
a geometric representation. A possible cause of the confusion between drawing and the 
geometric object may be the forms of representation used for these geometric ideas. Therefore, it 
would be necessary to describe and analyze what happens when these new technologies of 
representation are used, such as the Cabri to show these ideas. This unblocking allows the 
teacher to observe and evaluate how far mathematics comprehension goes on behalf of the 
student. Therefore, our report aims at investigating the question: How does Cabri modify the 
reasoning strategies of the students? 

Theoretic Orientations 
The new technologies provide dynamic representations of mathematical objects. Particularly, 

Dynamic Geometry provides an exploration field that is not feasible through representations with 
pencil and paper. The representation that is generated is dynamic, and remains unchanged when 
the objects are deformed by dragging.  

To analyze the reasoning strategies used by students as a result of the interaction with Cabri, 
it is necessary to understand the kind of manipulation that students have performed on the Cabri 
objects, as well as how tools used in each work session function, to solve the proposed activities. 
For that reason, the modalities will be analyzed, as well the dragging (Arzarello, et al., 1998) as 
the measurement (Olivero & Robutti, 2001). 

Methodology 
Fourteen students participated in the experimental phase with elementary knowledge of 

Geometry and without any previous experience with the Cabri tool. The participants were 
selected based on the former questionnaire. The experiment was performed at a high school in 
México City for three months, after classes. This participation was voluntary and not subject to 
any grading. This phase was developed in two stages. The first one, the familiarization with 
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Cabri and the second, the experimentation itself. Each work session was divided in the following 
two parts: 1) Development of the activity in teams of maximum three students, and 2) a plenary 
discussion. Each session, a different team is video taped and another one is audio taped.  

Description of results: example of an open problem 
Stating of the problem: A is the center of a circle and AB its radius. Draw the  perpendicular 

bisector of radius AB.  (The perpendicular bisector of a segment is the perpendicular straight line 
that divides it in two equal parts.) In one of the points where the perpendicular bisector crosses 
the circumference, place point C.  Join points A, B and C.  

What figure do you obtain when joining points A, B and C? Explain. 
This problem can be solved in different ways. This problem was exposed in a questionnaire 

in such way that it could be solved with pencil and paper.  The main difficulty that the students 
faced was to understand the statement of the problem; this was evidenced in their arguments and 
in their figures. Moreover, the drawing converted itself into an obstacle for the majority of them. 
This ratifies what Sandoval (2001) found. 

Reasoning strategies used by Cabri: in the first part of this activity, the students organized 
into 7 teams. Once finished with the construction, the first strategy to establish the type of figure 
formed was to use measurement. This means, the triangle was equilateral because its sides are 
equal and each of its internal angles is 60°.  

Plenary activity: second part. We will present some examples to show the reasoning 
strategies developed by students.  

First strategy. Nancy and Enrique were able to see the geometrical configuration containing 
the perpendicular bisector, the radio AB and two right triangles. They illustrate their ideas using 
a Cabri-construction built by Gustavo. It must be emphasized that the measurement command 
was not used and, besides, that the reasoning used the static figure. Nevertheless, we remark that 
dragging and measurement were two very important tools in the exploration stage and for 
conjectures formulation. 

(a)  (b)   (c) 
Figure 1. (a) Reproduction of Nancy-Enrique’s construction; (b) and (c) the students show 

how the two right triangles are determined by the perpendicular bisector. 
 
Nancy:  “I thought it was due to the equal measures [she indicates the segments AO 

and OB; O is the mean point of AB]. The altitude… [she refers to OC]. 
When joining them…the measure at both sides will be the same.” 

Researcher:  “What measure?” 
Nancy:  “This one [indicating AC] and that one [indicating BC].” 

We can infer, from this description that Nancy perceives the geometrical configuration 
formed with the perpendicular bisector that divides the triangle ABC in two right triangles AOC 
and BOC. Students have not studied yet, congruence criteria for triangles. Nevertheless, this is 
what they seem to be trying to express as resulting from their exploration.  
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This dialogue shows a reasoning strategy close to geometric theory.  They use two basic 
geometric elements: the radii of a circumference and the definition of perpendicular bisector to 
answer the researcher questions about why a triangle is equilateral. Their first answer is 
supported in the definition of the perpendicular bisector: Enrique specifies that the perpendicular 
bisector divides to radius AB in two equal parts and allows forming two right triangles. Then, he 
asserts the segments AB and AC are radius of the same circumference. In his intervention, 
Enrique showed partially, a conceptual control. This student did not use the measurement in his 
construction and its reasoning was on the static figure. 

Strategy 2. Jorge presents a complete solution even if he did not participate in the team work. 
His reasoning is similar to Enrique’s but much more systematic.  

Jorge:  “We have already drawn the segment from this (indicating A, and AB) The radius 
is always the same (moving his hand along the circle)…All right, we have already 
drawn the perpendicular bisector…that passes through the mean point of AB. That 
is the altitude. Now, we take the intersection point formed by the perpendicular 
bisector and the circle. The radius is always the same, so this length (AB) is 
always equal to this one (AC). Then, this (AC) is equal to this (BC).”  

There are no measures at all on the screen. 
Researcher:  “Why?” 
At the beginning, Jorge is unable to support his assertions. A bit later, he produces the 

following dynamic description: (Figure 2). 

(a) (b) 
 (c) (d) (e) 

Figure 2.  Sequence of the Jorge’s idea. (a) and (b) Reproduction of the Jorge’s construction; 
(c), (d) and (e) Jorge’s exploration used dragging. 

 
Jorge:  “I built everything…then I hid the perpendicular bisector and draw a line through 

the intersection point of the circumference and AC. Afterwards, I began dragging 
the line and saw that this line [he refers to the line that is superposed on the 
segment AC] has the same length from point C to the point A and its length is 
equal to that of segment AC. Then I drag the line up to point B, and I discovered 
that they have the same length. Then I measured the distance from point B to 
point C and it results the same. But I need to create a point in the line so that I can 
explain that well to you.   

The researcher suggests the use of Compass command. Then, Jorge continues. 
Jorge:  “Now, I can explain. Now, I can drag it. This point hits (he refers to the point P 

created by compass on the line) with A and with B. Then, both segments are 
equal.” 
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(a)   (b) 
 (c)  (d)   (e) 

Figure 3. Sequence of the strategy of the Jorge’s reasoning. (a) and (b) Reproduction of the 
Jorge’s process. (c), (d) and (e) Jorge’s explanation supported by dragging. 

 
The following lines show how Jorge tries to convince his fellows about the appropriative of 

his reasoning. Afterwards, Jorge uses measures of segments to produce more evidence 
supporting his assertions.  

Jorge’s argumentation shows another type of strategy which exemplifies a dynamic 
reasoning. This strategy illustrated a conceptual control on what he saw in the screen 
(visualization process), being the dragging a fundamental tool in this process. The measurement, 
in this case, was used in the transition of the theoretical level to the perceptual level (Olivero & 
Robutti, 2001a). The reasoning outlined by this student was based on the relation between the 
radii of the same circumference and the theoretical status of the compass. 

The foregoing examples illustrate that, as a result of the interaction with Cabri, all teams 
partially established the explanation why triangle ABC was equilateral. This (incomplete) 
justification was based on the relation between the radius of the circumference itself. The former 
shows a possible change of the status of the representation, that is, of an interpretation of the 
drawing towards one closer to the geometric object. It may be affirmed that these tools (dragging 
and measurement), pertaining to Cabri, allowed the students to confront their perception with the 
internal theory of the machine as a control mechanism.  

All the groups conjectured the triangle ABC was equilateral, and they justified (initially) it 
with the measurement and the dragging, in test modality. The dragging was used in different 
modalities (Arzarello et al., 1998). The modality of wandering dragging was used, by the 
students, when they did not have explanation to his conjectures or they did not know what to do, 
“exploration phase”. In some occasions the dragging was used in addition to the measures along. 
The test dragging was used to validate the construction. At the beginning, it went only at 
perceptual level (appearance), later it included the measurement to validate this perception, 
which complemented with a numerical verification. An example of lieu muet dragging was when 
Jorge explains why the three segments are equal by means of the superposition method. 

We emphasize that the Jorge’s activity illustrates how the tools of dragging and measurement 
were used in the transition to the perceptual level from the theoretical level and vice versa. 

The reasoning strategies of the students clearly show how they changed the relationships 
among the geometrical objects pertaining to the situation under study: beginning at the intuitive 
level, based on the perception of the form (appearance); then going through the empirical stage 
based on numerical results of several representations, until reasoning with certain elements from 
mathematical formalism. The relationships between the perceptual and theoretical acts, was 
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awaken in the students thanks to the use of the internal theory of Cabri (which controls the 
electronic drawing).  

Final comments  
The Cabri drawings provided the students with a major evidence level than the drawings with 

pencil and paper. These drawings are a mirror of the internal geometrical universe of the 
machine and, finally, it is closer to the geometric object. Given these characteristics, it seems 
possible a bridge exists between the geometric controlled evidence of Cabri and the geometric 
argumentation developed in the classroom.  
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This paper presents results from a multi-year research project

1 

exploring the development of 
middle school students’ competencies in justifying and proving. In particular, we present and 
discuss results from a written assessment completed by 394 sixth through eighth grade students. 
The assessment questions that are the focus of this paper targeted the idea of generality—both 
the idea that a general argument (i.e., proof) offers an absolute guarantee regarding the truth of 
a statement or result and the idea that empirical evidence does not suffice as proof.  
 

The nature and role of proof in school mathematics has been receiving increased attention in 
the mathematics education community with many advocating that proof should be a central part 
of the mathematics education of students at all grade levels (Ball, Hoyles, Jahnke, & 
Movshovitz-Hadar, 2002; Knuth, 2002; Schoenfeld, 1994; Sowder & Harel, 1998). Such 
attention is also reflected in current mathematics education reform initiatives. In contrast to the 
status of proof in previous national standards documents, its position has been significantly 
elevated in the most recent document (National Council of Teachers of Mathematics [NCTM], 
2000). In particular, the Principles and Standards for School Mathematics (NCTM) recommends 
that the mathematics education of pre-kindergarten through grade 12 students enable all students 
“to recognize reasoning and proof as fundamental aspects of mathematics, make and investigate 
mathematical conjectures, develop and evaluate mathematical arguments and proofs, and select 
and use various types of reasoning and methods of proof” (p. 56). These recommendations, 
however, pose serious challenges for school mathematics students given that many students have 
found the study of proof difficult. In fact, research has painted a relatively bleak picture of 
students’ understandings of proof (e.g., Balacheff, 1988; Bell, 1976; Healy & Hoyles, 2000; 
Porteous, 1990; Senk, 1985, Sowder & Harel).  

Although students’ difficulties with proving have been attributed to a variety of factors, one 
factor, an understanding of generality, is critical to developing an understanding of the concept 
of proof. One aspect of generality concerns the idea that a proof offers an absolute guarantee 
regarding the truth of a statement or result. A number of researchers have investigated student 
understanding with respect to this particular aspect; such studies have found that many students 
do not seem to have an understanding of this aspect of generality. For example, Chazan (1993), 
studying high school geometry students, found that some students viewed deductive proofs as 
verifications of single cases that were subject to possible counterexamples. Porteous (1990) 
examined the type of evidence students found to be convincing. His results indicated that when 
presented with a particular case, over half the students empirically checked it rather than 
appealing to the proof of the general case that they had previously been shown and had 
presumably accepted. Similarly, Fischbein and Kedem (1982) found that most of the students in 
their study opted for supplementary checks of an already proven statement, one with which they 
had previously expressed their full agreement. A second (related) aspect of generality concerns 
the idea that empirical evidence does not suffice as proof. Again, for many students this aspect of 
generality appears to be one that they do not adequately understand—a finding that predominates 
the results of many studies is students’ reliance on the use of examples to prove the truth of a 
statement or result (e.g., Balacheff, 1988; Healy & Hoyles, 2000). For example, Healy and 
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Hoyles, in their study of high attaining 14- and 15-year old students, found that empirically-
based arguments dominated the nature of justifications students provided in response to the 
researchers’ assessment questions. Chazan also reported a similar finding: students believed that 
empirical evidence allows one to make general claims about the truth of a proposition.  

Although the aforementioned studies suggest that students do not have a very robust 
understanding of (either aspect of) generality, little research has specifically explored the nature 
of students’ understandings of generality itself. The purpose of this paper is to provide insight 
regarding students’ understandings of (the limitations of) empirically-based arguments as well as 
their understandings that a general argument (i.e., a proof) treats the general case. In particular, 
we address the following two questions: To what extent do students think that examples suffice 
as proof? and To what extent do students recognize that a proof treats the general case?  

Methods  
Data were collected from 394 middle school students (grades 6-8); the students all attended 

the same middle school. The middle school recently adopted the reform-based curriculum 
Connected Mathematics Program; the adoption of this particular curricular program is 
noteworthy given the program’s emphasis on mathematical reasoning (Lappan, Fey, Fitzgerald, 
Friel, & Phillips, 2002). The primary source of data was student responses to written assessment 
items. The two particular items that are the focus of this paper targeted the idea of generality. In 
the first item, students were given two arguments—one examples-based and one general (i.e., 
proof)—justifying the truth of a statement. Students were then asked to decide (and explain their 
decision) which argument demonstrated that the statement was always true. In the second item, 
students were given a statement and asked if the statement was true for a small set of numbers. In 
this latter item, students could either attempt to construct an argument demonstrating the 
statement’s truth in general, or they could use the method of proof-by-exhaustion to demonstrate 
its truth for the specified set of numbers. A follow-up question then asked students if their 
justification also demonstrated that the statement was true for any number (not just those 
numbers included in the initial set). The students’ responses to the assessment items were 
analyzed in terms of the two aspects of generality described previously. In particular, students’ 
responses were coded using the following general coding descriptions (cf. Knuth, in progress; 
Waring, 2000): students consider checking a few cases as sufficient; students are aware that 
checking a few cases is not sufficient, but do not seem aware of the need for a general argument; 
students are aware of the need for a general argument, but perceive general arguments as limited 
(e.g., examples still need to be verified); students are aware that a general argument treats the 
general case.  

Results & Discussion  
Due to the page length limitations of the conference proceedings, results from the two focus 

items are briefly presented and discussed here (more detail as well as additional results will be 
presented during the conference session).  
Assessment Item 1  

Prior to presenting the results for this item, it is worth noting a relevant finding from the 
previous year’s assessment: consistent with findings from previous research, students 
demonstrated an overwhelming reliance on the use examples as a means of demonstrating and/or 
verifying the truth of a statement. For example, the majority of students at all three grade levels 
“proved” that the sum of any two consecutive numbers is always an odd number by providing 
several examples demonstrating that the statement was indeed true; very few students attempted 
to provide a general argument. Students’ reliance on the use of examples led us to wonder 
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whether students actually believe that examples suffice as proof or whether it may be the case 
that they are aware of the limitation of empirical evidence, yet, are unable to produce a general 
argument themselves and thus examples-based arguments are their only recourse in attempting to 
justify (Healy & Hoyles, 2000, makes a similar observation). To address this issue we presented 
students with the following statement: When you add any two consecutive numbers, the answer 
is always odd. Students were then given two arguments justifying the statement (the arguments 
were attributed to fictitious students). The first argument, Samari’s, shows three examples of 
consecutive numbers adding up to an odd sum, and a concluding statement that the given 
statement is true for all consecutive numbers because it is true for the three examples. The 
second argument, Ellen’s, uses a deductive chain that begins by stating that with two consecutive 
numbers you always get one odd and one even number, and since an odd number and an even 
number sum to an odd number, any two consecutive numbers will always sum to an odd number. 
Following presentation of the two arguments, students were asked the following question: Whose 
response tells us that if we were to add any two consecutive numbers we would get an answer 
that is an odd number? Explain your answer.  

Given that the majority of students produced examples-based justifications when asked to 
prove the statement on a previous assessment, one might conjecture that such a justification 
would also be the most popular choice among the students. To some extent this was indeed the 
case; across all three grades, approximately 40% of the students selected Samari’s argument. 
Typical student explanations included:  

Samari’s response because it gives examples of 2 very different numbers, and it explains 
very well (7th grade student).  
Samari’s. Because she explains it and she also gives examples to prove it (7th grade 
student).  
Samari’s response because she actually has an answer to give that proves this. So you add 
two consecutive numbers together you will get an odd number (8th grade student).  
Samari’s is correct because she can give proof and Ellen’s just tells (6th grade student).  

A significant proportion of students (~30%), however, selected Ellen’s argument as the 
argument that proves the statement. The following responses are representative:  

Ellen’s response makes more sense because Samari’s response worked for those two  
numbers but it doesn’t prove it always would (6th grade student).  
Ellen’s because she tells why it will always be an odd number and Samari’s show some 
examples that show some consecutive numbers and their answers (6th grade student).  
Ellen’s because she tells us numbers go even, odd, even, odd, etc., and that when you add 
an even number with an odd number, the answer is always odd which Samari doesn’t tell 
us, she just gives examples (7th grade student).  
Ellen’s. Samari’s response proves it’s true for 2 pairs of numbers only. Ellen’s proves it’s 
true in all cases (8th grade student).  

The results suggest that when given the choice between a general argument and an examples-
based argument, a significant proportion of students selected the general argument as the one that 
demonstrates the truth of the given statement for all cases. Thus, it may be that although many 
students are unable to produce general arguments themselves, they do seem to recognize the 
difference between a general argument and an examples-based argument and, moreover, they 
may view the general argument as a proof.  
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Assessment Item 2  
In a written assessment presented to students during the previous school year, they responded 

to the following item (cf. Porteous, 1990): Sarah discovers a cool number trick. She thinks of a 
number between 1 and 10, she adds 3 to the number, doubles the result, and then she writes this 
answer down. She goes back to the number she first thought of, she doubles it, she adds 6 to the 
result, and then she writes this answer down. [The preceding text was also accompanied by a 
worked out example using the number 7.] Will Sarah’s two answers always be equal to each 
other for any number between 1 and 10? Although the majority of students “proved” that Sarah’s 
two answers would always be equal to each other by using examples, a significant proportion 
(~20%) used the method of proof-by-exhaustion to justify that the two answers would always be 
equal to each other. The students’ use of this method prompted us to question whether students 
were knowingly (in a mathematical sense) exhausting the set of possibilities or whether they 
were simply testing examples (albeit the complete set). In other words, did these students 
perceive a difference between checking some cases and checking all cases in justifying the truth 
of a proposition? To address this question, we presented students with the same item the next 
year and, in addition, included the follow-up question: Does your explanation show that the two 
answers will always be equal to each other for any number (not just numbers between 1 and 
10)?  

Students’ responses to the first part of the question were similar to the results from the 
previous year; however, their responses to the second part were perhaps the most interesting. Not 
surprisingly, the majority of students used examples as their method of justification for both 
parts. The following are representative of the responses (for both parts) from such students:  

Yes because I tried some of the other numbers and for all of them I got the same answers. 
It applies for all numbers because I tried it with different examples [student shows two 
examples greater than 10] (8th grade student).  
Yes, the answers will always be equal because I tried her method using 5 and the results 
came out equal. I also tried 8 and the answers came out equal. Yes, it is true with every 
number because I tried that method with 11 and the answers came out equal (6th grade 
student).  

In contrast, some students seemed to recognize the limitation of examples as a means of 
proof:  

[Student correctly works out an example using 8.] No, just because you do two examples 
[i.e., the given example and the student’s worked out example] doesn’t mean that if you do 
another two that they’ll be the same. No, because if you do 3 more problems like these it 
doesn’t mean that they will be equal to one another (6th grade student).  

Somewhat similar in nature were responses from students who seemed to recognize that they 
could use proof-by-exhaustion to justify that the two answers would always be equal when the 
choice of numbers was limited to those between 1 and 10, and that this method of justification 
would not suffice for justifying that the two answers would be equal for numbers outside that 
range. The following responses are representative:  

Yes, all results will be equal between 1 and 10 [student shows examples for all numbers 1-
10, except 7 which was worked out as a part of the item]. No, my explanation shows the 
two answers will be equal just for numbers 1-10 (8th grade student).  
Yes [student shows examples for numbers 1-10]. No, I only gave explanations for 1-10 (7th 
grade student).  
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These latter responses seem to suggest that for some students examples do not suffice as 
proof, and that they do in fact recognize the limitation of empirical evidence as a means of 
justification.  

Interestingly, a number of students, who also used the method of proof-by-exhaustion for the 
first part, concluded (sans a general argument) that the two answers would be equal for all 
numbers. In some cases, students simply stated that because they tested the numbers 1-10 and the 
two answers were always equal, then the number trick would also work for numbers outside that 
range. For example, one student responded:  

Yes [student shows examples for all numbers 1-10]. Yes, because I did it for each number 
between 1 and 10 (8th grade student).  

In other cases, students based their justification for the second part on further examples:  
Yes, Sarah’s two answers will always be equal to each other for any numbers between 1 
and 10 because I tried every number between 1 and 10 and it does work. My explanation 
shows that the two answers will always be equal to each other for any number not just 
numbers between 1 and 10 because if you tried 56+3=59; 59x2=118.  56x2=112; 
112+6=118 (7th grade student).  
Yes, Sarah’s two answers will always be equal for 1-10. I know that because I tried each 
number 1-10. Yes, the two answers will always work for any number. I checked by trying 
different numbers, both large and small, odd and even (6th grade student).  
Yes, because I did examples for 1-10 numbers [student shows examples for numbers 1-10]. 
Yes, it does because if you do 12 or even 15, it will equal the same number (8th grade 
student).  

These latter two sets of responses suggest that these students may not perceive a difference 
between using proof-by-exhaustion as a method of proof and simply using examples as a method 
of justification—these students may have simply tested 10 examples and then tested additional 
examples to “widen” their examples-based justification.  

Lastly, the data also include responses from students who demonstrated the ability to produce 
a general argument as their means of justification. In such cases, these students recognized the 
underlying mathematical relationship, although their articulation of the relationship varied in 
terms of clarity; nevertheless, it is clear that these students were attempting to treat the general 
case. Sample responses include:  

Yes they will be equal because when you add 3 and multiply by 2 it’s the same as 
multiplying by 2 and adding 6. Yes it does because:  (a+3)2 = 2a+6. They are the same 
thing and ANY number will work (8th grade student).  
Yes, Sarah’s answers will always equal to each other for any number between 1 and 10 
because both number tricks are doing the same thing to the number. Both number tricks 
double the number. Since Sarah adds three before she doubles the number, she has to add 
six to the other trick because she doubles before she adds. [Student shows examples using 
23 and 83 as the starting numbers.] Yes, this number trick will work for any number 
because each of the tricks is doing the same thing to the number, just written differently 
(8th grade student).  

There were also some interesting responses in which students presented a general argument 
for the first part, but then seemed to feel that the general argument was not “general.” For 
example, one student felt that his general argument only applied for the numbers 1-10:  

Yes, because if she always adds 3, then doubles your answer and gets that answer. And 
then goes back and does it in a different sequence she’ll always get the same answer. No, 
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because she only did numbers between 1 and 10 (6th grade student).  
Another student responded similarly initially, but then had a change of mind—she seemed to 

realize that the general argument she presented was indeed general:  
Yes, I think it would work because each time you get the answer you will get the same 
answer as the one before. I think this because the 1st time through, you add 3 and then  
times by 2. But the 2nd time through, you times by 2 and then add 6. The 2nd time through 
since you don’t add 3 when you add 6, that is what doubles the 3 like the 1st time through, 
so both ways you add 6. No, it does not show that numbers higher than 10 would work. 
[The student then seems to change her mind.] As I showed above, it [the justification] is 
the same thing that would be used here (6th grade student).  

Finally, a number of students who presented a general argument felt the need to “prove” that 
their general argument was general by demonstrating with examples that it worked. The 
following student’s response is representative:  

The two answers will be equal because you’re doing it [the steps] in reverse order and the 
reason there is a 6 instead of a 3 is because the 3 gets doubled in the second way. Yes, it 
does and to prove it I will show you [students shows that the number trick works using the 
number 17] (6th grade student).  

Concluding Remarks  
In closing, the results suggest that many middle school students lack an understanding of 

generality. Yet, the results also suggest that some students do possess an understanding of 
generality: Students produced and selected general arguments, recognized the limitation of 
examples as proof, and correctly used proof-by-exhaustion. If more students are to develop their 
understanding of generality—and of proving more specifically—then they must be given 
opportunities to engage in activities which highlight important ideas about proving.  

Endnote 
1.  This research is supported in part by the National Science Foundation under grant No. REC-
0092746. The opinions expressed herein are those of the authors and do not necessarily reflect 
the views of the National Science Foundation.  
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The goals of the present study are to take an in depth look at preservice high school mathematics 
teachers’ conceptions of proof and to identify the main differences between the students of the 
four years of university training. We began by conducting individual interviews with 12 
preservice teachers and then we distributed a written questionnaire to 309 students. The 
questions were designed to identify the students’ conceptions regarding different mathematic and 
pedagogic aspects of proof. An implicit teaching of proof in combination with the lack of the 
teaching of certain elements is, in our opinion, the cause of certain weaknesses in the 
conceptions of proof that we observed among our participants. In this article we will present the 
main results of our study and offer certain recommendations in order to improve the teaching of 
proof in university training.   
 

Problematique and general theoretical framework  
For the past two decades, we have witnessed a world wide trend toward a gradual return to 

the teaching of proof in high school program of studies. The current situation in Québec is in line 
with this world wide trend. In the curriculum of the 90’s there was a reinstatement of the 
teaching of proof and the next one, scheduled for 2005, promises to make even more room for 
proof. Before re-integrating the teaching of proof in our high school program of studies, there 
seems to be an important question that should be answered: do teachers have the necessary 
competencies to adequately teach proof it at the high school level? Some studies have 
highlighted certain problems regarding the conceptions of proof among mathematics students 
and in the university training of preservice mathematics teachers. (Alibert et al, 1987; Almeida, 
1995 ; Anderson, 1999 ; Gardiner and Moreira, 1999 ; Harel & Sowder, 1998 ; Jones, 2000; 
Mingus & Grassl, 1999; Moore, 1994; Tall, 1991). However, only very few studies have been 
conducted regarding this subject and they only present an image of the participants’ conceptions 
at a fixed moment in time, instead of trying to show the evolution of their conceptions over a 
certain period of time. Such concern seems essential as we do not only want to show our 
participants’ conceptions of proof at a specific moment in time during their university training, 
but rather examine the role of university training on the development of the conceptions of proof 
among our preservice high school mathematics teachers.  

Subsequent to Knuth’s (1999) study concerning the conceptions of proof among high school 
mathematics teachers, he proposed the following recommendation: “to trace the development of 
teachers’ conceptions of proof during the process of learning to teach secondary school 
mathematics”. In his opinion: “Studies of this nature would provide a more complete picture of 
the factors that influence teachers’ conception of proof” (Knuth, 1999, p. 169-170). He adds that 
this type of study could also help better target the elements within the process of the education 
system of preservice teachers, enabling the possibility of change regarding the conceptions of 
proof among teachers. With this in mind, a general research question arises: What conceptions of 
proof do preservice teachers develop during their university training?  

In order to identify the conceptions, we felt that it was imperative to carry out an exhaustive 
review of the literature dealing with the different factors that make up the conceptions of proof. 
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Knuth’s (1999) model of the conceptions of proof, based on the work of Harel and Sowder 
(1998), strongly influenced our work regarding the identification of these different factors. The 
general structure of Knuth’s model is comprised of three main elements: the nature of proof, the 
role of proof, and the schemes of proof. These three elements are dealt with according to two 
different categories: proof in mathematics and proof in an education context.   

The first element, the nature of proof, refers to a certain type of mathematics culture of proof 
shared by the participants. It can be associated to a global, an occasionally philosophical, or a 
more pedagogic view of the process of validation. According to Knuth (1999), the conceptions 
associated to the process of validation influence the way teachers incorporate mathematics 
reasoning and proof in the classroom and the teaching methods they use to convince their 
students of these concepts. The second element, the role of proof, refers to more pragmatic views 
of this notion. Knuth (1999) concedes that teachers’ conceptions in relation to the role of proof 
affect their beliefs about what constitutes proof and justification in class. Lastly, Knuth (1999) 
defines the schemes of proof as being the processes that an individual adopts or accepts in order 
to eliminate his or others’ doubts concerning the validity of a statement.   

Methodology  
Our sample was comprised of 321 preservice teachers enrolled in one of the four years of a 

university mathematics high school teaching program. The participants were selected from four 
different universities in the province of Québec.   

We conducted individual interviews with a first group of 12 preservice teachers (6 from the 
first year and 6 from the fourth year). The questions used during the interviews were developed 
with the intention of targeting the different elements in our model of the conceptions of proof. 
Each interview was tape recorded and transcribed. We then meticulously analyzed their content, 
which enabled us to describe the conceptions of each of the participants in relation to the model 
of conceptions of proof. Based on these results, we developed a written questionnaire comprised 
of multiple choice questions. We then distributed it to 309 preservice teachers enrolled in any of 
the four years of the program. The construction of the questionnaire, like the interviews, was 
based on the elements found in the model of the conceptions of proof.      

The questionnaire included two main types of questions. The first type of question, inspired 
by the work of Almeida (1995), was comprised of different affirmations related to proof. The 
participants had to rate their level of agreement of the affirmations on a scale ranging from -2 to  

2. The affirmations incorporated mathematical and philosophical aspects of proof, for 
example:  

 
Other affirmations incorporated elements that were more pedagogic in nature:  

 

 



 

 572 

The second type of question, based on the work of Healy & Hoyles (1998), consisted of 
different proofs of the same statement. The participants had to judge certain aspects of proof 
including its validity, its explicit and convincing nature, and its pedagogic properties.     

In order to analyze the results obtained by our questionnaire, we opted for a statistic analysis 
of the participants’ answers. We began by conducting a descriptive analysis of each of the 
questions. Average, standard deviation, frequency, or relative frequency, were used in the 
analysis, depending on the question. This first analysis gave us a general picture of our 
participants’ conceptions of proof. Next, we conducted comparative analyses between the 
participants enrolled in each of the 4 years of the program, in order to try and identify if there 
were indeed differences in the participants’ conceptions between these sub-groups. In order to do 
this, we used multiple analyses of variance. Lastly, we conducted linear regressions between the 
sub-groups’ averages for the same question. Our intent behind this procedure was to verify if the 
differences observed between the averages varied consistently from one sub-group to another for 
the same question.   

Results  
Among the majority of the participants, the analysis of the collected data highlighted the 

presence of a moderate formalist view of proof and the process of validation. This majority sees 
proof as being a mandatory ritual and the mathematician’s main duty. Also, when validating 
proofs, they feel that rigor and the use of the usual formalism constitutes a sine qua non 
condition. Thus, formalism and rigor are, in their opinion, strongly linked to the writing of proofs 
and to the guaranty of their validity. For the most part, our results show that our participants 
consider proof as a mechanical construction that follows precise rules and uses a formal and high 
level of rigor, rather than a human construction in which validity depends on a social consensus 
of a group of experts.   

However, some of the results observed with the help of our questionnaire tend to contradict 
this formalist view, thus lessening this weakness. A majority of the students acknowledged that 
the discovery process in mathematics is characterized by intuition and a recursive trial and error 
process. In addition they recognized the need of a more informal, less technical language to 
explain proofs.   

When comparing the mathematical and pedagogical points of view, we observed that the 
pedagogical point of view put less emphasis on the importance of rigidity, while on the other 
hand it put more emphasis on the explicative properties inherent to proofs. Our results show, 
however, the presence of relatively simplistic conceptions about the different pedagogical proof 
teaching methods that exist. Our participants preferred traditional low student interaction 
teaching methods combined with repetitive drilling. In their opinion, the best way to develop 
students’ proof writing abilities is by providing them with many different models and by giving 
them as many opportunities as possible to reproduce these models in other contexts.   

Our different results also demonstrate that our participants have an exaggerated 
preoccupation regarding the form of proof in high school. In fact, they heavily insisted on the 
importance of respecting a strict proof writing format, represented mainly by the two column 
model; affirmation-justification. For many of them (mainly the participants in the beginning of 
their training), familiarizing students to this type of writing format should be the principal 
element of proof teaching. We also noticed that this exaggerated interest for this model of proof 
could influence their judgment when they were required to evaluate the validity of a proof. In 
fact, the majority of the participants chose proofs of this type as being those that they would have 
done in some of their university classes even though they didn’t think that they were the most 
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convincing. In addition, it seems that this two column model influenced many participants (more 
than one third of them) to identify a proof as being valid even when it wasn’t. According to 
Schoenfeld (1989), the rigid format of this two column model of proof writing imposed on 
students, forces them into a position of passivity or powerlessness regarding the lack of freedom 
they have when writing proofs, thus leaving the proof writing exercise void of any pragmatic 
meaning. This exaggerated insistence for this model of proof seems to us as being an important 
weakness in their conceptions.   

We have also observed some underdeveloped conceptions regarding the diverse possibilities 
and limitations of using the Cabri-géomètre software to teach proof. The students at the end of 
their training were, however, those who displayed the best knowledge about the different 
possibilities the software offers for the classroom. Contrary to the students in their first year of 
training, they recognized the pertinence of letting students experiment with the software in order 
to discover the geometric properties of figures. The majority of the participants in the beginning 
stage of their training felt that Cabri could only be beneficial to the teacher when helping 
reinforce visual representations written on the board. However, none of the participants 
mentioned the time and effort saving function that Cabri offers allowing the in-class 
reproduction of the mathematical empirical process of discovery and validation, nor that 
manipulations leading to the discovery of an invariant or of a proposition could facilitate the 
subsequent production of proofs by students, as pointed out by Olivero (2000) and Mariotti 
(2000).  

Regarding the different roles of proof, our participants showed very little interest in 
recognizing the role proof plays when convincing students of the exactitude of theorems taught 
in class. However, this role is identified by certain authors, Arsac et al (1992), as being for 
students, the role that best justifies the teaching of proof. Instead of attributing the role of proof 
in class to functions associated to a process of validation, the participants attributed it to more 
educative functions. Firstly, they mentioned that proof allowed for the development of logical 
and deductive reasoning. Secondly, they associated an explicative role to proof by recognizing 
its ability to enhance comprehension.  
The main differences of conception between preservice teachers from the four different 
years of training  

In general, we have noticed little difference between the conceptions of the participants that 
are in different years of training, even between those in the beginning of their training to those at 
the end of their training.  

We first noticed that, for the most part, our participants rarely recognized the social element 
of proof in mathematics, those just beginning their university training demonstrated the most 
ignorance regarding this subject. These same beginning students also demonstrated the most 
fragile and underdeveloped conceptions about the global functioning of the mathematical 
processes of discovery and creation. We found that the participants at the end of their university 
training had a better mathematics culture as they demonstrated a deeper knowledge about the 
general functioning of mathematics and its developmental history, as well as demonstrating more 
solidly rooted and less fragile conceptions about the nature of proof.   

We also observed, among our participants beginning their university training, more 
weaknesses when judging the validity of proofs. They had more difficulties than the other groups 
when identifying non valid proofs as valid. However, the proofs that they judged were from the 
grade five level of high school and thus accessible to all of the participants in our study. This 
result, somewhat surprising, has also been found by Recio and Godino (2001). It brings us to 
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believe that deductive reasoning and abilities to write simple proofs continue to develop 
throughout university training, even if such proofs are not necessarily taught in mathematics 
classes.  

Discussion  
The different weaknesses observed among our participants do not seem as if they can be 

attributed to an explicit teaching of proof at the university level. As many authors point out, 
(Alibert et al, 1987; Gardiner and Moreira, 1999; Hersh, 1997), we tend to believe that these 
problems stem from an implicit teaching of proof in combination with an absence of the teaching 
of certain elements. Looking at proof and its usage and place in the mathematics world with a 
more philosophical nature is, in our opinion, probably ignored or at best done in a superficial 
way, leaving the door open for the writing of proofs. Faced with this type of situation, preservice 
teachers find themselves having to construct their own conceptions from interpretations based on 
insufficient knowledge and on an experience that will unfortunately be rather short.   

Different observations lead us towards this hypothesis. Firstly, the presence of formalist 
views observed among our participants. In fact, according to Hersh (1997), the popular beliefs 
that can inspire preservice teachers as they develop their conceptions are fed by the 
fondationnistes philosophical perspectives in which one finds an idealist and mythical view of 
proof. The hypothesis of implicit teaching is also supported by the large amount of variation in 
the responses of our participants to the questions dealing with the nature and the role of proof in 
mathematics and in school. In fact, we think that the differences of opinion between the students 
from the same year show that they received little to no explicit teaching about the nature and role 
of proof. Also, the small amount of differences observed between the students beginning their 
training and those at the end, lead us to believe that the students have, for the most part, the same 
conceptions from one year to the next. It seems to us that a very small amount of changes take 
place between the beginning and the end of the students’ university training regarding their 
conceptions about the nature and the role of proof in mathematics and in school. On the 
academic level, the rather traditional and simplistic views about the way proof is taught, as well 
as the limited knowledge about the diverse possibilities that Cabri offers, lead us to believe that 
the preservice teachers’ conceptions are based on their former experiences as students in 
secondary school.   

Recommendations  
The weaknesses observed in our participants’ conceptions in combination with the small 

amount of evolution of their conceptions throughout their university training, leads us to make 
certain recommendations about university training of preservice teachers.   

It first seems imperative that preservice teachers should have a rather precise idea about the 
role and place of proof in mathematics as well as on the academic level. With this in mind, it 
seems important that a mathematics history course should explain the evolution of the process of 
validation by pinpointing the methods, the ways to conduct validations, and the place occupied 
by this process in the mathematician’s work throughout history. With this type of course, it could 
also be possible to give an overview of the philosophical perspectives that have most influenced 
the activity of validation in mathematics.  

During the preservice teachers’ training, more emphasis should be put on the studying of 
proof as a teaching tool. It is not easy for teachers in training to understand the ‘‘didactical 
transposition’’ that takes place when proof changes from a method of validation in mathematics 
to that of an object of teaching. In fact, as Arsac (1987) believes, proof or its demonstration 
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undergoes a particularly important change (didactical transposition) that can not be ignored if 
one wants to teach in a way that is adapted and meaningful to students.   

It is also our opinion that it is essential for students to receive an explicit teaching of proof’s 
different properties and of the mathematical process of validation. Such properties are not 
necessarily discovered only by the practice of writing proofs, but by an explicit description of 
this process. Also, we think that the teaching of the two column model of proof writing in high 
school must be reconsidered. Our intention is not to judge this model, however, we would like to 
point out that many authors (Alibert and Thomas, 1991; Leron, 1983; Schoenfeld, 1989) have 
criticized the abusive usage of this type of model of proof. Thus, it seems necessary to expose 
preservice teachers to different models of proof accessible to high school students, while 
insisting on their pedagogic characteristics.  

In closing, we think that software such as Cabri-géomètre deserve a more in depth study, 
going further than just looking at the simple development of technical competencies in figure 
construction or activity creation. The ways of integrating this tool into the classroom as well as 
its advantages and inconveniences on the development of proof writing abilities, must also be 
presented and discussed.   
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FROM CONCRETE REPRESENTATIONS TO ABSTRACT SYMBOLS  

Elizabeth B. Uptegrove Carolyn A. Maher 
Rutgers University Rutgers University 

uptegrov@eden.rutgers.edu cmaher@rci.rutgers.edu 
 
We report on the transition from personal representation to formal notation for a group of five 
students from a community of students engaged in doing mathematics for several years.  The 
group was introduced to standard combinatorial notation after they had already investigated 
concepts in counting using personal representations that they built over several years.  We 
describe the strategies used by the students to make sense of their ideas and report on how they 
came to represent their ideas using standard notation as they worked together to share and 
connect representations.  
 

Theoretical Framework  
It is an expectation that students learning mathematics eventually become proficient in the 

use of conventional mathematical notation.  Standard notation offers a common language for 
communicating mathematically; appropriate notation can be helpful in recording the important 
features of a mathematical problem.  Davis and Maher (1997) observe that students who are 
provided with varied mathematical experiences build repertoires of representations.  These 
representations are used for building new mathematical ideas.  Given rich and challenging 
investigations and ample time to explore and revisit ideas, students have an opportunity to 
construct new representations and connect these representations to other knowledge.   

According to Muter and Maher (1999), in the process of revisiting earlier ideas, learners 
extend and refine their representational strategies, moving from objects to symbols.  In studying 
the problem-solving behavior of a group of five students who apply their earlier representations 
and ideas to make sense of a general solution to a problem using standard combinatorial notation, 
we explore the following question:  How do students use personal representations in developing 
an understanding of standard notation?  

Method of Inquiry and Data Sources  
This research uses archived data from a longitudinal study (Maher, 2002) that has followed 

the mathematical thinking of a group of public school students (Ankur, Brian, Jeff, Michael, and 
Romina) from first grade through high school (1988-2000) and new data following the same 
students through university (2002-2003).  All sessions were videotaped, most with two cameras, 
one following the movements of students and the other following their written work.  
Videotapes, student work, and researcher notes provide the data for the analysis.  Summaries 
were made of all sessions, and they were coded for critical events (events related to students’ 
representations and use of standard notation).  All critical events were transcribed and reviewed 
for accuracy.  

Students worked on the following three problems (with variations and extensions) over 
several years.  Limitations in space prohibit a report on students’ initial work on these tasks.  For 
detailed reports of their initial experience with these investigations, see Maher and Martino 
(1996), Maher and Kiczek (2000), Kiczek, Maher, & Speiser (2001), and Powell (2003).  This 
paper focuses on how these students recalled and continued to extend their earlier work for some 
time after the after-school sessions were concluded.  

1. The Pizza Problem: Students were asked to find how many pizzas it is possible to make 
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when there are various numbers of toppings to choose from.  C(n,r) (the rth entry in the 
nth row of Pascal’s Triangle) gives the number of possible pizzas with exactly r toppings 
when there are n toppings to choose from.  

2. The Towers Problem: Students were asked how many towers of various heights they 
could build from Unifix cubes when there are two colors to choose from.  C(n,r) gives the 
number of towers n cubes tall containing exactly r cubes of one color.   

3. The Taxicab Problem: Students were asked to find the number of shortest paths from 
the origin (a point in the top left corner of a rectangular grid) to various points on the 
grid, when the only allowed moves are to the right and down. C(n,r) gives the number of 
shortest paths from the origin to a point n segments away, containing exactly r moves to 
the right.  

The students first worked on versions of the towers and pizza problems during elementary 
school.  For towers problems, they first built towers with Unifix cubes and for pizza problems, 
they first drew pictures (Maher and Martino, 1996; Maher and Kiczek, 2000).  They went on to 
use tree diagrams, letter codes, and lists with varying degrees of organization.  On revisiting 
these problems in later years, they developed more formal representations, first using tables and 
numerical codes, and then working with a binary notation (1 to represent a topping on the pizza 
and 0 for a topping not on the pizza) developed by Michael in 1997.  Here, we attend to their 
later work in connecting meaning to symbols as they explored Pascal’s Triangle and Pascal’s 
Identity (the addition rule for Pascal’s Triangle).  

Results  
In the May 1999 session, Ankur, Jeff, Michael, and Romina were asked to write the numbers 

in Pascal’s Triangle in a standard combinatorial notation.  They went on to generate Pascal’s 
Identity and to explain it to Brian, who arrived after the session had begun.  

In the May 2000 session, Brian, Jeff, Michael, and Romina investigated the taxicab problem 
and referred to Pascal’s Triangle in their investigation.  

In individual interviews (2002-2003), Ankur, Michael, and Romina built on and extended 
their earlier ideas.  
Episode 1: Writing Pascal’s Identity  

In the May 1999 session, Ankur, Jeff, Michael, and Romina were asked to write a general 
row of Pascal’s Triangle and to write and explain the general addition rule.  They wrote row N of 
Pascal’s Triangle as shown in Figure 1.  In response to the researcher’s request, the students 
generated Pascal’s Identity shown in Figure 2.                        

                            
 

The researcher asked the group to explain the meaning to Brian (B).  In response, Jeff (J) 
referred to the pizza problem.  Romina (R) and Michael (M) contributed.  
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J: If you added another topping onto your whole- Say we’re doing pizzas. If you add 
another topping onto it- 

R: You know how we get the triangle and how we go one two one and add those two 
together?  

B:  Yeah. 
R:  That’s what we’re doing right there. 
M:  You know why we add, though? 
J:  We were explaining why you add. 
B:  All right, keep going. 
J:  If it gets a topping, that’s why it goes up to the X plus 1.  [Jeff points to the right 

side of the equation.] And since it doesn’t get anything, it’ll stay the same.  And 
in this one it’s staying the same, right?  [Jeff points to the second term of the left 
side of the equation.] 

M:  Yeah. 
J:  Make sense? 
B:  Yes.  It actually does. 
J:  So that would be the general addition rule in this case. 

Episode 2:  The Taxicab Problem (2000) 
 In 2000, Brian (B), Jeff (J), Michael (M), and Romina (R) worked on three instances of the 

taxicab problem (finding shortest paths to three points at different distances from the origin).  
Their notations included color-coded paths drawn on grids representing streets (representing 
possible taxicab paths) and lists of paths organized according to complexity as measured in 
number of turns.  Refer to Powell (2003) for further details.  During this investigation, they 
moved from the three specific problems to an investigation of a general solution.  In so doing, 
they noticed that the numbers in Pascal’s Triangle appeared in the solutions list of the general 
taxicab problem.  

Michael and Romina made explicit the link between taxicabs and towers in two specific 
cases.  First Michael linked the 3-tall tower containing exactly two Unifix cubes of one color to a 
3-move path with exactly two moves in one direction.  

M: You have a tower of three and you have, you know, two colors.  So one, it’s 
either, you know, color x and two of color y. Well, this is direction x and two, two 
directions of y.  

A short time later, Romina described a similar link between specific 4-tall towers and 
specific taxicab paths of length four:  

R: The four is still three and one but then it’s three across and one down so it means 
it’s three of one color and one of the other color.  

Finally, at the end of the session, Romina (R) and Brian (B) explicitly made the general 
connection.  They had been using x and y to discuss general movement on Pascal’s Triangle.  
The researcher (R2) asked for clarification:  

R2:  And the x’s and y’s- What does x correspond to again?  
R:   x is across.  
B: Going across.  And y is down.  
R: Or a topping or a color.  All the same thing.  And all our y’s are down, toppings, 

color.  
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Episode 3:  Michael’s Interview (2002)  
Michael’s interview took place in April 2002, when he was in the second year of college.  

The researcher (R1) referred to the 1999 problem-solving session and asked Michael to talk 
about Pascal’s Triangle.  

R1: It was looking at how the triangle grew.  And, um, that was the question.  How 
can you talk about how that triangle grows?  And you had used the example of 
pizzas to think about the movement from one row of the triangle to the other.  

Michael (M) responded with a description of row 2 of Pascal’s Triangle and then a 
generalization to following rows.  

M:   OK.  If you had no toppings, that would be one pizza.  
R1:   OK.  So, where is that on the triangle? 
M: Well, I'm going to just draw it.  And then we'll find it.  You know.  If you're 

having only, using just one topping, you can make two possible pizzas with that.  
And then if you have all, all the toppings, that's one.  Right.  And then 
automatically you, I see that, that relates to this row.  [Michael points to row 2.] 
And I'm pretty sure it would go down, this is like a third topping, and a fourth 
topping.  [Michael indicates rows 3 and 4.]  Now I think the way I, um, thought 
about it is, like, the row on the outside would be your plain pizza.  [Michael refers 
here to the 1s down the left side of Pascal’s Triangle.]  And there's only one way 
to make a plain pizza.  And the next one over would be how many pizzas you 
could make, um, using only one topping, and then so on until you get to the last 
row which is, um, all your toppings.  [Michael refers here to the last number in 
the row.]  And, once again, you can only make one pizza out of that.  

The researcher next asked Michael to write Pascal’s Identity:  
R1: And, um, at that session, what the students did, I asked them to write an equation 

to show, for instance, how that might happen from one row to the next.  Um, so 
can you just do that, write.  

M:   Like a general equation?  
R1:   Well, um, that was what I was going for ultimately.    
M: To, uh, give an amount for any spot.  All right, so I guess we'll give, uh, these, 

you know, the row a name.  Um, call that r. And, um, I guess the spot in the row, 
like, you know, zero topping, one topping.  Call that, n sounds fine.  Just, just to 
like pick, you know, one spot and then see what-OK?  Um.  [There is a pause as 
Michael writes.] I'm just going to like work this out in my head and see if it 
actually works.  [After a brief pause, Michael writes the equation show in Figure 
3.]  

                                        
It is interesting to note that Michael’s notation was internally consistent (and correct) but 

represented differently from both what the group had done in 1999 and from the standard 
textbook notation.   

Later in that interview, Michael was asked to talk about his method for answering 
mathematical questions, in particular how his group approached the taxicab problem in 2000.  

M: I don't remember that specifically, but I know, I haven't taken math courses in a 
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while, but usually I, the way I think, uh, make everything into a problem first, 
OK?  

Episode 4: Romina’s Interview  
When Romina (R) was interviewed in July 2002 (just before her third year in college), she 

recalled how the towers problem could be used to explain the numbers in Pascal’s Triangle.  The 
researcher is identified as R3.  

R3: Michael would explain things by talking about, you're going from a number of 
pizza toppings to a different number of pizza toppings, and how the addition rule 
works there.  And you seemed to think of towers as the primary way to do 
Pascal's Triangle.  So can you tell me anything?  I sort of refreshed your memory 
a little bit.  Do you remember anything from how you guys worked on this or how 
the addition rule would apply here? Or maybe you can just tell me in this one how 
you did the addition rule.  

R: For this one?  I think this is how many toppings.  Like the top number, like the 
one choose one or one choose zero would be how many toppings.  Or I mean if 
we were talking about towers.  [Romina points to row 2 of Pascal’s Triangle.] 
This would be with two high with zero reds, one red, two reds.  And it just keeps 
going like three high, zero reds, one red, two, then three reds.  So it would be like 
three high and like out of those, you choose how many blocks of each color.  

Later, Romina made the connections among pizzas, towers and the binary notation that the 
group had originally used in 1997 to enumerate all possible pizzas:  

R3:   Can you look at this in terms of pizzas too?  
R: You have two toppings to pick from.  And then, what he [Michael] did with this 

one [Romina indicates row 2 of Pascal’s Triangle.] is either you could- now, you 
could add a third toppings to your pizza.  [Romina indicates row 3.]  Like you 
have three options, you could either not add anything to the pizza.  Or you could 
just add one more topping.  

R3: All right.  So when you said, "add one more topping," or "not add one more 
topping," can you relate that to red and blue?   

R: You either, you add one more red block, or you just keep it consistent and add, 
just add another blue.  So blue would be like nothing, like not an ingredient, and 
red would be an ingredient.  Like, his binary [Michael’s binary notation], it does 
the same thing.  A zero would be blue or no topping.  And a red one, which would 
be a one, would be a topping.  

Episode 5:  Ankur’s Interview 
Ankur was interviewed in July 2002, just before his third year of college.  He watched a 

videotape of the May 1999 session and wrote Pascal’s Identity as shown in Figure 2 as he 
viewed the discussion.  At first, he noticed that the bottom number in the result always came 
from the rightmost number on the left side of the equation.  The researcher (R3) asked for an 
explanation in terms of towers.  Ankur (A) explain a specific case in terms of towers – one builds 
the 4-tall towers with two red cubes by adding a red cube to the 3-tall towers that have one red 
cube and by adding a blue cube to the 3-tall towers that have two red cubes:  

R3:  This is a three-tall tower with one red.  [Refer to Figure 4; R3 indicates the first 
term.]  It's three tall, so it's got one red and two blues.  And then you changed that 
into a 4-tall tower with two reds.  So how are you going to do that?  

A:  With two reds?  You just add a red.  



 

 583 

R3: You have to put a red on it.  OK.  But this one's a three-tall tower that already has 
two reds.  [R3 indicates the second term in Figure 4.]  And it goes to a 4-tall tower 
that has two reds.  

A: So you got to add a blue. 
R3: So you’re going to add a blue to that one. 
A: Uh-huh. 
R3: OK.  So this one combines with this one in the sense that- 
A: You add all blues to this one [second term] and all reds to that one [first term].  A 

red to all three of those and a blue to all three of those and that’s how you get-
that’s why the bottom number’s X plus 1. 

The researcher asked Ankur to follow up this reference to the general case:  
R3:   So tell me again with the general one.  All right, here’s an N-tall with X reds.  [R3  

indicates the first term in Figure 2.]  And how are you going to get down there?  
[R3 indicates the last term in Figure 2.]  

A:   You’re going add a red.  
R3:   And you go from there [the second term in Figure 2] to there [last term]?  
A:   By adding the other color.  

 

 
Conclusions  

Davis and Maher (1997) suggest that students can learn new mathematics by building on 
powerful representations (mental or written) with which they are already familiar.  Many of the 
abstract ideas with which mathematics is involved have concrete early origins, such as building 
towers, making pizzas, and finding taxicab routes.  Over the years students had opportunity to 
build and extend their early ideas and to extend and refine them.  The earlier ideas became the 
building blocks for the more abstract and sophisticated concepts about counting illustrated in this 
report.  Michael’s use of notation across interviews over the years suggests that he was not just 
recalling a memorized formula but that he was using notation that made sense to him.  Michael 
talked about “making things into problems.”  In doing mathematics, Michael connected symbols 
to problem situations with which he was already familiar.  He represented these situations with 
symbolic notations that had meaning for him.  His use of formal notation expressed Michael’s 
generalizations of his ideas.  

The students located familiar numbers from their work with building towers and making 
pizzas in Pascal’s Triangle.  They investigated Pascal’s Triangle to explain whether those 
problems were related.  They explained Pascal’s Identity in terms of the rules for generating 
successive answers to the towers and pizza problems.  When a standard notation was introduced 
and its relationship to Pascal’s Triangle was observed, they expressed a connection between their 
personal representations and the standard notation using Pascal’s Triangle.  The meaning derived 
from their earlier work seemed to guide their exploration into Pascal’s Identity and the 
generalization of their earlier ideas seemed to facilitate their use of standard notation.  A year 
later, when they encountered the Taxicab problem, their understanding of Pascal’s Triangle 
became an important representation to detect the structural similarity in spite of the surface 
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differences.  Finally, some years after their last investigation into Pascal’s Triangle, they 
continued to maintain an impressive ability to explain and generate its numbers.  

Our research is abundant with examples showing that, over the years, this community of 
students built ideas that came from extensive personal experience.  The personal experience was 
accurate, relevant, and important in doing real mathematics in the sense discussed by Davis and 
Maher.  The students expressed the way they thought about ideas that were new to them by 
referring to their own personal representations.  In so doing, they recognized the structural 
equivalence among three problems that, on the surface, did not appear to be the same.  Moreover, 
this understanding was durable over time.   
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We report on initial results of a three-year longitudinal basic investigation into the development 
of mathematical ideas and forms of reasoning that students in middle school build in an informal 
after-school environment.  Thirty sixth-graders from an economically depressed, urban school 
district of 98% African American and Latino students, investigate well-defined, open-ended tasks 
in eight, one and a half hour sessions during the fall of 2004.  From students’ observations of 
and actions with physical objects (Cuisenaire rods) while solving problems, we report on their 
initial explorations and give examples of their reasoning.  Through their actions, observations, 
and reasoning, we observe students building a foundational understanding of ideas about and 
operations with fractions.  
 

Recently, educators and educational policy makers have identified the critical need for 
opportunities for academic and social development based on student initiative in contexts outside 
of traditional school hours (Urban Seminar, 2001; National Research Council, 2002).  This is a 
particularly pressing need within minority communities in urban school districts.  Martin (2000) 
reports on studies that show the expression of positive attitudes toward mathematics by African 
American children.  Yet, when researchers examine their course-taking and persistence patterns, 
eighty percent take no more mathematics than what is minimally required to graduate. He further 
indicates the scarcity of research on studies focusing on academic success among African-
American students.  Even fewer studies address those students who are successful, raising issues 
of individual agency, success, and persistence, which, according to Martin, remain largely 
underconceptualized.   We agree with Martin that individual agency is pivotal in the involvement 
of African American and other minority students with mathematics and with overcoming school-
engendered failure in the discipline.  To this end, we are investigating individual agency by 
looking for evidence of initiative and ownership of ideas through the analysis of the student-to-
student discursive practices as individual students in collaboration with peers build mathematical 
ideas and forms of reasoning.  

The theoretical framework that guides our analysis comes from extensive research on the 
development of representations (Davis & Maher, 1997; Kiczek, Maher & Speiser, 2001); work 
that traces the intricate and complex pathways for the learning of individuals within a larger 
community (Maher & Davis, 1995; Maher & Martino, 1996a, 1996b); the Pirie-Kieren 
Dynamical Theory for the Growth of Mathematical Understanding (Pirie & Kieren, 1994); and 
recent research on the discourse and inscriptions of learners as windows into learners’ 
development of mathematical ideas, heuristics, and reasoning.  

Objective  
The current research is centered on African American and Latino students from a low-

income, urban community, investigating how they build mathematical ideas and forms of 
reasoning in an after school, informal setting.  The investigation is designed to document student 
discourse and to promote the exercise of agency by inviting students to engage in meaningful 
mathematical tasks and to study over time how they change their participation role in 
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mathematics from what Larson (2002) describes as, “overhearers” to “authors” of mathematical 
ideas and texts.  We are studying this through the analysis of the student-to-student discursive 
practices as individual students collaborate with peers to extend and refine mathematical ideas 
and build forms of reasoning to justify their solution to problems. A question that guides our 
work is: What mathematical ideas and forms of reasoning do students from disadvantaged, urban 
middle schools develop and use as they investigate well-defined, open-ended tasks?  

Methods  
Twenty-four of the thirty sixth graders in the after-school mathematics program are 

participants in our study, which focuses on two sessions that took place early in the first school 
year of the project.  The main sources of data are as follows: (1) discourse patterns and other 
activity of students as they work on mathematical investigations recorded on videotape; (2) 
students’ inscriptions; (3) researcher and observer notes, and (4) research team’s planning and 
debriefing session scripts; session notes, and reflective diaries.  

In all eight research sessions, one and a half hours in length, there are four cameras, two 
technicians for each camera, one for video and the other for sound.  Our focus is on the students 
doing mathematics. Two cameras follow the introduction of the task as well as the facilitation of 
the whole-group session as the work and ideas of the students are made public.  Teachers from 
the school district who are interns in the study as well as graduate students were trained as 
ethnographers and assigned to observe and record the actions of students at particular tables.  

The research employs a framework for analysis that developed from our earlier work 
(Powell, Francisco, & Maher, 2003).  We begin by observing each videotape and then describing 
each one in five-minute intervals, identifying events, critical events, traces, and collection of 
critical events that determine a pivotal mathematical strand.  

Our study concerns the development of reasoning in students.  To facilitate this investigation, 
in conjunction with the research participants and teacher interns, we establish an environment 
negotiated around specific research norms (Maher, 1998).  They include researchers posing 
problematic situations that are thematically related within a strand of mathematics and that 
progress from complex to simple ideas.  Researchers monitor participants’ activity and thinking, 
organize and reorganize participants into work groups, facilitate participants to share their ideas 
and to listen to each other, encourage participants to justify and develop convincing arguments, 
and pose extensions and new problems.  The problematic situations or tasks are thought 
provoking and encourage sense making.  Participants build representations and heuristics some 
of which are manifest in the models they build, the gestures they make, and the inscriptions they 
write.  The questions researchers ask participants inquire into the sense they make of their 
activity.  Participant responses provide a window into schemes of reasoning that they are 
developing.  

Theoretically, we posit that under certain conditions ideas dawn and mature over time.  In 
our approach to interacting with participants in research sessions, we invite them to engage in 
mathematical tasks, to make public their ideas, and to share, discuss, and revisit them.  As they 
respond to our invitations, they shape the way they work with other and with us.  The 
participants take risks in making their ideas public since their ideas could be ignored, rejected, or 
criticized.  The invitation to be heard, listened to and have their ideas and their responses 
considered seriously in time becomes norms of their evolving mathematical microculture.   
Eventually, participants’ ideas naturally become reflected on deeply, presented publicly, 
submitted to challenge, available for negotiation, and subject to modification, and reconsidered 
and refined.  That is, the essence of developing and understanding mathematical ideas is often a 
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protracted, iterative, and recursive phenomenon (Pirie & Kieren, 1994), occurring over more 
time than is usually appreciated or acknowledged in practice in classrooms and in reports in the 
literature (Seeger, 2002).  Our research norms include providing participants with time to work 
individually and collaboratively as well as opportunities to revisit earlier ideas and build on 
them.  

Results  
We report on Sessions 3 and 4 consisting of 12 hours of videotape.  The students had 

available Cuisenaire rods, paper and pencil, as well as colored pens and overhead transparencies.  
The two principal investigators  (indicated below as R1 and R2) assumed the roles of teacher-
researchers.  
Examining One’s Ideas for Reasonability (Session 3: 11/19/03)  

R1 posed the following problem: Someone told me that they think 4 white rods together are 
half as long as the blue rod.  Do you or don’t you agree?  How many of you think that this is 
true?  (No one responds.)  I want you to talk together about this at your tables.  If you believe 
that it is not true, how can you convince us?  

In response, Ian at his table built a train of nine white rods alongside a blue rod, and said: “If 
you put four whites along the blue rod, there are one, two, three, four, five left over.”  R1 invited 
him to the overhead projector to build his model and explain his reasoning.  Using translucent, 
overhead-projector rods, Ian placed a train of five white rods side by side and above a blue rod 
and then a train of four white rods side by side and below the blue rod and said: “As you can 
see,” while counting the number of white rods below and then the number of white ones above 
the blue rod.  

Also using rods a the overhead projector, Kori claimed,  “Blue doesn’t have a half because 
it’s like an odd number.” Another student added:  “It’s nine.  Nine is an odd number, because if 
you add four and five it equals nine.  And, if you put four white rods and then a yellow, it will 
equal a blue rod.”  In response to a request by R1 to say what she was thinking, Kori replied that 
she and her partner placed four white rods and a yellow rod along a blue one.  She said, “The 
yellow equals 5 and that shows that the blue is not an even number.” She explained that they 
tried to use each of the different colored rods to see if any “equaled up to the blue, but none of 
them did.”  She indicated that four reds would be less than the blue, two yellows would be 
higher, two blacks would be higher, two purple would be too low.  She added, “We did find one 
that equaled blue, but it took three light greens.”  

Nia joined Kori at the overhead projector to share ideas inscribed on a transparency that they 
made in the previous session.  Then they placed the transparency on the overhead projector.  
Kori explained, ”Blue doesn’t have a half because it’s like an odd number.”  Another student 
offered, “It’s nine.  Nine is an odd number.  Because if you add 4 and 5 it equals 9.  And also if 
you put four white rods and then a yellow it will equal a blue rod.”  

During the remainder of the session, students explored relationships of the light green rods to 
the blue rod, reaching a final agreement that if blue were given the number name one, light green 
would have the number name one-third.  In the examples above, to explain their reasoning, 
students referred to the length of the rods either by their color names or by numbers, odd or even, 
assigned to their lengths.  
Using One’s Ideas to Convince Others (Session 4: 11/20/03)  

The students came to the session agreeing that if the blue rod were given the number name 1 
then the number name for light green is one-third and for white, one-ninth.  R1 posed to the 



 

 589 

students a problem based on the idea that the number name for blue was one: What name should 
we give to the red rod given that two white rods are the same length as a red?  

In response to the question students developed a heuristic to determine the number name for 
the red rod and then use it to explore the number names of the remaining rods in the set.  The 
students began to use models to work on a solution.  For example, Chanel staircase, that is, an 
arrangement of the rods according to length, with each level a train of the rod plus one white rod 
(one-ninth) to illustrate the idea of growing ninths and counted allowed:    

Chanel:  One-ninth, two-ninths, three-ninths, four-ninths, five-ninths, six- ninths, seven-
ninths, eight-ninths, nine-ninths, ten-ninths.  Oh!  I have to think about that one, 
nine-tenths? 

The indication of surprise and her expression that she needs to think further indicated some 
disequilibrium.  R2, who was observing Chanel’s group, noticed Chanel’s conflict and suggested 
to the group that they talk about it.   

R2: Chanel has an interesting problem that she wants you hear about.  Can you tell 
him [Dante] what you have here [pointing to her arrangement of rods]?  

Chanel immediately responded to the invitation:  
Chanel: See this is one-ninth, two-ninths, three-ninths, four-ninths, five-ninths, six-ninths, 

seven-ninths, eight-ninths, nine-ninths.  What would this one be [pointing to an 
orange rod]?  

Dante: That will be ten-ninths.  I mean - actually that should be one.  That should start a 
new one -This [blue rod] would be the old one, and this [orange rod] should start 
the new – or – it should be one-tenth.  

Michael: The orange should be called a whole.  
Chanel: Yea, one-tenth then get something bigger.  It would be one-half, one-third.  
Michael: No - You mean two-tenths.  
R2: What are you saying the orange should be?  What should the orange rod be 

called?  
Michael: The orange should be called a whole.  
Dante and Chanel both reply that the orange rod should “start the new one, one- tenth.” 
Chanel:  This [the orange rod] should start the new one, one-tenth. 
Michael: You lost me.  I would call orange a whole.   
R2:   I’ll be back.  You think about the problem. 

R2 left the group, first requesting that the students continue to think about the problem.  At 
this point, it appeared that the students were switching which rod represented the unit. Another 
source of confusion for the students might have come about from their use of the familiar 
language “whole” to represent the unit.    

After R2 left, the cameras captured the students working from their models, recording their 
observations, and talking softly with each other.  They drew each rod, beginning with a white 
rod, lining up white rods alongside each different colored rod in a staircase arrangement, and 
writing the number name in ninths beside each, leaving the problem of the orange rod unresolved 
until they finally got to that rod in their recording.    

In referring to the length of the orange rod, Dante labeled it ten-ninths and asserted, “I’m for 
calling it ten-ninths.”  

After recording for about four minutes, Michael and Dante remained with different number 
names for the orange rod.  They also exchanged ideas about whether the numerator of a fraction 
can be greater than its denominator.  
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Eventually, R1 came by, asking the students, “What do we have here?”  Chanel responded, 
pointing to her staircase that began with two white rods alongside a red rod, then with a white 
rod on top of one of each the larger sized rods, and explained:  

Chanel: We have one-ninth, two-ninths, three-ninths, four-ninths, five-ninths, six-ninths, 
seven-ninths, eight-ninths, nine-ninths and [when she points to the orange] one 
whole and that starts over so it’s going to be one-tenth.  

R1:  I see up to nine-ninths.   
Chanel: The blue ends it, so the orange starts ……  
R1: If we agree that we have to keep the white one-ninth, what is the length of the 

orange?  
Dante: Ten-ninths.  
R1:  Persuade Chanel.  
Chanel: I don’t believe it  
Michael: I thought  it was a whole.  
R1: They are all “wholes” - each of the rods is a whole rod - we need to find the 

number name for each.  
What surfaced was the issue about whether the numerator can be larger than the 

denominator.    
Dante: But how can a numerator be bigger than a denominator?  
R1:  It can - it is!  This is an example  
Chanel:  But the numerator can’t be bigger than the denominator! 
Michael: That’s the law of math! 
R1:  Who told you? 
Chanel: My teacher! 

The point is not whether her teacher told her that a fraction’s numerator cannot be greater 
than its denominator but rather that beliefs can collide with the logic of learners’ emerging 
reasoning even with based on their interactions with manipulative materials.  Indeed, Chanel’s 
reasoning triggers a cognitive conflict in her.  She says something that conflicts with what she 
remembers a teacher telling her and what she arrives at trying to make sense (ten ninths).  Her 
cognitive dissonance is signaled when she states that she has to think about the situation and 
switches to calling the orange rod nine-tenths.  The researcher tries to facilitate the building of 
community encouraging an exchange between two individuals who have thought about same 
situation.  

The students continued their recording, drawing each rod and giving it a fraction name as the 
appropriate number of ninths, concluding with the orange rod as ten-ninths.  

Dante:  [Finishing his recording for all the rods.]  Ten-ninths.  That’s what she said.  
Michael: The denominator can’t be higher than the numerator  
Dante:  Yeah, that’s what our teachers told us!  

Space limitation prohibits the presentation of the reasoning from other groups, their struggle 
with improper fractions, and the variety of reasoning that eventually led them to name the orange 
rod ten ninths.  

Discussion  
Students, through their actions, observations, and reasoning, progressed in building a 

foundational understanding of ideas about and operations with fractions.  In particular, when 
invited to share and support their ideas with others, their arguments became more detailed and 
refined.  They referred to the models they built when conflicts arose, either with the ideas of their 
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others in their group or with earlier beliefs, and relied on whether their ideas made sense in 
reaching a decision about the correctness of their solution.  With the rods in front of them, they 
continued to check out their ideas and the ideas of others.  The physical models of the rods were 
replaced by drawings and then by number names.  Other mathematical ideas that arose and were 
discussed included the following: the meaning of one-half in relation to a unit; the possibility of 
a non-unit fraction as a name for one of the rods; adding fractions with like or unlike 
denominators, using the rods to test their reasoning; comparing fractions using the length of the 
rods as tools for estimating; and equivalent names for fractions.  The multiple representations 
served as a rich source of images to reason with and examine earlier held ideas about fractions.  

Endnote 
1.  This work was partially supported by a grant from the National Science Foundation, REC-

0309062 (directed by Carolyn A. Maher, Arthur B. Powell, and Keith Weber).  Any opinions, 
findings, and conclusions or recommendations expressed in this paper are those of the author and 
do not necessarily reflect the views of the National Science Foundation.  
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Student difficulty with proof in geometry has been well established in the literature, yet research 
connecting teachers’ actions to students’ understanding of proof is limited. In a classroom-based 
interpretive study, we explored the relationship between teaching and understanding proof in a 
geometry class. More specifically, we tried to determine how one teacher’s actions influenced 
his students’ developing ideas about what constitutes a proof. An episode was chosen to 
illustrate some of the teacher’s typical actions such as encouraging student conjectures, 
encouraging others to evaluate and justify conjectures, coaching students to modify arguments, 
and modeling deductive reasoning. In this episode, we see at least one student attempt to make 
sense of the teacher’s suggestions and move from an empirically based proof scheme to an 
analytical proof scheme. In this teacher’s class, students appeared ready to make the transition 
to an axiomatic proof scheme. The teacher’s actions appeared to provide an effective means for 
helping students learn to develop arguments within the axiomatic system.  
 

Objectives  
In order to make sense of mathematics and to communicate mathematical ideas, it is essential 

to be able to assess and produce mathematical arguments, including formal proofs. Although 
student difficulty with proof has been well established in the literature (Chazan, 1993; Hart, 
1994; Martin & Harel, 1989; Senk, 1985), research connecting teachers’ actions in the classroom 
to students’ understanding of proof is limited (Herbst, 2002). We focus on reasoning and formal 
proofs in Euclidean geometry because, in the U.S., students typically are first required to write 
formal proofs in the context of Euclidean geometry in the secondary school. In fact, the 
geometry content is often taught by building a formal system of postulates, definitions, and 
theorems.   

In this paper, we describe a classroom-based interpretive study in which we explore the 
relationship between teaching and understanding of proof in a proof-based geometry class. In 
particular, we address the following question:  

What relationship exists between teachers’ actions and students’ actions within the context 
of the mathematics classroom in terms of the development of students’ proof schemes?  

This question is addressed by exploring teacher and student interactions that occurred over a 
four-month period in a high school geometry class. Through field notes, interviews, and 
classroom videos, we captured a ‘record of practice’ (Ball & Cohen, 1999) from which we drew 
conclusions about the relationships between teacher and student actions within the social context.  

Theoretical Perspectives  
The theoretical lens through which we view classroom interactions is the emergent 

perspective as described by Cobb and Yackel (1996). This framework is useful because it 
attempts to describe individual and collective learning in the social context of the classroom. In 
this study, we use this lens to focus on classroom activity related to student understanding of 
proof. More specifically, we identified classroom norms and mathematical practices established 
through joint negotiation between the teacher and the students as they participated in discussing 
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concepts and tasks related to mathematical proofs. We then identified ways in which these norms 
influenced or were influenced by students individual perspectives.  

Our interpretations of student understanding of proof have been influenced by researchers 
such as Balacheff (1991), Harel and Sowder (1998), and Senk (1985). These researchers have 
characterized students’ understanding of proof in terms of beliefs about what constitutes a proof, 
reasoning ability and formal proof-construction ability. For example, Balacheff suggests that 
students’ reasoning ability progresses through stages, whereas, Harel and Sowder provide a 
framework for classifying students’ proof schemes, or what, for students, constitutes a 
convincing argument. Harel and Sowder’s three main classifications of proof schemes are 
external conviction proof schemes (in which students appeal to an external authority to determine 
mathematical validity), empirical proof schemes (in which students appeal to specific examples 
or perceived patterns for validation), and analytic proof schemes (in which students use logical 
deductions to validate conjectures). Senk, on the other hand, describes students’ strengths and 
weaknesses in terms of formal proof writing at varying levels of difficulty. Although each of the 
three models influenced the data collection and analysis phases of our research, we focus on 
Harel and Sowder’s proof schemes model for interpreting student actions in the episodes 
contained in this paper.   

From a social perspective, elements of the classroom microculture as described by Cobb 
(2000) are important to consider when examining teacher-student interactions. In particular, 
social norms, sociomathematical norms, and classroom mathematical practices develop 
concurrently with students’ individual understanding of proofs. Using the emergent perspective, 
we also identify teachers’ actions, recognizing the significant impact these actions may have on 
the evolving microculture of the classroom as well as on students’ understanding of what 
constitutes a proof (Martin & McCrone, 2003). Because classroom events transpire in a social 
environment, teacher decisions not only influence social aspects of the classroom, such as 
evolving norms, but these decisions are influenced by the developing social fabric of the 
classroom as well. Thus, teacher actions may result from carefully considered pedagogical 
choices or from spontaneous reactions to classroom events. Examples of teacher decisions 
include choice of mathematical tasks, methods for modeling particular mathematical processes or 
constructs (in this case, proof), instructional strategies (such as questioning, direction instruction, 
cooperative learning), and teacher’s expectations for student performance.  

Methods and Data Sources  
We investigated the nature of tasks, the discourse, and patterns of interaction in a high school 

classroom as one way to begin to understand the complex processes of teaching and learning 
proof in geometry. We collected data in Mr. Drummond’s honors geometry class in a large 
school in the Midwestern United States. (This name and all others that follow are pseudonyms.) 
Mr. Drummond followed a textbook that developed Euclidean Geometry as an axiomatic system 
and required students to construct formal written proofs on a regular basis. Researchers 
observed, recorded field notes, and videotaped the class almost daily for the four months in 
which proof was a major focus of the curriculum. Transcripts of classroom episodes as well as 
field notes and student work were the sources of data upon which we based our analysis. Our 
analysis of the data was based on the “three-part-analysis” proposed by Miles and Huberman 
(1994). The components of Miles and Huberman’s analysis process include data reduction, data 
displays, and conclusion drawing. These refer to the processes of simplifying and transforming 
data, organizing data into compressed form, and identifying clear patterns or emergent trends in 
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the data. The results discussed below highlight the patterns found in daily classroom excerpts 
that supported the development of students’ understanding of proof in the class.  

Results  
As part of the data reduction and display process, we annotated and coded classroom 

transcripts. When focusing on the teacher’s actions we observed some recurring themes related 
to the category “Teacher’s expectations.” By analyzing interactions from a social perspective, we 
identified several social norms related to the teacher’s expectations. For example, Mr. 
Drummond frequently reminded the students that they were honors students and, as a result, he 
had high expectations for their performance. One of these reminders occurred when a student 
complained that a postulate that Mr. Drummond told the class to write down, was already in their 
notes. Mr. Drummond replied to the student, “Just go ahead and write it down. You can 
determine what you need to write down. You guys are honors students. If you don’t want to 
write anything down, don’t, but I wouldn’t suggest it.” In an interview, Mr. Drummond echoed 
his special expectations for honors students. When asked if he gave students points for 
participating in discussions, Mr. Drummond responded, “No, not in honors geometry. The reason 
I do that is because I’m not going to reward them for something I expect. There should never be 
a question whether or not honors students participate…. With honors students I think they 
understand, many of them understand, the need for participation and attention and usually are 
good enough at it without needing me to reward them for it.” In addition, Mr. Drummond 
expected his students to analyze each other’s arguments or formal proofs and to assess the 
validity of the arguments presented. He demonstrated this expectation by asking the class 
questions such as “what do you think?” when a student suggested a reason for her or his 
conjecture or “what’s wrong with this reason?” when discussing a formal proof that was written 
on the board. (The question did not necessarily imply that there was something wrong with the 
proof, just that students were to analyze the indicated portion of the proof to determine if it was 
correct.)  

Two other collections of codes that emerged from focusing on the teacher were categorized 
under “Instructional strategies” and “Proof modeling.” Codes in the “Instructional strategies” 
collection included questioning, direction instruction, and cooperative-learning situations, the 
three most commonly used strategies in Mr. Drummond’s classroom. Although “Proof 
modeling” may be thought of as an instructional strategy, we identified it as a distinct 
subcategory of teacher’s actions because the process of proving was a major focus of the 
research. Some of Mr. Drummond’s proof-modeling actions that we identified from coded 
transcripts included developing an outline, connecting the big picture to the details, and focusing 
on appropriate terminology and format. This modeling occurred as new proofs were developed 
as part of the teacher’s presentation of new material or as finished proofs were critiqued in 
teacher-led whole class discussions.  

Proof modeling was an important vehicle for introducing both structural and logic 
requirements for a proof. For example, during a discussion of a group-presented proof a student 
from a different group asked if a segment (such as segment AC in Fig. 1) had to be marked 
congruent to itself in a diagram in which a common segment served as a side in two distinct 
triangles, Mr. Drummond replied, “Yes. And you have to say it in a proof. You can’t assume it. 
Because what happens then, is … you say by SAS, those two triangles are congruent (referring to 
triangles such as triangle ABC and triangle ADC). But you’ve only told me about one pair of 
sides and one pair of angles. You need to be specific about what other side you used. So that’s 
why we have to mark it reflexive and say in your proof this is congruent to itself. So, when I see 
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SAS …as a reason in your proof, I better be able to look up in your proof and see a pair of sides, 
a pair of angles, and another pair of sides. I should be able to see the S, the A and the S all stated 
in your proof.”  

A  

 
BCD  

Figure 1. Adjacent Triangles  
Several other groups of codes emerged from analyzing student actions within the student-

teacher exchanges in the classroom. Included in these code groups were: ‘Beliefs about proof’ 
and ‘Reasoning strategies.’ Within the ‘Beliefs’ classification emerged several categories that 
were isomorphic to Harel and Sowder’s (1998) proof schemes. For example, when a student 
asked whether two angles in corresponding triangles were congruent, the teacher responded 
“yes” and then asked the student, “Why are they congruent?” The student’s response, “because 
you’re the teacher,” hints at the possibility that the student held an authoritarian proof scheme, 
believing that reliance on an authority is one way to determine the validity of a statement.  

By displaying several sequences of codes in the order in which they appeared in the 
transcripts, we were able to conclude that patterns were evident in the interactions between the 
teacher and the students. The classroom excerpts below illustrate typical teacher-student 
interactions in Mr. Drummond’s classroom, and show how student and teacher actions 
influenced one another in the classroom. These excerpts also illustrate the negotiation of 
mathematical meaning and how the teacher’s actions may have helped students see the flaws in 
their beliefs and move toward more sophisticated proof schemes.   
Episode 1  

This first episode is part of a teacher-led discussion on characteristics of congruent figures. 
Mr. Drummond had posed an open-ended task, asking students to record everything they knew 
about a pair of congruent pentagons, as shown in Figure 2. (Note that the dashed segments in 
each pentagon were not in the original sketch made by Mr. Drummond.) In the exchange that 
follows, one student, Nigel, asked if the distances between corresponding non-adjacent vertices 
were equal. (See dashed segments AC and QS in Fig. 2.) Mr. Drummond encouraged all students 
to explore this conjecture.  

 AB  QR  

Figure 2. Congruent Pentagons 
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Nigel:  I have a question.  
Mr. D:  Yeah.  
Nigel:  On that one [referring to pentagon ABCDE and pentagon QRSTU] …, could  you  

say that the measure between A and C is congruent or equal to the measure 
between Q and S?  

Mr. D:  Yeah. [pause] That’s good enough for you? Yeah? Don’t you want to know why?  
Nigel:  Why?  
Mr. D:  [Addressing the entire class] Nigel asked, is the distance from A to C, for 

example, the same as the distance from Q to S even though there’s no segment 
drawn there? I’m going to tell you yes. Anybody want to venture a guess why? 
[Sam] Jones?  

Sam:  Because they’re congruent.  
Mr. D:  The sides [of the pentagons] are congruent, but how do you know that these 

segments that aren’t drawn in there are congruent? [Sam] Jones, keep trying.  
Sam:  Well, the segments are arranged in the exact same way.  

Mr. Drummond did not comment on Sam’s last remark, but started to lead the class in a paper-
folding activity that would help them further investigate the conjecture.  

An analysis of Episode 1 highlights some of Mr. Drummond’s expectations of students as 
well as his mode of questioning during class discussions. We also see interactions with the 
students that demonstrate how he encouraged all students to investigate the justification process 
leading to proof. Sam’s responses provide a glimpse of his understanding of what constitutes a 
valid justification. First, because Nigel’s conjecture followed a series of conjectures made by 
other students in the class, it is clear that the classroom atmosphere is one in which students are 
expected to make conjectures and feel comfortable doing so. Mr. Drummond responded to 
Nigel’s conjecture by listening to what he said and redirecting the conjecture back to the class. In 
particular, we note that Mr. Drummond followed up on Nigel’s conjecture even though it led the 
class away from the intended lesson plan (to define and share examples of congruent figures). 
Mr. Drummond’s request for an explanation to support Nigel’s conjecture also may have 
contributed to the development of a sociomathematical norm, namely that conjectures should be 
justified or refuted.   

A second important aspect of this episode is the way in which Mr. Drummond encouraged 
students to justify the conjecture. He initially coaxed the students into “venturing a guess” or 
trying to develop a reasoned argument of their own. Sam responded to the prompt by providing 
some information to support the Nigel’s claim (“they’re congruent”). Mr. Drummond than took 
Sam’s “guess” and demonstrated that more needed to be done to provide a strong argument. He 
posed another prompting question and encouraged Sam to try again. Sam again responded, this 
time providing a warrant to support his original attempt. Here, the term warrant refers to a 
statement used to demonstrate the legitimacy of prior information in justifying a claim 
(Krummheuer, 1995). We call this encouragement and coaxing from Mr. Drummond coaching 
because it involves supportive and directive behaviors that are typical of an athletic coach.  

Lastly, we note that Sam’s responses give insight into his conception of a valid justification. 
His response, which is interpreted by Mr. Drummond and then confirmed by Sam to be a 
statement about the congruent pairs of corresponding sides, suggests a naïve understanding of 
proof. Sam is only able to refer to the original diagram and given information. He does not use 
this information to provide further warrants for the validity of Nigel’s conjecture. Mr. 
Drummond’s lack of response to Sam’s final suggestion indicates that he was not satisfied with 
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the justification attempt. Rather he devised a brief paper-folding activity to help Sam and other 
students move beyond the basic information highlighted by Sam (congruent corresponding 
sides).  

The series of tasks and interactions between teacher and student as in Episode 1 illustrates a 
common pattern in Mr. Drummond’s lessons. His choices and expectations often led to 
discussion of student reasoning, some proof modeling, and refinement of an argument. In the 
next episode, the discussion resulting from Nigel’s conjecture continues as Cathy interrupts Mr. 
Drummond during his paper-folding directions and attempts to justify the conjecture (refer to 
Figure 2 and Episode 1 above).  
Episode 2  

In the following episode, Cathy attempted to provide data and warrants for the truth of the 
conjecture originally posed by Nigel. Mr. Drummond and Cathy negotiate this new contribution 
before other students are called on to contribute.  

Cathy:  If you were just, like, to put a dotted line to connect them [point A to point C and  
point Q to point S], you know that they have to be equal, because that’s making a 

triangle and the two, like 
____

AB is congruent to
____

QR and …[
____

BC ] is congruent to 
____

SR . 
So the other one has to be congruent too, because they’re congruent.  There’s no 
other way you can make a triangle that was going to be congruent without three 
sides matching.  

Mr. D:  Now you said two very important things, but you said them in opposite ways.  
You said first that if we looked at this triangle, QRS and ABC [The teacher has 
drawn in red dotted lines from A to C and Q to S] since these two [triangles] are 

the same size, then these two [
____

AC and 
____

QS  ] have to be the same size.  That’s 
what you said first.  And then by the time you finished you said if we have a 
triangle with all three sides [points to triangle QRS] and all three sides [points to 
triangle ABC] then they have to be congruent or they have to be the same size 
triangle, right?  

Cathy:  … I’m just saying that if 
____

AB  is congruent to 
____

QR  and 
____

SR  to 
____

CB  then 
____

QS  has to 

be congruent to 
____

AC  in order to form a triangle that would be congruent to the 
other one.  

Mr. D:  Is that true? If these two sides [points to 
____

QR  and 
____

SR ] in this triangle are 

congruent to these two sides [points to 
____

AB  and 
____

CB ] in this triangle, they don’t 

have to be congruent to each other, but if this pair [
____

AB  and 
____

QR ] and this pair 

[
____

SR  and 
____

CB ] are congruent, do those red ones have to be congruent?  
After receiving conflicting opinions from students in response to his last question, Mr. 

Drummond proceeded by providing a counterexample to Cathy’s argument, that if you know two 
pairs of corresponding sides are congruent, it is not necessarily true that the third pair of sides 
will be congruent. Eventually, other students offered new arguments that led to the conclusion 
that in order to be sure the triangles were congruent (Cathy’s assumption), the included angles 
between the two pairs of corresponding congruent sides would have to be identified and shown 
to be congruent (commonly referred to as the Side-Angle-Side Postulate).  
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Cathy’s actions in this episode illustrate her struggle to provide adequate warrants organized 
into a logical chain of reasoning to bridge from Sam’s contribution (“the segments are arranged 
in the exact same way”) to Nigel’s claim (segment AC is congruent to segment QS). Cathy’s 
approach initially rested on her ability to use the diagram to identify relevant relationships. In 
particular, Cathy referred to auxiliary lines in the original diagrams that allowed her to discuss a 
pair of corresponding triangles embedded within the pentagons. Cathy then assumed congruence 
of the corresponding triangles to claim congruence of a pair of corresponding sides in the 
triangles. Cathy’s actions may be characterized as indicative of a transformational proof scheme, 
within the larger class of analytic proof schemes (Harel & Sowder, 1998). That is, her reasoning 
is based on general aspects of the situation, perceiving underlying structure behind a pattern.  

Although this tendency to think about relationships in general terms is more sophisticated 
than many other proof schemes (such as those that rely on examples or authority to determine 
validity), Cathy’s warrants are not adequate to serve as a formal proof in the context of this 
classroom. A formal proof would require a chain of logical reasoning that uses already 
established definitions, axioms, and theorems to serve as warrants for claims in the argument.  

The teacher’s actions complemented Cathy’s attempt to justify the conjecture. He listened 
carefully to Cathy’s reasoning and encouraged her to try again, similar to the coaching 
techniques noted in Episode 1. He supported Cathy’s effort to refine her warrants by providing 
an analysis that allowed Cathy to restate and clarify her argument. The teacher then rephrased 
Cathy’s argument as a question and asked others to assess its validity and continue refining the 
argument. In this way, the teacher’s actions guided students toward an axiomatic proof scheme, 
another scheme within the analytic proof scheme classification, (Harel & Sowder, 1998). 
Someone who possesses an axiomatic proof scheme believes that adequate proofs are 
constructed by working within an axiomatic structure. By exposing flaws in Cathy’s argument 
and encouraging Cathy and others to provide warrants from within the axiomatic system, the 
teacher drew students into the process of working within an axiomatic system. Thus, the teacher 
coached the students as they learned the rules of the game (how to construct formal proofs) by 
actually playing the game.  

Conclusions  
Episodes 1 and 2 demonstrate a few of the patterns of teacher-student interactions in the 

social context of Mr. Drummond’s classroom. Table 1 summarizes the student actions, teacher 
actions, and social factors evident in these and other episodes that were coded and analyzed.  

The left column of Table I lists students’ actions or contributions during class discussions 
that relate to their understanding of proof. The middle column includes actions taken by Mr. 
Drummond. The right column contains aspects of the social environment or classroom 
microculture that became taken-as-shared in Mr. Drummond’s class. For example, in Episodes 1 
and 2, the teacher-student exchange followed an identifiable pattern of actions that included 
many of those actions described in Table I. First, Mr. Drummond posed an open-ended question. 
Nigel made a conjecture in response to the question. Mr. Drummond encouraged and listened to 
student responses, then rephrased the statements as questions and posed them to particular 
students or to the entire class, which, in turn, placed the responsibility for justifying or refuting 
student conjectures in the hands of the students. As Sam and then Cathy provided warrants for 
their arguments, Mr. Drummond coached them by offering praise, encouragement, or critique of 
their claims. When necessary, Mr. Drummond offered direction to the students in the form of 
prompting questions or by providing an example or counterexample. Although not demonstrated 
in the chosen episodes, Mr. Drummond also modeled proof-writing skills such as the 
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development of chains of reasoning and helped students revise and improve their own 
arguments. He also followed students’ suggestions, even when they were incorrect or led the 
discussion in a direction he had not planned. As various students participated in the exchange, 
the class began to establish shared understandings about standards for developing valid 
arguments.  
Table I Student and Teacher Actions that Contribute to the Learning of Proof  
 

 
Even though Mr. Drummond made pedagogical choices that necessarily involved the 

students, his choices may also be seen as limiting, in that he did not allow time for all students to 
think and independently investigate conjectures before calling for a justification. The quick pace 
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of a classroom discussion that focused on one student’s conjecture and an argument developed 
by only a few students left other students to be passive observers in the proof development 
process. Although some students who were not involved in the verbal interaction in the class still 
may have been engaged intellectually in the activities, these students did not benefit from the 
class’ and teacher’s responses to their ideas. Only the verbally active students participated in the 
class-level negotiation of what counts as a valid argument and other taken-as-shared 
sociomathematical norms and classroom practices. If all students were expected to provide 
warrants and build chains of reasoning before any of these justifications were shared among the 
group, there may have been an opportunity to examine a variety of reasoning strategies. Such a 
discussion could have engaged more students in a richer dialogue and allowed them to make 
their own decisions about the validity of arguments. Even so, these and other episodes provided 
rich data on a few individual students’ evolving sense of the process of proving.  

Through our analysis of classroom data we have described a cycle of teacher and student 
interactions that promotes student involvement and allows students to test the waters of proof 
and reasoning. Using the lens of the emergent perspective (Cobb, 1999; Cobb & Yackel, 1996) 
to analyze classroom interactions, we found that viewing events from a psychological 
perspective drew our attention to the actions of the students. Similarly analyzing the interactions 
from a social perspective drew our attention to how students responded to and attempted to live 
up to the teacher’s expectations. However, we also found it necessary to focus explicitly on the 
teacher’s pedagogical choices, as manifested by his actions, in order to capture a critical 
component of the cycle that draws students into the social fabric of the classroom.   

In proof-based mathematics courses, teachers often model proof-construction that 
presupposes an axiomatic proof scheme (Harel & Sowder, 1998). It is often assumed that 
students believe valid proofs may only be constructed by using a chain of deductive reasoning 
within a particular axiomatic system. Research (Harel & Sowder, Balacheff, 1991) has shown 
that this assumption is not necessarily true. In this teacher’s class, students appeared ready to 
make the transition to an axiomatic proof scheme. His modeling of deductive reasoning, along 
with coaching students as they attempted to construct proofs, was an effective means for helping 
students learn to develop arguments within the axiomatic system. However, the same type of 
pedagogical choices may not be as effective with students who possess more naïve proof 
schemes. For example, students who believe that examples constitute a proof may not respond in 
the same way as those who understand the generality requirements in a deductive proof. Further 
research is required to establish a more robust connection between pedagogical choices and 
individual understanding of proof.  
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The purpose of this research report is to describe key processes by which students can come to 
understand and apply the uniqueness theorem for first order differential equations. More 
generally, the analysis is framed as a paradigm case for the production of formal mathematical 
reasoning. Analysis of classroom data revealed four critical components that characterize the 
evolution of formal reasoning with the uniqueness theorem: the negotiation of what counts as an 
acceptable explanation, the engagement of an intuitive theory, a cognitive reorganization about 
a central idea, and the owning of a formal statement.   
 

Advances in technology and an increased interest in dynamical systems are prompting new 
directions in many first courses in differential equations. Simultaneously, research is beginning 
to illuminate student thinking about central ideas and methods of analysis associated with these 
new directions. A recent review of the literature (see Rasmussen & Whitehead, 2003) highlights 
the primary findings to date, including delineation of students’ strategies, understandings, and 
difficulties with (a) coordinating algebraic, graphical, and numerical representations, (b) creating 
and interpreting various representations including phase portraits and bifurcation diagrams, and 
(c) making warranted predictions about the long-term behavior of solution functions. A notable 
omission to this small but growing body of research is students’ thinking about and application 
of the uniqueness theorem. The purpose of the proposed research report is to contribute a new 
component to the literature by describing key processes by which students come to understand 
and apply the uniqueness theorem. More generally, the analysis is cast as a paradigm case for the 
emergence of formal mathematical reasoning.  

Originating in the seventeenth century as a technique for solving geometrical and mechanical 
problems, the study of differential equations initially centered on attempts to find analytic 
solution techniques. As practitioners of mathematics moved toward increasingly analytically 
intractable differential equations extracted from physical and graphical situations, they became 
motivated to ask the questions of first existence and then uniqueness of solutions. The first to 
draw attention to the unspoken assumption that there exists a solution to a given differential 
equation was Cauchy, who in the 1820s gave a rigorous proof for the existence of a solution. 
Several decades later, the Lipschitz condition provided the first guarantee of unique solutions to 
first order ordinary differential equations.  

Theoretical Background  
Analysis of students’ reasoning about uniqueness of solutions draws on social constructivist 

theories of learning in which students’ mathematical reasoning is both constrained and enabled 
by their current understandings. Piaget (1970) emphasized that learning is a process involving a 
constant interaction between the learner and her environment. This process of equilibration 
involves the integration of things to be known with existing cognitive structures, as well as 
reorganization of cognitive structures as students participate in the evolving norms and practices 
of the classroom community. As Siegler (1996) points out, Piaget was interested in variability of 
thinking during transitional periods and viewed this variability as critical to cognitive change. In 
keeping with this emphasis on documenting production and evolution of thinking (rather than 
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say, delineating stages), this report describes the process of change as students progress in their 
understanding and application of the uniqueness theorem.  

Method  
The analysis is based on data collected during a 15-week classroom teaching experiment 

(Cobb, 2000) conducted at a mid-sized university during the Fall 2002 semester. Classroom 
videorecordings from two cameras were the primary source of data, triangulated with copies of 
students’ written class work, copies of exams and homework, and videorecordings of individual 
student interviews. Typical class sessions consisted of cycles of small group work followed by 
whole class discussion. The project team consisted of the teacher, who was an experienced 
mathematician, and two researchers who attended each class session. Informed by the theory of 
Realistic Mathematics Education (Freudenthal, 1991; Gravemeijer, 1999), the course materials, 
largely developed in previous teaching experiments, were modified as needed by the project 
team. An essential characteristic of the instructional design was the creation of a learning 
environment in which students could reinvent important mathematical ideas and methods as they 
engage in a series of challenging tasks.   

Analysis of the classroom videorecordings proceeded through cycles of examining and 
interpreting the data, which involved transcribing and writing interpretive notes. Through an 
iterative process, specific classroom episodes were selected and four overarching components 
regarding the evolution of students’ reasoning about uniqueness emerged. Sample episodes from 
this iterative process are used in this report to illustrate and clarify the main ideas about the 
evolution of formal mathematical reasoning with the uniqueness theorem. To sharpen the 
discussion I focus primarily on the reasoning of three students, Bill, Adam, and Joe.   

The instructional design had two goals related to the uniqueness of solutions. First, students 
would come to view the issue of uniqueness as personally relevant (historically this took a very 
long time). Second, the Lipschitz condition for uniqueness of solutions would be a formal 
description of students’ observations and explanations for why graphs of solutions do or do not 
touch. One of our goals in the teaching experiment was to explore an alternative to instructional 
approaches that tend to superficially treat the uniqueness theorem. Detailing the critical 
components by which formal mathematics can actually grow out of students’ informal 
mathematical work is needed and this report makes a contribution in this direction.  

Discussion  
Evolution of students’ formal mathematical reasoning surrounding the uniqueness theorem is 

traced in terms of four critical components: the negotiation of what counts as an acceptable 
explanation, the engagement of an intuitive theory, a cognitive reorganization about a central 
idea, and the owning of a formal statement. I illustrate and clarify the first three of these four 
components and highlight the fourth. To the extent possible within the page limitations, I point to 
connections between these components and the role of the teacher in the evolution of the four 
components.   
Component 1 – Negotiation of Acceptable Justifications  

Analysis of the classroom videotape data points to an important interplay between 
empirically based justifications and justifications based on mathematical relationships. 
Justifications were deemed empirical if they were (1) based on observed or imagined graphs or  

(2) based on an imagined, real-world phenomenon. By design, instructional sequences drew 
heavily on geometric approaches and the framing of problem situations in terms of real world 
phenomena. Thus, it is perhaps not surprising that students’ justifications were, at least initially, 
grounded in observed or imagined graphs or imagined real world events. What is significant is  
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that there was a shift in the nature of students’ justifications over the course of the semester – 
from those with an empirical basis to those with a basis in mathematical relationships.  

For example, prior to work on the sequence of tasks dealing explicitly with the uniqueness 
theorem the class discussed whether or not an imagined solution graph, one that was initially 
increasing, would ever actually reach or touch the equilibrium value of 12.5. Under scrutiny was 
the differential equation dP/dt = 0.3P(1-P/12.5), which was intended to model population 
growth. Tangent vector fields (without curve sketching capabilities) and analysis of the 
differential equation were the primary mathematical ideas and tools available to students. The 
following whole class excerpt succinctly captures the interplay, and tension, between empirically 
based and mathematically based justifications.  

Bill:   What Jeff and I were thining was that eventually, ideally, this would seek and 
equilibrium, fluctuating up and down around 12.5.  But obviously, you can’t have 
half a deer running around, so you know, it’s gonna at some point go above 12.5, 
then it goes in negative, in the uh slope, so it’ll drop below 12.5.  Then, then 
you’re back positive, and it’ll, so it’ll be rising and falling up and down around, 
around 12.5. 

Joe:   How do you rise up and down when you have a zero tangent? 
Adam:  Maybe theoretically, but that's not what our equation's saying. Our equation's  

saying that uh 12.5 is gonna be the limit.  It's gonna go up, it's gonna, it's gonna be 
what's it called, asymptotic to 12.5 or, I think that's - 

Joe:   Well it's not actually [inaudible] It's when P to the 12.5 is one.  
Adam:  Yeah. Yeah. 
Prof:  Okay. What's so important for this 12.5? It seems that some of you think it's 

positive if P is less than 12.5?  
Stds:  Yes.  
Joe:  It's positive if it's less than 12 and a half. It's negative if it's greater than 12 and a 

half, and it's zero at 12 and a half. And so I have a problem with it being able to 
fluctuate around 12.5 because if you have a zero.  If you had zero change,  

Bill:  Okay well my thinking was - 
Joe:  I mean, it doesn't change over time no matter [inaudible].  
Bill:  Well my thing was that you talk about a population, you're talking about a 

population, you have to have whole numbers.  
Bill explained that his group’s initial idea was that the graph would oscillate around 12.5 

with decreasing amplitude. No justification for why such asymptotic behavior might be the case 
was offered. Bill said that he and Jeff then rejected this conclusion that the population would 
settle down to 12.5 because “you can’t have half a deer.” Joe and Adam immediately rejected 
any kind of oscillation based on the mathematical relationship between the slope of a graph as 
dictated by the differential equation (in particular there should be a tangent with zero slope at 
12.5) and the shape of graph. This clarification was, in part, solicited from the teacher when he 
asked “What’s so important about 12.5?” In response to Adam and Joe’s point, Bill then clearly 
stated that his reasoning was based on the need to have “whole numbers” due to the population 
setting. Bill’s justification falls within the realm of empirically based justifications while Joe and 
Adam’s justification falls with the realm of justifications based on mathematical relationships.  

As the discussion continued, Joe, Adam, and a third student, Jake, argued further against 
Bill’s conclusion.   

Joe:   What you think a population would be doesn’t mean that that’s what that equation 
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   is going to do.  
Adam:  We’re talking about a model here.  
Jake:  Yeah, that’s just a representation, I mean like that’s like a thousand times 12.5, or 

three thousand times 12.5.  
Prof:  So it’s like a very large number and uh,  
Adam:  So the fluctuation wouldn’t really, you wouldn’t see it.  
Joe:   Yeah. Adam: It’s just a model!  
Jake: It would be at equilibrium at 12.5. It would level off as it approaches 12.5, the rate 

of change. 
Prof: Yes, certainly we cannot have half fish, or half deer. But you're saying that if we 

have a huge number for population then, then this, although it's not really a 
smooth curve, but for the model, we have a, we have smooth curve.  Is that what 
you're saying? 

Jake: Yes. 
Prof: Yes. 

In addition to Adam’s argument that the differential equation is something other than an 
exact fit to the population setting (“it’s just a model”), Jake argued that 12.5 could very well be 
12,500, for example. The teacher clarified for the class that in terms of actual population values, 
which would be discrete, the solution graphs of interest to the class are continuous. Although the 
teacher’s voice is not prominent in these excerpts, he plays an essential and proactive role in 
shaping the classroom discussion and norms for justification. Among other functions, he is the 
one who selected and made possible the conversation about whether or not a solution graph 
would touch 12.5, he is the one who worked to set up a classroom environment in which students 
felt safe to voice their ideas, even if they turn out to be rejected, and he is the one who at once 
honored Bill’s conclusion (“Yes, certainly we cannot have half a fish, or half a deer”) while 
implicitly reinforcing the need for conclusions to be based on mathematical relationships.   

As the semester progressed justifications based on mathematical relationships become more 
and more routine (cf., Yackel & Cobb, 1996), even though the problems posed to students 
continued to be framed in terms of imagined real world settings in which prediction of future 
quantities was important. The significance of this component in the evolution of formal 
mathematical reasoning in relation to the other three components is that it (a) opens a space for 
the teacher to become aware of students’ intuitive theories (Component 2), and (b) makes 
explicit discussion about central mathematical ideas more viable, which in turn opens spaces for 
students to refine and reorganize their conceptions of these ideas (Components 3 and 4).   
Component 2 – Engaging Intuitive or Informal Theories  

Students exhibited an intuitive theory that non-equilibrium solution functions will approach 
equilibrium solution functions asymptotically (Rasmussen, 2001). Students’ intuitive theory 
about asymptotic behavior in this classroom took on one of two forms, either oscillations with 
decreasing amplitude toward a fixed value or strictly increasing/decreasing behavior toward a 
fixed value. Both of these intuitive theories were evident in the excerpts provided in the previous 
section. Recall the following statement made by Bill: “What Jeff and I were thinking was that 
eventually, ideally, this would seek an equilibrium, fluctuating up and down around 12.5.” 
Adam, on the other hand, assumed that the graph of the solution would approach 12.5 
asymptotically in a strictly increasing manner. Recall Adam’s statement that the graph is “gonna 
go up, it’s gonna, it’s gonna be what's it called, asymptotic to 12.5.” Later in this same excerpt 
Jake also stated that the graph “would level off as it approaches 12.5.”  
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Which of the two forms of asymptotic intuition was engaged appeared to depend on the 
imagined real-world setting. For settings in which oscillation of quantities was reasonable, we 
saw both types of asymptotic intuition. In other settings, like the one discussed in the next 
section, only strictly decreasing asymptotic intuition was engaged.   

Although asymptotic behavior is true in many cases, it is not always the case (e.g., consider 
solutions to y’ = -y^(1/2)). From a student’s perspective, such intuitive theories make sense 
because they originate in extensive mathematical experiences. In his seminal work on intuition, 
Fischbein (1987) characterized intuitions as self-evident statements that exceed the observable 
facts. Being self-evident, justifications often do not accompany statements that engage intuitive 
theories, as was the case in the previous excerpts. When pushed for justification, students tended 
to provide circular arguments. For example, as the conversation about solutions to dP/dt = 
0.3P(1-P/12.5) continued, the teacher asked students what should be the graph of the solution if 
“we base it just on the differential equation model?” To which Bill responded,  

Bill:  Then I agree that P approaches 12.5, and as it gets closer and closer to 12.5 the 
rate of change will get smaller and smaller and yeah, I don’t think it would ever 
reach 12 and a half. I would just keep getting closer and closer, but never quite 
make it.  

Prof:  Why do you think that?  
Bill:  Because, because, the closer it gets, the rate of change keeps decreasing. You 

know, never going to zero. But it keeps, it keeps holding it back. The rate of 
change does not let it get to 12 and a half.  

From an instructional design and teaching perspective, awareness of students’ intuitive 
theories is important because it informs subsequent work with students in efforts to promote 
cognitive refinements and reorganizations (Component 3). Students’ intuitive theories, although 
often not generalizable to all situations, can serve an important function in the learning process. 
In particular, when students encounter instances that conflict with their intuitive theories, that is 
when they encounter disequilibrium, they are more likely to become explicitly aware of and 
search for refined and reorganized conceptions of a central mathematical idea. The point is not to 
replace the intuitive theory, but rather to use students’ intuitive theories as opportunities for 
refining and reorganizing a related central mathematical idea, such as rate of change. Consistent 
with Brousseau’s (1997) theory of cognitive obstacles, engaging intuitive or informal theories 
points to how such theories can function as not only as a constraint, but also as a resource.  
Component 3 – Reorganizing a Central Mathematical Idea  

Students’ thinking about rate of change, as expressed in a differential equation, was initially 
either an “adjective” to describe the slope or steepness of an observed or imagined solution curve 
or a “predictor” of the direction a solution graph should take. Bill’s previous excerpt speaks to 
both of these ways of thinking about rate. Specifically, Bill had a solution graph in mind (one 
that is increasing toward 12.5) and he used rate of change as an adjective to describe the graph. 
“… as it [the graph] gets closer and closer to 12.5 the rate of change will get smaller and smaller 
…”. Here rate of change is a descriptor for an already imagined graph. Rate of change is used to 
describe qualities of the graph. Bill also used rate of change as a mechanism or predictor for how 
the graph should proceed. For example, in this same excerpt, Bill stated, “But it [the rate of 
change] keeps, it keeps holding it [the graph] back. The rate of change does not let it [the graph] 
get to 12 and a half.” In this last quote, rate of change acts as control mechanism for how the 
graph will unfold, rather than as an adjective for an already unfolded graph.   
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In subsequent problems students compared graphs of solutions to two different differential 
equations and reasoned about the rate of change of the rate of change to account for why one set 
of solutions touched an equilibrium solution and the other set did not. In accomplishing this goal, 
rate became an object with its own adjectival properties.  

To clarify, consider the analogy of a red ball. Initially the ball is the primary object of 
interest.  Red is an adjective that describes the ball. This is analogous to an imagined solution 
function and its slope or rate.  Now imagine there is another ball. The new one is a deep, intense 
red and the old is a pale, pinkish red. Through comparison we develop a need to describe redness  

itself.  So we might say, “That is a deep red” or an intense red. Now deep is an adjective 
modifying red. The focus of our attention has shifted to red. The ball is in our subsidiary 
awareness while our focal awareness is on the nature of redness. This is analogous to shifting 
one’s attention from an imagined graph where rate or slope is an adjective of that graph or 
predictor of a graph to analysis of rate of change with own properties that need to be described. 
For example, as one student commented, “The rate of change of the rate of change increases as y 
approaches zero.”  In this quote, rate is not a property of a solution graph, but rather an object 
analyzed for its own properties.   

The differential equations under scrutiny were dh/dt = -h and dh/dt = 3/1
h , both of which 

were offered as models for the height of a descending airplane and both of which have constant 
solutions h(t) = 0. Using dynamic tangent vector fields (without curve sketching capabilities) 
students engaged in figuring out if one, both, or neither differential equation predict a landing for 
the plane. The issue of uniqueness therefore is relevant since landing would mean that two 
solution graphs touch (in particular there would be two different solutions that meet at h = 0). As 
illustrated in the following quote, Adam used rate as adjective and rate as predictor to argue that 
graphs for dh/dt = -h would not touch zero.  

Adam:  If you plot your vector field or whatever, your slope is gonna gradually taper off.  
As your number gets smaller and smaller, your slope's gonna get smaller and 
smaller [rate as adjective].  So there's no way you're ever gonna be able to get to 
zero on you're height because your slope is gonna slow it down [rate as predictor 
or control mechanism].   

Adam also stated that the other differential equation is “kind of the same as the first one.” It 
is likely that his conclusions for both differential equations engaged asymptotic intuition. Other 
students claimed that dh/dt = -h

1/3

 predicts that the plane would touch ground. The justification 
for this claim was the observed vector field, in which students experienced and observed that 
vectors “snap” to zero. This is a form of empirical justification. Accounting for the snap then 
became a topic of conversation and further analysis. Part of this analysis involved finding 
analytic solutions, which yielded conclusive evidence that solutions to dh/dt = -h do not touch 
zero while solutions to dh/dt = - 3/1

h do touch zero. The analytic solutions did not, however, offer 
students insight into why solutions were or were not unique. This insight was gleaned by 
reexamining the “snapping” of tangent vectors near zero (or not snapping) in light of the how the 
rate of change changes. That is, framing the snapping in terms of the rate of change of the rate of 
change.   

Adam:  O.k., um on our slope field it looks like the rate of change of our, the differential 
equation, is going down kind of slow for the - 3/1

h . Then after it passes, what is it, 
one, it snaps. It starts snapping to zero [Lynn: Why?] Why?  When you re-write 
the derivative of your differential equation.  So it's negative one third, uh, 'h'.  
Well, next to the three, pull out your, yeah, there you go. Yeah, when you look at 
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that [d(- 3/1
h /dh] of we can see that, um, as h gets smaller, it just blows up.  But 

that means that the, when you're at zero it’s undefined. But as you go to zero it's 
getting bigger and bigger and bigger.  As you get close to zero, you get a really 
big number.  So as you go to zero it’s not defined.   

Chris:  What's the 'it' that is undefined?  
Joe:  The rate of change of the rate of change becomes infinitely large. As you 

approach zero the rate of change of the rate of change goes to infinity.  
This cognitive reorganization in rate (from rate as adjective or predictor to rate as object with 

its own adjective properties) opened a space for the teacher to then formally state the conditions 
for uniqueness in conventional terminology and symbolic expressions. From students’ 
perspective, the “formalization” of the theorem was a recognizable recasting of their analysis of 
the rate of change of the rate of change.  
Component 4 – Owning a Formal Statement  

Expressing students’ thinking about the rate of change of the rate of change in terms of the 
Lipschitz condition was critical to formally stating the uniqueness theorem. The process of 
coming to own the theorem, however, continued. The coming to own the theorem process 
involved application of the theorem in other settings, a fine-tuning of how to interpret ideas such 
as unbounded and partial derivatives, and what one can logically infer (or not) when the 
conditions of the theorem are not met.   

Concluding Remarks  
The four components surrounding the uniqueness theorem (the negotiation of what counts as 

an acceptable explanation, the engagement of an intuitive theory, a cognitive reorganization 
about a central idea, and the owning of a formal statement) address the production and evolution 
of formal reasoning in classroom settings. Rather than setting out distinctions between experts 
and novices, these four components offer a way to conceptualize the process of developing 
formal mathematical reasoning in a way that sees value in normative forms of argumentation and 
practice (Components 1 & 4) and cognitive variability (Components 2 & 3).   
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There is widespread agreement that reasoning and proof should be a central feature of all 
students’ mathematical experiences. Yet, research shows that students often have serious 
difficulties acquiring competency in this domain. Students are unlikely to develop proficiency in 
reasoning and proving on a large scale unless attention to this mathematical practice is woven 
into curriculum materials. Too little is known about the opportunities mathematics curricula 
offer students for reasoning and proving; a curriculum analysis is needed to illuminate the 
nature of the opportunities provided so they can be further developed. This study seeks to 
provide needed knowledge by: (a) conceptualizing reasoning and proving in a way that is 
sensitive to the mathematical discipline and promising to push forward the conceptual work on 
the nature of this activity in school mathematics; and (b) using this conceptualization to develop 
and validate an analytic framework that provides a reliable and comprehensive way to analyze 
the opportunities mathematics curricula provide students to engage in reasoning and proving.  
 

Proof and mathematical reasoning signify mathematical activity, but their role in school 
mathematics has been unclear. In recent years, however, there has been a growing appreciation 
of the importance of reasoning and proof in school mathematics, primarily because of its central 
place to both mathematics as a discipline and learning mathematics with understanding—a 
prominent educational goal nowadays. The increased emphasis on reasoning and proof is 
reflected in both researcher and curriculum framework calls about this activity to pervade 
students’ work throughout their schooling (e.g., NCTM, 2000; Yackel & Hanna, 2003).   

Although numerous studies show that students of all grade levels have serious difficulties in 
reasoning and proof (e.g., Healy & Hoyles, 2000; Knuth et al., 2002), the findings of 
developmental (e.g., Foltz et al., 1995; Galotti et al., 1997; Klaczynski & Narasimham, 1998) 
and cognitive psychology (e.g., Girotto et al. 1989; Light et al., 1989) provide compelling 
support to the claim that even young children can engage successfully in problems involving 
deductive reasoning and proof. Furthermore, existence evidence from mathematics classrooms 
demonstrates that exceptional teaching can make reasoning and proof accessible to children in 
their everyday experiences as early as the elementary grades (e.g., Ball & Bass, 2000; Lampert, 
1990; Zack, 1997). This kind of teaching, however, deviates from the norm in U.S. mathematics 
classrooms, as indicated by both the TIMSS 1995 and the 1999 Video Studies (see Hiebert et al., 
2003; Manaster, 1998).   

Students are unlikely to develop proficiency in reasoning and proof on a large scale unless 
attention to this activity is woven into curriculum materials. Research shows that curriculum 
significantly influences the selection and sequencing of the topics taught (e.g., Romberg, 1992); 
it influences teachers’ beliefs about teaching and learning (e.g., Clarke, 1997; Wood et al., 1990); 
and its basic features—content, organization, and sequencing—impact students’ conceptions of 
proof (e.g., Chazan, 1993; Healy & Hoyles, 2000; Hoyles, 1997). It is reasonable to assume that 
curriculum materials that claim to embody both the Curriculum and Evaluation (NCTM, 1989) 
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and the Principles and Standards (NCTM, 2000) recommendations (i.e., standards-based 
curricula) would offer students reasoning and proof opportunities. Do they? If so, how and with 
what characteristics? How do these characteristics compare with those offered by curriculum 
materials that do not identify themselves with the curriculum-reform proposals of the Standards 
(i.e., non-standards-based curricula)? The unavailability of contemporary curriculum analyses 
that focus on reasoning or proof suggests a need for further investigation; a curriculum analysis 
is needed to illuminate the nature of the opportunities provided so they can be further developed.  

The first and most important step in conducting such a curriculum analysis is to produce an 
analytic framework that can be used as a tool to investigate the opportunities mathematics 
curricula provide students for reasoning and proving. This endeavor is quite challenging because 
the notion of reasoning and proving has been unclear in the context of school mathematics (Reid, 
2002; Steen, 1999) and does not yet cohere in an integrated conception of this practice in the 
teaching and learning of mathematics, rooted in the nature of reasoning and proving in the 
mathematical discipline and framed for use in curriculum analyses. This paper contributes to this 
research domain in two interrelated ways. First, by conceptualizing reasoning and proving in a 
way that is sensitive to mathematics as a discipline, considerate of the complexity of this 
mathematical practice, operationalizable in a curriculum analysis, applicable in different 
mathematical domains, and promising to push forward the conceptual work on the nature of this 
activity in school mathematics. Second, by using this conceptualization to develop and validate 
an analytic framework that provides a reliable and comprehensive way to investigate the 
opportunities mathematics curricula provide students to engage in reasoning and proving.   

Method  
The process of producing the analytic framework was comprised of five stages. In the first 

stage, we used the related literature and how reasoning and proving plays out in the mathematical 
discipline to develop a preliminary framework. In the second stage, we made an initial test and 
validation of the framework. We analyzed tasks from both the Connected Mathematics Project 
(CMP) (Lappan et al., 1998a/2002a) and the Mathematics Applications and Connections (MAC) 
(Collins et al., 1993)—the most popular standards and non-standards-based middle school 
mathematics curricula, respectively (U.S. Department of Education, 2000)—to ensure that the 
framework is considerate of, and applicable to analyzing, both kinds of curriculum materials. At 
this stage, we used the framework as a tool to categorize the tasks of ten CMP investigations and 
four MAC half-chapters in different content areas and grade levels. In the third stage, experts 
validated the framework. Two research mathematicians evaluated both the framework’s potential 
to capture the opportunities curricula provide students for reasoning and proving and the validity 
of its definitions. After interviewing the two mathematicians and getting their feedback, we 
revised the framework accordingly. In the fourth stage, we tested the applicability of the new 
version of the framework by analyzing more curricular tasks (four CMP investigations and three 
MAC half-chapters). This analysis led to slight refinements of the definitions of some of the 
framework categories and subcategories. In the fifth stage, we tested the inter-rater agreement of 
the coding system; an acceptable level of inter-rater agreement around 90% was obtained.  

Analytic Framework  
In this section, we present the analytic framework and connect it with relevant research. The 

limited attention of curriculum analyses to reasoning and proof turned us to other genres of 
scholarship to develop the framework, especially those that examine reasoning and proof from a 
disciplinary perspective.  
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The thinking processes that characterize research mathematicians’ proving activity involve 
various stages with proof usually being the last. Earliest stages involve what Polya (1954) calls 
‘mathematics in the making’ and frequently consist of the identification and arrangement of 
significant facts into meaningful patterns; the extension of the patterns to formulate conjectures 
and the testing of the conjectures against new experimental facts; and the effort to understand 
and provide arguments about why things work the way they do. Following the premise that 
school curriculum should represent the structure of the discipline and that students should 
encounter ‘rudimentary versions’ of the subject matter, progressively refined through their 
schooling (Bruner, 1960; Schwab, 1978), we define reasoning and proving to encompass the 
breadth of the activity associated with identifying patterns, making conjectures, providing proofs, 
and providing non-proof arguments. The first two activities are captured under the more general 
notion of making mathematical generalizations—the passing from the consideration of a set of 
given objects to one for which the original set is a proper subset—and the last two under 
providing support to mathematical claims.  

The definition of reasoning and proving—to be elaborated further below—and the way its 
various components relate to one another in the mathematical discipline were used in the 
development of the analytic framework presented in Figure 1. The analytic framework is 
comprised of two strands. The first strand—components and subcomponents of reasoning and 
proving—includes the four components that encompass reasoning and proving together with a 
further breakdown of these components into subcomponents. The second strand—purposes of 
pattern, conjecture, and proof—concerns the purposes (functions) these three mathematical 
elements may serve in the curriculum. This strand is intended to provide a more comprehensive 
description of students’ opportunities for reasoning and proving and to facilitate a closer 
examination of the nature of this engagement. For example, the previous discussion suggests 
that, in the mathematical discipline, an important connection between patterns, conjectures, and 
proofs is that patterns can generate conjectures which, in turn, can give rise to proofs. Analysis 
of the purposes patterns and conjectures serve in the curriculum will reveal whether there are 
opportunities available to students to understand this connection.   

In the rest of this section, we first describe how the analytic framework can be used to 
categorize curricular tasks. Next, we present the two framework strands in more detail. We 
conclude with examples that illustrate the framework.  
How the Analytic Framework can be Used to Categorize Curricular Tasks  

Because in a curriculum analysis we do not deal with actual student work, to categorize 
curricular tasks we need to find a reasonable way to make plausible inferences about the 
expected formulation of the tasks—that is, the path students are anticipated to follow to solve 
each curricular task. In the analytic framework, we consider that the expected formulation of the 
tasks depends on what a particular community assumes as shared at a given time—the base of 
public knowledge in Ball and Bass’s (2000) terms. We take the community to be the hypothetical 
classroom that implements serially all the parts of a curriculum program. The expected 
formulation of the tasks is obtained by working the tasks out and considering together the 
following three dimensions: (1) The approach suggested by the student’s textbook; (2) The 
approach suggested in the teacher’s edition; and (3) The student’s expected level of knowledge 
and understanding when encountering a certain task; this is established with reference to the base 
of public knowledge at a given time. The base of public knowledge is in turn determined by the 
notions, axioms, theorems, definitions, mathematical conventions, and methods agreed upon, 
presented, or discovered prior to a specific task, together with the content covered up to that 
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point; all these are identified by considering what preceded the given task in both the student’s 
textbook and the teacher’s edition.   

 
Figure 1. Outline of the analytic framework.  

Components and Subcomponents of Reasoning and Proving  
Our definition of reasoning and proving suggests that a comprehensive description of the 

opportunities curriculum materials provide students to develop proficiency in this mathematical 
practice should describe the instances that students are offered to identify patterns, make 
conjectures, provide proofs, and provide non-proof arguments. Below we elaborate separately 
each of these four reasoning and proving categories.  

Identifying a Pattern 
Pattern is a general relation that fits a given set of data. We distinguish between definite and 

plausible patterns according to whether or not it is possible mathematically to provide 
conclusive evidence for their selection over other patterns that could also fit the given data set, 
respectively. Within each of these subcategories we identify two kinds depending on the extent 
to which the nature of the pattern—whether or not one can provide conclusive evidence for its 
selection—becomes visible to the students (either in the expected formulation of the task that 
yields the pattern or in the expected formulations of subsequent tasks). We call the patterns 
whose nature becomes visible to the students transparent, and the ones whose nature remains 
invisible to the students non-transparent.  

The distinction between transparent and non-transparent patterns is meaningful because 
engagement with patterns entails the danger for the students to develop the expectation that 
patterns always generalize in ways predicated on the basis of the regularities found in the first 
few terms (NCTM, 2000). To avoid this incorrect conception, it is necessary to offer students 
opportunities to understand that not only it is important to find a pattern, but also to see why the 
generalization holds (Harel & Sowder, 1998). In case the students identify a plausible pattern 
without realizing that there are other patterns that also fit the given set of data (non-transparent 
plausible pattern), it is likely that the incorrect expectation described earlier will be reinforced. 
Similarly, if students generalize a definite pattern without connecting the pattern identification to 
the reasons that make the pattern definite (non-transparent definite pattern), students lose an 
opportunity to understand that, in some cases, we can be sure that patterns will generalize in 
ways expected on the basis of the regularities found in the first few terms.   
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Making a Conjecture 
Conjecture is a reasoned hypothesis based on incomplete evidence. The term ‘reasoned’ in 

the definition is intended to exclude hypotheses that are primarily based on guesses or hunches.  
This category and the one presented previously share some common characteristics, the most 

evident and important being their generalizing aspect. The two categories differ in an important 
way, though. In conjecturing, the solver puts forth a hypothesis that is not considered to be true 
or false and is subject to testing. Therefore, further examination of the conjecture always seems 
to be meaningful. In pattern identification, however, the solver is looking for a relation that fits a 
given set of data and, once this relation is found, the solver often no longer feels the need for 
further investigation and validation.   

Providing a proof 
Proof is an argument from accepted truths for or against a mathematical statement. An 

argument is considered to be a logically-connected sequence of assertions. Accepted truths are 
defined broadly to include the notions, axioms, theorems, mathematical conventions, methods 
(Leddy, 2001), and definitions that a particular community may take as shared at a given time.   

A proof can either be generic or deductive. Generic proof is a general argument illustrated in 
a particular case seen as representative of a whole class (in parallel to Balacheff’s [1988] generic 
example and Movshovitz-Hadar’s [1988] transparent pseudo-proof). Deductive proof is a 
logically necessary argument based on properties or structural relationships (e.g., definitions) 
that connects data with conclusions without relying on specific examples. This kind of proof also 
includes situations where the solver provides a counterexample or reduces a task into a finite 
number of cases, record those cases, and check them in a systematic and exhaustive fashion.   

The above suggest that for an argument to qualify as proof it needs to treat somehow the 
general case. Therefore, the definition excludes empirical arguments from being counted as 
proofs. This way of defining proof in school mathematics is not only faithful to the way the same 
concept is generally conceptualized in the mathematical discipline, but is also considerate of the 
large bodies of research in developmental psychology, cognitive psychology, and mathematics 
education that demonstrate children’s ability, as early as the elementary grades, to reason 
mathematically and to engage successfully in tasks that involve deductive reasoning and proof.    

Providing a Non-Proof Argument 
Non-proof argument is an argument in support of a mathematical claim that does not qualify, 

according to the definition of proof, to be considered as proof. It can take one of two forms: 
empirical argument or rationale.  

Empirical argument is an argument that provides inductive, non-conclusive evidence that a 
mathematical statement is true. In particular, the solver checks a proper subset of all the possible 
cases and uses those to support the validity of a mathematical statement. In this type of 
argument, the use of examples is the main (if not the only) element of conviction (Marrades & 
Gutiérrez, 2000). Rationale is some kind of a non-proof, non-empirical argument to a 
mathematical claim (e.g., ‘the relation is linear because the points fit on a straight line’).  
Purposes of Pattern, Conjecture, and Proof  

The tasks coded in the identifying a pattern, making a conjecture, and providing a proof 
categories are further analyzed according to the purposes patterns, conjectures, and proofs, 
respectively, serve in these tasks. We elaborate the purposes of each of these mathematical 
elements separately.  
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Purposes of Pattern 
As we noted earlier, a major role patterns serve in mathematics is to give rise to conjectures. 

Specifically, a relation that is found to apply to a given set of data (a pattern) is often extended 
and used to make a hypothesis about a set of objects relative to which the original one is a proper 
subset (a conjecture). Therefore, a pattern can either forerun a conjecture opportunity associated 
with it in the curriculum (conjecture precursor) or not (non-conjecture precursor).  

Purposes of Conjecture 
Conjectures can be to proofs what patterns are to conjectures. Specifically, a conjecture can 

either forerun a proof opportunity associated with it in the curriculum (proof precursor) or not 
(non-proof precursor).  

Purposes of proof 
Proof can serve several purposes in the curriculum, similar to its purposes in the 

mathematical discipline: explanation, when it provides insight into why a statement is true (de 
Villiers, 1999) or false; verification, when it establishes the truth of a given statement (Bell, 
1976); falsification, when it establishes the falseness of a given statement; and generation of new 
knowledge, when it contributes to the development of new results (Kitcher, 1984).  
Examples  

Next, we present two examples from CMP that help illustrate most parts of the framework.  
Example 1 
Problem: Make a conjecture about whether the sum of two even numbers will be even or 

odd. Then use the models or some other method to justify your answer. (slightly modified from 
Lappan et al., 1998c/2002c, p. 29) Discussion: This task would be triple-coded as identifying a 
pattern, making a conjecture, and providing a proof. The students are expected (a) to examine a 
few cases and notice the pattern that the sum they get in all cases is an even number, (b) use that 
pattern to formulate the conjecture that the sum of any two evens will be even, and (c) use their 
representation of even numbers as rectangles with a height of two tiles to provide the following 
deductive proof for their conjecture: The sum of two even numbers is even because we can 
combine two rectangles with height 2 to get another rectangle with height 2. The pattern is 
transparent definite because the students, through the proof they provide, are expected to realize 
that the pattern they came up with is the only acceptable pattern that fits the given set of data. 
With regard to purposes, the pattern is a conjecture precursor because it gives rise to a 
conjecture, and the conjecture is a proof precursor as it foreruns a proof. Finally, the proof 
serves the purposes of explanation, verification, and generation of new knowledge.  

Example 2 
Problem: A. Cut a sheet of paper as Alejandro did, and count the ballots after each cut. Make 

a table to show the number of ballots after 1 cut, 2 cuts, 3 cuts, and so on. [Alejandro starts by 
cutting a sheet of paper in half. He then stacks the two pieces and cuts them in half, and so on.]  

B. Look for a pattern in the way the number of ballots changes with each cut. Use your 
observations to extend your table to show the number of ballots for up to 10 cuts.  

C. If Alejandro made 20 cuts, how many ballots would he have? How many ballots would he 
have if he made 30 cuts? (Lappan et al., 1998b/2002b, p. 6) Discussion: In this problem, parts A 
and C would be coded as non- reasoning and proving, while part B as identifying a pattern. The 
pattern is definite because the context defines uniquely the pattern that needs to be chosen. In 
other words, the context does not allow for equations that fit the data other than the following to 
be considered as valid: Number of ballots after n cuts = 2

n 

. The definite character of the pattern, 
however, does not become evident to the students because they are expected to generalize the 
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pattern from the values in the table rather than from the context of the task. Therefore, the pattern 
is non-transparent. Also, the pattern does not give rise to a conjecture and, therefore, the purpose 
it serves is non-conjecture precursor.  

Conclusion  
As Yackel and Hanna (2003) note, if we are to improve all students’ understanding of, and 

ability for, reasoning and proving, we need to provide teachers with the means to develop “forms 
of classroom mathematics practice that foster mathematics as reasoning and that can be carried 
out successfully on a large scale” (p. 234). Given the central role of curriculum in practice, it 
appears that one of the most promising ways to support teachers’ efforts in this domain is to 
equip them with a curriculum that is considerate of current research and curriculum framework 
recommendations about reasoning and proof, and has careful organization and sequencing. A 
first step toward this direction is to describe the different kinds of opportunities mathematics 
curricula offer students for reasoning and proving. A major contribution of this study is that it 
has produced an analytic framework that can be used in future curriculum analyses with a focus 
on the opportunities available to students of different grade levels and curriculum programs to 
develop proficiency in reasoning and proving. The results of these analyses can in turn be used to 
guide curriculum development and revisions.   

The analytic framework developed can also contribute to several other domains of research 
and practice. It can be used to: (a) Push forward both the conceptual work on the nature of 
reasoning and proving in school mathematics and the methodology for conducting curriculum 
analyses on specific mathematical practices; (b) Study how teachers treat textbook content with 
respect to reasoning and proving; (c) Guide professional development and teacher preparation 
programs regarding different possible learning opportunities for reasoning and proving teachers 
can offer; (d) Examine whether students’ difficulties in reasoning and proving relate to the kinds 
of opportunities emphasized or neglected in the curriculum materials they are using; (e) Explore 
the ways in which inductive and deductive reasoning are being promoted in the curriculum 
through the relative emphasis various framework categories and subcategories receive (empirical 
arguments, conjectures, and non-transparent patterns promote more inductive than deductive 
reasoning; deductive proofs mainly require deductive reasoning; transparent patterns require a 
more of a balance of inductive and deductive reasoning activity); (f) Investigate whether the 
opportunities made available to students by the curriculum materials they are using to engage in 
reasoning and proving facilitate or impede their transition from empirical to more deductive 
forms of argument.   

Endnote  
We thank Hyman Bass, Doug Corey, Carolyn Dean, and Andreas Stylianides for their help at 

various stages of the development and validation process of the framework.  
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Abstract. This paper reports on an exploratory study addressing how mathematicians determine 
whether an argument is a valid proof. Eight mathematicians were presented with six to eight 
arguments from number theory and were asked to think aloud while determining whether each 
argument constituted a valid proof. The analysis in this study focuses on the reasoning the 
mathematicians used to determine that an assertion in a proof was valid. Our main findings were 
that: a) when mathematicians doubted an assertion, it was unusual for them to construct a full 
sub-proof to establish that assertion, b) the mathematicians sometimes used inductive (i.e., 
example-based) reasoning to validate an assertion, and c) the inductive reasoning strategies 
employed often relied on a sophisticated understanding of number theory. Pedagogical and 
epistemological implications of this data are discussed.  
 

1. Introduction  
Many mathematicians, philosophers, and mathematics educators have examined the nature 

of, and processes used in, advanced mathematical reasoning. Work in this direction includes, but 
is not limited to, mathematicians’ introspections on their own mathematical thinking (e.g, 
Hadamard, 1945; Thurston, 1994) as well as conclusions drawn by philosophers and educators 
based upon theoretical, philosophical, and historical arguments (e.g., Lakatos, 1976; Davis and 
Hersh, 1981; Ernest, 1991).  

Research in this direction has generally focused on learning and understanding mathematical 
concepts and the construction of proofs. There has been comparatively little research on how one 
determines whether an argument constitutes a valid proof—a process that Selden and Selden 
(2003) refer to as validation. There appears to be a relative consensus, at least among 
mathematics educators, that proof validation is a social process that is not solely comprised of 
examining the logical structure of mathematical arguments (cf., Lakatos, 1976; Hanna, 1991; 
Thurston, 1994). Manin (1977), for instance, argues that acceptance of a proof is aimed more at 
weighing the plausibility of the argument being presented than at verifying the deductive 
process. Hanna (1991) suggests that even non-mathematical factors, such as the reputation of the 
proof’s author, may influence one’s acceptance of a proof more than the logic in the proof itself.  

The research outlined above describes general factors that influence a community’s 
acceptance of a proof. However, it often does not explicate specific processes that individual 
mathematicians use in deciding whether an argument constitutes a proof. Further, the arguments 
put forth by these researchers are usually based on the introspection of mathematicians or 
philosophical/historical arguments and not on systematic empirical studies. In this paper, we 
address this gap by reporting on an exploratory study in which eight mathematicians were 
observed while determining whether a set of arguments constituted valid mathematical proofs.  

We believe this research may have important consequences for the pedagogy used in proof-
oriented mathematics courses. The ability to validate proofs is a critical ability for students of 
mathematics to possess. In order for a student to be convinced of a theorem by reading a proof of 
the theorem, that student would need reliable methods for determining whether a proof is valid. 
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If a student cannot determine whether or not an argument establishes a theorem, then that 
argument cannot legitimately convince him or her that the theorem is true. The educational 
literature, while limited, suggests that students often lack the ability to validate proofs. For 
instance, Selden and Selden (2003) presented four arguments to eight undergraduates in an 
introductory proof course and asked them to determine whether each of these arguments would 
prove a given statement. They found that students’ performance on this task was essentially at 
chance level.  

One reason that proof validation is difficult to teach is that currently the specific processes 
used in the act of proof validation are not fully understood. Dreyfus (1991) argues that research 
into the processes used in advanced mathematical reasoning are valuable since students will 
often not learn or use these processes on their own if the instructor does not make the students 
aware of them. An important goal of the research reported here is to highlight some of the 
knowledge and thought processes that are used in proof validation and to argue that these 
processes should be introduced in the classroom. We also hope that the data presented in this 
paper can contribute to the ongoing debate about the epistemological status of proof and proof 
validation. In particular, our data may be germane to the following questions: What constitutes a 
proof? By what processes does an argument become a proof?  

2. Research context  
2. 1. Data collection  

Participants. Eight mathematics professors at a mathematics department at a regional 
university in the southern United States participated in this study. Materials. Eight purported 
proofs of number theoretic statements were used in this study. The first four of these arguments 
were identical to those used in Selden and Selden’s (2003) study on proof validation. These four 
arguments purported to prove that “If n

2 

is divisible by 3, then n is divisible by 3”. One of these 
arguments was a valid proof, while the other three arguments contained blatant logical errors. 
The other four proofs were more complex and at the level of sophistication that one might expect 
from a proof in an undergraduate textbook on number theory or an expository mathematics 
journal. Three of these four proofs were valid, while one invalid argument was included as a foil. 
For instance, one of these arguments was Holdener’s (2002) proof that “if n is an odd perfect 
number, then  n≡1 (mod 12) or n≡9 (mod 12)” as it appeared in the American Mathematical 
Monthly. Procedure. Each participant met individually with the first author of this paper. Each 
participant was asked to “think aloud” while attempting to validate the arguments described 
above. This stage of the experiment continued until the participant had validated all eight of the 
arguments or until 45 minutes had elapsed. Participants were then asked a series of questions 
concerning the processes that they used to determine whether an argument constituted a proof. 
Such questions included: How do you determine whether or not an argument is a proof? Does 
intuition ever play a role when you are determining if an argument is a valid proof? Finally, after 
analyzing the data, some of the participants were asked further questions about specific 
comments that they made during their proof validations.  
2. 2. Data analysis  

In this paper, we will focus on the reasoning that mathematicians used in their line-by-line 
validation of a proof— i.e., the reasoning used to determine that a particular assertion in a proof 
is valid. We argue elsewhere that to accept a particular assertion in a proof as legitimate, one 
must not only believe that the assertion is true, but also that the assertion is warranted- that is, 
there is a legitimate mathematical justification for why that assertion follows from previous 
statements in the proof (cf., Weber and Alcock, submitted). This paper will examine how 
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mathematicians construct these justifications and what types of justifications they accept as 
legitimate. Other important aspects of proof validation (e.g., how one examines the structure of 
the proof) will only be discussed briefly, but will be the subject of future reports.  
3. Results  

The participants’ validations could be divided into two distinct stages. In the first stage, 
participants examined the assumptions and conclusions employed in each of the proof’s sub-
arguments to determine the structure of the proof. If the proof methods employed were judged to 
be reasonable, the participants would proceed to the second stage of line-by-line verification. If 
the proof methods were not reasonable, (e.g., if the proof began by assuming what it was 
claiming to prove), the participants immediately rejected the proof as invalid.  

In total, the mathematicians collectively read 225 assertions whose validity could reasonably 
be judged. (Assumptions and statements that introduced variables were not included among these 
assertions). Of these 225 assertions, 122 were accepted immediately by the participants without a 
justification. Twenty assertions were rejected as invalid. There were also six cases where a 
participant could not decide whether an assertion was valid. Our analysis concentrates on the 
reasoning used by the mathematicians to understand why the remaining 77 assertions were valid. 
We divided these assertions based on the nature of the justifications that mathematicians formed 
to convince themselves that the assertions were valid. We define property-based justifications to 
be justifications of an assertion based on properties of the objects and structures to which the 
assertion pertains. We define inductive justifications to be justifications of a general assertion 
based solely on the examination of specific examples. Ten assertions could not be coded into 
either class because no justifications were offered (e.g., the participant misunderstood the 
assertion, re-read it, and then decided it was valid) or the justifications were idiosyncratic.  
3. 1. Property-based justification  

There were 49 instances in which mathematicians accepted an assertion on the basis of a 
property-based justification. We further categorized these justifications into proof-like 
justifications and sketches of proofs. Each of these terms is defined below and then illustrated 
with an example. For each example, we list the assertion that was validated, relevant prior 
assertions that appeared earlier in the proof, and a transcription of the mathematicians’ utterances 
while validating the assertion in question. Proof-like justifications (N = 15). A justification was 
considered to be a proof-like justification if the mathematician explicitly employed definitions, 
theorems, or other established facts to show that the assertion in question was a logical 
consequence of previous work. The professor’s utterances or written work, with minor 
modifications, would constitute a valid sub-proof that established the assertion. An example is 
provided below.  

Prior assertion:  n≡3 (mod 4).  
Assertion:   Note that n is not a perfect square.  
Prof C:  So if you take an odd number and square it, 2k + 1, and I assume that 

when you square it out, that would be, yeah, that would be 1 mod 4. OK, 
note that n is not a perfect square. OK, I think I’m OK with that.  

Sketch of a proof (N = 33). A justification was considered to be a sketch of a proof if the 
following two conditions held: a) The justification was based on properties of the objects and 
structures to which the proof pertained. These properties may have been theorems or previously 
established assertions that appeared earlier in the proof, or they may simply be properties that the 
mathematicians believe are true. b) Considerable work would be required to transform the 
justification into a proof. Such work might include establishing that objects did in fact have the 
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properties that they were conjectured to have. An example is provided below.  
Prior assertions: ab = n. n≡3(mod 4).  
Assertion:   Either a≡3(mod 4) and b≡1(mod 4) or a≡1(mod 4) and b≡3(mod 4).  
Math C:  I guess that’s a fact. I mean, how do you take two numbers in Z4 and 

multiply them together to get three?  
While this mathematician’s reasoning expresses the essence of why the assertion is true and 

suggests that a proof could be constructed by examining cases, his comments alone would hardly 
constitute a proof.  
3. 2. Inductive justification  

There were 19 instances in which the mathematicians accepted a general assertion in a proof 
solely by inductive reasoning—i.e., the examination of examples. The mathematicians used 
examples in different ways, some of which are described below.  Identification of a systematic 
pattern. There were four instances in which mathematicians accepted a proof by examining 
systematically chosen examples, noticing a pattern in these examples, and then conjecturing a 
general statement that would hold for a wider class of objects based on this pattern. Consider the 
example below:  

Previous assertions:  n≡3(mod 4).  
Assertion:     Note that n is not a perfect square.  
Prof A:  SO: I’m using examples to see what, where the proof is coming 

from. So 52 

is 25 and that’s 1 mod 4. 36 is 0 mod 4. 49 is 1 mod 4. 
64 is 0 mod 4. I’m thinking that, ah! So it is… 24 times 24, that’s 0 
mod 4. So a perfect square has to be 1 mod 4, doesn’t it? n2 

equals 
1 mod 4 or 0 mod 4. Alright.  

From his inspection of the integers 5, 6, 7, and 8, Professor A conjectured the property that 
perfect squares were only congruent to 0 or 1 mod 4, and then tested his conjecture by seeing if 
this held true for 24. He then concluded that n could not be a perfect square since it was 
congruent to 3 mod 4. In the interview following the validations, Professor A indicated that he 
would not ordinarily used examples in his validations, but found such reasoning to be 
appropriate in this particular number-theoretic context.  

I:  I noticed that at times you used examples to help you validate the proofs.  
Prof A:  Yes… I think with the proofs with number theory, they [examples] are a little 

easier because what you do is you try to show it’s true for some and then there 
should be easy induction arguments, hopefully, show that it’s true for all of them. 
Topology [Professor A’s area of research] you don’t quite have that.  

Inspecting a generic example to see why a general assertion is true. There were seven instances 
in which the professor first verified that the general assertion held for a specific example, form 
an explanation of why the example satisfied the assertion, established that the reason also applied 
to a wider class of examples, and conclude that the assertion was valid.  

Previous assertions: n≡3(mod 4).  Note that n is not a perfect square.  

 
Prof F: I don’t understand this statement so let me look at an example. Let me look at 8. 

Eight has four factors and they add up to… 15. Only two are less than 8 .  OK 
so we add 1 and 8 and 2 and 4 and that’s 9 plus 6 and, well what do you know? It 
worked! It worked for this example… Oh I see, each of these numbers multiplied 
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to get 8, one will be less than the square root of 8 and one will be greater… yeah, 
OK, I see.  

 
Professor F initially examined the specific instance where n was equal to eight to try to gain an 
understanding of the statement. He then saw that the statement was true for eight and formed an 
explanation for why this was true that was not based on this particular instance, which in turn 
lead him to accept the general assertion as true. It is interesting to note that professor F examined 
this general assertion with an instance that did not satisfy assumptions that appeared earlier in the 
proof. It was assumed that n was congruent to 3 (mod 4), yet the professor set n equal to 8. 
Failure to find a counter-example. There were six instances in which mathematicians sought to 
contradict a general assertion by constructing a counter-example. When the search was 
unsuccessful, they accepted the assertion as valid. It should be noted that the search to find a 
counter-example was not random, and seemed to rely on their conceptual understanding of 
number theory. Consider the example below.  

Previous assertions: n is a natural number.  
Assertion:  There exists an odd integer m and a non-negative integer l such that 

n= 1
2 m.  

Prof E:  Hmm… can we express every integer in that way? Well, 1 is l = 0, m = 1. 
2, 4, and 8 are powers, but can we express every integer in that way? What 
about 3? Um, let m = 3 and l = 0. And 5, let m = 5 and l= 0. What about 6? 
6 is 3

2
 

times 3 [sic]. OK I guess this sounds reasonable.  
In his interview after his validations, Professor E indicated that his search for counterexamples  
was partially dictated by his understanding of the integers.  

Prof E:  In the case that we were looking at, with n = 1
2 m… yes, since it 

concerned numbers being written in a way involving powers of 2, the first 
thing I did was check powers of 2. Then I checked numbers other than the 
powers of 2, but realized that they were all odd numbers. So I tried even 
numbers that were not powers of 2 and saw that they worked too.  

Validation from a single example. There were two cases in which mathematicians accepted a 
general assertion as valid by verifying that it held for a single example. It seems likely that the 
mathematicians may have initially been more or less sure that the assertion was true and checked 
a single instance to confirm their intuition.  

4. Discussion  
The purpose of this exploratory study was to investigate the processes and reasoning used by 

mathematicians in proof validation. It is certainly possible that there were important processes 
used for validation that we did not observe. For example, some of the reasoning used by the 
mathematicians may have been sub-conscious and not observable by verbal protocol analysis. 
Likewise, if mathematicians were given more time to validate these proofs or if non-number 
theoretic proofs were given, different types of reasoning may have been exhibited. Nonetheless, 
it still seems reasonable to say that this study can be used to identify some of the processes that 
mathematicians use to validate proofs.  

The analysis in this paper focused upon how mathematicians determined that questionable 
assertions in a proof were valid. In our study, it appears that formal logic was not often invoked 
in this regard. While mathematicians sometimes constructed sub-proofs to establish these 
assertions, they did not do so frequently. More often, mathematicians constructed only partial 
proofs, sometimes based on properties that were stated intuitively or were not formally 
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established. Other times, their reasoning was based on inductive reasoning. It should be noted 
that the informal or inductive reasoning that mathematicians used was not applied haphazardly. 
From their comments in the interview following their validations, the mathematicians indicated 
that their conceptual understanding of number theory helped them decide when their inductive 
strategies were appropriate and how they should be applied.  

There seems to be a contrast between the standards that are used for presenting a formal 
proof and the processes used to validate it. An argument that relied on assertions purported to be 
true because they were difficult to contradict, the inspection of well-chosen examples, and 
intuitive explanations would not be considered a proof. Indeed, such arguments are often 
described as the types of invalid proofs that naïve students sometimes produce. However, it 
appears that some mathematicians use these arguments in the validation of proofs. In this sense, 
proof validation appears to be a less formal process than proof construction. In constructing a 
proof of a statement, one must strive to convince an enemy, or at least a skeptical mathematician 
who understands the subject, that the statement is true (cf., Mason, Burton, and Stacey, 1982; see 
also Davis and Hersh, 1981). This requires forming an argument that meets the mathematical 
community’s relatively rigorous standards of what constitutes a formal proof. However, in 
validating a particular assertion that appears in a proof, it seems that the mathematicians only 
wanted to convince themselves that the statement was true, and that their personal standards for 
obtaining conviction were sometimes less stringent than the community’s proof standards.  

Many of the less formal reasoning processes described above currently receive little to no 
attention in proof-oriented university mathematics courses. In fact, we argue that such strategies 
may be implicitly discouraged. For example, in such courses, students are often told that one can 
never determine that a general assertion is true just by looking at examples. This may lead 
students to believe that such reasoning is not only inappropriate for proof presentation, but also 
are not applicable for proof validation (and proof construction). As students have difficulty 
validating proofs and do not appear to invoke these processes, giving explicit attention to these 
strategies in a thoughtful manner may help improve students' ability to validate proofs.   

We suspect that one reason these strategies are not taught is that students, who lack the 
mathematicians' knowledge base, may not be able to apply these strategies effectively. Further, a 
full description of some of these processes may be difficult for the professors to explicate and 
hence might be difficult for students to understand. We also speculate that one way in which 
these strategies are learned and refined is by adjusting them when their application is 
unsuccessful. For instance, if one erroneously concludes an assertion is valid based on the 
inspection of several examples, he or she might learn that checking examples is inappropriate for 
validating this type of assertion, or alternatively, that a different class of examples also needed to 
be considered. We would thus argue while students may initially err when validating proofs 
using non-formal reasoning, these failures can serve as important opportunities for students to 
learn to use this type of reasoning effectively. If our argument is correct, discouraging students 
from using non-formal reasoning in proof validation may be denying them the very experience 
they need to validate proofs effectively.  
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Using a synthesis of the theories of Harel (1998) and Brousseau (1997), data from a series of 
experiments with undergraduate mathematics and science majors was analyzed to determine 
how students’ understandings of mathematical induction evolve. The data is used to illustrate the 
tensions and constraints K-16 teachers may face as they endeavor to implement the Reasoning 
and Proof Standard in classrooms.  
 

Throughout the Principles and Standards for School Mathematics (NCTM, 2000), teachers 
are encouraged to create communities of inquiry and to facilitate the development of 
mathematical reasoning as a “habit of mind.” Within the standards, proof is not viewed as a 
concept to be learned but rather as a theme of mathematics. “Reasoning and proof should be a 
consistent part of students’ mathematical experience in prekindergarten through grade 12” 
(NCTM, 2000, p. 56). Within this discussion of expectations of K-12 students it is acknowledged 
that proof is a very difficult area for undergraduate mathematics students (see e.g., Alibert & 
Thomas, 1991; Harel & Sowder, 1998). It is then argued that post-secondary students’ 
difficulties may be due to a lack of experience writing proofs and a “limited perspective (of 
proof)” (NCTM, 2000, p. 56).   

Though it may be the case that post-secondary students lack experience, there is also an 
alternative explanation for their difficulties with mathematical proof: students at the post-
secondary level lack experiences that facilitate the development of an intellectual need, on the 
students’ behalf, for proof. In other words, it is not that students should simply write more proofs 
but rather that students should encounter more situations that foster, in the eyes of the student, 
the need for proof. The position taken in this paper is that attempts to facilitate the development 
of the student understandings described within the Reasoning and Proof Standard, which do not 
take into consideration the development of an intellectual need on the students’ behalf, may 
simply result in unproductive shifts in the didactical contract.   

Theoretical Perspective  
This research was informed by a theoretical perspective that is a synthesis of two 

independent theories: the Theory of Didactical Situations (Brousseau, 1997) and The Necessity 
Principal, Harel’s (1998) theory of intellectual need.

i   

Brousseau’s Theory of Didactical 
Situations is a theory that aims to account for the communication and circulation of mathematical 
knowledge (Brousseau, 1997; Herbst and Kilpatrick, 1999; Sierpinksa, 2000). It is a theory that 
acknowledges the constraints imposed by didactic institutions and how these can transform the 
meanings available to the learner. It aims to provide the means to understand and ultimately 
control these transformations (Brousseau, 1997).   

Within the theory, the interactions that occur in didactical settings are said to be constrained 
by a set of tacit expectations: a didactical contract. “It is the contract that specifies the reciprocal 
positions of the participants on the subject of the task, and that specifies the deep meaning of the 
action under way, of the formulations or the explanations furnished” (Brousseau & Warfield, 
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1999, p. 47). Thus, the didactical contract determines how one’s actions and questions are to be 
interpreted. As such, it constrains the meanings available to the learner. In her discussion of the 
didactical contract, for instance, Sierpinska argues that if the teacher both presents and solves the 
problems and the students are simply required to reproduce solutions then “it is the social 
behavior, not the mathematical knowledge that the students will learn” (Sierpinska, 2000, p. 6).   

The notion of a didactical contract is used within the theory not only when exploring the 
meanings available to the learner, but also when explain responses that might otherwise seem 
rather disturbing. For example, Herbst and Kilpatrick (1999) use the notion of a didactical 
contract to provide a sense of rationality to students’ response of “36 years” when asked, “On a 
boat, there are 26 sheep and 10 goats. What is the age of the captain?” They argue that such 
responses can be accounted for in terms of students’ expectations of such problems: “students are 
supposed to use key words and the relative nature of the numbers given as a heuristic to separate 
relevant information -i.e., to find the operation ‘hidden’ in the problem” (Herbst & Kilpatrick, 
1999, p. 4).   

The complementary nature of the theories of Brousseau and Harel becomes evident if one 
considers the hypotheses upon which the Theory of Didactical Situations is based: the 
constructivist and the epistemological hypotheses. The constructivist hypothesis is simply that 
students construct their own meaning as a result of resolving situations that, in part, appear 
problematic to the student. The epistemological hypothesis is that “problems are the source of 
meaning of mathematical knowledge” (Balacheff, 1990, p. 259). In other words, meanings are 
developed within a milieu when such meanings become necessary for resolving the problematic 
situations that arise, or for functioning, within that milieu. What is problematic in the eyes of the 
student, however, is not always the same as what is viewed as problematic by the teacher. Thus, 
the teacher must be concerned with the creation of situations that foster the development of an 
intellectual need on the students’ behalf, i.e., that appear problematic to the student. Harel’s 
discussion of various approaches to linear independence exemplifies how one might begin to 
consider the issue of intellectual need. He asks:  

But, is our student likely to view this as a problem? Can he or she in this stage of the 
course understand its importance? Can he or she see how “independence” contributes to its 
solutions? In other words, what is our student’s intellectual need –as opposed to social or 
economic need – in learning the concept of “independence” (Harel, 1998, p. 501)?  

Harel posits that when “a situation that is incompatible with, or presents, a problem that is 
unsolvable by our existing knowledge” (Harel, 1998, p. 501) an intellectual need arises and the 
student “sees” the necessity of what we intend to teach them. This is Harel’s Necessity Principle. 
The primary implication of this principle is that we must attend to the students’ ways of thinking, 
i.e., their apparatuses for filtering what we intend to teach them (Harel, 1998), if we are to foster 
the development of situations that appear problematic to the students.   

Data Collection and Analysis  
As part of a series of studies focused on undergraduates’ understanding of mathematical 

proof, I conducted three teaching experiments with small cohorts of Calculus II students (n = 3) 
at large, urban state universities.

ii
 The purpose of the experiments was to document how students’ 

understandings evolved as mathematical induction arose as the means to solve a class of 
problems. The first course, TE 1, was a three-week teaching experiment. Students met with the 
investigator for a total of six 75-minute sessions. The second and third teaching experiment, TE 
2A and TE 2B, respectively, occurred simultaneously and ran for a period of eight weeks, for a 
total of twenty 65-minute sessions. Data was obtained in the form of investigator field notes, 
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student work, and videotapes and transcripts of each classroom session and student interview. 
The teaching experiment methodology employed was that described by Steffe and Cobb (1983).   

Initially the analysis of the data relied heavily on Harel and Sowder’s notion of a proof 
scheme: “the student’s apparatuses for removing doubts during the processes of ascertaining and 
persuading” (Harel & Sowder, 1998). To investigate students’ proof schemes Harel and 
Sowder’s descriptions and extensive categorizations of undergraduates proof schemes were used 
as a framework to classify students’ ways of ascertaining and persuading as indicated by 
students’ written work and remarks during student-to-student and student-teacher interactions. 
The method of analysis was then revised and events were accounted for in terms of (a) the 
evolving local didactical contract and (b) the specific needs the students’ actions might satisfy.  

Results  
The data indicate that, with an alternative curricular approach, the students’ understandings 

of mathematical induction progressed through three stages: pre-transformational, restrictive 
transformational, and transformational. During the pre-transformational stage the students 
employed empirical-inductive proof schemes in situations of validation, i.e., the students 
conjectures were validated by appeals to physical facts or sensory experiences (Harel & Sowder, 
1998). During the restrictive transformational stage the students’ empirical-inductive proof 
schemes were subsumed by restrictive transformational proof schemes, in particular, the generic 
and the constructive proof scheme. It was during this stage that mathematical induction emerged 
as a means to construct an infinite sequence of items from a collection of “actual” objects. 
During the transformational stage mathematical induction arose as the means to establish the 
existence, as opposed to the construction, of an infinite sequence of items.  

Key to the progression from one stage to the next was a classroom renegotiation of what 
constituted a general solution. These negotiations initially revealed the students’ robust 
empirical-inductive proof schemes. For example, in each teaching experiment the students were 
asked to solve the following, a modification of the Towers of Hanoi problem (Figure 1).  

 
The students’ responded by to this task by computing the total for a sequence of cases and 

then identifying a pattern so as to arrive at a formula. Once a formula was identified the 
investigator attempted to facilitate the development of a situation of justification by asking 
questions such as “Is there a way of verifying that that would actually be the case?” To this 
question Boris responded, “Well, by having done three, I guess I’d be … that’s kind of like your 
basis for saying that.” Further probes into the students’ ways of thinking indicated that the 
students viewed finding a formula that matched the data as an act of justification.  Rather than 
perturb the students’ sense of conviction, investigator-posed questions of validity simply clued 
the students into a shift in the local didactical contract and the expectation that something else be 
included in their solution. For example, consider Calvin and Jill’s response:  

Calvin:  I don’t understand what ... what you really want to know?  
Jill:  She wants us to prove it mathematically.  

As the instructor, I was faced with a dilemma: I could either continue to pose questions about 
the validity of the proposed formula and ignore that these questions were alien to the students or 
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I could attempt to facilitate the development of a need for non-empirical reasoning. The 
following examples illustrate the issues that arose as a consequence of choosing the latter.   

To facilitate the development of a need for non-empirical reasoning the students were asked 
to solve the modified Chords of a Circle problem (Figure 2.) Each cohort of students responded 
to this task by (a) calculating the number of regions created for the cases n = 1,2,3,4,5,6 and (b) 
dismissing as errors the results for n = 6.  

 
For example, in TE 1, Boris asked “How many did you get, Jill” and the following exchange 
occurred.  

Jill:  Thirty-one but it has to be wrong ... because it has to be even.  
Calvin: I got thirty-one too ... but it’s wrong.  

After repeated attempts to produce the desired number of regions (32), the students began to 
investigate why their formula (2

n-1

) failed for the case n = 6. Ultimately, this investigation 
resulted in the development of a rationale, even though no such rationale was solicited in the 
problem statement. What is particularly interesting about this response is not that the students 
investigated an event that contradicted their expectation that a formula existed but rather the 
impact this experience had on the students’ ways of thinking about empirical-inductive 
arguments. For example, in a subsequent episode the investigator asked the students to revisit 
their solution to the Towers of Hanoi task. During this discussion both Boris and Jill expressed 
doubts about their solution’s validity. For example, Jill remarked “I don’t know why it works ... 
since I don’t know why it works there’re some doubts.” These remarks stand in contrast to those 
made earlier in the experiment when a collection of instances was offered as an explicit rationale 
for a statement’s validity. Subsequent responses further indicated that the students’ experience 
with the Chords of a Circle task had created a need for non-empirical justification. For example, 
Jill remarked to Calvin, “I understand what you’re saying here, if it works for this one it’s going 
to work for that one but it ... what if at one point it doesn’t? Like the circle thing?”  

In TE 2B, the students responded similarly to the Towers of Hanoi task. For instance, after 
identifying a formula that generated the numbers of moves for the cases n = 1,2,3,and 4, the 
students “tested” their formula against the case n = 5. The students’ subsequent responses 
indicated that this collection of cases was sufficient evidence of the formula’s validity. For 
example, Johan provided the following rationale “We have five numbers that follow a pattern.” 
As in TE 1, when the students were asked to solve the Chords of a Circle task the students 
generated a table of data and then dismissed the totals for n = 6 as errors. However, unlike the 
students in TE 1, the students in TE 2B proceeded by dismissing the task as a “trick question” 
rather than by investigating what might cause the formula 1

2
!n  to fail at n = 6.   

Paula:  Maybe it’s a trick question. There is no answer.   
Susan:  (overlapping with Paula) them all like that.  
SB:   (responding to Paula) There are no trick questions in here.  
Susan:  Sure there are… because there’s two different ways to make it and it doesn’t give 

you a way to make it … it makes two different answers. [Johan: Uh-huh] How are 
you going to get a formula … if once you get to six you start getting possible 
different … I mean I don’t know five might end up with possible answers too.  
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Such an interpretation of the Chords of a Circle task is the result of a specific expectation of 
teacher-posed questions of existence: questions of existence imply existence. This way of 
interpreting the task played an unproductive role in the students’ mathematical activities, for it 
enabled the students to dismiss data that did not conform to their expectation that a function 
existed. It also enabled the students to preserve their ways of reasoning about patterns in numeric 
data. Thus, to foster shifts in the students’ ways of thinking about empirical justifications 
subsequent tasks needed to be developed that could not be dismissed by the students as “tricks” 
and that would foster a reconsideration of their ways of reasoning about patterns.  

To accomplish this goal, the students were asked to consider a second solution to the Chords 
of a Circle task. After indicating their surprise over the existence of a quartic polynomial which 
“matched” the function 2

n-1

 when n =1,2,3,4,5, the students noted that the formula 2
n-1

“broke 
down” for n > 6, and then explored why multiple totals might be produced. Thus, the students 
began to recognize the complexities of the mathematical setting rather than simply dismiss the 
task as a “trick.” That these activities resulted in a shift in the students’ ways of reasoning about 
patterns was indicated in the next episode when, after having verified the claim “The sum of n 
positive integers is n 

2

” for a large collection of cases, the students attempted to work toward a 
non-empirical rationale. For example, Susan argued “It works, that’s up to ninety-nine. Now, 
let’s do something better.”  

Thus, it was critical to each cohort of students’ progress that shifts occur in the students’ 
ways of reasoning about patterns. My initial attempts to facilitate these shifts were of the form of 
instructor-posed questions of validity. The students’ responses indicated these questions were 
alien to the students, for they saw no basis for the questions I posed. Consequently, these 
questions resulted in unproductive shifts in the didactical contract as the students attempted to 
preserve their ways of reasoning while also attempting to meet my expectation of a “different” 
justification. It was not until the students encountered situations that supported a need to move 
beyond empirical justifications that the desired shifts occurred. These shifts in the students’ ways 
of reasoning were the first in a series of shifts that eventually resulted in the development of 
deductive ways of reasoning.  

Conclusions  
The primary claim of this paper is that we must attend to students’ ways of thinking if we are 

to create authentic situations of justification rather than facilitate unproductive shifts in the 
didactical contract. The examples provided illustrate the constraints and tensions we, as teachers, 
may need to manage as we attempt to create authentic situations of validation. They also 
demonstrate why we must be careful to not underestimate the complexities of the steps involved 
with meeting the expectations outlined in the Reasoning and Proof Standard (NCTM, 2000), in 
particular, as we attempt to foster the following understandings:  

• In grades 3-5, “students should learn that several examples are not sufficient to establish  
the truth of a conjecture” (p.188); 

• In grades 6-8, students should learn to “be cautious when generalizing inductively  
from a small number of cases” (p. 267); 

• In grades 9-12, “students should understand that having many examples consistent with a 
conjecture may suggest that a conjecture is true but does not prove it” (p. 345).  

Endnotes 
i. Harel has since advanced this theory and has written extensively about the DNR 

framework. 
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ii. This work is part of a doctoral dissertation completed by the author at San Diego 
State University and the University of California at San Diego, under the supervision 
of Larry Sowder. 
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In this paper, a model is proposed to characterize some of the ways mathematical proofs are 
generated and understood. The model uses the notion of “Key Idea”, which is defined and 
illustrated in three different mathematical contexts.  
 

In many discussions about the nature of mathematical proof, researchers have used 
dichotomies to characterize different types of proof.  There are informal and formal proofs 
(Schoenfeld, 1991), syntactic and semantic proofs (Weber and Alcock, in press), proofs that 
explain and proofs that demonstrate (Steiner, 1978; Hanna, 1989).  However, as pointed out by 
Schoenfeld (1991), the classification of proofs in terms of dichotomies masks an important, if not 
essential, part of mathematics—the connection between the two dichotomous poles. This paper 
discusses this connection and the role it plays in generating and understanding proofs. A model 
of proof processes is developed, building off the notion of “key idea” proposed by Raman 
(2003).  This model is applied to a proof from a pre-service course for secondary teachers to 
show how one can find deeper meaning behind what might be considered a routine task.  

Heuristic ideas, Procedural ideas, and Key ideas  
One type of idea used in proof production is called a heuristic idea.  This is an idea based on 

informal understandings, e.g. grounded in empirical data or represented by a picture, which 
maybe suggestive but does not necessarily lead to a formal proof.  A heuristic idea provides a 
sense that something ought to be true, but by itself does not constitute a formal proof.  Heuristic 
ideas are often used behind the scenes—for instance, as a mathematician tries to develop an 
intuition for why a claim is true.  With few exceptions (such as Polya (1968)) these types of 
ideas rarely make their way into the final exposition of what most mathematicians (and the 
textbooks they write and use) would call a proof. Because of this, we say that heuristic ideas 
constitute a private aspect of proof.  

Another type of idea used in proof production is called a procedural idea.  This is an idea 
based on logic and formal manipulations that lead to a formal proof.  A procedural idea 
demonstrates that something is true, but is not necessarily explanatory or personally meaningful.  
One might be able to follow, or even produce, all the steps of a formal proof without being able 
to understand it. (For example, after producing a formal proof of a difficult theorem, the Field’s 
Medalist Deligne said, "I would be grateful if anyone who has understood this demonstration 
would explain it to me." (Alibert and Thomas, 1991)    

Procedural ideas, in contrast to heuristic ideas, generate precisely the type of arguments 
found in most mathematical textbooks, journal, and the like, though the level of rigor that one 
uses to express a procedural idea may vary from context to context  (e.g. one would need more 
rigor for a journal article than in a discussion with a colleague).   

Because procedural ideas lead to proofs that are publicly acceptable, we say that they 
constitute a public aspect of proof.  

So far we have done little more than to introduce more dichotomies in characterizing aspects 
of proof. Proofs have either a public or private aspect; they are generated by either heuristic or 
procedural ideas.  However, the characterization of proof so far misses what we consider to be 
the crucial aspect of proof—the key idea.  A key idea is a mapping between heuristic idea(s) and 
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procedural idea(s).  It links together the public and private domains, and in doing so provides a 
sense of understanding and conviction.  The key idea is the essence of the proof, providing both 
a sense of why a claim is true and the basis for a formal rigorous argument.   

The notion of key idea, while not discussed as such, has precedents in the literature.  For 
example mathematician Bill Thurston, another Field’s Medalist, explains how he reads a 
mathematical paper in a field in which he is conversant:  

I might look over several paragraphs or strings of equations and think to myself, "Oh yeah, 
they're putting in enough rigamarole to carry such-and-such idea."  When the idea is clear, 
the formal setup is usually unnecessary and redundant—I often feel that I could write it out 
myself more easily than figuring out what the authors actually wrote. (Thurston, 1994)  

To the mathematician, what is important about a proof is the idea it expresses.  The symbols 
and formalism used to express that idea are just 'rigamarole' for carrying that idea.  

The problem, from a pedagogical standpoint, is that students do not view proof this way. For 
them, the public and private aspects of proof are disconnected (Balacheff, 1988, Raman 2003, 
Schoenfeld, 1985). This disconnect not only reflects an immature view of proof, but also stands 
in their way of generating and understanding one.  Below a model is proposed to show the role 
the key idea can play in generating and understanding a mathematical proof.  

Key ideas in action  
There are at least three ways key ideas play a role in generating and/or understanding a 

formal proof.  The model here only purports to show how key ideas can be involved in these 
processes. One can of course generate a proof without having a key idea, as illustrated by the 
Deligne quote above, and those proofs can be in some way meaningful.    

In the first case, one begins with heuristic ideas, perhaps generated by looking at examples or 
more general exploration (see figure 1a below).  Looking across these patterns, one identifies the 
key idea that convinces oneself personally that the claim is true. One then tries to rigorize this 
key idea into a publicly acceptable proof.  As an example, consider how you would prove the 
claim: the derivative of an even function is odd.  

In a study reported in Raman 2002, one mathematician began to prove the claim by sketching 
a generic even function and thinking about the relationship between the tangent lines on either 
sides of the y axis.  He reasons:  

Prof A:   If it is even then it has to be the same to the left and to the right.  If it is the same 
to the left and to the right then clearly, if you draw the tangent line, that is 
reversed when you flip across the y axis. The function is preserved because it is 
even, but the slope is reversed.  

The fact that the slope is reversed is what we call the key idea in this case. Prof A goes on to 
write his idea out algebraically and gets what one could consider a formal proof.  

Prof A:  Then you could say, well, suppose you want to write it out in formulas.  You 
could say that means, (writes) f of x is equal to f at minus x.  And then you could 
say, if it's differentiable, you could differentiate both sides.  And then you'd say, 
well ok that means f prime at x is equal to negative f prime at negative x by the 
chain rule.  This is odd, the f prime function.    

By writing the key idea “in formulas”, Prof A is translating the key idea into procedural ones 
that generate the proof.  In a proof one often starts with definitions of what is given and works, 
through the key idea, to get to the definition of what you want.  Since the key idea is evident to 
Prof A, he writes the proof with little difficulty.  
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Figure 1a                   Figure 1b               Figure 1c  
 

In the second case (Figure 1b), one might start with either heuristic ideas or procedural ideas. 
It is not immediately clear how any of the heuristic ideas lead to proof, nor how to proceed with 
the formal proof.  One goes back and forth between the informal and formal approaches, and in 
doing so, one finds the key idea that connects them.  This allows one to complete the formal 
proof as well as provide one with a deeper sense of understanding.  

Consider the following high school geometry task.  Suppose ABC is a triangle. Let D be the 
midpoint of AB, E be the midpoint of BC, and F be the midpoint of AC.  What is the relationship 
between the area of ∆ABC and ∆DEF?  In a high school geometry class one might want students 
to be able to see that ∆DEF has 1/4 the area of ∆ABC and to be able to prove. One strategy 
(described in Raman and Weber, under review) would be to let students begin with some sort of 
geometer sketchpad activity to develop some intuition about why the claim is true, and then work 
with the geometrical properties of the figure to try to develop a rigorous proof.  As one goes back 
and forth between the intuitive ideas and rigorous proof, one gets closer to what turns out to be 
the key idea, which is that the proof rests on all four triangles being congruent (similarity 
between ∆ABC and each of the smaller triangles gives the needed insight to establish the 
congruence.)  

The third case (Figure 1c), is the case where one begins by producing a formal proof, and 
then trying to get a deeper sense of the underlying ideas.  The example we use is a generalization 
of a standard calculus problem called the box problem.  One is given a piece of cardboard of 
particular dimensions and asked to cut squares out of the corners and fold up the sides to make a 
box.  The question is what the cutout size should be to maximize the volume of the box.  

The typical approach to this problem is to assign a variable to the cutout size and express the 
volume of the box in terms of this variable.  One can take the derivative of this cubic function, 
set it equal to zero, and find the two roots.  One of them is impossible, and the other gives the 
desired solution.  

In contrast to this analytic solution, one can also think about the problem geometrically (see 
Usiskin et al (2003)). This proof actually looks at a generalized version of the box problem in 
which the starting shape is any convex polygon.    

 

The idea of this proof is to assume one has the maximum volume and then look at what 
happens when one changes the cutout size slightly in either direction. This is essentially the same 
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idea behind the analytic solution presented above.  This idea of looking at small deviations, 
appears to give some sense of why a cutout size of a particular size gives a maximum volume.  

However, if one examines the proof more closely, one finds another, deeper, result.  The key 
algebraic move that leads to the desired conclusion expresses a key feature of the box problem 
that provides a satisfying characterization of the geometric properties of the box of maximum 
volume.  It turns out that the area of the sides must equal the area of the base. This is the key 
idea.  

Once one has the key idea, one can verify it empirically.  It turns out to hold not only for all 
convex polygons, but also for circles.  Performing these calculations strengthens one’s sense of 
understanding, and perhaps even believability, of the claim.  

Conclusion  
Looking at three different proof contexts gives us insight into three different roles key ideas 

have in the act of generating a mathematical proof.  The key idea can serve as a bridge from 
more intuitive, heuristic ideas to the more formalized, procedural ones (as we saw in the case of 
the professor proving that the derivative of an even function is odd).  The key idea can also work 
in the other direction, beginning as an algebraic or analytic piece in a rigorous proof, and then 
providing meaning for the problem situation (as we saw with the box problem).  And finally, in 
what is perhaps the most common role, the key idea is the result of ping-ponging between the 
intuitive/heuristic realm and the formal/procedural realm.  This ping-ponging may occur in fact 
with any of the proofs above, but we illustrated it only with the high school geometry proof.  In 
that case it was not clear apriori what the key idea was, but once it was identified, it served as a 
bridge between the informal geometer sketchpad activity and the act of writing a formal proof.  
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This study examines the perceptions of preservice elementary school teachers as to what 
constitutes a valid proof. The participants (n=75) were presented with several statements 
together with arguments meant to validate these statements, some acceptable as proofs and some 
unacceptable. They were asked to consider whether the given argument could be considered as a 
proof. In the case where the argument was not acceptable, participants were invited to edit, 
augment, or change the argument to create what they perceived as a proof. The theoretical 
framework for analyzing short proofs of numerical statements – referred to as ‘one line proofs’, 
previously developed by the authors, was used to design the tasks. This framework describes five 
competencies that are necessary in developing short proofs. The results confirm findings of 
previous research regarding participants’ tendencies towards empirical verifications. Further,  
the results provide an insight into the nature of empirical verification preferred by the  
participants.  

 
What counts as proof? This is a simple question that everyone who is involved in doing 

serious mathematics has asked himself or herself at least once in their lifetime. As simple as the 
question is, however, the answer to it is rather complicated. The main reason for this is that, 
although there is an expectation that every individual mathematician should have an operational 
understanding of what a proof is, there seems to exist no succinct definition of proof. The main 
reason for this is that “there is no consensus today among mathematicians as to what constitutes 
an acceptable proof and there never has been” (Hanna, 1983, p. 29).  

The varying interpretations of what constitutes a proof revolve largely around the notion of 
rigor. In particular, arguments vary with respect to the degree of rigor that is required to preserve 
the privileged position that mathematics occupies among the sciences as the discipline that is 
most precise. The mathematical proof provides the certainty that is demanded in a field where 
precision and exactness is the currency of practice. According to Rav (1999, cited in Hanna, 
2000) proofs are the “mathematician’s way to display the mathematical machinery for solving 
problems and to justify that a proposed solution to a problem is indeed a solution”. As such, 
proof is not only an important part of mathematical practice, but also of mathematical teaching 
and learning (Hanna, 1989). Unfortunately, proof is also one of the most misunderstood notions 
in mathematical teaching and learning (Schoenfeld, 1994) and is, therefore, one of the greatest 
challenges that is faced by researchers and teachers alike.  

In recent decades much research has been done with regards to the diagnosis of students’ 
difficulties with generating proof (Dreyfus, 1999; Harel & Sowder, 1998; Moore, 1994). 
However, only a few studies (e.g. Martin & Harel, 1989; Raman, 2002; Selden & Selden, 2003) 
have investigated students’ ability to evaluate the correctness of a given ‘proof’, that is, the 
ability to judge whether a given argument, or sequence of arguments, proves a given statement. 
We see this ability as an important precursor to the ability to generate correct proofs. 
Furthermore, we believe that this ability is of extreme importance for teachers, who are the 
facilitators of mathematical understanding of their students. Teachers must be able to see the 
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students’ ideas in a broader mathematical perspective and be able to structure their lessons in 
such a way as to encourage and support mathematical discussion, for it is through discussions 
that students will begin to value the contribution that proofs can make to their arguments 
(Richards, 1996).  

As such, we have chosen to focus our investigation on preservice elementary school teachers’ 
ability to judge the validity of presented arguments as proofs. More specifically, we focus on the 
tendencies and trends in the accepting or rejecting of arguments as proofs and examine the role 
that numerical examples play in participants’ reasoning.  

Theoretical Framework 
In this study we use the framework developed by Gholamazad, Liljedahl, and Zazkis (2003) 

for analyzing the complex coordination of competencies that are required for composing short 
algebraic proofs, referred to as “one line proofs”. It was developed through the consideration of 
two sources: (1) a fine grain analysis of an ‘exemplary’, that is, correct and complete, short 
proofs related to number properties and (2) the analysis of students’ efforts and errors in 
composing these proofs. Consider for example the following statement and its exemplary proof:  

Statement: The set of odd numbers is closed under multiplication. 
Proof: Let (2m+1) and (2n+1) be two odd numbers. 
Then (2m+1)(2n+1) = 4mn+2m+2n+1 = 2(2mn+m+n)+1, which is itself odd. 

The generation of such seemingly simple and short proof is deceivingly intricate, requiring 
an appreciation of the need for, and the coordination of many competencies.  

The framework describes five competencies necessary for the generation of a complete and 
correct proof. 
Recognition that a proof is required for the purposes of establishing the truth of a statement. 
From a mathematical perspective, such a requirement is obvious. The establishment of the 
validity of a statement requires the treatment of the statement in general. Students that have this 
competency recognize that a confirming example, or several confirming examples, do not 
constitute a proof, that examples are acceptable only when they exhaust all the possible cases, 
and that one counterexample is an acceptable means of refuting a statement.  
Recognition that the treatment of a general case requires the selection of some form of 
representation. The treatment of the statement in general requires some form of representation.  
Representations have many roles in mathematics; in particular they serve as tools for symbolic 
manipulation and communication. We focus here on algebraic representation, acknowledging 
that other representations, such as numerical or pictorial, are also possible. 
Selection of a representation that is correct and useful for the given case. Awareness that some 
kind of representation is needed to provide a general argument is not sufficient. The chosen 
representation must fit the requirements of the problem. For example, representing two odd 
numbers as X and Y is, in itself, not wrong, but simply useless in order to consider the parity of 
their sum or product.  
Ability to manipulate the representation correctly. The skill of manipulating the given 
representation is often taken for granted in the discussion of proofs. However, to complete the 
proof students must be able to perform correctly any manipulations necessary to transform the 
expression into the form that clearly represents the nature of the number. In the example above 
this involves adeptness with algebraic manipulation in order to mould the expression into one 
that clearly expresses its inherent ‘oddness’.  
Ability to interpret the manipulation correctly. The competency of interpretation either 
overlooked or is simply included in the skill of manipulation. However, the manipulation 
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encompasses both ability and intent; that is, the understanding of how the result should be 
represented to draw the required conclusion and recognition of this representation.  

Itemized  competencies of this framework not only detail what is needed in generating short 
proofs of  number properties, but also provide a tool for the diagnosis of possible obstacles in 
generating  such proofs. As such, we used this framework as a guiding tool in the design of the 
instrument  for this study.  

Method 
The seventy-five participants in this study were preservice elementary school teachers 

enrolled in the course “Principles of Mathematics for Teachers”, which is a core course in a 
teacher education program. At the time of the study this course was taught by one of the authors. 
The course had been designed with the intention of providing its enrollees a foundational 
understanding of elementary school mathematics. There is a focus on conceptual understanding 
of specific strands of mathematics such as geometry and number theory. There is also an attempt 
to integrate an underlying appreciation for mathematical thinking and reasoning across all 
strands of the course.  

The participants responded to a written questionnaire in which they were asked to consider 
the validity of arguments purporting to ‘prove’ five different statements related to set closure. 
They were asked to examine the arguments and decide, in each case, whether the argument was 
acceptable as a proof for the given statement or not. In the case that an argument was not 
acceptable, the participants were asked to provide an acceptable proof either by editing or by 
augmenting the presented argument as necessary. In particular, they were invited to delete parts 
of the presented arguments that they perceived as unnecessary. The topic of set closure was 
explored in class prior to the administering of the questionnaire. The time for completing this 
activity was not limited.  

As mentioned, these ‘proofs’ were constructed from plausible errors as indicated by the 
framework. We examined the participants’ awareness of when a proof can rely on exhaustive 
consideration of all possible cases (1) and where one example is sufficient (2). Furthermore, we 
examined the participants’ awareness of the need for representation when a multitude of 
examples does not constitute a proof and (3) the existence of valid argument not involving 
algebraic symbolism (4). The final item (5) addressed the participants’ attentiveness to the 
correctness of symbolic manipulation. In what follows we present the statements along with their 
‘proofs’ that were used in our study.  
(1)   Statement:  The finite set B = {0,1} is closed under multiplication. 

Proof:   0 × 1 = 0 
0 × 0 = 0 
1 × 1 = 1 
1 × 0 = 0 
∴ the set B is closed under multiplication 

(2)   Statement:  The set of prime numbers is closed under addition. 
Proof:   The set of prime numbers = {2,3,5,7,11,13,17,19,23,29,31,37,…} 

2 + 3 = 5 is a prime number 
2 + 5 = 7 is a prime number 
17 + 2 = 19 is a prime number 
but 3 + 5 = 8 is not a prime number 
and 19 + 13 = 32 is not a prime number 
So, the set of prime numbers is not closed under addition. 
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(3)   Statement:  The set of multiples of thirteen is closed under addition. 
Proof:   The set of multiples of thirteen = 

{ 0, 13, 26, 39, 52, 65, 78, 91,104, 117, 130, 143, 156, 169, 
…} 
13 +26 = 39 is a multiple of thirteen 
39 + 52 = 91 is a multiple of thirteen 
65 + 78 = 143 is a multiple of thirteen 
91 + 104 = 195, 195 = 15 × 13 so it is a multiple of 13 
117 + 156 = 273, 273 = 21 × 13 
130 + 169 = 299, 299 = 23 × 13 
195 + 143 = 338, 338 = 26 × 13  
1300 + 2613 = 3913, 3913 = 301 × 13 
We have seen that the sum of two multiples of thirteen is 
another multiple of thirteen so we can say this set is closed 
under addition. 

(4)   Statement:  The set of multiples of five is closed under addition. 
Proof:   True, because for a multiple of five the last digit is 0 or 5. 

When we add up two numbers, which are multiples of five, 
then the last digit could be 0+0, 0+5, 5+5, which would be 
again a number with the last digit 0 or 5. Therefore, the set of 
multiples of five is closed under addition 

(5)   Statement:  The set of odd numbers is closed under multiplication. 
Proof:   O = {1,3,5,7,9,11,13,15,… } = set of odd numbers 

For any n,m∈W, (2n + 1) ∈ O and (2m + 1) ∈ O 
[2n+1 and 2m+1 are two odd numbers] 
(2n + 1)(2m + 1) = 4nm + 1 = 2(2nm) + 1 = 2k + 1∈O 
[2nm is a whole number like k] 
So, the set of odd numbers is closed under multiplication 

Results and Analysis  
The arguments presented as ‘proofs’ for the first three items relied on numerical examples. 

We wanted to see whether participants could distinguish between the cases for which numerical 
examples are sufficient as a proof and the cases where they are not. The results indicate that:  

The  majority of participants accepted, as valid, proofs that consider all possible cases in a 
finite set. The main purpose for including the first statement in this study was to call the students’ 
attention to the difference of working on finite and infinite sets. While for an infinite set the 
examination of the closure property through the consideration of every case is not possible, it is 
sometimes possible for a finite set. As such, in the case of the first statement, an exhaustive 
consideration of all numerical examples could serve as a proof. Students’ feedback on the given 
proof for the first statement showed their high tendency towards this approach. Among the 75 
participants in the study, 58 students accepted the given argument as a valid proof for the first 
statement. The rest of the students did not show any objection toward the given proof but they 
tried to improve it by adding or eliminating some part of it. In this group, seven students wrote, 
0×1 = 0 is redundant when 1×0 = 0 has already been mentioned. Furthermore, ten students 
showed their dissatisfaction with having just numerical examples and tried to complete the given 
argument with more explanation. Most of the explanations referred to the definition of the 
closure property of a set. For example one of the students wrote:  
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This one line explanation should be added – 
“All possibilities exhausted and answers are all within the set.” 

Other explanations focused on number properties in order to make the argument more clear: 
Because the number that is started with are 0 & 1 the number that you get when you 
multiplying are still 0 & 1. 

The majority of participants were not satisfied with the use of a single counterexample to 
disprove a claim. To establish that the second statement is false, one must realize that the given  
statement is universal and that the negation of a universal statement is existential. In other words,  
since the claim is made about all prime numbers, a single counterexample will serve to show that  
it is false. The students’ feedback, to the given ‘proof’ for the second statement, showed that all  
but three of them knew that the rejection of the claim will need a counterexample. However, only  
19 students crossed out all but one of the counterexamples. The rest of them showed their  
tendency towards having more than one counterexample. 

There were also students who had a tendency to complete the given argument by adding 
explanations to it. Again, these explanations focused on the properties of numbers. For example, 
one of student added:  

The set of prime no’s is not closed – primes are odd numbers, and odd+odd=even, which  
will always be even, or composite. 

The majority of participants accepted confirming examples as a valid method of proof. 
Proving a property for a set requires a supporting argument that shows the considered property  
works for all the elements of the set. In the case of proving a statement on a finite set, checking  
all the possibilities would constitute a proof. However, as mentioned above, the same approach is  
impossible when working with an infinite set. In such cases the use of theoretical tools, such as  
algebraic notation, or explanation of a general case is necessary to construct a proof. Findings  
from the students’ reflections on the third question indicate that the majority of students did not  
recognize this necessity in working with the infinite set of multiples of thirteen.  

Fifty-one of the student (68%) indicated that the ‘proof’, as given for the third statement, was 
acceptable. Twenty of them even crossed out some of the examples, and made statements 

such as “two or three examples are enough to make sure the given statement is correct” or “there 
is no need for so many”. Some of the students also augmented the given ‘proof’ by adding some 
explanation about the closure property of the set of multiples of thirteen under addition. For 
instance, one of the students added:  

The prime factorization of any multiple of 13 will have a 13  in it (because a multiple of 13 
has to be multiplied by 13) adding 2 multiples of 13 will still have  13 in the prime 
factorization ∴ it is closed under addition.  

One of the students, after crossing out all the examples except for two, wrote: 
Multiplication is simply repeated addition, so if you take any 2 multiples of a given number 
and  add them the result will be a multiple of the original. Ax+bx=cx, x is the multiple. 

Surprisingly, only 14 students (19%) presented a valid proof by using a correct algebraic 
representation for the multiples of thirteen. An additional ten students recognized that the 
treatment of a general case requires the selection of some form of representation, but could not 
overcome the obstacles presented in the chosen representation. Some of them did not choose an 
appropriate representation for multiples of thirteen, and the others, who chose an appropriate 
one, could not manipulate it correctly. Three examples of this are presented below:  

These examples didn’t exhaust the set. 
Rewrite proof: Number1 = 13m, Number2 = 26n 
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13m + 26n = 39mn = 13(3mn) 
Whenever 2 multiples of 13 are added their product will always be a multiple of 
13 because we are always multiplying by 13. 

or 
(n + 13) + (m +13) 
13(m + n) 

or 
13n + 13m = 26mn →13(2mn) 
∴ the set of multiples of 13 is closed because 13 times any # plus 13 times any 
other # is divisible by 13. 

The conventional form of presenting the proof seemed to play no role in the decision of a proof’s 
validity 

In general, the construction of a proof in number theory requires some kind of representation. 
However, in some particular cases (often dependent on number properties), the use of a 
reasonable explanation can be used as a proof. As such, the argument presented for the forth 
statement was specifically constructed to avoid the use of either algebraic representation or 
numerical example in order to see if students could validate a correct explanation in the form of a 
text. Results show that for more than half of the participants (39 out of 75) the presented 
argument for the fourth statement was acceptable. However, 11 students accepted the proof as 
valid only after adding some numerical examples to the given argument, such as “5 + 10 = 15” or 
“35 + 45 = 80”. 

There were also several students who rejected the given explanation in favour of their own. 
In these cases, the students displayed a preference for certain language. For example, one of the 
students stated:  

When you add 2 multiples of 5, the result is still a multiple of 5 since you can pull the 5’s 
out  of it.  
So the set is closed under addition.  

Seventeen students also attempted to replace the given ‘proof’ with one using the algebraic 
representation of multiple of five. Surprisingly, some of the students who preferred the algebraic 
proof for the fourth statement were also those who approved of the empirical reasoning for the 
third statement as being a valid proof. Among these 17 students there were also a few (5 
students) who could not manipulate their chosen algebraic notations correctly. For example:  

5m + 5n = (5 . m) + (5 . n) = 25 + 5m + 5n + mn 
all multiples of 5. 

The majority of participants did not detect the error in algebraic manipulation for the last 
item. As already mentioned, and demonstrated, the inability to manipulate algebraic notations is 
a serious obstacle in generating a valid proof. The results of students’ feedback to the presented 
argument for the fifth statement confirmed this concern. Only ten students could detect the error 
in algebraic manipulation for this item. Twenty participants considered the given ‘proof’ to be 
perfect, while for some others (7 participants) the given ‘proof’ seemed too complicated to 
understand. For example, one of these students crossed out the given ‘proof’ and wrote:  

This is ridiculously complicated; they could just give a couple of quick examples and then 
you can skip all of the complicated crud. 

This again shows the deeply rooted belief that the existence of some confirming examples is 
enough to validate a claim. This belief is further evidenced in a number of instances in which 
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students did not alter the presented proof, but augmented it with series of numerical examples. 
This is exemplified in the following: 

Don’t understand all of this but it looks good 
3×⋅5 = 15  5×⋅7 = 35  3 ×11 = 33 
Exhausted all / most possibilities, answers always odd #. 
ODD × ODD = ODD. 

The rest of the students (34 out of 75) tried to validate the given ‘proof’ by editing it, albeit, 
none of them were successful. For example, after crossing out the last three lines of the given 
‘proof’, Jane wrote:  

I would leave it at (2n + 1)(2m + 1) = 4mn + 1 
Even number + 1 will always be odd. 

Conclusion and Discussion 
Students live in a world in which the term proof may mean many different things in many 

different contexts. As such, they often believe that non-deductive arguments constitute a proof. 
This claim agrees with Schoenfeld’s (1985) observations of the empirical nature of students’ 
belief about mathematics and their failure to use deductive reasoning as a mathematical tool. The 
results of Dreyfus’ (1999) research on students’ conception of proof show that most high school 
and college students either do not know what a proof is, or do not know what it is supposed to 
achieve. According to Harel (1998), a primary reason that students dislike advanced mathematics 
is that they feel no intellectual need to establish the truth of the seemingly obvious statements 
that are proven in their course. The results of this study were no different.  

The participants’ feedback demonstrates that, although the concept of closure was generally 
well grasped, the concept of proof was not. For the majority of participants it seemed so clear 
that the sum of two multiples of five would be a multiple of five, or the product of two odd 
numbers would be an odd number, that they were unable to see the need for anything more than 
a few confirming examples as support. In the cases where the truth value of the statements was 
not as ‘obvious’, the results still showed the tendency of the preservice elementary school 
teachers to acknowledge empirical verification as an acceptable proof. Together, these results 
confirm the findings of prior research (Harel & Sowder, 1998; Martin & Harel, 1989; Fischbein 
& Kedem, 1982) that suggests a strong reliance on empirical proof schemes. However, an 
interesting contribution of our study deals with a question of how many examples constitute a 
‘proof’, as perceived by our participants. For the majority, two or three examples seemed to be 
sufficient, as evidenced by the way in which the participants deleted or added numerical 
examples to the provided arguments.  

Although, some research (Vinner, 1983; Selden & Selden, 2003) suggests that students tend 
to judge a mathematical argument on its appearance, we did not find high reliance on this 
‘ritualistic’ aspect of proof. Instead, the arguments in items four and five were either augmented 
or verified with numerical examples before they were accepted as ‘proofs’. This finding, 
however, can be explained by the participants’ mathematical background. Preservice elementary 
school teachers experience only minor exposure to the rituals of the proof, as compared to the 
participants (mathematics majors) in the aforementioned studies. As such, mathematical proof 
does not become a part of the preservice teachers’ mathematical culture and beliefs in the same 
way that it does for mathematics majors. 

Considering the important role of elementary school teachers in establishing the foundation 
of the mathematical knowledge of the next generation of students, we believe that their ability to 
establish the validity of provided argument is essential. It appears that this skill is not acquired 
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from exposure to and writing of proofs. Therefore special training in evaluating arguments could 
be beneficial in teacher education.  
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This study documents the mathematical development of a group of eleventh-grade students who 
solved challenging combinatorics tasks and then developed convincing arguments to justify their 
ideas to themselves and to others. In doing so, they extended their mathematical reasoning and 
developed meaningful mathematical proofs, including proof by cases, proof by induction, and 
proof by contradiction. In addition, the students were able to apply their proofs and justifications 
to another isomorphic problem. The results of this qualitative study suggest that in an  
appropriately supportive environment, students are capable of constructing and justifying 
mathematical ideas.  

 
Introduction and Theoretical Framework 

The National Council of Teachers of Mathematics (NCTM) Standards state that the 
mathematics curriculum should include numerous and varied experiences that provide 
opportunities for the development of mathematical reasoning and proof making by students 
(NCTM, 2000). However, Hanna (1995) asserts that changes during the last thirty years have 
resulted in less emphasis on proof in the curriculum. Why does this inconsistency exist? One 
explanation offered is that traditional demonstrations of axiomatic proofs that attempt to teach 
students proof making have been generally unsuccessful (c.f. Anderson, 1995; Senk, 1985; 
Speiser, Walter & Maher, 2003). The NCTM (2000) recommends that reasoning and proof 
should be developed through consistent use in many contexts from prekindergarten through 
twelfth grade. 

Prior research (Healy and Hoyles, 2000) documented that a group of high-achieving fourteen 
and fifteen year-old students held two different conceptions of proof: arguments that would 
receive high grades versus arguments that they would adopt for themselves. The latter, generally 
speaking, were arguments that they could evaluate for themselves, would be convincing and 
explanatory, and were presented in their own language. Sconyers (1995) states that proofs need 
not be rigid in order to be rigorous. He maintains that the essence of mathematical proof is not in 
the format, but rather in the concepts of necessary inference and logically compelling arguments. 
Hanna and Jahnke (1993) state that understanding is primary for a learner to accept that a new 
theorem has been proved, with rigor only secondary. They argue that students are likely to gain a 
greater understanding of proof when emphasis is on the communication of meaning, rather than 
on the formal derivation. The NCTM’s assertion that “The particular format of a mathematical 
justification or proof, be it narrative argument, ‘two-column proof,’ or a visual argument, is less 
important than a clear and correct communication of mathematical ideas” (NCTM, 2000, p. 58) 
provides further support for these criteria for students’ meaningful mathematical  proofs.  

The purpose of this study is to document, within the context of problem-solving situations 
that involve combinatorics, how a group of students built solutions and then developed 
convincing arguments to justify their ideas to themselves and to others. In doing so, they 
extended their mathematical reasoning and developed meaningful mathematical proofs, 
including proof by cases, proof by induction, and proof by contradiction.  
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Methods and Procedures 
Background and Setting 

As part of an ongoing longitudinal study involving the development of children’s 
mathematical ideas, initiated in 1989, students have been engaged in problem-solving 
explorations that involve strands of mathematics including algebra, probability, combinatorics, 
and pre-calculus.1 Combinatorics activities were presented beginning in grade two, before formal 
class instruction of algorithms. During these sessions, students worked together to find solutions 
to problems and to build justifications for their ideas.  

At the time of this component of the study, nine students investigated combinatorics tasks in 
eleventh grade after-school sessions in a middle-class suburban school district in New Jersey. 
The students worked together in pairs or in small groups, and each session lasted approximately 
one and three fourths hours. Students were invited to explore ideas, develop representations, 
invent notations, make conjectures, devise strategies, test their methods, discuss their ideas with 
their peers, and to justify their solutions. The teacher’s role was to step back to give students 
freedom to pursue their ideas, to observe the students’ work, and to listen carefully in order to 
decide when an appropriate intervention was necessary. An appropriate intervention on the part 
of the teacher might be to ask a question or to pose a modification of the task to encourage 
students to explain their ideas and reasoning. Problems, or similar ones, would later be revisited, 
so students would have the opportunity to think about their ideas over time.  

Subjects 
Nine eleventh grade students, sixteen and seventeen years old, volunteered to participate in 

this research project. The students, Amy-Lynn, Angela, Ali, Magda, Michelle, Robert, Shelley, 
Sherly, and Stephanie, rearranged their part-time work schedules and other extracurricular 
activities in order to participate in the program. Five of these students, Amy-Lynn, Michelle, 
Robert, Shelly, and Stephanie, were a subset of the original group that had been involved in the 
longitudinal study in grades one through eight.2 In grades three through five, they explored the 
same tasks that are the subject of this study, the Tower Problem and the Pizza Problem.  
Tasks 
The tasks that provide the basis for this study are the Tower Problem and the Pizza Problem. The 
Tower Problem presents the following: 
How many different towers exactly four cubes tall can be built from unifix cubes when there 
are two colors available for use? 
How do you know you have them all? 
Can you convince us that you have all possibilities, that there are no more or no fewer? 
The Pizza Problem states: 
A local pizza shop has asked us to help design a form to keep track of certain pizza choices. 
They offer a plain pizza, that is, “cheese with tomato sauce.” A customer can then select 
from the following toppings: peppers, sausage, mushrooms and pepperoni. 
1. How many different choices for pizza does a customer have? 
2. List all the possible choices. 
3. Find a way to convince each other that you have accounted for all possible choices. 
4. Suppose a fifth topping, anchovies, were available. How many different choices for pizza 
does a customer now have? Why? 

The Tower and Pizza Problems have isomorphic mathematical structures, and their solution 
can be represented by a generalization that may be justified by either a proof by cases or a proof  
by induction.  
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Data 
At least two cameras were used to videotape each session, supervised by a videographer and 

a sound technician. One camera focused on the actions of the students; the other camera focused 
on the students’ written work. All of the students’ written work was collected, both scratch work 
and more carefully written solutions and explanations. In addition, mathematics education 
graduate students were present at a distance to record field notes of their observations. The 
videotapes were digitized and converted to MPEG format to be used with vPrism software. The 
videotapes were transcribed, verified independently, and analyzed. The videotapes, students’ 
written work, field notes, transcripts, and analyses for each session provide the data for this 
research.  

A qualitative methodology for data analysis was employed. To manage the large amount of 
data that were analyzed, a visual representation of the flow of students’ ideas and justifications 
was developed. Combinatorics ideas under consideration, contributions made by each student or 
partnership, and teacher/researcher interventions were charted with corresponding timecodes. 
Students’ representations, strategies, justifications, connections, and interactions, as well as the 
role of the teacher/researcher were coded, and the codes were used to identify and trace the 
students’ development mathematical reasoning and proof.  

Results 
The Tower Problem: November 13, 1989 

Six students were present at the first eleventh grade after-school problem-solving session. 
Seated side-by-side from left to right, were: Sherly, Ali, Magda, Angela, Michelle, and Robert. 

Angela and Magda were paired as partners. Magda began by building towers randomly, and 
Angela began by using a local organization, termed an elevator pattern because a blue cube is 
moved down or up one level in each tower, to find all of the towers with one blue cube. They 
worked together cooperatively to check for duplicates and then focused their constructions on the 
number of blue cubes in each of the towers. They developed a global organization by grouping 
their towers by cases, which they referred to as one blue, two blues, three blues, and four 
yellows. 

To justify the completeness of the case with one blue cube, Angela and Magda used a proof 
by contradiction. They argued that they moved the blue cube down, into every possible position, 
in each of the four towers. To place the blue cube in another position would require the tower to 
be taller and would, therefore, contradict the given parameter of the problem, that a tower is four 
cubes tall. They used the same argument to justify the completeness of the case with the three 
blue cubes; they moved the one yellow cube down into each possible position in each of the four 
towers.  

Sherly and Ali worked together as partners. For the case of towers four high with two blue 
cubes, Sherly and Ali originally built and organized their towers in pairs of opposites, but they 
stated that they were not sure that the six towers that they had built were all of the towers for this 
case. Approximately one hour later, for towers five high with two blue cubes, they organized the 
towers into subcases: towers with two blue cubes together; towers with two blue cubes separated 
by one yellow cube; towers with two blue cubes separated by two yellow cubes; and towers with 
two blue cubes separated by three yellow cubes. Sherly used a proof by contradiction to justify 
having all of the towers five high with two blue cubes; she explained that you could not have 
towers with two blue cubes separated by four yellow cubes because there would then be six 
cubes in the tower.  

Robert and Michelle were paired as partners. Although Michelle initially built towers with 
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their opposites, Robert began by building and organizing the towers by cases, focusing on the 
blue cubes. He used a global organization that accounted for all possible cases to build the 
towers and used a proof by cases as a justification. He explained that he focused on the blue 
cube: zero blue, one blue, two blue, three blue, and four blue. The teacher/researcher asked 
Robert if he thought that he had all of the towers in the case with two blue and two yellow cubes, 
and if so, how did he decide that he had all of those towers. Robert justified his argument by 
demonstrating that he repeatedly controlled one variable.  

Robert used a proof by induction as a convincing argument for having all of the towers three 
tall. He explained that his “bottom” towers, those that were built upon, included all possible 
towers two tall. Then “you just take this [bottom] and add a blue and a yellow to the top and that 
is all the combinations for this.” Each two tall tower generated two new towers three tall, one 
with a blue cube added atop and one with a yellow cube added atop. He continued to explain that  
these were the only possibilities for each new tower, and this process could be continued “all the  
way through” for each bottom tower to produce all possible towers one cube greater in height.  
Robert explained that the process could be continuously repeated, thus the doubling of the  
towers.  
01:30:19  Teacher/Researcher  Are you sure you have got all of them by doing that? 
01:30:23  Robert      Yeah, cause if you are sure you have all of this, and there is   

only like two ways you can change this, and that is by putting 
one on top of each, and there are only two ways you can 
change this, by putting the yellow and the blue on top. 

01:30:38  Teacher/Researcher  Couldn't I put one onto the bottom? 
01:30:40  Robert      But then it would be the same thing as something over here.  

So, this is just, always add onto the top and keep going. And 
this is all that is possible for two, and if you just add one to the 
top of them for each of them, for different colors, I guess you 
would have three. And do that for the three until you get all for 
four, etcetera. 

Robert and Michelle extended their inductive reasoning to justify their generalization that the 
total number of towers for any given height is x to the h, where x is the number of color choices 
and h is the height of the tower.  

During a single session, lasting approximately one hour and forty-five minutes, the students 
solved the Tower Problem and justified their solution using three forms of proof: proof by 
contradiction, proof by cases, and proof by induction. The students then used inductive reasoning  
to extend their ideas and generalized the number of towers that could be found for any height  
with any number of colors available to choose from.  
The Pizza Problem: March 1, 1999 

Approximately four months after the Tower Problem session, students met again after school 
and were presented with the Pizza Problem. Eight students were present at this session. They 
were organized into two groups with four students in each group, and each group worked across 
the room independently of the other. The four students at Table A, Robert, Stephanie, Shelly, and  
Amy- Lynn, had participated in the earlier investigations in grades three through five. Of the 
students at Table B, Angela, Magda, Michelle, and Sherly, only Michelle had explored pizza 
problems in the early grades.  

When presented with the problem, Shelly, Stephanie, and Amy-Lynn discussed the fact that 
they “just did this in school, combinatorics stuff,” and after using their calculators to try to solve 
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the problem, they said that it was pathetic that they did not remember what they had been taught. 
Stephanie suggested that they employ a strategy that they had used with the Shirts and Pants 
Problem [which they had investigated in the longitudinal study in grades two and three] or the 
Tower Problem, and Shelly recalled that they had used a tree diagram.  

The students organized their pizzas by cases according to the number of toppings and used a 
proof by cases to justify their solution. They found that for pizzas with four toppings available, 
there were 1 4 6 4 1 topping combinations, for a total of sixteen pizzas, and recognized these 
numbers as a row in Pascal’s Triangle. They used the Triangle to determine the number of 
possible pizzas with five available toppings, the next row 1 5 10 10 5 1, for a total of thirty-two 
pizzas.  

The students connected the numbers on Pascal’s Triangle to the corresponding topping 
combinations and used pizzas to explain the addition rule for generating rows on the Triangle. 
Stephanie explained the addition of the three [pizzas with one topping] and the three [pizzas with 
two toppings] on the fourth row to produce the six [pizzas with two toppings] on the fifth row.  
00:52:58  Stephanie   So then here, um, you have six pizzas with two toppings.    

Now you already have three pizzas with two toppings. So these 
three pizzas with one topping get an extra topping added on. 

00:53:09  Teacher/Researcher  Okay. [Teacher/Researcher nods.] 
00:53:10          Stephanie  So these become three pizzas with two toppings. And then       

three pizzas with two toppings plus three pizzas with two 
toppings equal six pizzas. 

Robert generalized the solution for the total number of pizzas as 2n, for n available toppings, 
based on a pattern that he observed. When Stephanie explained how pizzas could be moved to 
two different places on the Triangle, in one move they remain the same and in the other move 
they get an extra topping added to them, Amy-Lynn connected this two with Robert’s 2n, to 
provide a justification for his generalization. 

The students at Table A also connected the numbers on Pascal’s Triangle to towers and 
explained the addition on the Triangle using towers. Furthermore, Robert explained the 
isomorphism between the tower and pizza problems. He stated that the number of toppings 
[available] corresponds to the height of a tower; a pizza with four toppings [available] would be 
a tower four high. He added that the two colors would indicate with or without toppings.  

Conclusions and Implications 
Students approached the Tower Problem using random methods to create combinations and 

check for duplicates. To help simplify the task, they developed local organizations, such as 
opposites. When these local organizations proved inadequate to justify having all of the 
combinations, the students focused on cases, which supported the movement to a more global 
organization. This new organization became the framework for the students’ development of a 
proof by cases. A proof by contradiction was also created to justify the completeness of an 
individual case. When the students solved the problem for towers of different heights, they 
observed a doubling pattern, which lead to a generalization and the development of a proof by 
induction. 

The students solved the Pizza Problem and justified their solution using a proof by cases. 
They connected their topping combinations to the numbers on Pascal’s Triangle and explained 
the addition on Pascal’s Triangle using pizzas. They also noted the doubling pattern as the 
number of available toppings increased. In addition, the students at Table A, who had 
participated in the longitudinal study and explored the tower and pizza problems in grades three 
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through five, explained their reasoning for the doubling rule using both pizzas and towers. 
Furthermore, they explained the addition on Pascal’s Triangle using towers as well as pizzas. 
Finally, they constructed a three-way isomorphism between the Tower Problem, the Pizza 
Problem, and the numbers on Pascal’s Triangle.  

The students were presented with challenging problems and given the responsibility to solve 
them. They did not work in isolation; rather, they were active participants in a learning 
environment where ideas were shared and discussed. In the course of making sense of their 
observations and of what their peers were saying and doing, they built an understanding of 
important mathematical ideas and developed justifications for those ideas. Furthermore, since the  
students created personal, meaningful proofs, rather than passively receiving instruction from a  
teacher, they extended their reasoning and made connections to other ideas in combinatorics.  

This research indicates that when given challenging problems in an appropriately supportive 
environment, these students can, and did, construct “wonderful ideas” (Duckworth, 1996), 
including sophisticated mathematical proofs and convincing arguments generated to justify their 
ideas to themselves and to others. This has important implications for teachers and researchers, 
who, as the NCTM standards suggest, wish to incorporate the idea of mathematical reasoning 
and proof making into the curriculum in a meaningful manner.  

Endnotes 
1. This work was supported in part by National Science Foundation grants MDR9053597 

(directed by R. B. Davis and C. A. Maher) and REC-9814846 (directed by C. A. Maher) and by 
grant 93-992022-8001 from the NJ Department of Higher Education. Any opinions, findings, 
conclusions or recommendations expressed in this work are those of the author and do not 
necessarily reflect the views of the National Science Foundation or the NJ Department of Higher 
Education. 

2.  For further discussion of the earlier work of these students, see Tarlow, 2004. 
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In this paper we present results from a case study derived from a teaching experiment using 
dynamic geometry activities in a distance communication setting (network chat) for the 
construction of geometrical proofs. We use as theoretical framework, the work of Balacheff who 
defined three components to analyze the transit from pragmatic proofs to intellectual proofs 
culminating in a mathematical proof: the knowledge component, the language or formulation 
component, and the validation component. As a result of the chat activities, whose aim was to help 
develop a functional language, students did show an improvement on the level of the formulation 
component. In contrast, in the short time available, the students weren’t able to construct 
intellectual proofs using the acquired language: the attention on the formulation component 
seems to lessen the one placed on the validation component. 
 

Introduction and theoretical framework 
For several years we have been investigating the influence of technology on the teaching and 

learning of mathematical proof. The use of technological tools brings the possibility for different 
types conceptualizations of mathematical objects, which may help or hinder the processes 
involved in the development of proofs. Most research regarding the use and influence of 
technological tools in proving has been done with regards to dynamic geometry environments 
(Hoyles & Jones, 1998; Balacheff, 1999; de Villiers, 1998, 2002; Jones, Gutierrez & Mariotti, 
2000). In this paper, we will present data from a teaching experiment involving the use of 
dynamic geometry activities for the construction of geometrical proofs with the use of a distance 
communication setting. One of our interests has been to promote and observe how students 
develop the functional language that is necessary for the construction of intellectual proofs. 
Thus, we tried to complement the dynamic geometry activities with a network chat setting in 
order to develop the language component. 

Some researchers promote the use of proofs as a means to create meaningful experiences 
(Hanna, 1998). Constructing proofs using technological tools such as dynamic geometry 
environments can provide an opportunity for exploration, discovery, conjecturing, refuting, 
reformulating and explaining (de Villiers, 2002). Computer tools can be used to gain conviction 
through visualization or empirical verification, but as de Villiers (ibid) points out, proofs have 
multiple functions that go beyond mere verification and that can also be developed in computer 
environments: such as explanation, discovery, communication, intellectual challenge, 
systematization. From these, we will focus here on some aspects of the communication function. 

Balacheff (1987, 1999), in particular, has introduced certain ideas that we consider important 
for our analysis. In accord with his theory, a proof is conceived as an explanation regarding the 
truth of a proposition that is accepted by a community (as explanation we understand a discourse 
that tries to make sense of procedures, results or mathematical propositions).  The community 
could be a school community of a particular level, or it could be the mathematical community; in 
this last case, proof means a mathematical proof. Balacheff (ibid) has also proposed a distinction 
between pragmatic proofs and intellectual proofs; emphasizing the role of language in the 
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passage from the former to the latter. Pragmatic proofs are those based on effective action carried 
out on the representations of mathematical objects. They lead to practical knowledge that the 
subject can use to establish the validity of a proposition. Intellectual proofs demand that such 
knowledge is reflected upon, and their production necessarily requires the use of language that 
expresses (detached from the actions) the objects, their properties and their relationships. The 
transition from pragmatic proofs to intellectual proofs culminating in mathematical proof is 
looked upon within the more general context of mathematical activity, which can be divided into 
three main components: the action or knowledge component, the language or formulation 
component, and the validation component. 

As summarized by us in Figure 1, the first component is constituted by the knowledge that is 
involved in decision-making and it evolves from procedural knowledge to theoretical knowledge (it 
includes: the nature of knowledge: knowledge in terms of practices — “savoir-faire”; knowledge as 
object; and theoretical knowledge). The second component relates to the language through which 
knowledge is transmitted and it evolves from ostentation language to formal language (it includes: 
ostentation, familiar language, functional language, formal language). The third component is formed 
by the procedures used when validating the truth of knowledge, that is, the types of rationale 
underlying the produced “proofs”: from pragmatic, to intellectual, to mathematical proofs; these start 
with naïve proofs (the most basic type of pragmatic proof) and evolve to mathematical and even 
formal proofs (the latter is not included in the diagram). Each level of a component corresponds to 
levels of each of the two other components (the diagram in Figure 1 is not all-inclusive but shows the 
easily identifiable levels).  

We are concerned with the problem of stepping from pragmatic proofs (in dynamic geometry 
environments pragmatic proofs can be very powerful) to higher levels of proofs. In previous 
research (e.g. see Sánchez & Mercado, 2002; Sánchez & Sacristán, 2003; Mercado, 2004) we 
have observed that through Cabri-Géomètre-based explorations, students can discover and 
consider as plausible, geometrical propositions. In fact, students are able to construct “dynamic 
proofs”, that is, pragmatic proofs based on dragging. In contrast, they aren’t as able to develop a 
functional language that is characterized by the use of symbols and the construction of precise 
geometrical instructions. If students are not able to develop a functional language, they will be 
unable to construct intellectual proofs. 

Figure 1: The three components involved in the development of proofs 
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The functional language, in particular, is a language for talking about mathematical objects 
and for communicating ideas related to them, independently of the situation, school context, or 
of the persons with whom the communication takes place (e.g. the teacher). Thus, the 
development of a functional language involves processes of “de-temporalization” and “de-
contextualization”.  

Additionally, we can consider that the process of language-acquisition takes place through 
the completion of stages (not necessarily sequential) that correspond to the discursive functions 
of a language, as described by Duval’s (1995) semiotic theory: designation, the construction of 
complete statements, discursive expansion and reflexivity (the use of language in the study of 
language itself). We consider that there are analogous functions in the acquisition process of the 
geometrical language. The function of designation involves, in a geometric problem, the 
construction of the definition and the assigning of symbols to the geometrical objects. The 
function of construction of complete statements involves putting together several language 
elements (definitions, symbols, natural language) in order to produce a higher order statement 
with a geometrical meaning; it implies being able to synthesize. The function of discursive 
expansion involves integrating the statements that result in the text that describes a construction 
or a proof. 

Based on the above ideas, we devised a situation which we hoped would help students 
develop their functional language in geometry, by stimulating them to carry out processes of de-
temporalization and de-contextualization:  the situation, part of a teaching experiment, involved, 
among other things, having students and communicate problems and results via a computer 
network chat, as described below. 

A teaching experiment for developing functional language 
Our original aim was to investigate the use of dynamic geometry activities for improving 

high-school students’ abilities in proving geometrical propositions, and the conditions necessary 
for promoting the transition from pragmatic proofs to intellectual proofs. As mentioned above, in 
the course of our previous research, the lack of development of a functional language emerged as 
a fundamental aspect in the learning of mathematical proof by students.  

For this we designed a teaching experiment involving 8 Mexican high-school students (ages 
16 to 17). We should point out that in all of the middle school and high-school Mexican 
curriculum topics of mathematical proofs are not included. It is also worth mentioning that in 
most Mexican schools there is little emphasis put on writing and, even less, on mathematical 
writing. This is a local cultural problem, which forces us to put more interest on the development 
of a functional language. (This problem may also explain the poor results that we reported in 
Sánchez & Mercado, 2002.) 

The teaching experiment consisted of two phases. In a first phase, the students were taught a 
Geometry-with-Cabri course that lasted some 20 hours, placing emphasis on the writing of 
propositions and proofs. In a second phase we had special sessions where students had to 
communicate a problem to a partner via a network chat, and they had to solve it together and 
construct a proof. (Data of students’ performances was collected during both phases.) 

During the first phase geometry course, students were taught the use Cabri, and they 
reviewed basic geometry concepts and the characteristics, purpose and construction of proofs.  

The second phase added a communication setting where students could put into practice their 
writing abilities in a natural way. The premise was that a distance communication setting could 
influence the process of de-contextualization in two ways: a) If the two participants do not have a 
common geometrical figure, they need to use language to communicate how to reconstruct the 
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figure. b) In this situation the student who is given the problem, is aware that his partner doesn’t 
know the proposition they will work on which forces him to explain as best he can the problem 
and his solutions.  

We teamed students in pairs. The two students of each pair were separated, working in 
different rooms on network-linked computers, so that they had to communicate by “chatting” (in 
written form, without the possibility of sending graphics) through the network. The teacher 
presented and explained a geometrical problem to one of the students; that student had to 
communicate the problem to his/her partner through the network chat; the pair had to work 
collaboratively to solve the problem, by communicating to each other their ideas and progress. 
Students were provided with the Cabri software as a tool to solve some problems presented to 
them (see further below). Students worked in this way for six 3-hour sessions. In between these 
working sessions, there were teaching sessions where the teacher commented on what the 
students did in their past sessions. During these interventions, the teacher made suggestions on 
the use of symbols (the designation function), the construction of complete statements, and the 
discursive expansion function. 

Here we present excerpts from the case study of one pair of students, Pedro and Israel, during 
the second phase. The data was analyzed in terms of the evolution of all the three components 
involved in the development of proofs: the thread knowledge-formulation-validation. In 
particular, the data produced during the chat sessions was analyzed from the point of view of 
how students evolved in terms of the formulation (language) component, and this is what we 
shall present here. 

Case Study of Pedro and Israel 
First session. In the first session (of the second phase), Pedro and Israel were each given, 

verbally on a blackboard but without symbols, a separate problem. They each had to 
communicate their problem to his partner via network chat and they jointly had to find a 
solution. Pedro was given the following problem. (Note: All problems and transcripts are 
translated from the original Spanish.)

Problem 1: In a triangle, draw two perpendicular segments to a median through two vertexes. 
What is the relationship between these segments? Write a corresponding proposition and a proof. 

Below is the way Pedro tried to explain the problem on the network chat to his partner. He 
uses natural language without symbols, and the definition of the problem is vague. 

Pedro:  Israel, the problem is about a triangle on which a median is drawn, that is, a line 
that divides the triangle into equal parts, when a perpendicular is drawn to the 
right and another to the left, the segments measure the same. Why? That’s the 
problem. Did you understand it or should I explain it differently? 

Israel was unable to understand Pedro’s problem so he focused on solving the problem that 
was given to him and there was little communication between the two students. In subsequent 
sessions, only one student was given a problem at a time, in order to push the students to 
communicate and jointly find a solution.  

Second Session. In the second session, Israel was given, orally, the following problem, which 
he had to communicate to Pedro. As in all the sessions, there was no use of symbols in the 
presentation to the student so as to not suggest a particular use of symbols. 

Problem 3. Given a triangle and an orientation of its perimeter, successively find the 
symmetrical point to each vertex in relation to the following vertex. The three resulting points 
form a triangle.  What is the relationship between the area of this triangle and that of the original 
triangle? 
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We erroneously thought that the necessity to communicate the proposition in a written form 
during the chat, would promote a spontaneous use of symbols by the students. As shown in the 
transcript below, Israel did use symbols to label the vertexes of the triangle but neither he nor 
Pedro ever used them again. 

Israel:  We have a triangle A, B, C, we have to find the symmetrical of each point, after 
joining the resulting points we get a major triangle. What is the relationship 
between the areas of the triangles or rather how many times does the small 
triangle fit into the big triangle?… 

Third Session. Before the third session, the teacher suggested to the students that they use 
symbols; the teacher showed them how in the previous sessions they had problems in their 
statements because of the lack of use of symbols. Pedro, influenced by the teacher’s suggestion, 
made an effort in the third session to use symbols for denoting the vertexes and segments. We 
should note, however, the non-conventional type of notation that he used for the segments: 

Pedro:  Israel the problem is as follows, if you have a triangle A, B, C, and you find the 
mid-point of each side of the triangle, call the mid-point of A to C, A1, the mid-
point of B to C, B1 and the mid-point of B to A, C1 then join each of these points, 
you will see that a triangle is formed, What is the relationship between the formed 
triangles? Do I make myself clear? 

An immediate consequence of the use of symbols by Pedro, was that Israel was able to 
understand the problem much more easily than in the previous session and construct the figure in 
Cabri. Just the fact of using some symbols, even if they were used in a rudimentary way, allowed 
the students to make some progress in the de-contextualization process. In this session, the 
students were able to share the object of which they were talking. On the other hand, the use of 
symbols was abandoned as they progressed in finding a solution. The solution Pedro presented to 
the problem contains the main elements for a proof, but he no longer used any symbols, and 
again reverted to the use of colloquial terms. Israel, however, was able to understand it because, 
in contrast to what happened in the first two sessions, the two students now had constructed a 
common object to which they could refer.  

Pedro:  look, I have the following: the triangles which have same areas because the 
central triangle forms a parallelogram with each of the remaining triangles and 
each parallelogram that is formed is divided by a diagonal, which divides the 
parallelogram in two triangles of equal area and that shows why they have 4 equal 
areas 

Fourth Session. Before the fourth session, the teacher again made an intervention, in order to 
go a step further in the development of a functional language: he emphasized the need to write 
complete statements for the construction of geometrical objects, showing the students examples 
and discussing the deficiencies in the transcripts from the previous sessions. The problem, given 
to Pedro, was as follows: 

Problem 5: Given any parallelogram, select an orientation for its perimeter. Draw the 
symmetrical point to each vertex with respect to the following vertex. Join the resulting vertexes 
in the obtained order to form a quadrilateral.  What is the relationship between the area of the 
original parallelogram and the area of the resulting quadrilateral?  Would the obtained 
relationship be applicable to other quadrilaterals? 

Pedro began trying to state the problem very clearly; he was careful to use symbols and to 
give as complete statements as possible. Israel understood the problem but he realized that he 
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didn’t know how to construct a parallelogram. Pedro reverted to the use of familiar language in 
his instruction on how to construct it.  

Pedro:  Look, first build a segment, then mark a point outside the segment and then draw 
a parallel line to the segment that you have with respect to the drawn point, then 
draw a segment that begins in one end of the original lone to any point in the 
parallel line, finally draw a perpendicular to the second segment 

However, he soon realized the need for symbols and a more functional language and 
reformulated his statement. 

Pedro:  another way is: build a segment call it A, then mark a point outside the segment 
call it G, then draw a parallel line to segment A that passes through point G then 
mark a segment B that begins in one end of line A to any point on the parallel 
line, finally draw a perpendicular to segment B with respect to… 

From the point of view of the validation component, during the first two sessions, Pedro was 
constantly aware of the need of giving a proof (give an explanation), and produced “proofs” or 
explanations although using familiar language. In the case of Problem 3 (second session) his 
explanation was close, in familiar language, to a correct mathematical proof: 

Pedro:  An answer would be to find the symmetry for each of the segments of any triangle 
and the resulting segments are joined in the middle by other segments three 
diferent triangles are produced, now those triangles you can get the median that 
converts the figure into 7 triangles of the same area, this happens because each 
triangle shares or has in common the same base and the same height with respect 
to the original triangle which is at the center and shares its sides with each of the 6 
leftover triangles 

In contrast, by the fourth session, the emphasis was placed on the use of symbols and a 
functional language, and the students were unable to build a proof (even though Problem 5 was a 
simple variation of Problem 3 and we had assumed it would be easy for them to produce a 
proof.) In this session we observed a change in Pedro’s attitude: he seemed reluctant to discuss 
the generalization of the result and did not even attempt to construct a proof: perhaps he was 
exhausted from his effort to state his ideas using a functional language. The validation 
component seems to take a step backwards when more emphasis is placed on the formulation. 
Although the fact that they did not produce a proof in this last session may be due to time 
constraints (although the session was 3 hours long for only one problem), another explanation is 
that the transition from familiar language to symbolic language implies a cognitive effort that 
diverts the attention from the aspects related to the validation component. We liken this to the 
difficulties one experiences when trying to think with a newly learned foreign language. 

With regard to the knowledge component, we observed again that students “understood” the 
propositions and were able to detect geometrical relationships. It is worth noting, that Pedro, who 
had shown a better performance on the level of the knowledge component, and also on the level 
of the validation before his attempts to use a more functional language, had a greater ability for 
developing the latter component. This leads us to hypothesize that a higher development on the 
level of the knowledge component provides a good foundation on which to develop functional 
language. 

Conclusions 
As reported elsewhere (Sánchez & Sacristán, 2003), we found that the use of the dynamic 

geometry software, helped students make progress on the level of the knowledge component. 
Students seemed to grasp the meaning of some of the theorems (and explain the fundamental 
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idea behind it) thanks to the phenomenological approach that the use of Cabri makes possible 
which allow students to discern the necessary elements needed for the proof.  

On the other hand, during the first phase, their statements and results were expressed in a 
vague and loose language that made its comprehension difficult for anyone unfamiliar with the 
context of the problem; this indicates a deficient process of de-contextualization. The purpose of 
the second phase (the chat sessions) was precisely to help overcome this deficiency by placing 
emphasis on the level of the formulation component. 

During the second phase students did improve considerably on this level, as illustrated above 
in the case study of Pedro and Israel. While in the first chat sessions, the geometrical objects 
were described using a familiar language (no use of symbols and vague definitions), by the 
fourth session, the value of a functional language was realized: symbols and complete statements 
were used and recognized as necessary for efficient communication. 

However, the attention placed on the formulation led students to neglect the validation 
component. While in the first sessions there was a constant awareness of the need to explain and 
produce a proof, by the fourth session the time spent on efficiently communicating the problem 
to each other prevented them from having time to find a proof.  

In summary, the Cabri-Géomètre activities seem to allow progress on the level of the 
knowledge/action component; pragmatic proofs are enhanced. The communication (chat) setting 
and the teaching influence positively the use and acquisition of a functional language. We 
observed that the use of symbols and the effort to construct complete statements improved 
greatly the communication between the students. But the validation component seems to take a 
step backwards when more emphasis is placed on the formulation. The development of a 
functional language demands a great deal of attention on the part of the subject that in a way 
inhibits (maybe temporarily) the use of other abilities belonging to the knowledge and validation 
components. However, as already stated, the chat setting did help in the development of the 
formulation component and we are researching its potential so that with more practice students’ 
use of a functional language becomes more established leading perhaps to an improvement on 
the level of validation. 
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This paper presents some initial findings from a multi-year project that is exploring numeracy 
and the growth of mathematical understanding in a variety of construction trades training 
programs1.  In this paper, we focus on John, an entry level plumbing trainee as he attempts to 
solve a pipefitting problem. We explore the ways in which he tries to decide which calculation to 
perform when faced with a multiplication sum required by the task. We suggest that while he 
may have an appropriate image for the act of multiplying, he does not access it in this task, and 
that he needs to either make or remake an image that will help his understanding grow in this 
context. We contend that it can not be assumed that the images held by adult learners for basic 
mathematical concepts are necessarily appropriate or accessible, particularly when being used 
in new, specific workplace contexts. 
 

Mathematics and Workplace Training 
Using mathematics is a fundamental part of workplace practice in most credentialed trades. 

To function effectively and efficiently, tradespeople are expected to use and apply a range of 
mathematical skills and understandings in a wide range of situations. (e.g. Nicholson, 1998; 
Folinsbee, 1995). Most construction trades require workers to be credentialed, and 
apprenticeship training courses and the associated examinations generally have considerable 
mathematical content. Although recent years have seen an increase in the attention paid by 
researchers to mathematics in the workplace, there is still only a limited body of work, which 
considers cognition and understanding in a vocational setting (E.g. Noss, Hoyles & Pozzi, 2000). 
Our research focuses on mathematical understanding in workplace training, and explores the 
ways in which understandings are used, modified and learned in specific workplace training 
contexts. 

Theoretical Approach 
The study is framed by the Pirie-Kieren theory for the dynamical growth of mathematical 

understanding (Pirie & Kieren, 1994). This theory provides a way to look at, describe and 
account for developing mathematical understanding as it is observed to occur in action. Adults in 
workplace training are often re-learning mathematics for which they have existing images and 
understandings. As they engage in mathematical activity during training they need to re-visit 
these existing understandings and images, make sense of them again in specific trades contexts, 
and modify and extend them and if necessary construct new understandings. We use elements of 
the Pirie-Kieren theory, specifically the notion of “images” to describe the way that John uses the 
mathematical concepts of multiplication and fractions within a pipe-fitting task. We highlight the 
potential limitations of his existing images for these concepts, at least in a form that is helpful in 
this context.  
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Methods and Data Sources 

The larger study, currently underway, is made up of a series of case studies of apprentices  
training towards qualification in various construction trades in British Columbia, Canada. The 
trainees and their instructor were observed and video-recorded over a number of sessions. The 
episode on which this paper focuses involved a small group of students in the shop working to 
calculate the length of a pipe component required for a threaded pipe and fitting assembly to be 
built to given specifications. This activity followed a formal lesson on this procedure in the 
classroom. The second author acted as a participant observer in this session and engaged with 
individual trainees as they worked on the task. The video recording of this episode was analysed 
using the Pirie-Kieren theory with a particular focus on identifying the mathematical images 
held, accessed, made, modified and worked with by John as he completed the task. It should be 
noted that the transcript offered below represents a very short extract from a number of hours of 
taping, and some of the comments and conclusions we offer draw on data beyond that presented 
here. 

John and the pipefitting task 
A drawing of the pipe assembly to be constructed is shown in figure one. The students were 

assigned the task of constructing this assembly with a centre-to-centre measure (C-C) of ten 
inches. The values for the fitting allowance (A) and thread makeup (E) were provided elsewhere, 
and the length of cut pipe (P) had to calculated. 

                    
Figure One: Pipe assembly to be constructed by John using standard pipe fittings and a cut 

piece of pipe. 
 
The following episode begins at a workbench in the shop as John works to make sense of the 

calculations needed for this task. 
John:  Ok. So what I do now is, I know that it’s ten, what I’ve got to have total. 
Researcher:  Yeh 
J: I got to multiply the take-off twice, because on each end, right? (Here John uses the 

term ‘take-off’ incorrectly to refer to fitting allowance (A)). 
R:   Yeh. 
J:   So what’s got me. 
R:   So you multiply one and three quarters twice? 
J:   Yeh. One and three quarters gives me three and one sixteenths. Right? 
In this first episode John has recognised the need to obtain the total take-off amount to 

accommodate fittings to be attached at each end of a pipe to make a 10 inch centre to centre pipe 
assembly. He has obtained the correct measurement for the fitting allowance (1 3/4/”) from an 
industry standard reference table for his calculation and written down: 

1 3/4 x 2 = 
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on his sheet of paper. Throughout this process John refers to his own notes of a similar 
example discussed in class. He has an understanding of what is involved in solving the problem, 
and knows that he now needs to translate this understanding into a numerical calculation that can 
be carried out on a calculator to provide an answer he can use in the actual measuring and cutting 
of the pipe.  

Once John has translated his understanding of the fitting allowance for both ends into an 
appropriate mathematical calculation, specifically 1 3/4 x 2 =, he uses his calculator to find this 
product. He enters: 

1 3/4 x 1 3/4 = 
on his calculator a number of times while he works on the problem, getting an answer of 3 

1/16 each time. While we cannot say with certainty why he chose to perform the calculator 
operations that he did, we would suggest that one factor is the mathematically ambiguous way 
(from our perspective) that he frames the required operation for himself, and the image, or lack 
of image, that underlies this. 

John says, “I got to multiply the take-off twice, because on each end, right?” Here he is 
shifting from his appropriate (non-mathematical) pictorial and physical image for the problem – 
of an amount to be taken off each end – to one that is exclusively symbolic/numeric in form. 
However, in using language to re-formulate his understanding symbolically, he states that you 
have to “multiply the take-off twice” which easily lends itself to a symbolic representation of 1 
3/4 x 1 3/4. It would seem that even although he wrote 1 3/4 x 2, he may have been reading this 
as “one and three quarters multiplied by itself”, seeing this as a representation of the visual 
problem rather than a calculation. 

We contend that John’s difficulty lies in the images that he has for the mathematical concepts 
being used here, especially that of multiplication, and that his idea of “multiply the take-off 
twice” translates into an incorrect calculation. In trying to solve the problem, we see John having 
a viable visual and physical image of what is required for the task, and then needing to find or 
construct an appropriate mathematical model. To do this, he needs to draw upon his 
understanding of numbers, and his images for addition and multiplication--specifically that 
“when you multiply something by a number, it is the same as adding it to itself that many times.” 
Accessing such an image would perhaps have allowed him to return to the problem with an 
appropriate piece of mathematics (e.g. 1 3/4 + 1 3/4, leading to 1 3/4 x 2) to then apply to the 
question at hand. While he may have an understanding of multiplication as “repeated addition” 
he does not access this here, nor does he generate it from his pictorial image for the problem, nor 
is it implicit in his choice of operation. 

John does not see the problem in terms of “putting” the two take-off lengths together to 
produce a single piece to be cut from the pipe, something that would lend itself to thinking in 
terms of an addition sum rather than a multiplication. Having an image of multiplication as a 
short-cut for repeated addition would perhaps have helped John to produce a correct calculation 
to carry out. There would seem to be a need for John to fold back to his understandings of 
addition and multiplication, find and then translate the appropriate mathematical understanding 
(and procedure) within the new context. Of course, should this understanding not exist he would 
need to spend some time working on the actual mathematical concept, before being able to apply 
it to the problem. For example, in the present case, that might include working with similar 
examples using whole numbers exclusively, prior to considering fractions. 
What is interesting here is that John is not convinced that his answer is correct, and he expresses 
this concern to the researcher, who then works with John on the problem: 
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Researcher:  …Let’s pull out a ruler. Here. Show me an inch and three quarters. (John pulls out 
his tape measure.) 

John:    Ok. 
R:     Just show me with your finger. 
J:  That’s an inch. That’s my inch and a half. That’s my inch and three quarter right 

there. Am I not correct? 
R:  Just put your finger there so I can see it. Ok. So there’s your inch and three 

quarters right there. Add an inch and three quarters to that. And I’d go one step at 
a time. Like add an inch, and then add another three quarters. 

J:  Ok, so, I go, I’ve got an inch and three quarters right here. Which is right here. 
(pointing to 1 3/4 point on tape measure.) So to add another an inch, and another 
three-quarters to it? 

R:     Yeh. 
J:     (pause) Ok, hold on. Right here (pointing at tape measure with pencil). 
R:     Yeh 
J:     (long pause) That would be three right here, right? No. That’s one. 
R:  Right. That’s one and three quarters, clearly. That’s an inch and three quarters. 

Now if you add another inch and three quarters to that. 
J:     Ok. I’m stumped 
R:     Ok. 
J:     I’m stumped. It’s simple math here, needed. That’s all. I’m not doing it. 
R:  Give me your right hand. Replace the finger on the tape measure. If that’s an inch 

and three quarters (pointing to this point on the tape measure) then another inch 
would be to, 

J:     Add? 
R:     Another inch would be to where? 
J:     Well wouldn’t it be to here? 
R:     To there. 
J:     Right. 
R:  And now add three quarters. (Indicating intervals on the tape measure) One  

quarter, two quarters, three quarters. How much? 
J:     It would be three and a half. 
R:     Yeh. (Then a long pause, with no response from John.) 

Here we see the researcher taking John out of the context of the problem, and working with 
him to think about the addition of two lengths of 1 3/4 inches. In doing this the aim is to both 
explore the images that John has for addition (especially for adding fractions) and also of course 
to help him possibly make a new, more appropriate one that will help him with the pipe-fitting 
problem. It should be noted that at this point in the conversation the researcher was not aware of 
the incorrect operation performed by John, but does know that his answer is wrong. The 
researcher engages John in an image making activity, involving a tape measure – a familiar and 
readily accessible workplace tool - hoping that John will make an image for the addition of 
fractions as counting-on on a number line. This is of course a useful mathematical image for the 
physical actions involved in cutting the required pipe length. Although John engages with the 
activity he struggles with it, and clearly is not sure how to count-on using the scale on the rule. 

More significantly, we also suggest that John does not know why he is being asked to do this. 
As noted earlier he gives no indication of seeing the required calculation as one involving 
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addition. John is certain that he needs to multiply, but is simply not sure that he has chosen the 
correct procedure. Whilst he is happy to work on this addition problem with the researcher, he 
does not indicate that he relates this in any way to the pipe-fitting task. For the researcher, and 
perhaps the reader, with powerful and versatile images for the concepts of multiplication and 
addition, the link is an obvious one, but we should not expect that John will automatically make 
this connection. John and the researcher are working with two different images for calculating 
the total take-off length, and as such even when the correct answer is achieved, John is not sure 
what he should now do with it. 

In the next few minutes John explains how he obtained 3 1/16, and the researcher becomes 
aware of the error John has made. John quickly abandons his original procedure and now 
multiplies by two, carrying out the correct calculation. However, we suggest that John still does 
not connect the procedure with a mathematical image. He knew that either he had to multiply the 
fraction by itself or by two, but with no understanding of why one is correct. For him, it was a 
choice between the two procedures, and, as he now knows one was incorrect he performs the 
other. The researcher probes further:  
Researcher:  So, (pointing to crossed out 3 1/16 on paper) did one and three quarters flag that 

for you, or no matter what you would have got you still would have been thinking 
about it? 

John:  I still would have been thinking about it, because I would have known that, I still 
know in the back of my head, either you times it by, like I’m thinking to myself, 
times it by itself or you times it by two. 

R:     Ok 
J:  That’s what I’m thinking, all the time. So, and I’m looking yesterday’s, 

yesterday’s theory, I had no problem doing that. (points to written calculations 
from previous day.) 

R:     Yeh 
J:  I made that in as dummy’s terms as I can get. Right. So all I did was change the 

number here (points to written computation in notes from the previous day). The 
formula still stays the same. And, that’s my problem. I didn’t want to look at that. 
I go on memory. 

R:     Yeh, 
J:  and what I want to do now is get a fresh sheet of paper and start over again before 

I cut this pipe. Ok. So that’s what I’m doing. I don’t want to go any step further, 
even though I know the answer. That’s not going to help me when I do my test. 

John shares his uncertainty about which operation was the correct one for the problem. He 
notes that on the previous day he was able to follow an example done in class by his instructor, 
but also that he does not want to simply mimic what he had written there. He accepts that being 
able to remember what to do would be acceptable. He is not really concerned at any point with 
knowing why multiplying by two is mathematically correct, but multiplying the fraction by itself 
is not. John is content to now know which operation he should use, and as he comments to “go 
on memory.” His mathematical images for multiplication as repeated addition are unchanged, 
and we would suggest that although he has now successfully completed the calculation his 
understanding of how and why the mathematical operation is the correct interpretation of his 
visual image is unchanged and limited. Naturally, we question the reliance of a learner on 
procedural memory and return to this in our conclusions. 
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A few minutes later in the same session, with this now correct answer for the length of pipe 
calculated, John went on to measure out the length of pipe that he needed using an imperial units 
tape measure. Although there is not space here to present this extract in detail, again, John’s 
limited images for fractions were problematic. He did not have an image for a fraction as a 
location on his measuring tape i.e. as a point on a number line, and did not see the relationship of 
the numerator and denominator of a written fraction to the part-whole of an actual inch. This 
meant that he could not easily, nor reliably, locate a given measurement on his tape. The 
difficulty was compounded by the complex configuration of markings of imperial tape measures, 
which unlike their metric equivalent, involve the super-imposition of many different units on the 
same number line (i.e. halves, quarters, eighths, sixteenths). 

Conclusions 
There is not space here to comment in any depth on the complex role that mathematical 

understandings and images can play in trades training, but we suggest that trades educators 
should expect that their trainees may not come with a useful and easily applied repertoire of 
images for the mathematical concepts used in their training. It is not clear whether John had 
existing and appropriate images for the mathematical concepts required to successfully complete 
the pipefitting task, but it is clear that he did not access these and work with them in the creation 
of an appropriate mathematical model for the problem. For example, John would likely have 
benefited from an opportunity to fold back and re-make (or make) an image for multiplication as 
repeated addition that he could see as being appropriate to the task. Working with whole 
numbers initially may have helped him to then be able to use fractional amounts. Clearly, the 
measuring tape is a fundamental part of working in the construction trade, and the ability to use 
this, and to understand the mathematics that is captured by this tool is essential for a worker. 
Whilst we acknowledge that such understandings are not likely to be made explicit during every  

task, the possession of a powerful and flexible set of mathematical images related to this 
offers something to fold back to, should memory fail, or the need arise to work in a new context. 
Certainly for John, being able to connect multiplication by two with the image of placing the two 
equal lengths of pipe together, and of then understanding how this can be represented on a 
measuring tape could have been a valuable experience, as would be the exploration of fractional 
units on the tape. 

We contend that in the apprenticeship training classroom there is a need to re-visit concepts 
such as addition, multiplication, fractions etc. and to go beyond learning merely how to operate 
on and with numbers. In particular, there would seem to be a need to explore the existing 
understandings that trainees bring with them, to consider the appropriateness of these images for 
vocational related tasks, and to occasion the construction of new images as needed, drawing 
upon the use of common workplace tools and resources as appropriate. 
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Introduction and theoretical framework  

Implication is an essential structure in proof-oriented mathematics, but is also a topic that 
causes students serious difficulties (e.g., Deloustal-Jourrand, 2002; Durrand-Guerrier, 2003). In 
this presentation we will focus on the way in which one needs to interpret implications if one is 
to reliably validate proofs. We will present a theoretical analysis and data drawn from students’ 
responses to an invalid ‘proof’ in real analysis.  

To frame this discussion we make use of Toulmin’s (1969) model of argumentation, in which 
a presenter puts forward data in support of a conclusion; their explanation for why the data 
necessitate the conclusion is referred to as a warrant. At this point, the audience may accept the 
data but question the validity of the warrant.  Using this model, we will contrast material 
implication as it is commonly taught in introductory proof courses with a warranted conception 
that we claim is needed in order to validate proofs.  

Under a material conception, an implication is said to be true if and only if the antecedent is 
false or the consequent is true.  Hence, in Toulmin’s model we may say that the conclusion is the 
statement "if p, then q" itself, the data to support this conclusion can either be "p is false" or "q is 
true", and the warrant is the logical equivalence between the statements “if p, then q” and “not-p 
or q”.  To illustrate the inadequacy of this interpretation for validating proofs, consider the 
following ‘proof’ that 1007 is prime.  

Proof.  7 is prime.  
If 7 is prime, then 1007 is prime.  
So 1007 is prime.  

The statement “If 7 is prime, then 1007 is prime” is true since 1007 is prime. However, 
establishing the truth of this statement does not establish the validity of the ‘proof’. Instead we 
claim that one needs to use a warranted conception of implication. By this we mean that one 
needs to interpret the consequent of the statement (1007 is prime) as the conclusion and the 
antecedent (7 is prime) as the data.  The warrant, in the form of a true general principle, must 
often be inferred.  In the above case, perhaps the most obvious such warrant is a statement of the 
form “for every prime number n, 1000+n is prime”, which is readily identified as invalid (e.g. 5 
is prime but 1005 is not).  

We suggest that when a validator reads an assertion in a proof, (s)he needs to interpret this as 
a conclusion and seek to identify the corresponding data and warrant, inferring them if necessary. 
If the inferred warrant is acceptable in the current context, the new assertion should be accepted 
as valid.  If the inferred warrant is false, this assertion and the entire proof should be declared 
invalid.  If the warrant is plausible, but not acceptable as sufficient in the current context, the 
proof is usually said to have a "gap".  

Students’ validation of an argument  
We next present data to examine the degree to which students’ evaluations of a proof adhere 

process described above in the context of a first course in real analysis.  Students were asked to 

check a proof that the sequence ( n  ) ∞ → , which ended with the lines:  1+< nn  so n > 
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1+n  for all n.  So ( n  ) ∞ → as !"n as required.  The author appears to be implicitly using 

the statement that if ( n  ) is an increasing sequence, then it diverges to infinity.  This is invalid 
if interpreted using a warranted conception of implication, since it is not the case that all 
increasing sequences diverge. Hence, the argument should be rejected.  We present data on the 
following responses:  

Group 1: Three students inferred the warrant as asserting that increasing sequences diverge to 
infinity and were able to produce counterexamples to this assertion.  In our view, these students 
successfully used a warranted conception of implication.  

Group 2: Three students criticized the argument since it did not invoke the definition of 
divergence, but they did not cite a problem with the last line of the proof.  In our terms, they 
considered the data inadequate, and did not infer a warrant for the final conclusion.   

Group 3: Five students initially accepted the argument as a valid proof. From their 
comments, it appears that they focused exclusively on the data and conclusions and did not 
consider what warrant was used.    

Overall, seven incorrectly accepted the proof as valid, and only three spontaneously 
considered the warrant used to justify the fourth line of the proof.  On a more positive note, the 
interviewer subsequently asked whether the second of these lines followed from the first, at 
which point five of these inferred a warrant and rejected the proof.   

Implications for practice  
Our findings are consistent with a study on proof validation conducted by Selden and Selden 

(2003), who found that undergraduates in an introductory proof course performed at chance level 
when they were asked to determine whether arguments constituted proofs,  
but that questions by the interviewer could improve students’ performance at this task. This, 
together with the theory presented above, suggests that students can and should learn to use a 
warranted conception of implication when reading proofs.  That is, that they should be taught to 
identify data and conclusions and infer and evaluate warrants.  
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Purpose  

Students’ participation in mathematics classroom discussions may lead to active sense 
making and the development of mathematical communication and reasoning skills, but helping 
all students reach these goals remains challenging.  Adolescents may face unique obstacles to 
participation, as they can be “reluctant to stand out in any way during group interactions” 
(NCTM, 2000, p. 61).  Characterizing students’ motivations for participating in classroom 
discussions can provide insights for building upon students’ experiences in order to support their 
learning of mathematics.  

Background  
Discussion-oriented mathematics classrooms are typically studied for the purpose of 

understanding how teachers can orchestrate discussions more effectively.  For example, upper-
elementary mathematics classroom teachers who scaffolded instruction through techniques such 
as transferring responsibility were more likely to foster high-involvement classrooms (Turner et 
al., 1998).  

An alternative to examining teachers’ roles in classroom discussions is an examination of 
how students interpret their experiences in discussion-oriented classrooms, beyond traditional 
motivational constructs such as learning goals (Ames, 1992).  One approach to conceptualizing 
students’ motivations addresses expectancies and values (Eccles et al., 1993).  Students’ 
expectations include their beliefs and assumptions about learning and doing mathematics.  
Students’ values include what they hope to obtain from their actions, or their goals.  

Method  
This study is an analysis of interviews with 15 seventh-grade students about their experiences 

in two mathematics classrooms in a rural middle school in mid-Michigan whose teachers 
incorporated whole-class discussion when implementing the Connected Mathematics Project 
textbook series (Lappan, Fey, Fitzgerald, Friel, & Phillips, 1997).1

 

Participants were purposely 
sampled (Patton, 1990) to capture diversity in gender, achievement, and frequency of classroom 
participation.  Interviews were analyzed using constant comparative methods (Strauss & Corbin, 
1994) and an analytic framework developed by the author that included an examination of 
linguistic cues (Bills, 1999), repetition (Tannen, 1989), and affect (Hannula, 2002) for a 
qualitative assessment of beliefs and goals in students’ talk.  

Results  
Students’ epistemological beliefs interacted with their perceptions of the level of risk 

associated with classroom participation.  Students (n=8) similar to Allen (below) who spoke of 
learning as a process of receiving knowledge, or obtaining knowledge from an authority, also 
tended to speak of the act of sharing their thinking publicly as carrying a high degree of risk.  

...you gotta pay attention so you know what’s going on, and if you don’t, then you’re pretty 
much lost, and you won’t be able to really catch up real fast, it might take you a while to 
catch up, so you gotta really pay attention, and you gotta listen a lot. ...when I’m put on the 
spot, I kind of go off track.  I don’t know how.  Every time I’m put on the spot in front of 
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an audience, I just panic and I can’t really think straight.  
Alternatively, other students (n=7), such as Molly, expressed beliefs about negotiated knowing, 
or learning mathematics as an exchange of ideas, and expressed a lower level of risk associated 
with classroom participation.  

…if you talk through it, and you, like, talk about it, you might realize something you did 
wrong, if you talk about it, you might say, oops, I timesed when I was supposed to divide 
or something. ...if I get something wrong, then I can see what I did wrong, and they’ll, like, 
they’ll help me and show me how to do it.  

Beliefs about negotiated knowing interacted with a lower perception of social risk.  The 
benefits of publicly exchanging ideas appeared to outweigh the risks for these students.  

Additionally, students were motivated by social goals, such as helping classmates exercising 
appropriate behavior, appearing competent, and gaining status, and the academic goal of 
completing their tasks.  Some of these goals were more community-focused, such as helping and 
behaving, while the others were more self-focused.  

Discussion  
Results suggest that the conceptualization of adolescents’ “productive” disposition toward 

learning mathematics in reform settings should attend to students’ social concerns as well as 
academic concerns.  Students’ lived experience of whole-class discussions about mathematics 
includes a strong focus on relatedness and social goals.  While engagement in learning 
mathematics goes beyond classroom participation, adolescents’ goals and beliefs related to their 
participation can be built upon to create higher involvement in whole-class discussions about 
mathematics.  

Endnote 
1.  The Connected Mathematics Project texts consist of contextualized problems and lack worked 
examples.  
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The purposes of this study are to describe the role examples play as tools in the process of 

proving for university geometry students and to extend the research done by Balacheff on 
example usage.  Sfard (2002) describes one type of symbolic tool as inscriptions, “graphical 
displays created and used for the sake of communication.”  When the inscription is a member of 
the class of objects being discussed, it is also considered an example.     

In several proof scheme frameworks, example usage is placed in the empirical proof scheme 
and seen as a less sophisticated proof strategy, since the proof relies heavily on one or more 
examples (Hart, 1994 & Harel and Sowder, 1998).  Balacheff (1987) characterizes four 
hierarchical levels of proof based on example usage: naïve empiricism, crucial example, generic 
example, and thought experiment.  When students use examples in the form of naïve empiricism, 
their examples are created to help understand the issues in the conjecture.  The examples may not 
even meet the premise of the statement.  The crucial experiment example is more purposeful.  It 
is used to push the boundaries of the statement.  If the statement is true for n > 5, there is a 
crucial experiment is at n = 5.  The generic example represents a class of objects.  Finally, the 
thought experiment takes place when students think past the example and begin the deductive 
process. These levels of understanding directly address students’ uses of examples in the process 
of proving a claim, where the example is part or all of the justification.  These frameworks do not 
account for other uses of examples by the students.  

Methods  
The data for this study was collected as part of a semester long teaching experiment in an 

upper division geometry course.  The curriculum consisted of a series of activities in which 
students would need to define, conjecture, or prove results in geometry on the plane or sphere.  
Students were routinely encouraged to use a clear plastic sphere as they worked.  The classroom 
was videotaped using two cameras.  Data came from the transcripts, written work and videotapes 
over the course of the semester.  Each transcript was coded for the example usage based on 
Balacheff's framework.  Other uses of examples, not in the framework, were also noted.    

Results and Discussion  
The students tended to use examples they had drawn or created as an inscription or tool with 

which to construct suitable justification for their ideas.  Although the example was not the sole 
reasoning of the argument, the examples constructed still mirrored the types of example usage 
given by Balacheff.  When students used examples to help flesh out a conjecture, their example 
usage often took the form of naïve empiricism or crucial examples.    

In one activity the students were asked to determine the sum of the interior angles of a 
triangle on a sphere.  They began by guessing it must be larger than 180

o 
and less than 360

o 
then 

began drawing on the Lenart sphere.  Alexis said "We think it also can be greater than 270 
because I was able to draw a triangle with three obtuse angles and obtuse angles are greater than 
90 so it is greater than 270, but as far as in between. I don't know.  So we have 90

o 
to play."   The 

triangle Alexis drew was an inscription which allowed them to determine the sum of the interior 
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angles of a triangle on a sphere could be greater than 270
o
. Since the students began drawing 

triangles on the sphere with little direction, we would call the use of this example triangle naïve 

empiricism.  This discussion led to a different inscription: one focused on testing the 360
o 

boundary, thus it is a crucial experiment.  
S: What if you had a 120 for each of the angles? That would be 360.  
E: But you could, could you?  
S: I don’t know.  You would have to draw it.  How do you draw it on a sphere?  

Sue’s question to the group allowed the group to begin exploring the boundaries of their 
conjecture further.  As the group discussed their ideas Sue interjected, "I think the angles have to 
be less than 360 each," as she points to a drawing on her paper, "This is that whole funky one 
where this is inside a sphere."  Her sketch was an inscription, referring to an example on the 
sphere. It was a small triangle and the “whole funky” triangle was the exterior of the small 
triangle, which was also a triangle on the sphere. Although the angles in her example were each 
about 300

o
; while examining the inscription she was able to think past the example, consider the 

possible angle measurements, and predict a boundary for each angle.  So this example was used 
as a thought experiment.  Using this reasoning, the group to proceeded to find a correct answer.  

In another activity the students were asked to determine, "If given a triangle on a sphere with 
two of its sides congruent, then are the two angles opposite those sides congruent?"  During the 
whole class discussion a proof was presented which reflected the triangle and then used ridged 
motion to align to two triangles and prove they were congruent.  The inscription presented by the 
group was a small triangle.  The group asserted that their proof worked for large triangles.  Alice 
stated, “And the picture we have up on top is just for one case because we have said 
perpendicular so we went through point B actually.  And it works even for big triangles, not big 
triangles, it works if instead of connecting it the short way from A to B you connect it the long 
way around.”  The group’s example was representative of a class of triangles. It was a generic 
example. The class was not completely convinced by Alice’s example. In fact at the end of class 
Dawn asked the instructor to show the proof for a specific example of a large triangle, “that 
weird picture that you have on the board.”  Their discussion focused on this triangle as a 
representative of the class of large triangles and as such it was also a generic example.  

The nature of geometry affords students the ability to use examples in a variety of ways.  In 
both activities the students exhibit example usage within Balacheff’s framework, where the 
example is an inscription used to further the group’s understanding of the idea at hand.  Our 
study explores how students use examples as inscriptions which aid in the process of developing 
a proof, not as the sole reasoning for the proof, as in an empirical proof scheme.   
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The purpose of this paper is to describe how a group of students in a university geometry course 
is successful in developing a proof due to a series of requests and responses, which become a 
mechanism to overcome the mathematical difficulty they encounter.  Typically undergraduate 
students struggle with proof writing, particularly with applying theorems, using symbols, 
unpacking logical statements and choosing a suitable approach (Selden & Selden, 1995; Weber, 
2001).  Knuth (2002) suggests that proving is a public activity, hence students benefit from 
writing proofs in a social setting.  Goos et al. (2002) found small groups are more successful at 
problem solving when members evaluate each other’s ideas.    

 
Methods  

The data for this study was collected as part of a semester long teaching experiment in an 
upper division geometry course.  Data consisted of videotape recordings of each class session, 
and copies of students’ written work.  The curriculum consisted of a series of activities in which 
students would need to define, conjecture and/or prove results in geometry on the plane and/or 
sphere.  The videotapes and written work were analyzed using open and axial coding.  

This study focuses on one particular day late in the semester in which students were asked to 
prove one direction of the bidirectional statement Euclid's Fifth Postulate (EFP) implies 
Playfair's Parallel Postulate (PPP).  EFP states, “If a straight line crossing two straight lines 
makes the interior angles on the same side less than two right angles, the two straight lines, if 
extended indefinitely, meet on that side on which are the angles less than the two right angles.” 
PPP states, “For every line and every point not on the line there is a unique line through the point 
that does not intersect the original line.” The instructor told the students that the two postulates 
are equivalent and gave them the option to “use” EFP in order to prove PPP or vice versa.  Our 
discussion will focus on the journey of one group of four students who did successfully prove 
EFP �  PPP by the end of the class discussion.  This particular day shows the entire process of 
students completing a proof and presenting it in a whole class discussion.   

Results and Discussion  
The interactions of the group can be characterized by several factors.  Even though students 

think individually during some moments of silence and make individual contributions to the 
group, the students consistently use the word “we” to describe what they are assuming, what they 
have proven and what they are trying to prove.  Students request input from the group regarding 
both (1) resources (facts, theorems or strategies that would allow conclusions to be made) and (2) 
(following appropriate mathematical logic, only using statements that we have already proven, 
using accurate resources).  In the following transcript excerpts we illustrate both types of 
requests and discuss how they and students’ responses to them help students overcome the 
primary mathematical difficulty that they encounter in writing this proof.  

Since EFP and PPP are both conditional statements, "EFP !PPP" has the overall structure 
of a conditional implies a conditional, i.e. (p → q) !  (r → s).  This structure is complex and 
was difficult for many students in the class. In particular, this structure was the primary 
mathematical difficulty for the students in this group. In clarifying or negotiating what they are 
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trying to prove Stacy states, "But if we are assuming the whole thing though, we are assuming 
they are less than π."  Several of her statements seem to suggest that she is assuming that we are 
given both the premise and the conclusion of EFP, as evidenced by her statement, "Cause it’s all 
assumed.  This whole thing is.  We are assuming α + β < π. We don’t care if it’s equal to π." The 
group does not notice the error in their assumptions.  

Through a series of requests for resources and evaluation, the group realizes their difficulty 
and is able to overcome it.  In the following excerpt Nate requests resources from the group.  

N: … Can we use our parallel transport proof to show that the boundary condition 
when they are equal to 180, that this angle is congruent to this angle and therefore 
they are parallel and therefore they don’t intersect?  

In response to Nate’s request Paul suggests theorem 8.2.  The group then questions the use 
and correct statement of theorem 8.2.  This is a request for a local evaluation as to whether or not 
the group is following the rules of the mathematical domain.  

P: Did we prove that?  
N: Yeah, we did, but we started with a parallel transport.  
A:   We proved that two parallel transported lines are parallel in the sense that they 

never intersect.  
After resolving the resource had been proven and clarifying the exact statement, Nate then 

made a second request for evaluation, this is a global request for evaluation of the entire proof.    
N:   Alright, does anyone find any flaws in that? 

The group thinks silently for a minute and a half.   
P: So, we don’t even need to necessarily have the three cases do we?  Just we need 

to prove that one case, uniqueness on that one.  Because we are assuming they 
meet on this side...  

In Paul’s response to Nate’s request for evaluation we see the mathematical difficulty 
resurface. Based on Nate's requests and subsequent argument Paul is able to articulate to the 
group the problem with assuming α + β = π, if they have already assumed it is less than π.  In 
further discussion Stacey and Paul's mistake in assumptions is finally illuminated.  

P:   Yeah, I think we were starting with this drawing [EFP] instead of starting with 
that drawing [PPP] in our head.  That’s what I was doing anyways.  

At this point the group has developed a proof which is convincing to the entire group.  In this 
case we can see both how the requests and the responses served as a catalyst in illuminating the 
mathematical difficulty and how they were useful for the development of the proof.  As a result 
the group overcame their difficulty with the structure of the proof.    
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The development of an understanding of mathematical proof is regarded as one of the 
benchmarks of a major in mathematics (Tall, 1992).  In particular, it is vital for future teachers to 
be able to construct, understand, and validate formal mathematical arguments (CBMS, 2001; 
Selden & Selden, 2003), yet research shows that many students ultimately do not succeed in 
developing an appreciation for mathematical proof by the end of their undergraduate programs 
(Harel & Sowder, 1998; Knuth, 2002).  

In this poster we will describe the preliminary results from an exploratory study of the impact 
of the Modified Moore Method in a “transition” course at a large southern university in the 
United States.  In particular, we will discuss the role of the instructor during the first few weeks 
of the semester and how his actions facilitated the development of a classroom community in 
which discussion and argumentation formed a basis for learning to construct proofs.  

The Modified Moore Method (MMM) is sometimes called an “inquiry-based” method of 
teaching (Renz, 1999).  In a typical MMM course, students present proofs of theorems they 
construct on their own, and class sessions are centered around discussions of these proofs.  In 
this way, the MMM is similar to teaching strategies such as Cognitively Guided Instruction, 
though its proponents do not adhere to or base their teaching upon a particular theory of learning.  

As part of an intensive case study of an exceptional MMM undergraduate course, we video-
taped an undergraduate number theory course during the fall 2003 semester.  The course was 
taught using the MMM by a respected and experienced instructor.  Preliminary findings 
demonstrate that the instructor played an active role in the discussions at the beginning of the 
semester, and that his actions facilitated the development of a classroom culture that may have 
enabled the students to develop a conception of proof that is quite mature for undergraduates.  
He made careful choices in directing class discussions, often using his physical position to direct 
attention to and away from a student presenter.  Through his instruction he encouraged a view of 
mathematics as a human, social activity.  The students in the course appeared to change their 
conceptions of the nature of mathematics and of proof as a result.  
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Over the past two decades, researchers have focused on the ways that students think about 

functions (Dubinsky & Harel, 1992; Leinhardt, Zaslavsky, & Stein, 1990; Romberg, Fennema, & 
Carpenter, 1993).  This research has shown that many students conceptualize functions as 
mathematical objects that (a) can be represented by a formula, (b) are differentiable or smooth, 
and (c) are continuous.  These conceptions can cause difficulty as students enter calculus and are 
asked to begin considering functions that may not fit any of the above three criteria.  This poster 
will be a presentation of a portion of a study designed to investigate students’ conceptual models 
of continuity.    

Participants in this study were 32 high school Advanced Placement (AP) calculus students.  
They were drawn from two schools adjacent to a midsize city in the northeastern United States.  
The first school, Monroe School (all names are pseudonyms), is an independent, private school 
serving students in grades pre-K through 12.  Twelve of the student participants were from this 
school.  The students were drawn from two classes, with six out of 17 from each section 
participating.  At Monroe school, at the time the questionnaire was given, the seniors had already 
finished for the year, so all responses are from students in the 10th and 11th grades.  The second 
school, Washington High School, is a public school serving grades 9 through 12, with 
approximately 700 students.  Twenty of the student participants were drawn from this school.  
These students were also drawn from two classes, with 16 out of 20 participating from the first 
section and four out of 12 participating from the second section.   

In analyzing the questionnaires, I began by recording coded answers to each of the problems 
from the questionnaire.  For example, for the first problem, I recorded whether the student had 
said that the function was continuous or discontinuous, and also a code for their reasoning.  Once 
I had this data compiled, I looked at the frequencies of different responses among the entire 
sample, and the subsets of the sample corresponding to the individual classes, and to the schools.  

Findings confirmed that students have difficulty distinguishing continuity from the existence 
of the function and the function being differentiable.  Results elaborated the contextual 
dependence of reasoning about continuity that suggests a link between the functional 
representation used and students’ determination of whether a function is continuous.  The poster 
will contain the complete questionnaire, as it was given to students.  Additionally, data in tabular 
form from the analysis of the questionnaire will be provided.  The poster will be entirely in paper 
format.  
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USING STUDENT VOICE TO DECONSTRUCT TRADITIONAL STRUCTURES OF 
COOPERATIVE MATHEMATICAL PROBLEM SOLVING  
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With all of its history and traditions, cooperative learning is a firmly established pedagogy 

present in both classrooms and curricula. A significant body of research and literature claims the 
implementation of cooperative learning in mathematics classrooms results in increased 
achievement, motivation, and social skills among students. Influenced by this tradition and 
research, I incorporated cooperative learning into my secondary mathematics classrooms for a 
decade. Closely following the methods proposed by Johnson & Johnson (e.g. 1990), I observed 
the positive results among my students reported in research studies and discussed in literature. 
For my students, the most surprising result was the increased enthusiasm they had for learning 
mathematics with their peers. They often and excitedly spoke of this phenomenon to each other 
and to me.   

It was not until I led workshops for fellow teachers that I began to question some 
assumptions I had made about cooperative learning. As teachers implemented procedures 
discussed in our workshops into their own classrooms, they reported a variety of reactions and 
results. Frustrated with their perceived lack of success with cooperative learning, these teachers 
began asking difficult questions—What exactly is cooperative learning? Why does it work? How 
does it work? Why doesn’t it work for me? Disconcerted by my lack of answers to questions so 
fundamental to cooperative learning, I began my search for a different perspective and new 
understanding of the pedagogy I so zealously advocated.   

Wrestling to find answers, I went back to the research studies that touted the benefits of 
cooperative learning. In general, the research on cooperative learning in mathematics classrooms 
fell into one of three categories: outcome based research on the effects of cooperative learning on 
students, interviews and surveys on students’ opinions of cooperative learning experiences, or 
observational studies about cognitive processes of students during cooperative learning activities. 
A poststructural critique framed my review of this familiar literature with questions that 
challenged my beliefs and assumptions about the results, methodology, and implications of 
previous cooperative learning research. As I read, new questions developed that propelled the 
direction of this study. Was I so attached to positive results of research that I failed to notice the 
absence of a common definition for cooperative learning, and thus making it difficult to  

synthesize results? Was I so sure that my students’ enthusiastic emotional responses to 
cooperative learning reflected increased mathematical thinking and learning? Was there an 
“unwillingness [on my part] to read and think about the theories that … critiqued [my] fondest 
attachments and… the effects on real people of whatever system of meaning [my] attachments 
produce”(St. Pierre, 2000, p. 500)?  

As a result of this poststructural critique, I became aware that while researchers were careful 
to define cooperative learning by a set of procedures and to provide detailed descriptions of 
observed cognitive processes, students themselves were rarely asked to define or explain the 
cooperative learning experience in more than affective terms. Students have been tested, 
observed, videotaped, and analyzed, yet their voices seem somehow missing in the literature. It is 
important to understand students’ social, emotional and mathematical experiences of cooperative 
problem solving team from students’ perspectives. With the goal of giving students a voice in 
educational literature and research, this study was designed as research with (not on) 
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mathematics students in order to better understand how the experience of mathematical 
cooperative problem solving affects the mathematical activity of individuals within a group. 
Believing that providing students an opportunity to engage in their own poststructural critique of 
cooperative learning promotes a synergistic view of their experiences, the following research 
questions framed this inquiry:  

1.  How do students engage in and experience cooperative mathematical problem solving?  
2.  What binary tensions are present or emerge within cooperative mathematical problem 

solving?  
3.  How are these tensions related to students’ individual mathematical activity?  
The research design of this qualitative study with three female college students reflected an 

interpretive, constructivist paradigm. Data collection centered around three videotaped problem 
solving sessions. As a group, the participants met once a week in order to investigate a 
mathematical problem. Each problem solving session was immediately followed by a group 
interview in which the participants discussed their mathematics, the roles and effects of group 
members, ways in which each participant felt helped or hindered in her mathematical thinking, 
group problem solving strategies, etc. The following day each student participated in an 
individual, ninety-minute interview in which she and I viewed the videotape together pausing 
often to discuss specific instances pointed to by both each participant and by me. Because the 
research design was emergent and analysis was ongoing, I transcribed and initially analyzed data 
between sessions. The participants also helped to analyze data as they discussed previous 
interviews both with me and with each other. Our combined observations and perspectives 
directed discussions and influenced interview protocols.   

The next phase of data analysis occurred as I addressed my first research question. I used the 
data from the interview and videotape transcripts to represent the experiences of three PSSs in 
detail from the perspective of both the participants and myself. Reflexive analysis continued as I 
used the next two research questions and theoretical frameworks as tools to explore further both 
the raw data and the newly written data stories. Using Earley’s (1997) theory of Levels of 
Consciousness, I first identified binary tensions (a perceived choice between the good of the 
group of the good of the self) felt by the participants during mathematical cooperative problem 
solving experiences. Examples of factors that contributed to these tensions occurred within three 
general components of cooperative learning: the environment, the group members, and the 
individual. The size, number and access to manipulatives along with roles that group members 
took on were the aspects of the environment promoting or creating self/other tensions. Issues of 
being polite (or being selfish), sharing (or not sharing) ideas, resisting (or submitting to) 
perceived power were shared by the participants as potentially problematic aspects of working 
with group members and were often difficult to reconcile. As the students reflected on and 
discussed the notion of individuality (the place of the self) within a cooperative group, they 
agreed that both a desire for individual ownership of the mathematics and a subsequent search 
for autonomy led to yet other binary tensions.  

Once binary tensions were identified, I investigated ways in which these tensions affected the 
individual mathematical activity of the participants. As the students articulated how specific 
tensions were affecting their mathematics, they individually and collectively found ways to 
change their cooperative learning practices to protect or enhance their individual mathematical 
thinking. By deconstructing (Derrida, 1997) the individual experience of cooperative learning, 
the participants began to rethink self/other binaries tensions at a level of conscious participation. 
As they became aware of both levels of participation (the individual and group activity), the 



 

 688 

participants expressed and demonstrated a sense of freedom to move between these while 
simultaneously being aware of the other. It was this recognition and freedom that provided a 
stronger sense of self along with a stronger sense of community as the participants investigated 
mathematics together.  

Traditional cooperative learning literature and suggested pedagogical strategies therein 
contribute to, and in some cases create, self/other binary tensions that inhibit individual 
mathematical activity. Thus, the need to continually question the traditions and structures of 
cooperative learning is vital. Deconstruction, however, is “not about tearing down but about 
rebuilding; it is not about pointing out an error but about looking at how a structure has been 
constructed… and what it produces” (St. Pierre, 2000, p. 480). In order to illustrate both the 
limits and the possibilities cooperative learning creates, I will present the conclusions of this 
study within the framework Johnson and Johnson’s (1990) proposed structures. The five 
previously noted conditions they claim must be present for effective cooperative learning in the 
mathematics classroom were:  

4.  Teachers must clearly structure positive interdependence within each student learning 
group.  

5.  Students must engage in promotive (face-to-face) interaction while completing math 
assignments.  

6.  Teachers must ensure that all students are individually accountable to complete math 
assignments and promote the learning of their groupmates.   

7.  Students must learn and frequently use required interpersonal and small-group skills.  
8. Teachers must ensure that the learning groups engage in periodic group  

processing. (pp. 105-106) 
The paper presentation will be based on one of the central principles of Derrida’s 

deconstructive methodology. He “examines a hierarchical binary opposition… in which one term 
is privileged over the other… and reverses the binary opposition by reprivileging the other” 
(Graves, 1998, 2nd para). As illustrated in this study, I believe the group has become the 
privileged term within cooperative learning traditions. Thus, I will discuss each of Johnson and 
Johnson’s above conditions with respect to its tendencies to promote self/other binary tensions 
and to the possibilities of re-privileging the individual within a group in ways that enhance 
individual mathematical activity.   
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WORKING WITH LEARNER CONTRIBUTIONS: CODING TEACHER RESPONSES  

Karin Brodie  
Stanford University  and  Wits University 

 kbrodie@stanford.edu,  brodiek@educ.wits.ac.za  
 

This paper comes from a larger project in which I am trying to understand different ways in 
which mathematics teachers work with learners thinking. A broader goal of the project is to find 
ways to describe pedagogy. Drawing on work on classroom discourse, I develop a coding 
scheme for analyzing teacher moves, particularly teacher moves that follow up on learner 
contributions. An analysis of video data of four South African teachers shows that the codes do 
distinguish between the teachers, in ways that go beyond superficial distinctions such as ‘reform’ 
and ‘traditional’ pedagogy.  
 

Introduction  
This paper comes from a larger project in which I am trying to understand how mathematics 

teachers work with learner thinking. A key purpose of this work is to find appropriate ways to 
describe pedagogy in mathematics classrooms in a context of curriculum change. Such 
descriptions are important if we are to understand the influence of pedagogy on learning 
outcomes. The lens of teacher responsiveness to learner contributions is useful for a number of 
reasons. First, understanding teacher-learner interaction is important for understanding how 
teaching and learning happen in classrooms. Second, working with learner thinking is key to 
many reform visions in different countries. Third, many teachers who might not be considered 
“reform” teachers, nevertheless do work with learner thinking. So teacher responsiveness is a 
lens that cuts across narrow definitions of pedagogy such as “traditional” and “reform”, but at the 
same time captures some of the key visions for curriculum change in many countries. In what 
follows, I will describe the context of the study, the theoretical and methodological tools on 
which the study draws, and a coding system for teacher moves developed by the study.  

Context of the study  
The subjects in this study are five secondary school mathematics teachers and their learners 

(one grade 10 or 11 class for each teacher), in five differently resourced schools in Johannesburg, 
South Africa. For the purposes of this paper, data from four of the teachers was analyzed. Two of 
these are in schools that are in poor socio-economic areas, are under-resourced, and serve 
exclusively black learners (Mr. Nkomo and Mr. Peters). One is in a school in a lower-middle 
class area, with some resources and with a racially diverse learner profile (Mr. Daniels). The 
fourth is in a private school serving very wealthy learners, who are predominantly white (Ms. 
King). Each of the four teachers has between 7 and 15 years of mathematics teaching experience 
in secondary schools. They were selected from a larger group who were enrolled in an in-service 
degree program at Wits University in Johannesburg. The original five teachers had expressed 
particular interest in working in a study that addressed the teaching and learning of mathematical 
reasoning in their classrooms.  

South Africa has a national curriculum, and in the years after 1994 much work went into 
developing a post-apartheid curriculum which would signal a clean break with the past (Jansen, 
1999a). This curriculum embodies similar ideas to the “reform” visions in other countries, in 
particular responsive and relevant pedagogy. Given the positioning of the new curriculum as the 
post-apartheid, liberatory curriculum, many teachers are aware of and committed to the ideals 
and ideas in the curriculum. However, since much teacher development around the new 
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curriculum is at a generic pedagogical level rather than subject related, many teachers’ 
understandings of the pedagogical implications of the ideas are relatively superficial (Chisholm 
et al., 2000; Taylor & Vinjevold, 1999). I therefore thought it important to work with teachers 
who were reasonably well informed mathematically. While my sample of teachers is “special” in 
this way, my initial classroom observations and interviews with the teachers suggested a range of 
teaching styles as well as a range of mathematical and pedagogical content knowledge among 
them.  

Describing Pedagogy  
Pedagogical practice is extremely complex and not easily described. An important 

methodological issue is the grain size of the analytic tools (Boaler & Brodie, 2004), i.e. how 
broadly or how closely do we describe and analyze practice. Studies that compare effects of 
teaching practice on student outcomes tend to use very broad descriptors of practice. A key set of 
descriptors, used particularly in the United States, distinguishes between ‘traditional’ and 
‘reform’ practice (Boaler, 2002; Hickey, Moore, & Pelligrino, 2001; Hiebert & Wearne, 1993). 
However, what counts as ‘reform’ practice and how it is recognized differ among studies. In her 
study in England, Boaler (2002) spent more than a year in each of two schools,  provided 
ethnographic descriptions of traditional and reform pedagogies and related them to student 
outcomes. Hickey et al (2001) had district support workers decide which teachers used NCTM 
standards-aligned pedagogy. Hiebert and Wearne used the curriculum as an initial indicator, and 
then went on to compare the kinds of tasks and discourse in the classrooms. Boaler et al’s work 
distinguishes between traditional and reform curricula, and shows that the same curriculum can 
give rise to very different teaching approaches (Boaler & Brodie, 2004). In South Africa, 
‘traditional’ and ‘reform’ have even less meaning, since all teachers are expected to work with a 
reform curriculum, and at the same time, very few do (Brodie, 1999; Brodie, Lelliott, & Davis, 
2002; Chisholm et al., 2000; Jansen, 1999b; Taylor & Vinjevold, 1999). Moving away from the 
rhetoric and the dichotomy of ‘traditional’ and ‘reform’, Askew et al (1997) use three terms to 
describe orientations towards teaching mathematics: connectionist, transmission and discovery. 
They describe these orientations primarily in terms of teachers’ knowledge and beliefs and they 
suggest that knowledge and beliefs are in fact most important in understanding teaching. 
However, if these are crucial explanatory factors, we should be able to see how they play out in 
practice, otherwise we have no way of understanding how they impact on learning.   

In this paper, and the larger study from which it is drawn, I am looking for ways to describe 
pedagogical practice that can describe a range of teaching approaches; that can take into account 
aspects of both traditional and reform pedagogies that teachers might be using; that work at the 
level of classroom practice; and that allow for comparisons across classrooms. I found the 
literature on classroom discourse most helpful for my analysis.  

Classroom discourse  
Almost 30 years ago Sinclair and Coulthard (1975) and Mehan (1979) identified a key 

structure of classroom discourse, the Initiation-Response-Feedback/Evaluation (IRF/E) exchange 
structure. The teacher makes an initiation move, a learner responds, the teacher provides 
feedback or evaluates the learner response and then moves on to a new initiation. Mehan calls 
this basic structure a sequence. Often, the feedback/evaluation and subsequent initiation moves 
are combined into one turn, and sometimes the feedback/evaluation is absent or implicit. This 
gives rise to an extended sequence of initiation-response pairs, where the repeated initiation 
works to achieve the response the teacher is looking for. When this response is achieved, the 
teacher positively evaluates the response and the extended sequence ends. A number of 
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sequences and extended sequences are organized together at the level of content to form topically 
related sets. Neither Sinclair and Coulthard nor Mehan evaluate the consequences of the IRF/E 
structure. Other researchers (Edwards & Mercer, 1987; Nystrand, Gamoran, Kachur, & 
Prendergast, 1997; Wells, 1999) have argued that it may have both positive and negative 
consequences for learning, depending on the nature of the elicitation and evaluation moves. 
Edwards and Mercer (1987) identify two “ground-rules” of classroom discourse: teachers ask 
questions to which they already know the answers; and repeated questions imply wrong answers 
(also identified by Mehan). Edwards and Mercer argue that these discourse patterns function to 
mark important knowledge and ideas for learners, and serve to build a joint understanding and 
context for classroom knowledge. At the same time, because the teacher is looking for particular 
answers, they serve to limit what can be produced in classrooms, leading to ritual (procedural) 
rather than principled understandings.  

Initiation moves are often in the form of questions, and a number of researchers have focused 
on teacher questions. Nystrand et al (1997) distinguish between “test” questions and “authentic” 
questions. “Test” questions aim to find out what students know, and how closely their responses 
correspond to what the teacher requires. “Authentic” questions on the other hand are questions 
which do not have pre-specified answers, which convey the teacher’s interest in what students 
think, and which serve to validate student ideas and bring them into the lesson. They distinguish 
high-level evaluations from the more conventional evaluations of the IRE structure. High-level 
evaluations ratify the importance rather than the correctness of a student’s response, and allow 
the contribution to modify or affect the course of the discussion in some way (Nystrand & 
Gamoran, 1991). They also develop the notion of uptake, which they describe as follows: many 
of the teacher’s questions are partly shaped by what immediately precedes them; the teacher 
takes the students’ ideas seriously, and encourages and builds on them in subsequent discussion; 
the teacher’s next question is contingent on the student’s idea, rather than predetermined; the 
teacher picks up on student ideas “weaving them into the fabric of an unfolding exchange”; and 
the student’s ideas can change the course of the discussion. Nystrand et al (1997) found a 
positive relationship between authentic questions, high-level evaluations and uptake, and student 
learning in Grade 8 literature classrooms.  

Researchers in mathematics classrooms have identified a broader range of questions. Hiebert 
and Wearne (1993) have four categories: recall; describe strategy; generate problem; and explain 
underlying features. Boaler and Brodie (2004) have nine categories which include: getting 
information; probing; exploring concepts and relationships and generating discussions. Both 
these studies show that while traditional and reform teachers both tend to ask a significant 
number of questions that ask for information and recall, traditional teachers ask only these kinds 
of questions, while reform teachers ask a broader range of questions, some of which enable 
conceptual engagement with mathematics. While some of these questions may or may not be 
authentic, questions that require learners to explore meaning and relationships do distinguish 
between different kinds of teaching and have positive influences on learning (Boaler & Brodie, 
2004; Hiebert & Wearne, 1993). At the level of the feedback or evaluation move, researchers 
have shown that teachers often begin with more exploratory, higher-order questions and tasks, 
but teacher and students often work together to reduce the demands of the task, asking narrower 
questions (Stein, Grover, & Henningsen, 1996) and funneling towards answers (Bauersfeld, 
1980). Some reform proponents suggest that a complete shift of the IRE structure is necessary to 
achieve the goals of student engagement and inquiry. Classroom discussions become more like 
conversations, with the teacher being a participant in similar ways to the students. However, 
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aside from the enormous challenges involved in creating such conversations, such suggestions 
ignore the particular roles that the teacher must play in classroom discussion, which entail 
evaluating students. Some argue that the IRE is a particular form of classroom discourse that can 
be used for a range of functions (Wells, 1999). O’Connor and Michaels (1996) describe the 
“revoicing” move, where the teacher repeats or rephrases a student’s comment. Revoicing 
amplifies the student’s contribution, and sometimes reformulates it in more precise language, 
while still maintaining the student as owner of the contribution. In this way revoicing positions 
the student’s contribution in relation to the discipline while simultaneously affirming it. A 
second function of revoicing is to make a student’s idea a focus of the discussion, which 
facilitates other students’ responses to it.  

Analyzing Teacher Moves  
My coding scheme was developed from my data, informed by the above literature. Since all 

of the above research was done in non-South African contexts, I looked for ways in which South 
African classroom discourse is both similar to and different from other, predominantly “first-
world” contexts. I saw that my data could be described in terms of Mehan’s structure, with one 
key adaptation for the South African context, which will be discussed below. It was particularly 
striking how few sequences and how many extended sequences there were, suggesting that the 
evaluation move and the subsequent initiation move were in fact fused much of the time. 
Because of the structure of my data, and because of my research interest in how teachers work 
with learner ideas, I chose to focus on the fused evaluation/initiation move as one move, which 
became my coding unit. Usually a move coincided with a turn of teacher talk, although there 
could be more than one move per turn. I chose not to focus on teacher questions as a unit because 
I wanted to account for all the moves that the teachers made, and not all of the data could be 
accounted for as questions. Nevertheless, many of the teacher moves are questions, and the 
research quoted above helped to develop and situate my codes.   

My coding system was developed to distinguish between when a teacher follows up on a 
learner response or does not, and how s/he follows up. The coding system has two levels: level 1 
codes are indicated in table 1; level 2 codes are indicated in table 2 and are subcategories of the 
code follow up in level 1.   

 
Table 1: Level 1 codes  

Affirm  Affirms learner contribution as being right or good. Can be indicated by 
“yes”, “good”. A repeat of a previous idea can be affirm if it restates a 
correct contribution for the class in a way that indicates an affirmation of the 
contribution. Affirm often achieves closure of an extended sequence, and is 
followed by a move to another idea.  

Direct  Asks someone to do something or calls on learner. Classroom management 
is often direct, although sometimes it is inform, or follow up if following up 
on a breach of a new norm. Direct can be more or less directive, and does 
not actually need to be complied with.  

Initiate  Tries to get a mathematical idea from learners but does not directly follow 
up or respond to previous idea.  

Inform  Gives information or explains idea, either mathematical or non-
mathematical. If this is in response to a previous contribution, then coded as 
follow-up > insert. Meta-statements about what is happening are usually 
inform.  
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Follow 
up  

Picks up on a contribution made by a learner, either immediately preceding 
or some time earlier. Usually there is explicit reference to the idea, but there 
does not have to be. Usually the idea is in the public space but does not have 
to be, for example if a teacher asks a learner to share an idea that she has 
seen previously in the learner’s work. The learner’s idea continues to be part 
of the conversation. Repeating a contribution counts as Follow Up if the 
discussion continues on that point. If a teacher repeats a contribution to 
affirm it and the discussion ends, then the move is coded affirm, not follow 
up. Follow Up can relate to social norms in the classroom, if the teacher 
follows up on a particular social act and uses it to explicitly teach a norm.   

 
Table 2: Level 2 Codes -Subcategories of Follow up  

Confirm  Checks whether has heard the learner correctly. There should be some 
evidence that the teacher is not sure what s/he has heard from the learner, 
otherwise it is press.  

Maintain  Maintains the contribution in the public realm for further consideration. 
Repeats the idea, ask others for comment, or indicates that the learner 
should continue talking.  

Press  Pushes or probes the learner for more on their idea, to clarify, justify or 
explain more clearly. Does this by asking the learner to explain more, by 
asking why the learner thinks s/he is correct, or by asking a specific 
question that relates to the learner’s idea and pushes for something more.   

Elicit  While following up on a contribution, the teacher tries to get something 
from the learner. She elicits something else to work on learner’s idea. Elicit 
should be clearly linked to a previous learner idea, otherwise it is Initiate.  

Insert  Adds something in response to the learner’s contribution. Elaborates on it, 
corrects it, answers a question, suggests something or makes a link.  

 
Some of these codes are informed by various parts of the literature discussed above. Elicit is 

probably closest to Mehan’s (1979) elicitation moves, Edwards and Mercer’s (1987) “repeated 
questions imply wrong answers” or Bauersfeld’s (1980) “funneling”. I chose to include them 
under follow up and not as a distinct category, because they do represent instances where the 
teachers follow up on learner ideas in a particular way. It might be that teachers use Elicit to 
follow up particular kinds of contribution, and I need to be able to discern these. It also might be 
more helpful for teachers and teacher educators to distinguish between different kinds of follow 
up, rather than to exclude a range of moves intended as follow up from this category. Press 
comes from the mathematics reform literature that focuses on learners’ reasoning and 
justification. It is similar to Boaler and Brodie’s (2004) third question category “probing” and 
includes Nystrand et al’s (1997) “authentic” questions, but is not limited to them. A teacher 
might press when she wants the learner to articulate her thinking more clearly or more deeply, 
for the learner’s own benefit or for other learners. Maintain is similar to revoicing, and often 
involves a repetition or rephrase of the learner’s contribution. However in the classes in my 
study, it did not function in the same way as O’Connor and Michael’s (1996) revoicing move, so 
I did not call it that.   

The categories confirm, elicit, insert and press all function to maintain a learner contribution. 
The main difference between maintain and confirm and the other three codes is that elicit, insert 
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and press transform the contribution in some way while maintaining it as the focus of for the 
class. Maintain maintains the contribution in a way that is very similar to how the learner said it. 
Even when the teacher rephrases slightly, she does not push for more, insert or try to elicit 
something more. Confirm merely checks the accuracy of the contribution with the learner. Press 
is also different from elicit and insert in that it stays with the learner’s contribution, asking for 
more, rather than trying to elicit something related or inserting a relevant point. So I can arrange 
these moves on a continuum as follows: confirm is where the teacher makes very little 
intervention, she merely tries to establish what the learner said; maintain is where the teacher 
makes very little intervention, rather she repeats the contribution, in order to keep it going, either 
for later intervention or transformation, or for other learners to do something with the 
contribution; Press tries to get the learner to transform her own contribution and can be done 
with more or less mathematical intervention by the teacher; elicit tries to get learners to 
transform a contribution by contributing something else; and insert is where the teacher 
transforms the contribution by making her own mathematical contribution. Each of these moves 
serves a range of functions in the classroom and takes different forms. They can be discussed in 
significantly more detail, but that is beyond the scope of this paper. Examples of each of the 
moves will be given in the presentation.  

An important feature of the discourse patterns in many South African classrooms is 
“chorusing” (Adler et al., 1999). Chorusing occurs when the teacher pauses at the end of a 
sentence, indicating that the learners should join in on the final words. If the interaction is going 
well, a significant number of learners will chorus with the teacher. Often the teacher repeats the 
chorus afterwards as well. Arguments about the consequences of this move are similar to those 
discussed above in relation to other ground rules of questioning and evaluation. On the one hand, 
chorusing serves to mark what is important in the current discourse. It also attempts to keep 
learners’ attention, because they have to be alert as to both when and what to chorus. On the 
other hand, chorused answers are usually short and very often obvious, so they often only require 
learners to participate on a superficial level. There was chorusing in two of the four classrooms 
in my study (Mr. Peters and Mr. Nkomo). I found that the codes I developed could adequately 
take account of chorusing, because the fact that the learners complete the teacher’s move does 
not detract from the function of the move.   

Distributions of Teacher Moves  
For each teacher, I coded all the whole-class teaching in one week of videotaped lessons. All 

of the lessons were transcribed and coding was done on the transcript while watching the video. 
Codes were checked with two different research groups, one in South Africa and one in the 
United States. Discussions with these groups led to refinement of the coding scheme. Table 3 
gives the distribution of level 1 codes across teachers in percentages and actual numbers. A chi-
square test gives p<0.01.  
Table 3: Level 1 distributions  

Teacher  Grade  Affirm  Direct  Follow up  Inform  Initiate  Other Total 
Mr. 
Daniels  

11  4% (11)  22% 
(63)  

61% (174)  5% 
(13)  

2% (6)  6% (16)  283  

Mr. 
Nkomo  

11  8% (26)  4% (13)  70% (238)  6% 
(20)  

8% (26)  5% (17)  340  

Mr. 
Peters  

10  10% 
(62)  

12% 
(78)  

68% (432)  2% 
(11)  

5% (34)  4% (23)  640  

Ms. 10  19% 8% (32) 52% (209) 7% 9% (38) 5% (20) 404  
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King (76) (29) 
Table 3 indicates differences in the total number of teacher moves. In the case of Mr. Nkomo 

and Mr. Peters, these can be accounted for by the fact that Mr. Nkomo had fewer whole-class 
sessions than the others, and Mr. Peters had more. Mr. Daniels and Ms. King had the same 
number of coded minutes, more than Mr. Nkomo and less than Mr. Peters. So Mr. Daniels’ 
smaller number of moves is interesting, and reflects the fact that significant parts of his lessons 
were devoted to learner-learner conversation, so there were a number of turns of interaction 
where he did not make alternate moves. This did not happen at all in Ms. King’s or Mr. Nkomo’s 
lessons and it happened only occasionally in Mr. Peters’.  

The percentages in Table 3 indicate that the teachers look more similar than different at 
Level 1. The most striking result is the predominance of follow up moves in all the classrooms. 
This suggests that all of these teachers do take account of learners’ contributions in some way as 
they proceed with their lessons. Minor differences across the teachers at this level are the higher 
percentages of affirm for Ms. King and direct for Mr. Daniels. More affirms show that Ms. King 
has fewer extended sequences and is more likely to end a sequence with an affirmation. The 
predominance of directs in Mr. Daniels’ can be attributed to an extended discussion learner-
learner discussion that required more explicit management moves by the teacher. Mr. Peters’ 
combined score on affirm and direct suggest similar patterns to Ms. King and Mr. Daniels, to a 
lesser extent on each of the single dimensions than Ms. King (affirm) and Mr. Peters (direct), but 
to a similar extent when taken together.  

Given the similarities among the teachers at Level 1, and the surprising finding of substantial 
follow up, Level 2 codes which describe the kinds of follow up moves are possibly more 
important than the Level 1 codes. Tables 4 give these distributions. A chi-square test gives 
significance p<0.01.  

Table 4: Level 2 distributions  
Teacher  Insert  Elicit  Press  Maintain  Confirm  Total  
Mr. 
Daniels  

24% 
(41)  

5% 
(9)  

20% 
(35)  

42% 
(73)  

9% (16)  174  

Mr. 
Nkomo  

18% 
(44)  

10% 
(24)  

13% 
(30)  

50% 
(119)  

9% (21)  238  

Mr. 
Peters  

24% 
(103)  

23% 
(99)  

20% 
(85)  

30% 
(128)  

4% (17)  432  

Ms.  31%  21%  7%  39%  2%  209  
King  (65)  (43)  (14)  (82)  (5)   
 

Table 4 shows interesting differences among the teachers. The first point of note is that half 
of Mr. Nkomo’s follow up moves are maintain, which means that he repeats the contribution, 
asks others for comment or asks the learner to continue. The other three teachers also do 
substantial maintaining, however, they also do more of elicit, insert and press, which means that 
as they follow up learner ideas they work to transform them in some way. Ms. King and Mr. 
Peters elicit more than the other two teachers. Mr. Daniels and Mr. Peters both press more than 
the other two teachers. Also noteworthy is how seldom Mr. Daniels elicits and how seldom Ms. 
King presses. Finally, all of Mr. Daniels, Ms. King and Mr. Peters do a reasonable amount of 
inserting.  
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Conclusions and Implications  
The above distributions provide a first level description of pedagogy. Further work will look 

at sequences of moves in relation to particular learner ideas. This will help to provide more 
connected descriptions. However, even this broad description gives some useful information. 
The predominance of maintain moves in Mr. Nkomo’s lessons suggests that he takes a relatively 
neutral stance. Mr. Nkomo looks different from the other teachers and his pedagogy seems to fit 
a profile of a less interventionist teacher. How and when he maintains contributions in relation to 
when he presses, elicits and inserts may illuminate the extent of his neutrality. More affirms and 
fewer follow ups in Ms. Kings lessons might suggest a more ‘traditional’ teacher. However, she 
still does a significant amount of follow ups. Her predominant follow up moves are maintain and 
insert, suggesting a possibly interesting mix of some neutrality and some explicit intervention. 
The predominance of the maintain move for all the teachers suggests that it is worth following 
up the extent to which it functions similarly and differently across the classrooms. This will be 
reported in subsequent papers.  

Mr. Peters and Mr. Daniels both press for 20% of the time. Pressing learner thinking is a 
move often associated with reform orientations. It is likely that teachers press in different ways, 
and how and when they press will be useful to explore. Some initial work suggests a continuum 
from more neutral presses: “can you say more” to more specific presses: for example when a 
learner suggests that another learner made a mistake, the teacher presses with “what was their 
mistake”. Other presses position learners in relation to each other, for example: “is what you’re 
saying the same or different from her”.   

An important issue in relation to all of the teacher moves is the extent to which these 
constrain and are constrained by particular learner contributions. So another piece of the analysis 
will be to categorize learner contributions and look at the teacher moves in relation to these. This 
will show whether particular concentrations or sequences of moves enable or are enabled by 
particular kinds of learner contributions.  

As part of the broader project to describe pedagogy, these codes can serve a number of 
purposes. First, together with the codes of learner contributions, they may enable relatively 
‘global’ descriptions of practice, which account for a range of teaching practices without 
dichotomizing into ‘traditional’ and ‘reform’. These global descriptions could then be linked to 
learning outcomes. Second, as part of a quantitative analysis, distributions of the individual 
codes could be linked with learning outcomes. In order to achieve the above, the codes would 
need to be applied to a broader range of teachers, both in South Africa and elsewhere, in order to 
improve their robustness. However, based on the coding of even this small sample, these codes 
provide a way into describing teacher-learner interaction that could be useful for teacher-
education programs. Thinking about a range of follow up moves may enable teachers to build on 
the follow up work they are already doing and work with new possibilities.  
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LIFE STORIES AND CONCEPT MAPS: A MEANS FOR UNDERSTANDING 
MATHEMATICS BELIEFS AND PRACTICES  

Ann LeSage  
Nipissing University  
annl@nipissingu.ca  

 
Over the past decade, narrative inquiry and life history research have become a widely 

utilized methodology in psychology and personality research (McAdams, 1993), as well as in 
studies of teaching and teacher development (Beattie, 1995; Carter, 1993; Clandinin & Connelly, 
1994, 2000; Goodson & Spikes, 2001; Goodson, 1992; Hatch, 1995). More recently this 
methodology has emerged in the field of mathematics teacher development and change (Drake, 
2000, 2002; Drake, Spillane & Hufferd-Ackles, 2001; Drake & Hufferd-Ackles, 1999; Polettini, 
2000; Reeder, 2002). Specifically, studies have utilized mathematics life histories as a viable 
means for understanding the impact of past mathematics experiences on current beliefs and 
teaching practices (Drake 1999 – 2002, Reeder, 2002). Drake (1999) asserts that mathematics 
life histories “may be a particularly useful method for understanding teachers' belief systems, 
one which reduces the frequently cited disparity between teachers' professed and attributed 
beliefs" (p.714). In a related body of research, concept mapping techniques have been used as an 
alternative means for teachers to express and pictorially represent their understanding of the 
interrelationship between beliefs and mathematics practices (LeSage,1999; Roulet,1998; 
Raymond, 1994). The rationale for employing either methodological tool is to develop a 
thorough understanding of the individual; their circumstances and beliefs, as well as factors 
which influence their development.  

Given the methodological promise of each technique used independently, it seemed feasible 
to marry mathematics life histories with concept mapping to develop a more thorough 
understanding of teachers’ beliefs, practices and factors influencing both. Each methodology 
provides unique, yet related data for analysis. Concept maps provides teachers with the 
opportunity to develop a schematic representation of past and present influences on their current 
practices and beliefs. By contrast, mathematics histories provide a means for understanding the 
origin and duration of teachers’ current beliefs, not only their currently held beliefs and 
assumptions.  

The Methodological Tools  
Math history interviews are designed to elicit teachers’ understandings of their experiences 

learning and teaching mathematics and to highlight significant events which have influenced the 
narratives they re-tell. The interview protocols used in this study are an abbreviated version of 
those used by Drake (2002), which were based on McAdams’ (1993) original works.  

The concept mapping activity was modified from earlier studies by Raymond (1997) and 
LeSage (1999). Participants were provided with the key components of the conceptual 
framework guiding the study, including: Mathematics Beliefs, Mathematics Teaching Practice, 
Prior School Experiences, Immediate Classroom Situation, School Factors, Teacher Confidence, 
Creativity and Personality, then asked to create a schema to best represent the influences on their 
mathematics beliefs and practice. The participants were encouraged to add, remove or refine 
categories and components as they wished. Through observing the participants create their 
models, listening to their meta-cognitions, and asking additional and/or clarifying questions, 
significant data and insights are gleaned into the teachers’ views of the inter-relationship 
between beliefs, practice, past experiences, confidence, creativity and personality.  
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Discussion  
Through combining mathematics histories and concept mapping activities it is possible to 

develop a more comprehensive understanding of teacher’s past experiences and the impact of 
those experiences on the development of  espoused beliefs. Through the process of retelling their 
stories and completing the mapping activity, the participants developed a more thorough 
understanding of themselves as evolving teachers. For example, through verbalizing their 
thought process while creating the concept map, participants revealed beliefs and experiences 
with mathematics that were not expressed overtly during the math history interviews. Thus, 
participants were provided with alternative means of expressing their ideas – verbally and 
pictorially. The concept mapping activity also provides “access” to the participants meta-
cognitions. As the participants placed each component within their developing framework, they 
expressed their thoughts aloud. Thus allowing access to their thinking – this opportunity 
provided additional information that was yet untold concerning their mathematics narratives.  

As a more thorough understanding of teachers’ past and current experiences with 
mathematics is developed, a more explicit awareness of their teaching practice emerges. It 
becomes more apparent why specific pedagogies dominate; why various instructional decisions 
are made; or what impacts teachers’ willingness to change their practices. Thus, through 
listening to teachers’ stories and meta-cognitive processes, researchers are provided with a 
potential means to understand the psychological components of teaching, including personal and 
professional beliefs about self, and self-perceptions of efficacy, confidence and personality: all of 
which are key contributors to teachers’ ability and willingness to change their teaching practice.  
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DISPARITIES IN NUMERACY LEARNING FOR FIVE- TO ELEVEN-YEAR-OLDS IN 
NEW ZEALAND  
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The purpose of this study was to explore disparities in numeracy learning as a function of 
ethnicity, gender and socioeconomic status, and was based on a secondary analysis of data 
collected initially to evaluate the effectiveness of a major government initiative in mathematics 
education in NZ. The Numeracy Projects offered whole-school professional development for 
teachers together with a research-based number framework and individual diagnostic interviews 
to assess students’ mathematical thinking. The study found that European and Asian students 
started higher on the framework and made greater progress than Maori or Pasifika students. 
The findings show that “achievement gaps” between Maori/Pasifika students and others 
increased slightly, rather than narrowed as intended. The importance of culturally responsive 
pedagogy is discussed.  
 

New  Zealand, like many other Western countries, responded to its poor results on 
interntional comparisons of mathematics achievement (eg, SIMS, TIMSS) by focusing attention 
on mathematics learning and teaching in schools, putting a particular emphasis on numeracy and 
the usefulness of mathematics for everyday life. Professional development (PD) programs were 
created for teachers working with students at various levels of the education system (Early 
Numeracy Project [ENP]: Yrs 1-3; Advanced Numeracy Project [ANP]: Yrs 4-6; Intermediate 
Numeracy  [INP]: Yrs 7-8; Secondary Numeracy Project [SNP]: Yrs 9-10), beginning in 2000. In 
2002, a program in te reo Maori (the Maori language) was developed for use in Maori medium 
settings (Te Poutama Tau; Christensen, 2003). The PD programs used a research-based number 
framework to describe progressions in mathematics learning, and individual task-based 
interviews to assess children’s mathematical thinking (see New Zealand Numeracy Project 
Material, 2004). The Numeracy Projects sit within a wider Literacy and Numeracy Strategy, 
which has several major goals (Ministry of Education, 2001). These include raising expectations 
for students’ progress and achievement, lifting professional capability throughout the education 
system, and developing community capability by encouraging and supporting family and others 
to help students learn.  

The initial analyses looked at single variables, such as ethnicity, gender, and socio-economic 
status, to ascertain whether or not particular student subgroups benefited from the programme 
(Higgins, 2002, 2003; Irwin, 2003; Thomas & Ward, 2002; Thomas, Tagg & Ward, 2003). 
Comparisons were made of the gains in framework stages from the beginning to the end of the 
project. It soon became apparent that the framework stages did not constitute a linear scale, and it 
was easier to progress through several stages for those whose starting point on the framework 
was low. Indigenous and minority students (ie, Maori & Pasifika) students made gains of about 
the same magnitude as those of European or Asian students. However, Maori and Pasifika 
students tended to begin lower on the framework than European or Asian students, and hence 
should have made larger average gains, if they had been benefiting to the same extent. Using 
gain scores as a measure of improvement disguised the fact that Maori and Pasifika students 
made less progress than European and Asian students who had started at the same point on the 
framework (see Young-Loveridge, 2004). Differences in the distributions of students at the 
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various stages on the framework as a function of ethnicity, gender, and socio-economic status 
could provide a more telling picture. The initial evaluation analyses did not consider the 
possibility of several variables having a cumulative impact on students’ progress. The analysis 
reported in this paper looked at the impact of multiple variables on students’ numeracy learning.  

Method  
Participants  

Data on more than 100,000 New Zealand students in years 1 to 6 (ENP & ANP projects) was 
forwarded to the Ministry of Education in 2003. The composition of the 2003 cohort was 
approximately 60% European (Pakeha), 20% Maori (the indigenous people of NZ), 10% Pasifika 
(of Pacific Islands descent), and 5% Asian. The remaining 5% were from “other” ethnic groups. 
Procedure  

Data on students’ number knowledge and strategies was gathered by their teachers using 
individual diagnostic (task-based) interviews (the Numeracy Project Assessment: NumPA) and 
forwarded to a secure web-site for later analysis by project evaluators. The interview had been 
developed alongside a number framework, outlining progressions in the number knowledge and 
mental strategies used by students to solve problems (see Appendix A). Students were assessed 
at the beginning of the professional development program, and then again at the end (Note: Data 
for stages 0 to 3 was aggregated into a single level). The analysis explored patterns of 
performance at the beginning and end of the project, and progress (gains relative to initial 
framework stage) as a function of ethnicity.  

Results  
The research on which this report is based set out to explore the impact of the numeracy 

project on students’ numeracy learning by looking at both absolute (initial and final framework 
stage) (see Figure 1), and relative (final framework stage as a function of initial framework 
stage) performance on the strategy component of the number framework (see Figure 2). The 
analysis explored these two outcome measures as a function of ethnicity, gender and socio-
economic status.  

Figures 1 shows that of the four main ethnic sub-groups, Asian students started the project 
with the greatest proportion at stage 6, the top stage of the framework for Addition/Subtraction 
(11.5%), followed by European (6.4%), then Maori students (2.7%), and Pasifika with the least 
(1.8%). It is also evident from Figure 1 that although all four groups improved from the 
beginning of the project to the end, the relative differences between groups remained the same, 
or further increased; that is, Asian students showed the greatest improvement and Pasifika 
students the least. A similar pattern was found for Multiplication/Division and for 
Fractions/Ratios, with more Asian and European students at the upper framework stages and a 
greater increase in the percentages who had reached one of the upper stages by the end of the 
project. There were more Maori and Pasifika students at the lower stages on the framework and a 
smaller increase in the percentage of Maori/Pasifika students who had reached one of the upper 
stages by the end of the project.  
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Figure 1. Percentages of Year 1-6 students at each framework stage on Addition/Subtraction 

at the beginning (In) and end (Fi) of the project as a function of Ethnicity (Eu: European, Ma: 
Maori, Pa: Pasifika, As: Asian) 

 
Table 1 shows the increase in the percentage of students at particular framework stages from 

the beginning of the project to the end. It is clear from Table 1 that the increase in proportion of 
Asian students at stage 6 (Advanced Additive Part/Whole) was much greater (9.6%) than the 
corresponding increases for the other ethnic groups. The smallest increase was for Pasifika 
students (3.1%). The increases at stage 6 were consistently greater for boys than girls for all four 
sub-groups.  

 
Table 1  
Increase in the percentage of Yr 1-6 students at framework stage 6 on Addition/Subtraction from 
the beginning to the end of the project as a function of ethnicity, gender, and socio-economic 
status (SES)  

European  Maori  Pasifika  Asian  Overall  
Stage  (n=66702) (n=25770) (n=10842)  (n=5454)  (n=113,573)  
Boys  10.1  6.5  3.3  10.2  8.5  
Girls  7.4  5.0  2.9  9.0  6.5  
Low SES  7.5  5.2  2.6  6.7  5.2  
Medium SES  8.6  6.4  4.5  10.9  8.0  
High SES  9.9  8.6  6.5  11.0  9.8  
Overall  8.7  5.8  3.1  9.6  7.6  
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Figure 2 presents the percentage of students who progressed to a higher framework stage for 
Addition/Subtraction as a function of ethnicity and initial stage (patterns of progress). Figure 2 
shows a clear advantage for Pakeha/European and Asian students over Maori and Pasifika 
students in terms of the proportion at a particular initial stage on the Number Framework who 
progressed to a higher framework stage. In most instances, Pasifika students made the least 
progress of the four sub-groups. The corresponding data for multiplication/division, and 
fractions/ratios was very similar, with Asian and European students at particular initial 
framework stages making the most progress and Maori and Pasifika students, the least. An 
analysis of the impact of gender and socio-economic status showed that being female and being 
from a school in a low SES area was also disadvantageous for students, and further exacerbated 
the negative impact of ethnicity.  

  

 

Figure 2. Percentage of Yr 1-6 students who progressed to a higher framework stage for 
Addition/Subtraction as a function of Initial Stage & Ethnicity  
 

Discussion  
The data analysis showed consistently that European and Asian students benefited more from 

their teachers’ participation in a professional development program focused on numeracy 
learning than did indigenous and minority students. This kind of pattern, referred to as the 
“Matthew Effect” because “the rich get richer and the poor get poorer” (relatively speaking), was 
identified in the field of literacy more than a decade ago (eg, Stanovich, 1986). While there is 
clearly concern about disparities in mathematics achievement as a function of ethnicity, gender, 
and socio-economic status, little has been done to explore their impact systematically, or to help 
teachers better meet the learning needs of indigenous and minority students.  
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Equity is one of six principles proposed in the “new” Principles and Standards document of 
the National Council of Teachers of Mathematics in the US, and is seen as being essential to 
improving the mathematics education of students (NCTM, 2000). However, very little 
consideration has been given to the cultural appropriateness of mathematics pedagogy. Tate 
(1994) asserts that “connecting the pedagogy of mathematics to the lived realities of … students 
is essential to creating equitable conditions in mathematics education” (p. 478). Unfortunately 
many students get the message that school mathematics is a subject that is divorced from their 
everyday experiences and from their efforts to make sense of their world, the result of so-called 
“foreign pedagogy”. According to Tate, “the curriculum and pedagogy of mathematics have been 
and continue to be eurocentric precepts that exclude [minority students’] experiences” (p. 479).  

New Zealand academics Bishop and Glynn (1999)  have written about eurocentrism, arguing 
that mainstream efforts to address cultural diversity in New Zealand have been “singularly 
inadequate” because of the way that racism is embedded in the fundamental principles of the 
dominant (European) culture. The NZ Curriculum Framework document states that all students 
will be provided with equal educational opportunities, and “all programmes will be gender –
inclusive, non-racist, and non-discriminatory, to help ensure that learning opportunities are not 
restricted” (Ministry of Education, 1993, p. 7). The Framework document also states that “the 
school curriculum will be sufficiently flexible to respond to each student’s learning needs [and] 
to a new understanding of the different ways in which people learn” (p. 6). While such rhetoric is 
laudable, there is substantial evidence to show that much educational practice falls short of these 
goals. The findings of this study raise questions about the cultural appropriateness of current 
teaching practices in mathematics.  

Some mathematics educators such as Willis (2000) and Pinxten (1994) have questioned the 
appropriateness of approaches developed by the dominant (European) culture for indigenous 
students. Willis has written about the way that some Australian Aboriginal children can quantify 
collections of eight or nine objects at a glance (by subitizing), yet seem unable to count in the 
conventional sense. Many of the frameworks developed by education systems across the world 
(including those used in NZ and Australia) begin with counting-based stages, and progress to 
derived number facts (or part-whole thinking). Hence, some students may be disadvantaged by 
the assumption that counting must come before quantification. Further research is needed to 
explore the possibility that indigenous and minority students can develop an understanding of the 
number system by means other than verbal counting; for example, spatial visualization of 
number patterns.  

Some NZ academics (eg, Clark, 1999) have suggested that teaching practices in mathematics 
classes need to be changed to be more inclusive of Maori students. This includes having less 
formality and competition by getting students to work in groups, and taking mathematics outside 
the classroom, using culturally appropriate and contextualized examples, resources and 
traditions, and helping teachers understand that mathematics is not the preserve of Western or 
Asian cultures – traditional Maori culture “was knowledgeable and skilled in many forms of 
mathematics” (Clark, 1999, p. 36).  

There is considerable evidence to show that teachers’ expectations of students’ achievement 
have an impact on students’ performance. Many elementary school teachers have reported 
having had negative experiences of mathematics learning at school themselves, and this has 
resulted in a lack confidence and enthusiasm for mathematics. Evaluations of the NZ Numeracy 
Project have shown consistently that teachers’ confidence and professional capability has 
improved substantially from their involvement in the Numeracy Project. It may be that, before 
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teachers can effectively tailor their teaching to the individual needs of their students, they need to 
have sufficient confidence and pedagogical content knowledge to teach mathematics effectively 
to majority group students. It is ironic that a project which was designed to narrow the gap 
between the most and least capable students in mathematics has, if anything, led to increased 
disparities. Building the professional capability of teachers in mathematics is an important first 
step. The challenge now is to sensitize teachers to the particular learning needs of indigenous and 
minority students.  
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Appendix A  
 

The New Zealand Number Framework  
0. Emergent  
Cannot count a collection of objects  
1. One-to-one Counting  
Can count a single collection, but cannot use counting to join or separate collections  
2. Counting from One on Materials  
Counts all objects in both collections to work out the answer to an addition or subtraction 
problem  
3. Counting from One by Imaging  
Can image visual patterns of objects (visualisation), but counts all to work out solution   
4. Advanced Counting  
Counts on from one collection to add the second   
5. Early Additive Part-Whole  
Uses knowledge of number properties to break numbers apart (partition) & recombine them to 
work out solution   
6. Advanced Additive Part-Whole  
Chooses from a range of part-whole strategies to solve addition & subtraction problems, and 
begins deriving multiplication from known facts  
7. Advanced Multiplicative Part-Whole  
Chooses from a range of part-whole strategies to solve multiplication & division problems  
8. Advanced Proportional Part-Whole  
Chooses from a range of part-whole strategies to solve problems involving  
fractions, proportions, and ratios 
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While it is generally believed that a student’s motivation to learn mathematics is influenced by 
his or her beliefs about mathematics, few studies have investigated this connection in depth.  
This study concerns both the motivational characteristics of before-precalculus college 
mathematics learners2 and their beliefs about the nature of mathematics, and the connections 
between the two.  The data from this study support three student “types”, which have been 
termed “conceptually motivated,” “externally motivated,” and “future value motivated.”  Each 
“type” is described in terms of psychologically central and derived beliefs that characterize 
those students’ motivation to learn mathematics and their beliefs about the nature of 
mathematics. 

 
 Introduction  

Students’ motivation to learn has long been one of the standard constructs in educational 
psychology; for example, Pintrich and Schunk (2002) trace its roots back to the nineteenth 
century.  However, much of this research has conceptualized motivation as a general construct.  
Fewer studies have focused on the motivational characteristics of learners in specific disciplines, 
such as college mathematics learners.  The present study is an investigation of the motivational 
characteristics of before-precalculus college mathematics students.  

The motivation to learn mathematics does not exist in isolation from other constructs.  One 
variable that might be particularly important is the student’s beliefs about the nature of 
mathematics (Kloosterman, 1996).  A student who believes that mathematics is primarily the 
correct reproduction of procedures for solving well-defined problems in a textbook will likely be 
motivated to focus primarily on the problems posed for him or her at any one time.  Such a 
student would be unlikely to focus on making connections between mathematical concepts that 
are not made explicitly for him or her by a teacher or a textbook.  On the other hand, a student 
who believes that mathematics is a search for patterns and a way of making sense of the world 
may well be motivated to attempt to make such connections between mathematical concepts. 
While beliefs would seem to have a fairly strong relationship to a student’s motivation to learn, 
little research has documented the connections between these two constructs.  Because of the 
potential importance of beliefs in shaping a student’s motivation toward learning mathematics, 
this study includes an investigation of students’ beliefs about the nature of mathematics and the 
connections between motivation and beliefs.  

Theoretical Framework  
The present study draws strongly on theories of intrinsic motivation, particularly the self-

determination theory of Deci and Ryan (1985), and on the notion of belief systems (Green, 1971; 
Rokeach, 1968).  Deci and Ryan define self-determination as “a quality of human functioning 
that involves the experience of choice, in other words, the experience of an internal perceived 
locus of control. It is integral to intrinsically motivated behavior … self-determination is the 
capacity to choose and to have those choices, rather than reinforcement contingencies, drives, or 
any other forces or pressures, be the determinants of one’s actions. … [It leads people] to engage 
in interesting behaviors, which typically has the benefit of developing competencies, and of 
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working toward a flexible accommodation with the social environment” (1985, p. 38; emphasis 
in original).  According to this theory, intrinsic motivation occurs “when a person does the 
activity in the absence of a reward contingency or control” (p. 34).  Intrinsic motivation is 
“manifested as curiosity and interest, which motivate task engagement even in the absence of 
outside reinforcement or support” (Ryan, Connell, & Grolnick, 1992, p. 170).  

In order to operationalize the construct of intrinsic motivation for the present study, other 
works on intrinsic motivation in education were consulted (e.g., Brophy, 1983; Corno & 
Rohrkemper, 1985; Harter, 1981; McCombs, 1984; Stipek, 1996).  From each of these works, 
definitions of intrinsic motivation were extracted and then synthesized.  The following definition 
guided the present research:  

Intrinsic motivation is present when students value the possible outcome of a task and 
work on it for its own sake, not for the sake of some external award.  When students are  
intrinsically motivated to learn, they will generally exhibit the following characteristics:  
•  They value learning for its own sake in the absence of extrinsic reward.  
•  They exhibit interest in, and curiosity about, the task at hand.  
•  They have a sense of personal control or self-determination.  
•  They exhibit personal confidence and a reduction of the fear of failure.  
•  They use self-directed and metacognitive learning strategies.  

We can think of a belief as a primarily cognitive assertion held by an individual that is not 
necessarily consensual (as compared to a knowledge construct) and that has an affective 
component.  Beliefs are organized in belief systems by the individual, since they “come always 
in sets or groups, never in complete independence of one another” (Green, 1971, pp. 41-42).  
Belief systems are “quasi-logical” (Green, 1971), because there is a logical structure to beliefs 
but that structure can differ between individuals.  In addition, an individual can hold two beliefs 
that are logically inconsistent.  Beliefs can be identified as being primary or derivative, evidential 
or nonevidential, central or peripheral (Green, 1971; Rokeach, 1968).   

Beliefs about mathematics can be organized into a number of categories.  For instance, an 
individual has beliefs about the nature of mathematics, the learning of mathematics, the teaching 
of mathematics, and the social context for teaching and learning mathematics.  The present study 
focuses primarily on beliefs about the nature of mathematics.  One component of the present 
study was a literature review on beliefs about the nature of mathematics; among the studies 
reviewed were Carter and Yackel (1989), Frank (1988), Hatfield (1991), Koch and Smith (1993), 
Odafe (1994), and Schoenfeld (1989).  As a result of this review, six beliefs about the nature of 
mathematics were identified that had empirical support for being “commonly held” among 
individuals:  

1. Mathematics is mostly computation.  
2. Learning mathematics consists primarily of memorizing a set of facts, rules, and 

formulas.  Doing mathematics consists primarily of applying these facts, rules, and 
formulas to clearly defined problems.3

 

 

3.  Mathematical knowledge is certain and unfailing; it comes “from above” (from those 
who really understand the subject) and cannot be questioned.  

4.  A mathematics problem can either be done in 5-10 minutes at most, or it cannot be done 
at all.  

5.  There is usually/always only one (best) way to do a mathematics problem.  
6. Some people just have a “mathematical mind”—they are naturally better at it than others.  
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These “commonly held” beliefs were the basis for data collection described in the next 

section.  
Methods  

The motivational profiles developed in this study were based on a careful analysis of eight 
students enrolled in a “Topics in Liberal Arts Math” course (taught by the researcher) at a small, 
private, liberal arts college in New England.  This college did not offer any mathematics courses 
labeled as “developmental” or “remedial.”  Instead, the Liberal Arts Math course was the entry-
level mathematics course for students in those majors that did not require a more technical 
mathematics course.  The student body of the college is predominantly White, as were all eight 
students in this study.  The college attracts primarily “average” students; the “middle half” of 
SAT scores for the cohort from which these students came was between 910 and 1070.  

A number of data sources were used in this study.  Each of the eight students took part in a 
series of five hour-long interviews during the course of a semester.  Three of the interviews, 
conducted at the beginning, middle, and end of a semester, focused on students’ motivation to 
learn.  The other two, conducted at the beginning and end of the semester, focused on students’ 
beliefs about mathematics.  These interviews were transcribed and coded for the categories of 
motivation and beliefs indicated in the previous section.  Additional data sources included two 
questionnaires, the Motivated Strategies for Learning Questionnaire (MSLQ; Pintrich, Smith, 
Garcia, & McKeachie, 1991) and the Mathematics Beliefs Instrument (MBI; Ibrahim,1990); 
videotapes from the classroom; and photocopies of students’ “major” assignments (projects and 
exams).  

Analysis of the data began with a data matrix, in which each of the eight students were rated 
in terms of the five characteristics of intrinsic motivation to learn and the six “commonly held” 
beliefs about the nature of mathematics.  From this data matrix a second matrix was derived, 
with the number of “matches” between each pair of students on these characteristics.  This 
analysis suggested that there were three “types” among the eight students.  At this point, a 
preliminary description of the three “types” was developed.  The descriptions identify those 
beliefs that are apparently central to the students, as well as other beliefs that appear to be 
derived from those central beliefs.  The descriptions were then used to reanalyze the data to 
search for any evidence that would be inconsistent with the descriptions.  The descriptions were 
then rewritten so that they were again consistent with the data.  This process of revising the 
descriptions was continued until there was no data for any individual student placed into the 
“types” that was inconsistent with the descriptions.  More details on methodology can be found 
in Johnson (2001).  

Results  
As mentioned in the previous section, the data suggested three “types” of students among the 

eight in this study.  The descriptions include aspects of the students’ motivation to learn, as well 
as their beliefs about the nature of mathematics. Based on the data and the nature of the 
descriptions, these three “types” are identified below as “conceptually motivated,” “externally 
motivated,” and “future value motivated.”  Among the eight students in the present study, two 
were characterized as conceptually motivated, four were externally motivated, and two were 
future value motivated.  
Conceptually motivated  

Conceptually motivated students believe that mathematics has a practical usefulness, 
particularly in terms of financial computations that the student believes he or she will need in the 
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future.  A second, central belief is that mathematics has a sort of “general usefulness,” and that 
studying mathematics helps one “broaden the mind.”  This “broadening” can occur through 
studying any of the concepts of mathematics, but is especially likely to emerge through the study 
of logical reasoning.  The purpose of studying mathematics is to make an attempt to understand 
its underlying concepts and to apply those concepts in other academic areas.  

From these central beliefs follow a number of derivative beliefs regarding mathematics. 
While the conceptually motivated student may not necessarily have a high level of intrinsic 
motivation to learn mathematics, this student’s motivational orientation is more intrinsic than 
extrinsic in nature.  He or she wants to learn mathematics because the subject is seen as having 
an inherent value.  At the same time, because mathematics is seen as involving reasoning and not 
primarily computation and memorization, the conceptually motivated student would be expected 
not to exhibit most of the “common” beliefs about mathematics included in this study.  
Moreover, because they see mathematics as reasoning and making sense of situations, such a 
student would be expected not to have an empirical view of mathematics.  
Externally motivated  

For externally motivated students, a psychologically central belief is that mathematics 
consists primarily of facts, algorithms, and computations.  They perceive a fairly strong “split” 
between the mathematics they learn in school and mathematics outside of the school setting.  
While mathematics done outside of the school setting may be of limited use in the student’s 
future life (such as financial calculations), school mathematics is a “meaningless game played 
with symbols”; it is not an integral part of the student’s life.  School mathematics is done in 
accordance with the prescriptions of “the experts,” primarily teachers and textbooks, who have 
“figured out” mathematical truths for us.  The role of the student is to imitate and reproduce this 
body of knowledge.  

From these central beliefs follow a number of derivative beliefs regarding mathematics. 
School mathematics has effectively been determined for the student by “the experts,” and is not 
necessarily related to anything important to the student outside of the classroom.  Because the 
externally motivated student does not necessarily attribute importance to mathematical content, 
the student will exhibit a low level of intrinsic motivation to learn.  Motivation can come only 
from extrinsic factors, such as grades, which have the function of “verifying” the student’s 
abilities; mathematical knowledge is generally not verifiable by the individual learning it. In 
addition, because mathematics is seen as consisting primarily of facts, algorithms, and 
computation, the externally motivated student extends the importance of computation and “doing 
examples” to the very nature of mathematical truth.  The “facts” of mathematics are seen as 
emerging from a number of examples, and it is possible that in the future some counterexample 
might be found that disconfirms an accepted “fact.”  Mathematical truth is thus seen not 
deductively, but empirically.  
Future value motivated  

For the future value motivated student, a psychologically central belief is that mathematics is 
important to learn for one’s future.  The emphasis is likely to be the mathematics needed in one’s 
chosen career, but this is not necessarily the case. This student sees mathematics as vital for daily 
functioning; in fact, one can find mathematics “everywhere.”  The goal in mathematics classes is 
to learn the content that one will encounter in the future.  While mathematical content is valued 
more for extrinsic than intrinsic purposes (exemplified by the statement “I know I need to know 
this in the future”), the future value motivated student still sees a genuine importance in learning 
mathematics.  



 

 718 

From these central beliefs follow a number of derivative beliefs regarding mathematics.  The 
student’s focus is on learning mathematical content for his or her future.  The grade one earns in 
a mathematics course is thus of secondary importance to the student; since mathematics has a 
genuine importance, the student should exhibit more of an intrinsic than extrinsic orientation 
toward learning mathematics.  On the other hand, mathematics is valued for its extrinsic, rather 
than intrinsic, importance.  The student’s emphasis is on learning technical skills needed in the 
future.  With this emphasis on learning technical skills and the extrinsic importance of 
mathematics, the future value motivated student is likely not to have questioned the “traditional” 
nature of the instruction they have received in mathematics in school.  Thus this student would 
be expected to exhibit agreement with most of the “common” beliefs about mathematics 
considered in this study.  

Discussion  
Some research (e.g., Mau, 1993) suggests that many instructors of before-precalculus college 

mathematics courses tend to treat their students as “unmotivated” and undifferentiated with 
respect to motivation.  This conclusion is certainly not borne out by the results of this study.  The 
students in this study exhibited a range of motivational characteristics, as well as beliefs about 
the nature of mathematics.  Those faculty who treat their students as “unmotivated” likely have 
in mind a profile close to that of the “externally motivated” student described above.  It is 
therefore interesting to note that only half (four out of eight) of the students in this study fit this 
particular profile.  

Clearly, one of the limitations of this study is the small sample size used. In addition, all of 
the students were from the same school and the same section of one course.  While the author 
believes (based on his teaching experience) that students of each “type” presented here could 
probably be identified in other populations, further research would clearly be needed to 
determine if that is the case, and what the prevalence of each “type” might be. It would be 
particularly interesting to see this study replicated with students in other mathematical settings to 
determine the prevalence of these student “types.”  

The author also makes no claim that this catalog of motivational profiles is exhaustive. 
Further research might well uncover other motivations for students to learn mathematics, and 
ways in which those students’ beliefs about the nature of mathematics help to inform and shape 
those motivations.  For example, in this study there were no students who appeared to hold 
psychologically central beliefs about the inherent beauty of mathematics as a subject, and how 
such a student might be motivated to learn mathematics.  This and other profiles might emerge 
from research on other populations of mathematics students.  

Endnotes  
1. This paper is based on my doctoral dissertation (Johnson, 2001).  I would like to thank my 
dissertation advisor M. Kathleen Heid for the tremendous amount of time and effort she spent 
helping me make this work better than it would otherwise have been.  I would also like to thank 
the other members of my committee, Drs. Glendon W. Blume, John W. Dawson, Jr., and Cecil 
Trueblood for their effort, support, and friendship.  
2. The phrases “developmental” and “remedial” mathematics are frequently used with a 
somewhat derisive slant; I have therefore used the somewhat more cumbersome phrase “before-
precalculus college mathematics” in the present study.  
3. This belief is phrased in terms of learning mathematics.  However, this belief concerns the 
“core” of mathematics; i.e., it consists of facts, rules, and formulas.  In addition, one could infer 
that an individual who holds this belief also believes that the facts, rules, and formulas of 
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mathematics are unrelated and that the learner must rely on memorizing them because it is not 
possible to see their connections.  Thus for the purposes of the present study this belief is 
considered to be a belief about the nature of mathematics as well as a belief about the learning of 
mathematics.  
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Despite substantial attention paid to diversity in K-12 mathematics, little research has 
investigated this issue among doctoral students. I argue that doctoral students need to  learn 
more than just the content of their disciplines, but that they also need to learn the  practices of 
their disciplines and to develop identities as members of their professional  communities. While 
there are some obstacles that all graduate students face, women and  students of color face 
additional obstacles that limit their opportunities to acquire  knowledge, engage in practices, 
and develop identities in mathematics. This model is  illustrated through an in-depth interview 
with one female student in a mathematics  doctoral program in the US. In the presentation, I will 
explore this framework in more  depth, through interviews with 14 women enrolled in 3 
mathematics departments.  
 

While  the number of women in advanced mathematics has increased over the past four 
decades  (National Science Foundation, 2004), the proportion of women in mathematics still lags 
behind their male contemporaries at higher educational and professional levels. In 2001- 2002, 
only 32% (147 out of 465) of PhDs in mathematics in the US that were earned by US citizens 
and permanent residents were earned by women (Loftsgaarden, Maxwell, &  Priestly, 2003). 
Also in 2002, women received 21% of doctoral faculty positions filled in mathematics 
departments in the US, and comprised 19% of the total full-time doctoral faculty in that year 
(Kirkman, Maxwell, & Priestly, 2003). The picture is even worse for people of color: of the US 
citizens and permanent residents receiving PhDs in 2001-2002,  only 9 (2%; 7 male and 2 
female) were Latino, 17 (4%; 10 male and 7 female) were  Black, and 2 (0.4%; both male) were 
Native American (Loftsgaarden et al., 2003). (No  data are available on participation in 
mathematics in higher education based on social class indicators; however, the intersections of 
race, gender, and class are important and  worth consideration.) Admittedly, these statistics give 
only an approximate picture of  how women fare as they progress along the educational path, as 
these statistics represent different cohorts of students at one fixed point in time, but the statistical 
picture is compelling nonetheless.  

Despite the fact that both the mathematics and mathematics  education communities have 
been aware of these statistical patterns for quite some time, little scholarship has explored 
women’s experiences in doctoral mathematics, and even less has investigated the processes that 
lead women and people of color on this exodus out of mathematics. There is more to these 
students’ experiences in graduate mathematics than these numbers show. “The question is not 
only one of retention in doctoral study but the more subtle one of whether women have a 
graduate experience that is of as high a quality as that of men.” (Etzkowitz, Kemelgor, 
Neuschatz, & Uzzi, 1992, p.158).   

A Framework for Understanding Success in Mathematics 
To understand why students of some groups do not persist in mathematics at the same rate as 

others, we need to start with the question, What does it take to succeed in advanced mathematics 
study? Theories of situated learning posit that learning happens  through participation in social 
practices, and that learning is inseparable from that  participation (Boaler, 2000). For doctoral 
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students, learning happens as they participate in  the communities of practice found in their 
departments and programs. Wenger (1998)  describes three dimensions that define a community 
of practice: a joint enterprise, mutual  engagement, and a shared repertoire. In the community of 
practice of mathematics  doctoral study, these three dimensions entail learning mathematics, 
developing an identity as a mathematician, and engaging in the full range of practices of graduate 
school  and of professional work in mathematics (Boaler, 2002; Herzig, 2002). Thus, the training  
of mathematics graduate students requires far more than instruction in mathematics  content and 
engaging in research for a dissertation (Bass, 2003), and success in  mathematics depends on 
more than just mastering the content of coursework. 

Bass (2003)  argues that while mathematics doctoral programs in the United States provide 
strong  disciplinary training in the core areas of mathematical scholarship, they need to do a  
better job of preparing students for all aspects of work within the profession of mathematics, 
including serious professional development for teaching, uses of  technology, exposition, 
developing and pursuing a research program, participation in the  local and broader mathematical 
communities, and development of a “cultural awareness  in students of the significance of their 
discipline in the larger worlds of science and  society and of the expectation that they will serve 
as emissaries of their discipline in the  outside world” (p. 775). These categories of professional 
development call for students to  appropriate a range of important skills for functioning as 
mathematicians, including  acquiring mathematical knowledge, developing fluency in the 
practices of mathematics,  and developing identities as mathematicians (Boaler, 2002). However, 
given that students  spend the first 2 or 3 years of their graduate training isolated from the 
community of practice of research mathematics, the things they learn—what they acquire 
through their participation in their graduate program—are specific to the experiences they have. 
For  example, they appropriate skills for taking courses and exams and, in some cases, for  
working as teaching assistants. The nature of the activities in which these students  participate 
gives them only limited opportunities to develop the knowledge, practices,  and identities of 
professional mathematicians.  
Learning Mathematics  

Two interleaved assumptions are often made in popular discourse about mathematics:  that 
mathematics is a very difficult field of study, and that only some people have the  talent required 
to be successful at mathematics (Herzig, 2002; Love, 2002; Oakes and  Franke, 1999, cited in 
Allexsaht-Snider & Hart, 2001). Based on a review of children’s  motivation in classrooms, 
Ames (1992) found that making ability a salient feature of  education interferes with students’ 
motivation to learn, their use of effective learning  strategies, and their engagement with the 
content of the curriculum. Not only does a  belief in talent as an important predictor of success 
interfere with student engagement, it  also removes the responsibility for instruction from the 
teachers. This was the perception  in one mathematics doctoral program, in which faculty beliefs 
in the importance of talent  led them to virtually ignore doctoral students in their first several 
years of the program  and to describe the purposes of instruction as providing an opportunity for 
students to  discover or prove if they possess that talent (Herzig, 2002). In this way, instruction 
moves away from fostering the development of mathematicians-in-training, to a structure  for 
“weeding out” students who do not possess particular skills or abilities.  

Faced with  this type of learning environment, graduate students have cited the obstacles they 
faced in  their efforts to learn mathematics, including limited interactions between faculty and 
students, absence of connections among mathematical ideas, lack of feedback mechanisms in 
their courses, and difficulty asking questions (Herzig, 2002; Stage &  Maple, 1996).  
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Developing a Mathematical Identity  
An important part of graduate study is adopting the identity of a mathematician, or at  least 

that of a mathematics graduate student (Tinto, 1993). Building students’ sense of  belonging in 
mathematics has been proposed as a critical feature of an equitable K-12  education (Allexsaht-
Snider & Hart, 2001; Ladson-Billings, 1997; National Council of  Teachers of Mathematics, 
2000; Tate, 1995). A sense that “I belong here” also seems to  be critical in the persistence of 
doctoral students, with several authors arguing that  students’ integration into the communities of 
their departments is important for their  persistence (Girves & Wemmerus, 1988; Herzig, 2002; 
Lovitts, 2001; National Research  Council, 1992; National Science Foundation, 1998; Tinto, 
1993). Unfortunately, women  doctoral students often feel that they do not fit in the 
maledominated worlds of their  disciplines (Etzkowitz, Kemelgor, & Uzzi, 2000; Herzig, in 
press-b).  
Engaging in  Mathematics Practices  

Developing a sense of mathematical identity can also be conceptualized as a process of 
becoming a “full participant” (Lave & Wenger, 1991) in a community of practice. As students 
participate in authentic mathematical practice, their sense of mathematical  identity is enhanced 
and they have improved opportunities to acquire mathematical  knowledge. Women and students 
of color may face particular obstacles to participating in  mathematics practice. For example, it 
may be difficult for people of underrepresented  groups to participate in a disciplinary and 
departmental culture that was formed and has  historically been populated by a much narrower 
demographic group; similarly, students  with family responsibilities or other commitments 
outside of the program may have  limited access to some of its activities (Etzkowitz et al., 2000).  
Women and people of color participating in graduate mathematics  

While all students face some obstacles to these dimensions of learning, women and  students 
of color face additional obstacles that limit their opportunities to participate in  the communities 
of practice of their programs and to acquire knowledge, engage in  practices, and develop an 
identity in mathematics (Herzig, in press-a). For example, if a  student has commitments to an 
ethnic, cultural, or family community (as is the case with  students who are parents), it may be 
difficult for her to participate in the activities of the  academic community. These competing 
communities of practice in which students  participate can isolate them from the communities of 
their departments and programs,  particularly in the case of programs that are inflexible or are 
built on narrow models of  how students can or should be available to participate in departmental 
communities.  Second, a student who is not accepted by the other community members or who is 
perceived to have a particular set of skills, abilities, and dispositions—such as is the case  of 
women who are constructed to be lacking in confidence or autonomy—will have fewer 
opportunities to develop effective relationships with mentors and others. By constraining  her 
interactions with other members of the academic community, these perceptions of her  as a 
learner will indeed make it difficult for her to appropriate the knowledge, practices,  and identity 
of a mathematician (Herzig, in press-a).   

In this presentation, I will use this  framework of for understanding the participation of 
women in doctoral mathematics—based on their opportunities to acquire knowledge, learn 
practices, and develop identities as mathematics graduate students and mathematicians—to 
analyze the experiences of 14  women graduate students in mathematics enrolled in three 
mathematics graduate programs at large, public universities in the US. In the present paper, I 
illustrate the framework through the experiences of one of these women.  
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Method 
This report is based on a single open-ended interview with one female graduate student in 

mathematics. The interview was conducted as part of a larger study in which female and  male 
graduate students and faculty were interviewed. Along with all the participants, Marta (a 
pseudonym) was recruited through a mass email sent to all enrolled graduate  students in her 
department, inviting them to participate in an interview about their  experiences in mathematics, 
both in and out of graduate school. She was given an outline  of interview topics in advance of 
her interview, and was encouraged to add things she  thought were relevant and delete things she 
did not wish to discuss (after Burton, 1999).  The interviews covered her mathematical 
“autobiography”, her reasons for attending  graduate school in mathematics, her interests and 
goals in mathematics, and her  mathematical experiences both in and out of school. She was 
encouraged to guide the  conversation to those aspects of her experiences that she thought were 
most relevant. The  interview was conducted in a private room on campus, outside of the 
Department of  Mathematics. The interview was tape recorded, and the tapes were transcribed. In 
the text  that follows, all quotes are from Marta’s interview.  

At the time of her interview, Marta  was in her fifth year of graduate study, and was working 
on her dissertation research. In  order to protect her anonymity, further demographic details 
cannot be disclosed.  

Women Learning Mathematics 
Acquiring knowledge  

Most graduate programs in mathematics in the US are structured so that students spend  their 
first several years taking courses and preparing for qualifying exams. The entire  structure of 
graduate training seems to be focused around encouraging students to learn large amounts of 
mathematics in a short period of time. Although Marta was successful  in most of her classes and 
passed her qualifying exams relatively quickly, she described a  number of obstacles to her 
learning.  

When she first arrived at the University, Marta found that she received very little advising 
about her academic program. Consequently, she  ended up in a course that was over her head, 
and made her first year very difficult for her.  Another course was taught in a way that did not 
inspire her interest, even though this area  is ultimately the area she specialized in for her 
research. “It was not well taught. It was  [subject] thought of from a point of view that made 
what I thought was an interesting subject seem very ugly somehow.” The instructor of this 
course seemed not to care very much about his teaching; he would come to class with notes and 
would basically dictate  his notes to the class, not allowing room for questions or discussion.  

Marta had several  recommendations for the teaching of graduate courses. Her own graduate 
coursework had been very narrow, and she took no courses at all in several classical areas of 
mathematics, which she described as a deficiency. She would have liked to have access to 
general seminars, structured to introduce younger graduate students to the big ideas in areas 
outside their own areas of specialty. Further, instructors should make sure that students are doing 
more than just coming to class and taking notes; instructors should assign homework, hold 
students accountable for completing assignments, give students  feedback on their work, 
encourage students to form study groups, and make office hours a real opportunity for students to 
ask questions and discuss mathematics. In many of her classes, she felt these things were lacking, 
making it more difficult for her to learn mathematics.  
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Engaging in practices  
Marta described a number of ways in which her graduate training did not prepare her to work 

as a mathematician. She was impressed with one faculty member who acknowledged that 
graduate students would not understand most of what went on in  colloquium, and offered 
“debriefing sessions” for them to process the talk and “learn the  general culture of math.”  

Working as a teaching assistant was very important to Marta, and she hoped eventually to 
pursue a career in college teaching in which she could share  with undergraduates the joy she 
found in mathematics. However, her initial experiences in teaching as a teaching assistant were 
intimidating, as she had had not previous  experience and felt overwhelmed by the responsibility 
and by being at the front of a classroom. She was intrigued by a graduate program at another 
university where students were eased into teaching over their first several years, “without diving 
in and hoping I could swim.” In part, her interest in teaching was a sense of “justice” to make up 
for the  lack of interest her own faculty showed in their teaching.  

She complained that she had  had very little opportunity to learn to give mathematical talks, 
which she recognized as a skill she would need as an academic mathematician. She did not only 
want chances to present work in her classes, but real training in how to focus a talk and how to 
make decisions about how to give a talk. She referred to this as “one of the . . . things that 
graduate students should know but no one ever teaches them.”  

Marta described several  points in her graduate training when she struggled with her research. 
Particularly when  her advisor was out of the country for a semester, she felt that she had no one 
to speak with about her research. “I didn’t feel like I was on my way to my research, even though 
looking back at it, I had gotten some important things done but I was still new enough to the area 
that I didn’t realize the significance of what I had done. . . . I knew what kinds of problems I 
wanted to solve but I didn’t know how to go about it.” Consequently, she felt insecure about her 
research. When her advisor finally returned, she received “just enough guidance from him” that 
she was able to solve important aspect of the problem she had  been working on, and that gave 
her the confidence to continue.  

She wanted faculty to  provide more modeling about how they think about mathematics and 
how they solve  problems. “Researchers could explain or demonstrate how their own thought 
processes  work and how do you go from saying, ‘gosh, one should be able to calculate the 
[mathematical quantity]’ to saying ‘yes well I’m going to use this technique and then I’m going 
to look for this kind of evidence?’ ” Overall, Marta felt that she was not being  given an adequate 
apprenticeship in working as a mathematician, including all of the  aspects of research, learning, 
speaking, writing, and other practices that are part of the  professional work of a mathematician.  
Developing an identity  

Marta had been interested in mathematics since she was very young. While in high  school, 
she participated in several programs for talented and gifted students, and was  tutored by a 
professor at the local university. She entered college as a mathematics major,  and attended a 
summer program that gave her research experience in mathematics. One  of the things that 
appealed to her most about mathematics from a very young age was its  abstraction. “Finding 
consistent patterns and finding abstractions that fit into consistent  systems was something that I 
found very interesting at a younger age.” This interest in  patterns and abstraction was one of the 
primary reasons that she decided to attend graduate school. In a sense, she had developed an 
identity as a “mathematics person.”  

She did not like the “macho attitude in math” that “when you don’t understand you’re 
supposed to figure it out on your own as opposed to asking questions.” She also objected  to 
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what she perceived as a tendency to present mathematics intentionally to confuse.  “What’s as 
important as explaining your work is showing people that you are capable of  doing high-
powered work by confusing.”  

Marta had been an undergraduate at a small liberal arts college, and felt very successful at 
mathematics in her earlier mathematical education. However, throughout her interview, she 
referred to her doubts about her abilities. She repeatedly described herself as “shy,” and spoke of 
her hesitance to ask  questions or to approach faculty or even other students. She had some of her 
most significant doubts when she was struggling to complete her research. Once her advisor 
returned from her sabbatical, Marta realized that she had completed a major piece of her  thesis, 
and said, “I felt, OK, I can do this. The reasons I was having trouble were based less on my 
mathematical ability or lack thereof” and more on learning to manage her  time. In this way, the 
practices in which she engaged (working on research under the  direction of her advisor) affected 
her identity within mathematics.  

Marta also described  ways that being a woman in mathematics affected her. “I do sometimes 
walk into a room, look around, realize I’m the only woman in the room, again, and it has an 
effect.” She thought she might be shy because she is a woman around not very many women.  

Summary 
Knowledge, practices, and identity are not independent parts of the learning process, but  

they are intertwined, and necessarily affect each other in complex ways. For example,  Etzkowitz 
et al.  (2000) argue that students can only act independently if they feel safe  and accepted. 
Students who do not feel that they fit in may have more difficulty acting  autonomously. In 
effect, autonomy and independence are double-edged swords for  women in mathematics and 
science.  

Isolated and without interpersonal connection, a  woman’s ability to be playfully creative 
is impeded. . . . A gendered ‘apartheid system’  exists in which many male advisors offer 
support to male students, be leave women to  figure things out for themselves. With no 
support or connection with an advisor, taking  risks in the lab becomes to threatening. 
People only take risks when they feel safe to do  so. In contrast, there is sufficient support 
and acceptance, by way of informal interactions  with male advisors and peers, for male 
students to enjoy the freedom to be innovative.  (Etzkowitz et al., 2000, p. 86)  

That is, male students have enhanced relationships with  faculty, which provide them with 
increased opportunities to develop identities within  their disciplines, which is a pre-requisite for 
independent and autonomous work. Denied  the same degree of relationships with faculty, 
female students have a more difficult time  acting independently. This was certainly the case for 
Marta, who had only distant  relationships with her advisor and other faculty members, and 
consequently struggled with the isolation of her work.  

Within such a small space, it is impossible to do justice to  even one woman’s experiences in 
mathematics. I have tried to illustrate some aspects of  Marta’s experiences in graduate school 
that she perceived as obstacles and opportunities for her to acquire the knowledge, practices, and 
identity of a professional mathematician. 
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Abstract:  This research study aimed to provide a snapshot of 23 prospective secondary 
mathematics teachers’ conceptions of proof and its logical underpinnings as they were near the 
end of their preparation programs. When asked to complete proofs based on secondary 
mathematics content, only 26% of the participants were able to complete a valid proof for the 
direct and indirect proof items. Results suggest that some prospective teachers may have 
difficulty teaching proof and reasoning effectively, as outlined by the NCTM Standards 2000 and 
the MAA (1998).  A recycling effect seems likely as prospective teachers with an inadequate 
understanding of proof and reasoning return to the educational system as mathematics teachers 
faced with the challenge of teaching proof.  
 

Perspective  
In the United States, current mathematics education reform efforts call for an increased 

emphasis in our school curricula on reasoning and proof as a stepping stone toward improving 
logical reasoning.  The Principles and Standards for School Mathematics emphasized the need 
for opportunities in mathematical reasoning and proof for all students grades K – 12 and in all 
mathematics content areas (National Council of Teachers of Mathematics [NCTM], 2000). The 
document deemed these opportunities as essential to understanding mathematics. The goals of 
the NCTM were supported by a special Task Force within the Mathematical Association of 
America (MAA) where they recommended that students should have opportunities to learn 
logical reasoning, develop valid arguments or proofs, and criticize the arguments of others (Ross, 
1998).  

The NCTM further noted in the Teaching Principle of the Standards 2000 that students’ 
understanding of mathematics, their ability to use it to solve problems, and their confidence and 
disposition toward mathematics are all shaped by the teaching they encounter in school.  As a 
cornerstone to this reform vision, the NCTM (2000), the MAA (Ross, 1998) and the Conference 
Board of the Mathematical Sciences (CBMS, 2001) have acknowledged that the catalyst for 
building stronger understandings of reasoning and proof within a mathematics classroom is the 
teacher. This need for teachers to promote the development of their students’ understanding of 
proof suggests that teachers themselves must have a robust understanding of proof.  This robust 
understanding develops through opportunities to explore, conjecture, develop mathematical 
arguments, validate possible solutions, and recognize connections among mathematical ideas.  
Knowledge of Proof  

The question of what knowledge is necessary to facilitate recommended changes within 
school mathematics has been the focus of many in mathematics education (Ball, 1989; Epp, 
2003; Galbraith, 1982; National Research Council, 2001). Ball (1989) and Galbraith (1982) 
voiced similar concerns about conceptions of prospective secondary mathematics teachers and 
what these conceptions imply about their ability to teach school mathematics.  Galbraith (1982) 
stated, “Concern has been expressed for the recycling effect induced when students lacking in 
some essential mathematical background, return to the education system as teachers” (p. 91, 
emphasis added).  
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There is a real concern about a recycling effect when prospective teachers are faced with the 
challenge of teaching proof and reasoning. Proof is a very difficult area for high school 
students—a fact that is noted by the NCTM (2000, p. 56) and supported by many research 
studies that have shown that students’ inadequacies and misconceptions in the area of proof and 
reasoning are widespread (Chazan, 1989; Healy & Hoyles, 2000; Senk, 1985, 1989; Williams, 
1979).  Epp (2003) stated "Unfortunately, at least in the United States, a large number of K – 12 
teachers have only a weak command of the principles of logical reasoning" (p. 894).  She added 
that it simply is not possible for such teachers to effectively teach their students' reasoning and 
proof as the NCTM (2000) Standards recommend when the teachers themselves do not have an 
understanding for what a valid deduction is or what it means for various statements to be true or 
false (Epp, 2003).    
Significance of Study  

Examining the skills that prospective teachers need to teach proof and reasoning in a manner 
that promotes critical thinking skills as outlined by the NCTM (2000) leads to the question of 
what conceptions they possess as they complete their preparation program. The significance of 
this study was three-fold.  First, many in the mathematics education community have 
emphasized the importance of teaching students logical reasoning and formal proofs (MAA, 
1998; NCTM, 2000).  Secondly, the importance of preparing teachers to teach proof and 
reasoning, which is dependent upon their mathematical content knowledge of the nature of proof, 
was recognized by many organizations including the NCTM (2000), MAA (1998), and the 
MSEB (2001).  Third, few studies have been conducted that research prospective secondary 
teachers' conceptions of proof after they have been "prepared to teach" proof and reasoning.  The 
aim of this research study was to provide a snapshot of secondary mathematics teachers' 
conceptions of proof and its logical underpinnings as prospective teachers neared the end of their 
preparation programs. This research was a broad based study that replicated a research study by 
Galbraith (1982) that assessed prospective secondary mathematics teachers' "mathematics 
vitality."  

The primary research question was: What are prospective secondary mathematics teachers' 
conceptions of proof and refutations? In the original study, two secondary research questions 
addressed participants' understanding of the logical underpinnings of proof and participants' 
abilities to complete mathematical proofs.  Both secondary questions sought to answer the 
primary research question.  For this paper, I will focus my analysis on participants' ability to 
complete mathematical proofs and what this implies toward the primary research question.  
Theoretical Perspective of Proof  

Logic is the study of methods for evaluating mathematical proof.  According to Barnier and 
Feldman (1990) “A basic knowledge of logic is indispensable for analyzing and constructing 
proofs” (p. 1). They go on to suggest that to understand a proof one must know: 1) the goal of the 
proof; 2) the hypotheses; 3) the necessary facts and definitions of the content area; and 4) 
previously proved facts or laws of logic to be used in the proof.   

Introductory proof courses generally provide an opportunity for undergraduates to refine 
their proof skills.  According to Epp (2003), goals for a first course in proof and reasoning 
should include helping students appreciate the role of definitions in mathematical proof and 
reasoning and also develop an ability to evaluate the truth or falsity of mathematical statements. 
She further suggested that an introductory unit on the principles of logical reasoning provide a 
supportive framework in which students can draw from while learning various aspects of proof 
and disproof.    
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Methodology  
The participants of the study were 23 prospective secondary mathematics teachers near the 

end of their preparation programs.  Twenty of the 23 participants were seniors and 3 participants 
were juniors (had completed an Introduction to Abstract Algebra course).  They were enrolled at 
three state universities in the northwestern United States.  According to the state Office of 
Commission of Higher Education, the 2000 – 2001 enrollment of these three universities 
represented approximately 79% of the total enrollment at four-year schools in the state (2002). 
The participants represented a homogeneous sample of prospective secondary mathematics 
teachers completing their preparation programs.  All of the participants had completed, or were 
near completion, of similar courses that included at least two calculus courses, an introductory 
proof class, and a college geometry course. Mathematical concepts in these courses included 
techniques and methods of proof, the logical underpinnings of proof, and methods of completing 
proofs.  

The researcher developed a questionnaire composed of two parts in order to assess the two 
components of proof—1) understanding of the logical underpinnings of proof, and 2) ability to 
complete mathematical proofs.  Items were adapted from Ball and Wilson (1990), Galbraith 
(1982), Knuth (1999), and Senk (1985, 1989). The content of the items centered on concepts and 
ideas typically found at the secondary mathematics level.   
Analysis of Data  

A numerical analysis was used to assess participants' responses to both parts of the 
questionnaire. Part I of the questionnaire addressed a secondary research question that examined 
the participants’ understanding of the logical underpinnings of proof and refutations. It consisted 
of 12 multiple choice items. Participants were given a score of 0 for an incorrect answer or a 
non-response and a score of 1 for a correct answer.   

Part II addressed a secondary research question that investigated participants' ability to 
complete mathematical proofs. It included three constructed response proof items that required 
participants to produce their own logical justifications for mathematical ideas. The responses for 
this part were analyzed by a numerical scoring scheme that described the approach employed by 
the prospective teacher in attempting the mathematical proof. The researcher categorized the 
responses based on guidelines adapted from Senk (1985, 1989) and the Educational Testing 
Services’ (2002) Praxis Test on mathematical proof. The researcher and a mathematics education 
professor independently assessed the participants' responses.    

Scores of 0 through 5 were assigned to each of the constructed response items, where a score 
of 4 or 5 represented a valid proof or valid disproof.  These responses were classified as using 
what Harel and Sowder (1998) referred to as Analytic Proof Scheme—Axiomatic Proof.  The 
response was judged as a valid justification (5 points) or valid but shows minor errors step (4 
points).  A score of 3 points shows some chain of reasoning by either completing half the logical 
steps correctly or by writing a sequence of statements that is invalid because it is based on faulty 
reasoning in earlier steps. Two points indicated minimal progress with at least one valid 
deduction; one point demonstrated a lack of understanding or an invalid proof strategy, and zero 
points indicated a non-response, an invalid response, or pointless deductions.  The distribution of 
participants’ responses per point value allowed the researcher to identify interesting patterns or 
trends in relation to the participants’ understanding of direct and indirect proofs, and the 
refutation item.  
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Results and Conclusions  
Data gathered from the constructed response items were analyzed and distributed in a 

frequency table showing the participants' score for each item, as well as their total score.  
Table 1.  Distribution of Data per Individual—Completion of Proof  
Part II – Constructed Response Proof Items (5 points 
possible for each item)  
Participant  Indirect 

Proof 
item #1  

Refutation 
item #2  

Direct 
Proof 

item #3  

Total Points 
(15 points 

possible -%)  
1  1  1  3  5 33.3%  
2  3  1  4  8 53.3%  
3  1  4  3  8 53.3%  
4  3  5  5  13 86.7%  
5  0  1  4  5 33.3%  
6  2  0  0  2 13.3%  
7  2  5  4  11 73.3%  
8  4  0  4  8 53.3%  
9  5  5  1  11 73.3%  
10  2  1  0  3 20%  
11  5  3  3  11 73.3%  
12  1  5  3  9 60%  
13  3  0  0  3 20%  
14  4  0  2  6 40%  
15  5  1  4  10 66.7%  
16  5  5  4  14 93.3%  
17  1  0  5  6 40%  
18  1  5  5  11 73.3%  
19  5  0  4  9 60%  
20  0  5  1  6 40%  
21  5  0  4  9 60%  
22  4  1  4  9 60%  
23  1  5  5  11 73.3%  

Mean  2.74  2.30  3.13  8.17 54.5%  
 
Analysis of Proof Strategies  

Item 1 asked participants to complete a proof for which the most likely strategy was the 
contradiction or contrapositive method of proof.  Participants were asked to prove: Let x be an 
integer. If x³ is even, then x is even. This item required an understanding of the definitions of 
even and odd integers. Table 1 shows that nine participants (39% of the sample) completed a 
valid proof (i.e. used an Analytic Proof Scheme).  Four of these nine individuals employed the 
contradiction method of proof and five participants employed the contrapositive method of 
proof.  The responses of 14 participants (61%) were scored 0 to 3 points and judged to be invalid 
proofs.  Three of these 14 participants scored 3 points by responding with some chain of 
reasoning, however steps were based on faulty reasoning or had only completed approximately 
half of the logical steps.  The responses of 11 participants (48%) lacked any chain of reasoning 
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that could lead to a valid proof (score 0 – 2 points).  Analyzing the responses of these 11 invalid 
proofs reveals that three participants attempted a direct proof; three participants attempted to 
prove the converse; three participants’ responses were completely invalid or a non-response; and 
two participants used examples as justification, exhibiting an Empirical Proof Scheme (Harel and 
Sowder, 1998).    

The false conjecture item (i.e. Item 2 of Part II), was adapted with slight changes from the 
Ball and Wilson (1990) study of novice secondary teachers. Item 2 was the following false 
conjecture problem: As the perimeter of a rectangle increases, then the area of it also increases. 
Below the conjecture, two rectangles were drawn—one was 3 centimeters by 3 centimeters and 
the other was 3 centimeters by 4 centimeters.  The perimeter and area of both rectangles were 
given below the drawings of the rectangles. Participants were asked to reply to this conjecture. 
They should have questioned the truth of this conjecture and established that the conjecture was 
false. Table 1 show that nine participants (39% of the sample) recognized that the conjecture was 
false and were able to refute it with a counterexample.  Eight of those nine participants 
completed a valid justification (score 5 points) and one participant responded with a partially 
correct counterexample and was given a score of 4 points.  One participant scored 3 points and 
13 participants or 57% responded that the conjecture was true.  Six of the 13 attempted to prove 
it was true and seven participants responded by restating the conjecture or by an invalid 
response.  Results show the mean for this particular proof item was 2.30 out of 5 points, the 
lowest mean of the 3 proofs. The responses of the participants in this study were similar to those 
in the Ball and Wilson (1990) study.  Approximately 57% of the participants in this study 
responded that the conjecture was true whereas 47% responded that the conjecture was true in 
the Ball and Wilson study.  The findings suggest that prospective secondary teachers need more 
exposure to recognizing false refutations  

Item 3 asked participants to prove that "If a point is on the perpendicular bisector of a 
segment, then it is equidistant from the endpoints of the segment."  This conditional statement is 
commonly referred to as the Perpendicular Bisector Theorem, a theorem that is found in 
traditional high school geometry texts.  This item was most likely to be completed via a direct 
proof.  The data from Table 1 show that only 13 participants (57% of the sample) constructed a 
valid proof.  Four of these 13 participants scored 5 points and nine participants missed at most 
one reasoning or justification step, scoring 4 points. Four participants responded with some chain 
of reasoning however steps were based on faulty reasoning or had only completed approximately 
half of the logical steps (score 3 points).  Six participants (26%) did not construct a chain of 
reasoning that would lead to a valid justification (scored 0 to 2 points).  
Analysis of Participants’ Completion of Proof  

Evaluating participants' responses for all three items found that only one participant 
completed a valid proof (or disproof) on each of the three proofs (this participant was one of the 
three juniors).  Four participants' responses (17%) were judged as invalid for all three items.  In 
regards to just the direct and indirect proof items, data show that only six participants (26%) 
responded with a valid proof for both; seven participants (30%) did not complete a valid 
justification for either item.  Ten participants responded with only one of the direct or indirect 
proof items judged as a valid justification.  Of these ten participants, seven responded to the 
direct proof item with a valid proof. In regards to the refutation item, results show that of the six 
participants who responded with a valid proof for both the direct and indirect proof items, only 
one recognized that the false conjecture item was indeed false. Perhaps what was most disturbing 
was participants’ poor performance in completing valid proofs, in light of the mathematical 
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content level of the three proof items (i.e. perpendicular bisector, triangle congruency theorems, 
even integers, and area and perimeter of rectangles). Prospective teachers are likely to teach 
proofs of this difficulty level or greater.  
Data Analysis for the Primary Research Question  

Data from both parts of the questionnaire were used to address the Primary Research 
Question: What are prospective secondary mathematics teachers’ conceptions of proof and 
refutations?  There were 12 points possible for the logical underpinnings of proof items and 15 
points possible for the completion of proof items.  Results show 12 participants (52% of the 
sample), scored 60% or lower on both the multiple choice items and the constructed proof items. 
Eleven of these 12 participants were seniors. Comparing both parts of the questionnaire, the data 
presents three distinct groups within the sample. Six participants (26%) scored nine points or 
better on both parts of the questionnaire—demonstrating their conceptions of proof are adequate. 
At the other end of the spectrum, 30% of the participants (seven seniors) scored 7 points or less 
of the 12 multiple choice questions and 6 points or less out of 15 points on ability to complete 
proof.  Their conceptions were judged to be inadequate. Approximately 45% of the participants’ 
conceptions are varied and lie between these two groups.   

Concluding Remarks  
The purpose of the research study was to provide a snapshot of secondary mathematics 

teachers' conceptions of proof and its logical underpinnings as prospective teachers near the end 
of their preparation programs. The results from the study show some areas of concern in 
addressing the lofty goals of the NCTM Standards 2000. One concern is that the results show 
that only 26% of the participants were able to complete a valid proof for the direct and indirect 
proof items. Given the difficulty of these items, the findings are somewhat disturbing. Another 
area of concern is for the twelve participants, (52% of the sample), that scored 60% or lower on 
both the multiple choice items and the constructed proof items. This data suggests that some 
prospective teachers may have difficulty teaching proof and reasoning effectively, as is outlined 
by the NCTM Standards 2000 and the MAA (1998).  A recycling effect seems very real as 
prospective teachers with an inadequate understanding of proof and reasoning return to the 
educational system as mathematics teachers faced with the challenge of teaching proof.  
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 “JUST GO”: MATHEMATICS STUDENTS’ CRITICAL AWARENESS OF THE   
DE-EMPHASIS OF ROUTINE PROCEDURES  

 
David Wagner  

University of New Brunswick  
dwagner@unb.ca  

 
This is an account of part of my extended conversation with a high school mathematics class, in 
which I prompted the students daily to become ever more aware of their classroom language 
practices. Our discussion about the word just exemplified a way such “critical language 
awareness” conversations can draw out student perspectives on learning mathematics. The 
discussion also demonstrated the way language awareness can afford students new possibilities 
for living in their mathematics classroom discourse.  
 

Introduction  
“And you just change it to two square root five.” Some time after a student said this, I asked 

her classmates, “What does that mean when she says just?” This exchange was part of a 
semester-long conversation in which I aimed to raise the students’ awareness of their language 
practice in mathematics class. When the students and I disagreed over how to use the word just, 
we became aware of connections between our use of the word and the way we direct attention 
when communicating mathematics.  

Morgan (1998), as a result of her extensive study of secondary school mathematics writing, 
identifies the need for students to become more aware of their language practice, but she does 
not say much about how teachers might help them do this. While discourse analysis has given 
educators insight into mathematics and its classroom practice (e.g. Morgan, 1998; Rowland, 
2000), like Morgan, I also want mathematics students to benefit from increased language 
awareness.  

Assuming that mathematics classrooms would benefit from what Fairclough (1992) calls 
“critical language awareness,” an important question remains: how can it be brought about 
effectively? In Wagner (2003), I began to answer this question by analyzing transcripts of 
interviews in which students responded to audio-taped excerpts of themselves working on pure 
mathematics investigations. These interviews did not focus on language per se, but the analysis is 
instructive for applying critical language awareness to the mathematics classroom.  

Linguists Chouliaraki and Fairclough (1999) have constructed a framework for analyzing 
discourse for critical purposes. With this framework, they encourage the use of discourse 
analysis for the identification of “the range of what people can do in given structural conditions” 
(p. 65). I suggest that mathematics students can benefit from exploring various ways of living 
within the discourse space they encounter daily. Furthermore, there is an opportunity for 
educators in such conversations: While conversing with students about their language practice in 
mathematics class, a teacher or researcher can gain insight into the unique perspective students 
have on their classroom discourse.   

With these interests in mind – raising student awareness of language and accessing student 
perspectives on their discourse – I set out to answer the following question: Considering the 
depth and breadth of students’ mathematical experience, what is the effect of their mediated use 
of discourse analytic tools to explore the mathematics discourse that surrounds them?  
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Research Method  

To address the above question, I spent a nineteen-week semester with a grade 11 pure 
mathematics class, co-teaching the course with the regular teacher and collecting video and audio 
records of classroom discourse every day. By directing the students’ attention to their own 
utterances, I tried daily to engage the students in discussion about our language practices in the 
class. The form of my prompts varied, as I was continually responding to the participants. In 
addition to our classroom interaction about language, I interviewed participant students and 
asked them to write accounts of their experiences with language in relation to their mathematics 
learning.  

This research was an investigation of possibility. Skovsmose and Borba’s (2000) 
methodology for critical mathematics education research guided me: “[I]t is by no means a 
simple truth that research should deal with what is. [...] [D]oing critical research means (among 
other things) to research what is not there and what is not actual” (p. 5,  emphases theirs). I saw 
the original situation of the participant class as a situation that I wanted to see transformed. I 
imagined a situation in which students would notice aspects of their language practice and 
through this noticing become more aware of the nature of mathematics and of possibilities for 
them to relate to the mathematics. The primary data comprised transcripts of interviews and 
whole-class conversations about our classroom mathematics discourse. For these conversations I 
drew on a secondary set of data to prompt students to articulate their perspectives – transcripts 
and videotaped excerpts of our classroom conversation about mathematics, and excerpts of the 
students’ mathematical writing.  

My agenda was not the same as the students’ agenda for this class. In fact, our agendas or 
imagined situations kept changing as we responded to each other. Therefore, I could not expect 
the classroom developments to follow my plan. Instead, I needed to expect disruption, and to 
welcome it. Valero and Vithal (1998) illustrate the importance of disruption in research settings 
and argue against typical research methodologies that assume and promote stability. Just as 
Valero and Vithal realized from the research they report, I am realizing that the times when I felt 
most resisted were frequently the most generative times, both for me and for the participant 
students. It was only when students actively resisted my interpretations of classroom language 
practices that I could be sure that they were expressing their own perspectives.  

Critical Language Awareness in Action  
One of these times of resistance related to the use of the word just in our class discourse. This 

stream of our ongoing conversation exemplifies a possibility opened up to mathematics teachers 
and learners when critical attention is directed to language practice. After I describe the relevant 
events from the researched classroom, I will consider a connection between mathematics practice 
and the use of the word just.  
Just and Simplicity  

A few months into our conversation about language practice in this mathematics classroom, 
the students and I were considering a transcript that related to the student-identified phenomenon 
of having a clear mathematical idea but no words to describe it. After we discussed the transcript, 
I asked students if they found anything else interesting in it. They said they did not. I then moved 
to my secondary mode of prompting and tried to provoke a reaction by making contentious 
assertions. I drew attention to a particular utterance – “Is what the, like the square root of twenty. 
And you just change it to two square root five, right?” Jessye, the student who had said this, was 
absent this day. Her absence opened up for the rest of us an opportunity to explore the effect of 
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her language choices because we did not have access to her intended meaning. I circled the word 
just in the transcript that we were considering and asked, “What does that mean when she says 
just?” In the interchange that followed, Gary paraphrased his classmate’s utterance and I 
prompted him further (student names are pseudonyms; “DW” refers to me): 

Gary:  “You simply change it.” 
DW:  Oh. So, in other words, it’s a simple thing to do.  
Gary:  Well, I guess. I don’t know. Well, I guess that’s what it’s implying.  
DW:  It makes it sound easy. Yeah, I was just wondering. I found this interesting 

because we teachers sometimes say the word just. Do you think it kind of is 
insulting to students? When you say, “Well you just do this, and”?  

[many students say things all at once]  
Gary: Well, because you guys have done it for so long. You guys, like, it’s not really 

like, I don’t know. It’s not that big a deal, but it’s kind of implied that we, like, 
should get it right away, that it should make sense automatically. [turning slightly 
to acknowledge Joey’s long and clear thumbs up.]  

DW: You’re agreeing, Joey? [Joey nods yes]  
Many of Gary’s classmates agreed with him. They agreed that teachers should not use the 

word just in the sense we discussed – to suggest that a procedure is simple. Sometime in the 
following days’ conversations about the word just, Gary wrote a note to himself in his workbook 
(Figure 1). While he displayed significant self-confidence, both in mathematics and in 
discussions about mathematical language practices, Gary worried about the sense of inferiority a 
teacher’s use of just might invoke. None of the students in this class said that they themselves 
felt insulted. Rather, they seemed to be worried that others would feel insulted. Their concern 
was pedagogical.  

 
Figure 1. Gary’s note to himself about the use of the word just  
 

Early in this stream of conversation, students demonstrated their sense of the importance of 
language in mathematics class conversations when they noted the significance of the simple 
word just. Critical awareness demands an exploration of a range of possibilities, but they seemed 
to be fixated on one account of the effects of teachers using the word. In addition to my interest 
in developing the students’ critical awareness of language, I also had another concern. I wanted 
to draw out the students’ unique perspective on their discourse. I will show how this stream of 
conversation illustrates the difficulty researchers face when trying to draw out student 
perspectives.  
Hearing Student Voices  

In the initial conversation, which is partly detailed in the above transcript, I initiated the vein 
of worry students felt about the word just. In my revoicing, I deliberately stretched my 
interpretation of Gary’s intentions, saying “Oh, so in other words it’s a simple thing to do.”  This 
manner of responding had a number of effects, which included verifying my interpretation and 
provoking further discussion. O’Connor and Michaels (1996) show how teacher revoicing 
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prompts a participant framework, in which students converse with each other. This outcome is 
especially promoted by revoicing that pits student ideas against each other. My revoicing cast  

Gary in the role of a judge speaking against Jessye’s intentions. I pushed this role further by 
applying his interpretation to a teacher’s use of the word just, in effect casting him as a judge 
speaking against the teacher’s warrant to orchestrate and control classroom relationships.  

A further effect of the revoicing was significant in this research context, although it is not a 
concern for O’Connor and Michaels (1996), who write about teacher revoicing. My revoicing 
changed the way the students thought. When Gary said just was synonymous with simply, he did 
not say that Jessye’s utterance implied simplicity. I said that. However, when I asked him if he 
was recognizing the implication, he seemed to agree that the implication was present in his 
utterance, though he was hesitant at first – “Well, I guess.”  

I had told the students that one of my intentions in this research would be to listen to the 
voices of students. I also claimed this intention in the introduction to this paper.  How could I 
claim to be listening to student voices when I was putting words into their mouths? Though this 
is a significant question, another question can be used to argue against it: How can a question be 
asked or a response be prompted without words that could seed the answer or response? The 
answer to both these questions is the same – it cannot be done. It is necessary to be careful about 
the extent to which participants are given words to speak their ideas. And it is necessary to be 
aware of the influence the wording of a prompt has on the participants’ understanding.   

In the months preceding this stream of conversation, I had found that the students in this 
research tended to say either nothing or make such brief utterances that they could be interpreted 
in many ways. If I wanted them actually to say something, at times it seemed that they needed to 
be provoked into speaking. Once provoked, they might begin speaking more freely.  

With my heavy-handed verbal prompting, I felt responsible for initiating the students’ vein of 
worry about mathematics teachers suggesting simplicity by using the word just. Though I felt 
responsible for their concern, I resisted their complaint. The participant teacher and I continued 
to use the word just regularly when we taught. In order to convince the students of another more 
positive perspective on the use of the word, I wrote a 600-word essay for them, referring to the 
adverbs just and simply as “diminutives” because they suggest that the actions they describe are 
unimportant or trivial. This essay marked the beginning of my disagreement with the students 
and the emergence of their clear voice.  

Diminutives like just can be used for pointing, I said in the essay. The de-emphasis of one 
procedure can emphasize another procedure or another aspect of the reasoning. With such 
emphasis and de-emphasis, we point attention to the important ideas we are talking about. 
Besides using adverbs like just and simply to de-emphasize, one can use the verbs do and go to 
do the same thing. When talking through my mathematics for others, I might just show my 
calculations and say, “and you go ‘root twenty’ and ‘two root five’.” In this case I am not saying 
what I am doing or how I am doing it. I am just saying to my audience, “you too can go down 
this path, a path which should be really obvious.” When I say “just go,” it is a double diminutive, 
suggesting that a procedure is really, really obvious, and that the procedure does not merit 
attention or explanation. It merely requires performance – “just do it.” Presenting this reasoning 
in the essay, I thought I had made a clear point about a positive effect of a teacher or student 
using diminutives. However, the students were not convinced.  

In response to my essay, the students continued to express their concern that diminutives can 
be insulting, that these adverbs suggest a procedure is obvious when it may not be so obvious to 
students. Though I considered their interest in this pedagogical issue a significant revelation, I 
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felt frustrated that these students seemed uninterested in my suggestion that teachers and students 
use diminutives to point in mathematics communication. While their resistance to the alternative 
possibilities exposed a deficit in their critical language awareness, the resistance clarified that the  

concern they were expressing was important from their perspective. The students’ resistance 
verified the role critical language awareness can play in drawing out the authentic voice of 
students, the articulations of their unique perspective on mathematics classroom discourse.  
Just and Vagueness  

A few weeks after our initial discussion of just, on a day when Gary was absent, I resurrected 
the stream of conversation. I moderated a mock panel interview in which students played the part 
of a teacher and a student debating the merits of using the word just in mathematics classrooms. 
During this role-play, it became clear that many students no longer shared Gary’s concern about 
the language practice in question. His classmates said that he alone had this concern, and that he 
still held it strongly. One of Gary’s classmates, Jocelyn, expressed another concern during this 
discussion: “[W]hen [teachers] use just it’s kind of an aggressive word. It’s kind of like they just 
use just because they don’t want to explain why it is. They just say, ‘It’s just that’.” She resented 
it when her teachers gloss over any aspect of their mathematics in an explanation.  

Her concern pointed at another aspect of the language practice in question. When the words 
just or simply are used to indicate simplicity, they actually replace a more careful explanation of 
the procedure indicated by the verb. For example, when a teacher says, “and we just solve that,” 
the adverb just suggests that the solving is straightforward, unremarkable. As I said about 
emphasis and de-emphasis associated with the adverb just, the teacher is merely de-emphasizing 
the solving procedure in order to draw attention to something else. The teacher has the option to 
describe the solving procedure in great detail, but chooses not to do this.  

Jocelyn expressed her contempt for teachers who are vague. Tharshini, another student in this 
class, argued against Jocelyn’s concern by noting the time constraints teachers face: “Maybe they 
don’t have time to explain.” Just as Gary adamantly refused to give ground when faced with my 
resistance to his interpretation, Jocelyn argued with Tharshini, cutting off her utterances. This 
time Tharshini provided the foil to clarify Jocelyn’s passionate commitment to her account of 
teachers using the word just. Again, the class’ critical attention to language afforded me the 
opportunity to hear the students’ unique perspectives on their discourse.  

Vagueness is an important aspect of language, but it appears that linguists and educators have 
overlooked the role of adverbs like just in expressing vagueness. Even Channell (1994), in her 
extensive study of vagueness in general language practice, and Rowland (2000), in his extensive 
study of vagueness in mathematics learning discourse, do not consider the significance of this 
particular language form, though Rowland’s exemplar transcripts often include the word just.  

It should not be surprising that Jocelyn and Tharshini had very different perspectives on the 
vagueness-expressing just. Jocelyn’s concern is an example of the discursive authority of Grice’s 
maxims. Grice suggests five principles as a set of over-arching assumptions that guide the 
conduct of conversation. (They are only partially published by Grice, having first been delivered 
in a lecture, but they are widely described by others.) The maxim of Quantity states that in 
normal conversation people follow these rules: “[M]ake your contribution as informative as is 
required for the current purposes of the exchange” and “do not make your contribution more 
informative than is required” (Levinson, 1983, p. 101).  

It appears that Jocelyn was upset with teachers who had not, in her opinion, made their oral 
contributions as informative as required for her purposes. Though her concern is justifiable, 
Tharshini and other classmates may have “required” a lesser quantity of explanation. When a 
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teacher addresses a class of thirty, it is unlikely that all the students have the same requirements 
for explanation. Tharshini’s responses to Jocelyn’s concern correspond to the second part of the 
Gricean maxim – the teacher should not explain more than necessary. The disagreement between 
Jocelyn and Tharshini illustrates how the Gricean principles are most evident when they are 
perceived to be flaunted.  
Directing Attention  

Teachers confront this problem every day – different students want and need different 
degrees of explanation and vagueness. Even teachers who think they explain their mathematical 
examples fully cannot possibly do so. Any mathematics relies on other mathematics or on 
assumptions that might be questioned. It is impossible for students (or anyone) to attend to 
everything at once, and it is the teacher’s role to direct student attention appropriately.  

A particular case of this problem is particularly relevant to this research. Adler (2001) 
illustrates some dilemmas that are faced by all mathematics teachers, but are particularly 
noticeable in multilingual classrooms. She calls one the “dilemma of transparency,” which 
recognizes that at times a degree of explicit attention to language is warranted, while at other 
times it is best to use language without attending to it, as though it is transparent.  

Gattegno (1984) asserts that every circumstance of life involves stressing and ignoring. He 
adds that the process of stressing and ignoring is especially important in mathematics education 
because the process itself is the process of abstraction. In mathematics, the ignoring is layered 
with each level of abstraction: “[I]t is possible to constitute a cascade (or hierarchy) of 
abstractions by stressing attributes or properties and ignoring others in already-stressed items” 
(p. 34).   

Awareness of Possibility  
When Jocelyn drew attention to the effects of vagueness in mathematics communication, we 

had three different but interrelated accounts of the primary effect of the simplicity-implying use 
of the word just in mathematics discourse. Each of these accounts could also apply to the generic 
verbs, do and go, which imply simplicity or unimportance as they gloss over procedures. First, 
this usage suggests that a procedure is obvious. Second, it directs attention away from the 
procedure. And third, this diversion of attention glosses over alternative possibilities to the 
procedure. I feel that Jocelyn, who worried about glossed-over parts of an explanation, came 
closest in this discussion to meeting my hopes for student critical language awareness – an 
awareness that opens up alternative ways of living within the discourse.  

Gary was interested in the way the word just suggests that procedures should be obvious. He 
saw the teacher’s use of the word as a potential source of frustration, but what could he do 
differently because of this awareness? Perhaps it could mitigate his possible sense of inferiority, 
although he did not seem to have any sense of inferiority. One could rightly suspect that other 
students who become aware of linguistic forms in their mathematics classes would share Gary’s 
strong sense of confidence. If such awareness is unnecessary for him, it might even be a 
distraction.  

Signot, another participant student, mentioned briefly that words like just, go and do help 
students know what is important and what is unimportant. By this he seems to have meant that 
the words could help students figure out what the teacher deems important. Such an awareness of 
the pointing power associated with emphasis and de-emphasis might help a student or teacher 
direct attention effectively when communicating mathematics. With the exception of Signot’s 
brief utterance, the students in this study seemed unmoved by the significant possibilities such 
awareness afforded them.  
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But Jocelyn, who was upset by vague language, demonstrated her awareness of a subtext in 
mathematics communication and opened up new possibilities for herself. She saw that alternative 
mathematical possibilities were being glossed over, and she could attend to these alternatives 
even when the speaker might deem them trivial. With an awareness of the role just, go and do 
can play in masking aspects of the mathematics, she could direct her awareness elsewhere. These 
three words could pique her attention to the ongoing stressing and ignoring that is at play in any 
mathematics communication. When she would hear a teacher or classmate say “[J]ust go...,” she 
could say to herself, “Yes, there is an obvious way of doing this, but how might I go about this 
differently?” This kind of awareness is the goal of “critical language awareness” – to become 
conscious of alternative possibilities within the discourse.  

Conclusion  
In any discourse, it is natural to just fit in, to follow the language and behaviour patterns of 

the people around us. In mathematics class, it is understandable that students would think, “This 
is just how it is done.” Alternative mathematical possibilities can become accessible to students 
when they come to realize that certain language patterns can actually mask these alternatives. 
This awareness is one possible benefit of directing students to attend critically to their language 
practice in mathematics class. Discussions about language can also afford teachers and 
researchers an insight into students’ perspectives on learning mathematics.  
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VOICE AND SUCCESS IN NON-ACADEMIC MATHEMATICS COURSES  
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An historical overview of mathematics-for-all demonstrates uncertainty about success for all 
high school mathematics students, including those who are not academically inclined. The 
narrative inquiry study being reported provides an effective alternative, focusing on purposes for 
high school mathematics that the students in the inquiry expressed and valued. The voices of four 
non-academic students suggest that their experiences with success in mathematics class 
prioritized their quest for a more positive sense of identity in relation to school mathematics. As 
we listened, their words indicated they were in the process of (re)forming their identity as 
mathematical thinkers, learners, individuals, and students. This paper suggests non-academic 
mathematics students can inform researchers in designing a legitimate curriculum where 
students believe their voice is valued and they experience authentic mathematical success.  
 

The certain conviction that all high school students should succeed in mathematics (National 
Council of Teachers of Mathematics [NCTM], 2000) stands in stark contrast to the uncertainty 
about what should be prioritized in mathematics for students who are not academically inclined. 
That uncertainty is reflected in the various ways that high school mathematics courses are 
organized for non-academic students. This paper inspects the underpinnings of one-size-fits-all 
high school mathematics reforms and their alternatives, giving special consideration to the needs 
and goals of non-academic students. To assist the mathematics education community to come to 
terms with those needs and goals, the paper amplifies the voices of non-academic students who, 
in their own terms, succeeded in high school mathematics.   

High school mathematics was not originally designed for all students. Eighty years ago, 
when “almost one in three of the children reaching their teens in the United States enters high 
school” (Thorndike, 1923, p. 3), Thorndike claimed that a student of average intelligence “will 
be unable to understand the symbolism, generalizations, and proofs of algebra. He may pass the 
course, but he will not really have learned algebra” (p. 37). But that was all right, because 
algebra was only used “for thinking about general relations. Only a few of its abilities are used 
by workers … except as they become students of the sciences” (p. 47). Algebra, formal 
mathematics, indeed high school in general – none of the above were important to the non-
academic high school student, because the non-academic student did not exist.  

Things changed, of course. If we move halfway to the present time from the days of 
Thorndike, the ideal of all students attending high school was born. “It was not until the 1960s – 
just yesterday – that the nation first acknowledged an obligation to educate all students to equally 
high standards, both because it was fair and because our nation's health depended on it” (Meier, 
1995, p. 72). Technical and comprehensive high schools offered courses and programs for non-
academic students, including diluted versions of academic mathematics courses and remedial 
mathematics courses. However, in the eyes of many, “The non-academic, or General, route is 
fine – for everybody else's son or daughter. In reality it is a dumping ground, piled high with the 
poor, the disabled, and the newly arrived” (Dryden, 1996, p. 51).   

Today, students entering high school will have logged 1500 hours or more of mathematics 
instruction. Even if they enter school with equivalent mathematical experiences (and they do 
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not), it would be foolish to expect that after eight or more years of instruction, all students would 
have equivalent understandings of mathematics. Streaming – the creation of academically 
homogeneous class groups by academic grouping (Gamoran, 1992) – enabled teachers to offer 
watered-down versions of course content to low-ability groups, and go more slowly through the 
material. However, classroom research in streamed classes for non-academic students found that 
instructional practices seldom reflected the needs of non-academic students to learn in different 
ways (Carbonaro & Gamoran, 2002), and seldom did streamed classes provide non-academic 
students with opportunities to feel successful at mathematics (Schoen & Hallas, 1993; Steen, 
1992). Zevenbergen (2003, p. 7), who studied the perspectives and attitudes of academic and 
non-academic students in Australian schools with streaming for mathematics based on students’ 
self-reported academic ability, is representative:  

The experiences of the students fell clearly into distinct categories, whereby the students in  
higher groups felt that they were blessed with high-quality experiences, while the students 
in lower groups reported that their experiences were quite negative. … The experiences of 
the students could be seen to affect their relationships with mathematics profoundly and, 
hence, their subsequent choices as to whether or not to participate in the practices of the 
classroom and further study in the discipline.  

Streaming of students through ability grouping seems more to alleviate the challenges of 
teachers facing students who vary greatly in mathematical understandings and motivations 
(Grossman & Stodolsky, 1995), but not the challenges faced by students of lesser abilities (Ma, 
1999).  

What about the possibility of teaching non-academic students a different kind of 
mathematics, and teaching them through methods distinct from those used with academically 
inclined students? This is the premise of tracking (Letendre, Hofer, & Shimizu, 2003). Manitoba, 
the authors’ home province, offers an example of an extensively tracked high school 
mathematics program. After a one-size-fits-all mathematics curriculum for nine years, students 
in grade ten select among three different streams. There are two academic tracks, one more 
formal and symbolic and the other more technology-and application-oriented. (Many high 
schools differentiate even further, by offering an Advanced Placement or International 
Baccalaureate track for the top academic students.) There is also one non-academic track, called 
Consumer Mathematics, designed with the following rationale:  

In order to meet the challenges of society, high school graduates must be mathematically 
literate. They must understand how mathematical concepts permeate daily life, business, 
industry, government, and our thinking about the environment. They must be able to use 
mathematics not just in their work lives, but also in their personal lives as citizens and 
consumers. Consumer Mathematics has been designed to meet these challenges for those 
who may not use advanced abstract mathematics in their careers, but who, nevertheless, 
will be consumers and active citizens. They also will need to develop their cooperative, 
interactive, and communicative skills. (Manitoba Education, Training and Youth [METY],  
2002, p. 3)  

We will return shortly to look more closely at student success in Consumer Mathematics.   
Our belief in the validity of designing and teaching mathematics courses that recognize the 

distinct needs and motivations of non-academic students is not typical within educational reform. 
Currently, reform efforts in high school mathematics education features detracking (Mickelson, 
2001; Weiner & Mickelson, 2000), the development of a one-size-fits-all, algebra-for-all 
mathematics course (Schoenfeld, 2002; Strong & Cobb, 2000). Yet, this movement reflects goals 
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of social engineering more than goals that would address the educational needs and possibilities 
of non-academic students (Nieto, 1994; Oakes & Wells, 1998; Slavin, 1995; Wells & Serna, 
1996; Wheeler, 1992. See Linchevski & Kutscher, 1998, as an exception.)  

Proponents of detracking place significant faith in teachers’ abilities to differentiate within 
classrooms, where a one-size-fits-all curriculum “has to be much richer, more problem-oriented, 
and more engaging than even the curriculum of the high track. Students need a lot of 
opportunities to construct knowledge together as a group, to make meaning out of their 
experiences” (Oakes, in O’Neil, 1992, p. 21). However, researchers observed that in actual 
practice, “students were not up to the complex interpersonal negotiations such work entailed, 
with consequences for their opportunities to learn and their sense of academic identity” (Rubin, 
2003, p. 563). It was and is unfair to expect teachers to spontaneously generate strategies that can 
simultaneously engage high-ability learners while remediating students who are weak at, or 
angry about, mathematics. Elmore (1995) found that results of tracking paralleled school-
restructuring research, where “structural change does not necessarily lead to changes in teaching, 
learning, and student performance” (p. 25). A different approach to teaching non-academic 
mathematics students needs to prioritize opportunities for them to learn meaningfully, and repair 
their sense of mathematics and of themselves as mathematics learners.  

Even in terms of the social engineering goals that motivate detracking, early research results 
are not encouraging. “The explicit goal of detracking is to contest race- and class-based 
inequalities in schools … Despite the best efforts of committed teachers, these inequalities were 
often reinforced rather than challenged” (Rubin, 2003, pp. 566-567). Programs have successfully 
addressed issues of social inequality and the gatekeeping functions of high school mathematics – 
but they encompass more than restructuring high school classrooms, and their reforms begin with 
students much earlier than in high school (Moses and Cobb, 2001). As well, such programs 
require significant levels of political will and are currently far from universal. As a consequence, 
educators dealing with high school mathematics today face a significant clientele of non-
academic students for whom algebra-for-all is inappropriate idealism (Noddings, 2000). To 
remain idealistic about mathematics-for-all, we must (we believe) focus our intentions for non-
academic high school students on their educational needs and capabilities (Chazan, 2000), rather 
than (but not to the exclusion of) social issues.   

Non-academic students are not easy to teach, however. Their content knowledge is often 
weak. Their confidence as students is often poor. Their capabilities as learners are often under-
developed. And their educational needs are not well-defined. That they are not going into 
engineering or the sciences at university some day tells us what mathematics they do not need, 
but it doesn’t tell us what they do need. That they did not value or benefit from instruction in 
previous years based on practicing arithmetic does not tell us what they could value, appreciate, 
or benefit from. In general, it is not only the pedagogic pathway to success in mathematics for 
non-academic students that is undeveloped; the nature of success in mathematics itself for these 
students is as yet undefined. We now turn our attention to an empirical exploration of that 
question, conducted with students in a non-academic grade 10 mathematics course.  

Success in Students’ Words  
The voices in this section are students in a semestered grade 10 Consumer Mathematics class 

in a large high school in Manitoba, Canada. Approximately half of the students in this study had 
previously attempted and failed a grade 10 mathematics course, while the remainder were in 
their first high school mathematics course after marginal success in grade 9 mathematics. The 
students’ voices were amplified through a practitioner-based, narrative-inquiry-framed 



 

 749 

(Clandinin & Connelly, 2000) research process. Data included interactive journal writing 
(Mason & McFeetors, 2002) and portfolios (Britton & Johannes, 2003; Morgan & Watson, 2002) 
generated by the students and field notes generated by the teacher. From this data, the teacher-
researcher constructed individual narratives of success that provided a starting point for informal 
interviews (conversations) with each participant. There were three cycles of stories and 
conversations, illuminating the processes by which the teacher and students constructed success 
in the mathematics course and determined the nature of that success in the students’ terms.  

The experiences of these non-academic students suggest that succeeding in school 
mathematics is less a matter of learning mathematics content than with it is a quest for a more 
positive sense of identity in mathematics class. Students needed to see themselves as effective 
mathematics thinkers, as having the capabilities required for learning mathematics, as being 
persons whose individual qualities were suitable for learning mathematics, and as students who 
could succeed in mathematics as the school defined success. It seems to us that non-academic 
students are seldom heard when high school mathematics curriculum is being developed – in 
fact, we found that non-academic students needed to develop their voices, not necessarily so that 
they could be heard within the curriculum development process, but as an essential part of 
achieving success in mathematics. In other words, the students developing the capacity to 
describe and name the procedures by which they achieved success in mathematics was, in their 
own view and ours, an essential part of that success. Below, four students each voice a particular 
aspect of what we now take as success for non-academic students in high school mathematics.  
Erin: Success as a Mathematical Thinker  

Erin was a grade 11 student who was retaking a grade 10 mathematics credit because she had 
dropped out of school the previous year. Erin’s summed up her entry orientation to mathematics 
in the opening statement in her first journal of the year: “I’m bad at math.” However, as her 
teacher (the second author) interacted with Erin, she noticed that Erin was thinking 
mathematically and was learning to describe her mathematical thinking. For example, consider 
Erin’s solution to a unit price question on the sixth test of the semester. (See Figure 1.)  
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Figure 1.  

In the last part of this question, Erin systematically created possible combinations of T-shirt 
packages to determine which would be the least expensive. Erin used her calculations to show 
her thinking and support her reason for recommending a specific combination as the best buy. 
NCTM (2000) supports the inclusion of this type of problem and solution as fundamental to 
mathematical learning: “Systematic reasoning is a defining feature of mathematics” (p. 57). They 
define systematic reasoning as trying all the cases for a given problem and using those cases to 
support an argument. As teachers we could see what Erin failed to include – those combinations 
that more than one T-shirt purchased at the individual-shirt price. Yet, it is reasonable to assume 
that in answering Part A, Erin would recognize that there was no point to considering 
combinations that included more than one individually packaged T-shirt. If we accept that 
assumption, then all reasonable cases are worked out, and they are laid out in a logical and 
coherent manner. Erin successfully applied systematic reasoning in her problem solving and 
communicated her reasoning with the combinations of packages and the matching arithmetic.  

A few days later, Erin selected that question as an example of good mathematical thinking. In 
her test reflection she wrote, “On the T-shirt question I just got all the prices and then compared 
them to see which one was lowest, it was a pretty easy question.” Erin demonstrated confidence 
in her mathematical reasoning, even though many of her classmates found it difficult to 
systematically construct various combinations of packages. But her reflective statement revealed 
more than increasing confidence. Erin was beginning to recognize the quality of her 
mathematical thinking and value her success as a mathematical thinker, a type of metacognitive 
process Schoenfeld (1992) considers one of the “critical aspects of thinking mathematically” (p. 
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363). It is significant, but not enough, when a teacher sees cognitive growth in the quality of 
Erin’s written work. What is important is that Erin herself sees and expresses certain cognitive-
growth qualities evidenced in her written work. She sees and expresses the systematic structure 
of her thinking, rather than only describing the arithmetic she did, and she sees her approach as 
changing the mathematics from hard to easy. Her mathematical growth is both cognitive and 
metacognitive (Schoenfeld, 2002).   

Erin no longer saw herself as “bad at math.” Erin was (re)forming her identity as a 
mathematical thinker as she engaged in mathematical thinking, noticed her thinking, and was in 
discourse about the quality of her thinking. This is most apparent at the end of the course when, 
in her final portfolio, Erin made the statement on multiple elements, “This shows I am a good 
math thinker because …”. Afterwards, in our third conversation, Erin defined a mathematical 
thinker as “just what you think yourself … when you figure out ways to do it in your own way, 
you’re a thinker.” Erin’s statements demonstrate growth along Chickering and Reisser’s (1993) 
moving through autonomy toward interdependence vector, where “students’ overall sense of 
competence increases as they learn to trust their abilities, receive accurate feedback from others, 
and integrate their skills into a stable self-assurance” (p. 47). As Erin began to trust her ability to 
think mathematically, she viewed herself as a mathematical thinker and valued her evolving 
identity as a success more significant than the mathematical thinking itself.  
Karl: Success as a Mathematics Learner  

Karl, a grade 10 student, explained in his first journal that he had decided to take Consumer 
Mathematics because, “the other two math courses would be way to hard [sic].” In contrast with 
Erin, Karl believed he could succeed in the course he had chosen, and he worked diligently in 
class to complete assignments and learn mathematical ideas. Trigonometry, the second unit of 
the year, provided a context in which Karl could re-view a topic he had found too difficult in his 
previous mathematics course. Specific topics in this Consumer Mathematics unit included 
similar triangles, Pythagorean theorem, finding sides and angles in right angle triangles with 
trigonometric ratios, and solving word problems involving right angles (METY, 2002). In his 
unit portfolio, Karl’s new-found proficiency at trigonometry mattered to him because he saw 
trigonometry as “real math,” with its symbols and formulas (conversation 1). Consider several of 
his reflections about assignments that he selected for inclusion in his unit portfolio:  

Similar Triangles Activity: This was our intro to trigonometry. It demonstrates how much I 
remembered from last year. This demonstrates my Reasoning ability in that I reasoned with my 
self as to what I should do.  

Trigonometry Assignment: This Item was one of our first hand outs it shows my ability to 
make connections, the labels opp, hyp, adj with the correct side. It shows how much I improved 
over last year.  

Hand-in Assignment: This was an assignment I was absent for. I did it the day I handed this 
in. It shows what I learned in trig. It shows my Connecting ability (what I learned and what to 
do).  

Overview Reflection: All in all I’d say I had greatly improved in trig since last year. From 
mediocre marks to very nice marks in the 80’s and 90’s. I learnt and reviewed all of the things 
from the last cupple of years as well as learning new things. So in summery, I learnt many new 
things, reviewed older things and remembered many older things and had a blast with getting 
good marks.  

As his reflections show, Karl used marks to define his mathematical success at the beginning 
of the semester, expressing pride in his “very nice marks in the 80’s and 90’s.” However, Karl 
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was also beginning to author a different kind of success that moved beyond the mathematics of 
trigonometry in his portfolio. Without offering any glimpses into what didn’t work for him the 
year before in a similar unit, Karl was identifying and describing the behaviours that he 
recognized as causing his success. Although he mentioned positive student behaviours such as 
completing missed assignments, Karl focused more on his cognitive processes. In part, he used 
key words provided by the teacher for portfolio reflections, including reasoning and making 
connections. However, the distinctions among remembering and reviewing previously seen 
material and learning new things were Karl’s own understandings expressed in Karl’s own 
terms. Naming (Freire, 2000) his learning allowed Karl an opportunity to identify himself as a 
successful learning – an individual who is aware of how he learns, intentionally identifying and 
refining strategies that support his learning. Karl was beginning to see himself as a capable 
learner of mathematics, able and entitled to voice what counted as success for him.  

Karl was not just succeeding at the mathematics in the trigonometry unit, he was noticing and 
expressing cognitive aspects of that success. More than repairing his flawed understanding of 
trigonometry from the previous year, Karl was repairing his identity as a learner of mathematics. 
Nadine: Success as an Individual  

Nadine began Consumer Mathematics a month late, after moving from another province. 
This required her to read the textbook and practice questions from the Wages and Salaries unit 
independently. When she struggled with percent questions regarding wage increases, she came 
for extra help. Although she quickly learned how to do the questions in the one-on-one session, 
Nadine was intent on having the solution process “make sense,” a phrase she used repeatedly 
during the session. Nadine found ways to express in her own words the significant idea that a 
percentage was a comparison of a portion to a larger whole, a significant mathematical concept 
(Hoyles, Noss & Pozzi, 2001) that had been absent in her mathematical cognition previously. 
Later, when she encountered wage increase questions, she explained how her understanding of 
percentages could be adapted to apply to this new kind of question. During the first cycle of 
teacher-authored narratives and one-on-one conversations, the teacher pointed to that original 
extra-help session: “For me, a key moment was when you insisted that you should say the steps 
for the wage increase questions. I’m wondering if it’s really your words that make sense to you 
the best.” At the time, Nadine valued the idea, and searched for words to say why. “’Cause it just 
shows how I, like, make myself learn. Like, people learn at a different pace. I learn at a weird 
pace, but anyway. Like, people, like, they learn different than others.”  

Two months later, in the second conversation, Nadine felt the theme of voicing her 
mathematical thinking was central not just to her success in mathematics, but to her image of 
herself:  

Well, when I read [the story] yesterday, I noticed a theme about thinking in words. Like, 
that’s the main theme of my own story. … It kind of describes how I, like, started using the  
thinking in words and moved on from there. … And so then, that’s how I do my thinking. 
And I think that’s generally the theme of my story. … I like my theme! ‘Cause it’s about 
me. It’s how I learn. It’s not how, like, Cynthia, well, I don’t know. Well, Cynthia does the 
same thing. But just as an example, it’s me. It’s not Cynthia. It’s not you or whoever else. 
It’s just me. It’s just about me. It’s not about whoever else there is, like this. Yeah!  

In her success with percentages, Nadine had been able to see a particular learning strategy as 
effective. On one level, then, Nadine’s story is about the importance of student voice simply as a 
tool for mathematical learning – saying what is coming to make sense (Mason & McFeetors, 
2002), negotiating the meaning of mathematics through social discourse. In this conversation, 
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however, Nadine’s comments are not just about how she learned one particular idea or topic or 
even all of mathematics. When Nadine reflected on this process, she constructed an image not 
just of a general strategy that enabled her to learn mathematics, but an image of herself as a 
particular individual.   

Nadine was (re)forming her identity as an individual when interactions which helped her to 
learn mathematics included discourse about the learning itself. Chickering and Reisser (1993) 
describe the establishment of identity as forming “a solid sense of self” contributing to “a 
framework for purpose” (p. 181). Similar to her lived experiences in class, the theme of Nadine’s 
narrative of success and the conversations with her teacher supported her developing sense of 
herself as an individual. Nadine became purposeful in her mathematical learning as she used her 
general learning strategy – saying things in her own words – as a strategy particular to her. In 
fact, she named this as a success in the course when she wrote in her final portfolio reflection, 
“the learning strategies that I used in Math class this semester is ‘Thinking in words’.” 
Succeeding in learning mathematics that had not yielded to independent study enabled Nadine to 
see and give voice to her capability as a learner and her sense of herself as an individual. A 
mathematics course where she could succeed was an opportunity for Nadine to (re)form her 
sense of who she was.  
Susanne: Success as a Mathematics Student  

Susanne was repeating grade 10 Consumer Mathematics in part because she had not attended 
classes regularly the year before. But Susanne wanted a different outcome this time, and did 
more than come to class regularly. As she had done with Nadine, when writing Susanne’s first 
narrative of success the teacher pointed to a positive moment that Susanne had initiated.   

One time that sticks out in my mind was a day when you had to leave class early. The next 
day was going to be the first test of the year. Before you left, you asked me what you could 
do to review for the test. I mentioned some textbook questions. I was really impressed that 
you were taking lots of responsibility – and I let you know. You had a surprised reaction, 
and I’ve seen the same reaction before from other students. Why are students surprised 
when I’m excited about their responsible behaviour? But, the key moment for me was the 
strategy you explained for doing well in Consumer Math: working hard, to stay on top of 
things.  

Susanne’s score of 85% on that first test was encouraging to her. Susanne’s score meant 
different things to her and her teacher. To the teacher, the score indicated that Susanne had 
learned the content: she could calculate wages, deductions, and overtime pay, and she could 
provide rational arguments to support hypothetical employment decisions. To Susanne, the test 
score suggested that she could do this mathematics, and her approach to studying was a 
worthwhile process.  

In the conversation about the narrative, Susanne credited her mathematical success to her 
decision at the beginning of the semester: “’cause other years before, like, I don’t like math at all 
and I just completely given up. But now that I have had retake it again, I thought that I should, 
like, try and learn that I can do it.” Susanne expressed a general no-nonsense strategy in her 
approach to mathematics class as: “pretty much stay focused. And just, do the work.” She was 
more explicit about her approach to studying for tests: “going through your tests from before and 
… I make sure from when we mark things in class that I get the right answers. It’s better to study 
for it because you know you have the right answers.”  

Although the test mark was generally encouraging for Susanne, it was also validating for her 
in regard to her approaches to mathematics class. She recognized her general and specific 
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strategies as effective in supporting her goal of mathematical success. For Susanne, these 
strategies were not aimed directly at learning, but at a related goal: to achieve success in the 
course as the institution defined success. In a word, these strategies can be understood as a 
function of Susanne’s studenting – the way in which Susanne fulfilled her stance as a student in 
the classroom. In general, the stance of a student would include attendance and punctuality, 
engaging in classroom processes, acknowledging the authority of the teacher, completing 
homework and handing in assignments – generally applying oneself to achieve the marks that 
qualify the student for the institution’s definition of student success. Susanne’s methods of 
studying and reviewing are indicative of a thoughtful and strategic commitment of time and 
attention toward her goal – to succeed this year as a high school student.   

We rarely find students in Consumer Mathematics who independently commit to studying for 
tests. Rather than depending on the teacher to review the mathematical content with her, Susanne 
was intentionally finding and using strategies that would support her goals as a student. Susanne 
progressed from asking the teacher how to prepare for tests to discussing her steadily-developing 
studying strategies with the teacher, but the studying remained a matter of Susanne’s initiative. 
Susanne was doing more than passively and obediently doing the work that the teacher assigned, 
and her conversations with the teacher came to reflect more than recognition of the teacher’s 
authority (Belenky, Clinchy, Goldberger, & Tarule, 1986). She was recognizing for herself what 
strategies made her studying effective, rather than relying on the teacher to tell her what 
strategies to use. Her stance as a student had approached and passed the “point at which a person 
sees authority as an internal agent rather than as an external agent. … It is here that one begins 
crossing the bridge from a submissive orientation to a position in which one's voice is a 
significant determiner of what one believes" (Cooney, 1994, p. 628).  

Susanne was in the process of (re)forming her identity as a competent student of mathematics  
– a much different stance than she had the previous year in Consumer Mathematics. The 

confidence she developed as she used her strategies to complete assignments and tests correctly 
contributed to her authority over her studenting processes. One of the final statements Susanne 
made in our last conversation was, “I’m a different student because I know now that I can do it. 
And so I feel more confident going into my classes. And, I want to do it. I want to understand it. 
I want to do it better.” Although Susanne experienced mathematical success, especially on the 
first test, the success she points to in the conversation moves beyond mathematics. The success 
that Susanne valued was her new-found sense of being an effective student in mathematics class. 
It was a success that Susanne believed would help in future mathematics courses because she 
would approach the course with confidence in her ability to be a student of mathematics.  

Success and Non-Academic Mathematics  
One of our fundamental intentions in this paper has been to illustrate the range of positive 

experiences for non-academic students in mathematics class when learning opportunities are 
compatible with their strengths and needs. Erin grew from opportunities to apply and develop her 
problem-solving skills. Karl benefited by successfully learning what he saw as real mathematics, 
mathematics that he had not been able to learn in a more academically-oriented environment. 
Nadine depended on opportunities to talk mathematically while she was learning. Susanne 
benefited from interacting with her teacher about how she personally could succeed, but then 
develop her own strategies as a student. As they each found different elements of the same 
course to be significant to them, they each achieved different kinds of personal success.  

But perhaps a more basic messages can be drawn from what all four of these students 
experienced. All the students participated within a common course with well-scaffolded access 
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to content that was within their competence and suited their pragmatic interests. Within a 
relational pedagogy (Noddings, 1984; van Manen, 1986), these students’ voices were valued and 
encouraged. Experiencing success and giving voice to how they achieved their successes enabled 
all four students to engage in (re)forming their identities as mathematical thinkers, mathematical 
learners, individuals, and students of mathematics. In the second conversation, Susanne 
described the transformative nature of succeeding in mathematics.  

So, then you start, not liking it more, but liking the fact that you want to do it more. … If 
you get involved, you get more into it. You don’t start liking it because you like math, you 
start liking it because you’re able to understand more about it. And because you’re 
understanding what to do and how to do that. And then you start to like it because you 
eventually start to understand it.  

There is now a significant body of literature that documents the failures of mathematics 
programs for non-academic students such as streaming or tracking. Detracking appears also to be 
a strategy that has not considered how non-academic students’ particular educational needs 
might be addressed. Unfortunately, programs that fail to achieve success for all students can tell 
us only what not to do in further curriculum and course development, and offers research details 
only about barriers to achieving mathematical understanding. The results of this study support 
the legitimacy of mathematical success for all as a goal for high school mathematics, if we 
provide non-academic students with access to accessible content within an appropriate pedagogy. 
And the details of the study suggest that non-academic students may be an under-utilized source 
of data for research on the range of factors that affect and comprise mathematical success. 
Success-for-all as a curriculum-reform ideal offers hope that we might challenge how high 
school mathematics currently sorts and filters students, and find ways to achieve “the desired 
outcome of mathematical power for all students within the chaotic reality of real students in real 
schools” (Steen, 1992, p. 259). More imagery about mathematical success for non-academic 
students is needed. We hope this study shows that both success-for-all and the nature of that 
success is within our collective reach as curriculum developers and researchers.  
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This paper focuses on examining the link between students’ mathematical experiences and the 
epistemological orientations that they develop towards mathematics.  Data for this paper came 
from a four-year longitudinal study of mathematics teaching and learning in three schools. Our 
analysis focused on four years of interviews from students in these schools.  We found that many 
students developed one of three stances towards mathematics: inquiring, passive, and resistant. 
These stances were made up of a range of complex beliefs about mathematics, including ideas 
about the nature and purpose of mathematics, the nature of authority and their ideas about 
learning.  Our analysis suggests that the stances that students develop are not defined by beliefs 
or by learning preferences alone, but that students’ experiences with curriculum, success, and 
outside school activities also contribute importantly to students’ relationship with mathematics.  
 

Objectives  
The purpose of this paper is to examine the link between students’ mathematical experiences 

and the epistemological orientations and stances that they develop towards mathematics.  In 
keeping with the theme of this conference, building connections between communities, this 
paper seeks to make an important connection highlighted by Schoenfeld in his AERA 
presidential address (1999) between research that focuses on the social perspective and research 
that focuses on the individual perspective. We will illustrate how it is that individuals develop 
stances towards mathematics through social practice and map out three different stances that 
students are likely to develop. Our research draws from a large data set of approximately 1000 
students who experienced different mathematics approaches over four years of high school.   

Perspectives  
There is now widespread awareness that learning does not only involve growth in 

knowledge, but the development of a relationship with a particular domain, what some have 
defined as the development of an ‘identity’ as a learner (Wenger, 1998).  Specifically, the kinds 
of opportunities that students have to interact with mathematical content have been hypothesized 
to have a profound impact on their sense of who they are.  Although our field appears unanimous 
in their support of understanding students’ learning identities, to this point relatively little work 
has explored the range and nature of identities that are available to students (except Hodge, 
McClain, & Cobb, 2003; Gresalfi, in progress; Nasir, 2002).   

It is clear that students’ beliefs about themselves in relation to a discipline are 
consequentially related to their performance in that discipline.  For example, Martin (2000) 
investigated mathematically successful and failing African American students in an urban middle 
school.  Martin found that the successful students that he studied subscribed to an achievement 
ideology, and had reconciled this aspect of their core identities with the normative identities as 
doers of mathematics. In contrast, the oppositional personal identities that the failing students 
were developing suggest that they experienced irreconcilable conflicts between their core 
identities and the normative classroom identities established in their classrooms. Like the 
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working class boys that Willis (1977) studied in England, these students were active contributors 
to the processes that delimited their access to significant mathematical ideas.  

D’Amato (1992) addressed similar issues in his discussion of two ways in which learning in 
school can have value to students.  Students who attach structural significance to mathematics 
believe that achievement in school has instrumental value as a means of attaining other ends such 
as entry to college and high-status careers, or acceptance and approval in the household and other 
social networks.  In contrast, students who attach situational significance to mathematics view 
their engagement in classroom activities as a means of maintaining valued relationships with 
peers, and of gaining access to experiences of mastery and accomplishment.  This work 
highlights the vast differences that can emerge in students’ rationale for engaging with 
mathematics, an idea that becomes especially intriguing when considering students who 
traditionally do not have access to motivators that have structural significance.  

In earlier work we (Boaler & Greeno, 2000) found that students developed ideas about what 
it meant to learn mathematics that were linked with the kinds of opportunities that they had to 
engage with mathematical practices.  That study drew on interviews with high school advanced 
placement calculus students who were in classes with very different structures: either didactic 
and individualized, or more inquiry-based, encouraging collaboration and discussion.  Many of 
the students who were enrolled in the didactic classes indicated that they felt that they had to 
give up agency and creativity if they were to take more advanced mathematics courses. In 
contrast, students who were enrolled in classes that were inquiry-based developed very different 
ideas about mathematics, and felt that it was a discipline with which gave them space to engage 
with mathematics in a creative way that went beyond memorization. These positions were 
consistent with the epistemological positions of ‘received or ‘connected’ knowers that were 
identified by Belenky, Clinchy, Goldberger & Tarule (1986).  

In this paper we develop these initial analyses of epistemological positions that students take 
on through analysis of a longitudinal study of a cohort of students learning mathematics through 
four years of high school.  This analysis has worked at the intersection of two approaches to 
studying identity: one that focuses primarily on the beliefs that students develop (Schoenfeld, 
1988; McLeod, 1992), what Cobb & Hodge (in press) refer to as core identity, and one that 
focuses primarily on the establishment of particular classroom structures (Cobb, Wood, Yackel 
& Perlwitz, 1992), what Cobb & Hodge refer to as the intersection between a normative and 
personal identities This latter aspect of identity, which focuses on students’ participation in a 
classroom system, unpacking how and when students take up opportunities that are available in 
their classroom settings, has received less attention than the former version of identity. 
Understanding how these aspects of identity get constructed in different classrooms for 
individual students is crucial to developing a more complete understanding of the consequences 
for learning that are associated with different mathematical practices.  

This paper proposes that an important part of learning involves stances towards mathematics 
that students develop and take with them into their lives. The notion of stance has proved helpful 
to us in capturing the ways that students approach and deal with mathematics. Stance goes 
beyond belief and orientation to the ways in which people interact with mathematics in their 
lives. We believe that there is an important place for understanding stances in relation to 
particular disciplines, even though previous work has tended to focus more generally on students 
orientations towards knowledge, broadly conceived (c.f. Belenky et al, 1986). The teaching 
approaches we have studied create different positions for students in mathematics, and the act of 
taking up these roles and positions leads to different stances towards mathematics. These are 
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important to understand if we are to comprehend students’ mathematical capability and their life-
long engagement with mathematical ways of working and thinking.  

Methods  
Data for this paper came from a four-year longitudinal study of mathematics teaching and 

learning in three schools. In two of the schools - Greendale and Hilltop - two different 
approaches to mathematics are offered, one of which is open-ended and reform-oriented, and 
another which is traditional. The traditional curriculum is made up of short, closed problems that 
emphasize the precise use of different procedures.  The pedagogy that accompanies this 
curriculum is also traditional and may be characterized as demonstration and practice. At the 
third school, Railside, students take the traditional sequence of courses, but the mathematics is 
presented through longer problems that emphasize multiple connections and methods, with 
constant group work. In addition to large scale monitoring of student achievement and beliefs, 
we have chosen "focus classes" from each approach in each school each year. The data for this 
paper concentrates on four years of interviews from students in these focus classes.  Every year a 
sample of students were interviewed, with the selection intended to represent different 
achievement levels, genders and ethnicities.  Students’ orientations to mathematics were probed 
through questionnaires and interviews given each year. Extensive reading and coding of 
approximately one hundred hour-long interviews produced a range of well-defined orientations 
towards mathematics learning.  Our paper will consider these different orientations as well as the 
classroom participatory structures that lead to their development.    

Results and Discussion  
The development of students’ epistemological beliefs in relation to general knowledge has 

received significant attention from many researchers (Belencky et al, 1986; Perry, 1968; Ryan, 
1984; Schommer, 1990).  We were interested in thinking about students’ orientations more 
specifically, as they related to the domain of mathematics. As we studied interview data and 
classroom interactions we realized that students were developing very different stances towards 
mathematics knowledge. The three stances we most commonly observed may be described as 
inquiring, passive, and resistant. These stances were made up of a range of complex beliefs 
about mathematics and learning. In particular we noted that students’ beliefs about the nature 
and purpose of mathematics, the nature of authority and their ideas about learning were critical 
in the stances they developed.  

The inquiring stance that some students developed was particularly productive.  Some 
students told us that when they saw an interesting fact or set of data, they wanted to find out 
more and they would use mathematics to ask questions and probe the relationships they 
observed. For example, the following student who studied IMP had developed such a stance:  

Like, um, I don't know.  If nothing else, it's just breaking out of the pattern of just taking 
something that's given to you and accepting it and just, you know, going with it.  Like 
political things that happen and, you know, media things.  It's just looking at it and you try 
and point yourself in a different angle and look at it and reinterpret it….It's like if you have 
this set of data that you need to look at to find an answer to, you know, if people just go at 
it one way straightforward you might hit a wall.  But there might be a crack somewhere 
else that you can fit through and get into the meaty part.  (IMP4, y4)  

Students who adopted a more passive stance tended to see mathematics as an external 
domain of knowledge that they did not connect with in a personal way. When they encountered 
an odd or intriguing mathematical situation they did not think it was appropriate to inquire 
further. Mathematics was a remote body of knowledge that they may have been able to use 
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successfully, and may even have enjoyed learning but that they were not inclined to inquire 
about.  The following student in advanced algebra captures the idea of a passive stance. When 
asked what she thought about mathematics she said:  “Some of it just doesn’t really seem like I 
can relate it to what I want to do or something. I don’t know. Some of it just seems ridiculous to 
me.”  Later we asked what she would do if she encountered a new problem: “Oh I usually try to 
remember formulas that I could use for it. I’m not really good at remembering formulas, but I 
can look back in my notes if we have it.”  

The third group of students had developed a resistant stance with more negative ideas about 
mathematics. These were students who perceived themselves as unsuccessful and had withdrawn 
from mathematics to the extent that new mathematics problems caused them anxiety, anger or 
fear and they would avoid mathematics at all costs. The following student from the traditional 
sequence captures this stance. When asked to describe a good mathematics lesson he could not 
think of any. When asked to describe a bad lesson he said:  “Anything… yeah stuff that is plain 
out math. I hate that, like what we are doing right now. Anything involved in graphing, linear 
equations, whatever, I hate it all.”  

Our analyses of the different stances revealed three dimensions that contributed towards 
them. Specifically, students’ orientations towards learning mathematics (how do I like to learn?), 
their beliefs about the nature and purpose of mathematics (what is mathematics and why do we 
learn it?) and their ideas about mathematical authority (how do I know if something is correct?). 
We discovered that the stance that students developed came about through a combination of their 
ideas about learning and the nature and purpose of mathematics and authority, but their stance 
was not defined by any one dimension. For example, we found that it was possible for students 
to see mathematics as a set of procedures and yet be prepared to inquire actively when given the 
opportunity. Similarly some students liked to learn mathematics by being told methods but they 
saw mathematics as a set of exploratory tools and were prepared to use mathematical methods in 
that way. We also discovered that students’ stances were strongly related to their curriculum and 
pedagogical experiences, but they were not determined by them. This could be heard in students’ 
discussion of the different influences in their lives, including parental ideas and experiences and 
students’ experience of clubs and activities in and out of schools.  The following sections further 
unpack the dimensions of students’ stances that emerged in our interviews.  
How do I like to learn?   

Students varied in their ideas about learning, and their preferences for different pedagogical 
practices.  Some students wanted to be told everything, while others were concerned to take a 
more active role in their learning. Some students wanted to be given work that was easy and 
straightforward whereas others thought that it was productive to be given demanding problems.    

Many students in the traditional curriculum developed a ‘received’ approach (Belenky et al, 
1986) to learning mathematics, an approach that contributed significantly to the development of 
a passive stance towards mathematics. These students talked about mathematics as a discipline 
that was a fixed domain that they must remember and reproduce, not a set of ideas that they 
could relate to and understand.  These ideas about learning are is reflected in the following 
excerpt from a student who was in his first year of the traditional program:  

Int: So what do you think it takes to be successful in math?  
St: A big thing for me is, like, paying attention because he’ll, like, teach stuff steps at   

time.  It'll be like here’s a step, here’s a step.  And, like, if I doze off or, like, don’t 
know what’s going on or, like, daydreaming while he's on a step and then he, like, 
skips to the next step and I’m like, “Whoa.  How’d he get that answer? Like, 
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where am I? I’m retarded.” And then he’ll have to come help me.  So paying 
attention (Algebra, y1)  

In this excerpt the student communicated his belief that mathematics can be deconstructed into 
steps, each of which needs to be attended to and memorized.  His role in this process was 
primarily that of attending to new information.  
What is mathematics and why do we study it?  

The nature and purpose of mathematics are two different concepts but they were closely 
related in students’ ideas. Under the nature of mathematics we identified three main dimensions. 
The first, identified above, cast mathematics as a set of procedures.  The second dimension 
focused on mathematics as a range of procedures connected by concepts and ideas.   

L: I think it’s more about ideas, it’s not “oh, I need to know how to do this exact 
problem” cause when it comes along in the world, it’s not gonna come as that 
problem.  It’s just, the thinking, and getting the ideas, and how to come up with it.    

J: It’s sort-of like a discipline (Railside, y4)  
The third category was unexpected – students who learned mathematics at Railside, which 

placed significant emphasis on the communication of mathematical ideas through different 
representations, developed the idea that mathematics was a form of communication and its 
purpose was to give different insights into bigger ideas. These students saw mathematics as a 
communicative domain.  

I think math is kind of like a language because it’s got a whole bunch of different 
meanings to it and no matter what the problem is there is always a solution and I think that 
it is communicating so I think I would call it a language. (Railside, y1)  

The categories of procedural, combined (conceptual and procedural) and communicative 
related closely to the mathematics approaches students experienced. Only the Railside students 
who were consistently encouraged to communicate ideas to each other and to use different 
representations described mathematics as a communicative tool. The students who saw 
mathematics as only a set of procedures were all studying in the traditional classes. The students 
who saw mathematics as a combination of concepts and procedures were in all three classes. We 
have not got the space in this paper to consider the students’ ideas about the purpose of studying 
mathematics, but they were closely linked to their ideas about the subject. Those who saw 
mathematics as a set of procedures tended to see little use for the subject other than the 
acquisition of grades, whereas those who saw mathematics in a broader way also thought it was a 
subject that would help them in life.  
Authority  

The other distinctly different beliefs that students developed and that influenced their stances 
towards knowledge could be heard in their ideas about authority in mathematics. Some students 
came to believe that answers were sufficient or correct only when teachers or the book said they 
were. Others developed the idea that the mathematical tools they learned allowed them to reason 
about situations and determine whether questions were correctly answered or not. In the 
traditional classes the textbook and the teacher were usually presented as the ultimate authority 
and students tended to look to them to know if they were moving in the right directions. In the 
IMP and Railside classes teachers often told students that they could determine whether they 
were correct or moving in the right direction by reasoning mathematically. In interviews the 
students’ ideas about mathematics closely matched their classroom experiences.  

The students’ ideas about authority were an important contributory factor to their ultimate 
stances. For students to develop an inquiring stance towards mathematics they needed to believe 
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that they had the authority to reason about ideas. It seems unlikely that students who saw 
mathematics as a set of rules that only the teacher or the textbook could validate would feel 
confident inquiring about mathematical problems.  

Conclusion As has been demonstrated repeatedly in the past, students’ beliefs about their 
ability (Ames, 1992; Eccles et al, 1993) and their ideas about particular disciplines (Boaler & 
Greeno, 2000) are crucial in understanding how students learn mathematics, and whether they 
will continue to participate in the domain. In addition, the stances that students develop towards 
mathematics appear to be critical to students’ use of mathematics in important mathematical 
problems (Fiori & Boaler, 2004). Our data analysis suggests that the stances that students 
develop are not defined by beliefs or by learning preferences and experiences, although these 
play a part in their development. Rather, the stances relate to students’ experiences with 
curriculum, success and outside school activities.  The curriculum at any school did not 
completely define the students’ experiences (Gresalfi, 2004) and some students emerged with 
unexpected stances.  If the Railside and IMP approaches were to be evaluated based on the 
stances towards knowledge that students developed, both programs would be regarded as highly 
successful, while the traditional curriculum would not. However, our current climate values tests 
success more than students’ stances towards mathematics, and students scored at equal levels 
when they learned through the traditional or IMP curriculum. We believe that it is critical to 
appreciate stances in evaluating mathematics approaches, partly because our data showed them 
to be critical in influencing students’ participation and understanding (Fiori & Boaler, 2004).  As 
the field becomes more cognizant of the importance of the identities and stances that students 
develop in mathematics classrooms it is our hope that policies that influence curriculum 
directions also pay attention to these critical dimensions.  
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Metaphors for learning abound in education. Sfard (1998) suggested a distinction between 
the acquisition metaphor in which skills or concepts are learned by students, and the 
participation metaphor in which Alearning a subject is now conceived of as a process of 
becoming a member of a certain community@ (p. 6). As she noted, there has been a shift in the 
pedagogical discourse in recent years from acquisition to participation metaphors. However, the 
National Council for Accreditation of Teacher Education (NCATE, 2002) identifies skills, 
knowledge, and dispositions all as important learning outcomes for educators to address, 
suggesting that the concerns of an era cannot be reduced to a single metaphor. Consistent with 
Sfard and with NCATE, in my own work I have identified three key metaphorsBlearning as 
habituation, learning as (conceptual) construction, and learning as enculturationBthat I see as 
underlying current pedagogical recommendations and disputes: habituation and construction 
motivating traditional pedagogy; construction and enculturation motivating reform pedagogy 
(Kirshner, 2002).  

These metaphorical notions of learning are variously addressed in learning theories. 
Behaviorism and some parts of cognitive science (e.g., the ACT theory of John Anderson and his 
colleagues) explore the conditions and processes through which skills become habituated 
through repetitive practice. Psychological constructivist theories stemming from Piaget=s genetic 
epistemology describe how conceptual structures come to be restructured and strengthened 
through perturbations stemming from discordant experiences. Sociocultural, situated cognition, 
and social constructivist theories examine how cultural dispositions are appropriated through 
cultural participation.  

The current interest in enculturationist theory and practice is evident throughout the 
educational literature. The mathematics education reform documents display an especially strong 
interest in  enculturation/participation. If we take, as do I, modes of thinking (as distinct from 
specific conceptual understandings) to be enculturated dispositions, the NCTM=s (1991) 
objectives that students come to Aexplore, conjecture, reason logically; to solve non-routine 
problems; to communicate about and through mathematics ... [as well as] personal self-
confidence and a disposition to seek, evaluate, and use quantitative and spatial information in 
solving problems and in making decisions@ (p. 1) all reflect an enculturationist learning agenda.  

Given the burgeoning educational interest in enculturation, and in the sociocultural, situated 
cognition, and social constructivist theories of learning that address it, Aneglected@ might seem 
to be the last adjective to apply to this learning metaphor. However, none of the theories that 
pursue enculturation do so unifocally. For instance, Lave (1988) Ain dialectic spirit@ describes 
how for situated cognition theory the Aunits of analysis, though traditionally elaborated 
separately [for social and individual cognitive theories], must be defined together and 
consistently@ (p. 146). Similarly, although Vygotsky (and the ensuing sociocultural tradition) 
gives clear priority to the intermental (social) plane (Wertsch, 1985),  

Sociocultural processes on the one hand and individual functioning on the other [exist] in a 
dynamic, irreducible tension rather than a static notion of social determination. A 
sociocultural approach ... considers these poles of sociocultural processes and individual 
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functioning as interacting moments in human action, rather than as static processes that 
exist in isolation from one another. (Penuel & Wertsch, 1995, p. 84)  

This dialectic orientation for enculturation-oriented theories can be contrasted with the 
unifocal character of behaviorism, cognitive psychology, and (psychological) constructivism that 
study the individual constitution of learning. For instance, Greeno (1997) describes the 
Afactoring assumption@ of cognitive science: Awe can analyze properties of cognitive processes 
and structures [independently] and treat the properties of other systems [e.g., social systems] as 
contexts in which those processes and structures function@ (p. 6)Ba characterization Anderson, 
Reder, & Simon (1997) readily accept. Similarly, constructivism, in its Piagetian origins and its 
initial radical variation in mathematics education, examined conceptual structures from a 
unifocal individualist perspective:  

Von Glasersfeld acknowledges a significant debt to Piaget, which may explain why he 
focuses on the individual knower, and pays scant attention to the social processes in 
knowledge construction. (Von Glasersfeld=s ... educational concerns of course lead him to 
address the role of the teacher. But he faces severe problems of consistency here: It is clear 
that in much of his writing von Glasersfeld problematizes the notion of a Areality@ 
external to the cognitive apparatus of the individual knower/learner. But as a result, it is 
difficult to see how he can consistently allow that social influences exist....) (Phillips, 
1995, p. 8)  

Within the rich mix of psychological theories that ground our pedagogical discourse, my 
concern is that the multifocal theorizations of enculturation index the second class status of this 
learning metaphor in teaching. Consider, for example, the behaviorist, cognitive, and situative 
rubrics offered by Greeno, Collins, and Resnick (1996) in their overview of learning theory and 
education. Whereas the first two are unifocal in their pedagogical orientation, the situative 
approach to education is integrative: ASequences of learning activities can be organized with 
attention to students= progress in a variety of practices of learning, reasoning, cooperation, and 
communication, as well as to the subject matter contents that should be covered@ (p. 28). 
Enculturating students toward modes of engagement (e.g., Apractices of learning, reasoning, 
cooperation, and communication@) is never addressed educationally as a bona fide pedagogical 
focus in its own right; only in conjunction with the (predominating) interests in developing 
students= skills and concepts.  

This concern needs to be couched within the crossdisciplinary perspective (Kirshner, 2000, 
2002) that frames the current analysis. Crossdisciplinarity offers a broad critique of the 
integrative tendency of our pedagogical discourse in which Agood teaching@ functions as a 
unitary construct. The basis for this concern is the simple observation that psychological theory 
has not yet succeeded in establishing a paradigmatic consensus about learning. Rather, in its 
current preparadgimatic state (Kuhn, 1970), multiple notions of learning compete with one 
another for paradigmatic hegemony. Because Agood teaching@ is teaching that supports 
learning, until a consensus about learning is achieved we need to be suspicious of any 
formulation of good teaching that claims to generality. For although integrative theorizations are 
offered in the situated cognition, sociocultural, and social constructivist camps, none has yet 
succeeded in establishing more than a toehold in the broader theoretical spectrum, and each pays 
a heavy price in clarity and accessibility for taking on the dialectic challenge of bridging across 
independently sensible metaphors for learning (e.g., Kirshner & Whitson, 1998; Lerman, 1996).   

The crossdisciplinary alternative is to articulate discrete, theory based models of good 
teaching for the discrete learning metaphors. This process requires that each of the three 
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metaphors be independently interrogated as to its implications for teaching, leaving to teachers 
the values decisions as to which notion(s) of learning to pursue with their students, as well as the 
tactical problems of coordination and balance in case more than a single metaphor is aspired to.  

Thus from a crossdisciplinary perspective, enculturation cannot remain in the shadow of 
other metaphors, but must step into the limelight as a bona fide pedagogical agenda in its own 
right. This is the task of the present paper, a task made considerably more difficult by the fact 
that unifocal theorizations of enculturation processes are not available.  

Enculturation as a Metaphor for Learning  
I define enculturation as the process of acquiring cultural dispositions through enmeshment 

in a cultural community (Kirshner, 2002). I interpret dispositions broadly as inclinations to 
engage with people, problems, artifacts, or oneself in culturally particular ways. Thus 
establishing an enculturationist teaching agenda requires identifying a reference culture and 
target dispositions within it. In mathematics education, the reference culture usually is presumed 
to be mathematical culture, wherein a wide range of distinctive dispositional characteristics has 
been identified as instructional objectives. These include mathematical proof, the characteristic 
mode of argumentation by which new knowledge is established for the community through 
logical (rather than empirical) considerations (Lampert, 1990); a single-minded tenacity in 
grappling with non-routine problems (Schoenfeld, 1994), together with highly specialized 
heuristic approaches to solving such problems (Polya, 1957); an aesthetic appreciation of the 
Amathematically elegant@ solution (Yackel & Cobb, 1996); a recognition of the instrumentality 
of notations and the arbitrariness of definitions within axiomatic systems (Arcavi, 1994); and a 
propensity for posing problems, rather than just solving them (Brown & Walters, 1990). (See, 
also, Cuoco, Goldenberg, & Mark, 1995, for a list of Ahabits of mind@ specific to the various 
mathematical subbranches.)  

Lacking a foundation for enculturationist learning in unifocal learning theory, I turn to social 
psychology for insight and inspiration to inform pedagogical methods. (Ironically, social 
psychology functions more as a branch of sociology than of psychology. Social psychologists 
tend to focus on the effects and distribution of enculturated learning, rather than the 
psychological processes subserving it.) A paradigm example of enculturation is explored by 
social psychologists under the rubric of proxemics (Hall, 1966; Li, 2001). Proxemics, or personal 
space, is the tendency for members of different national cultures to draw differing perimeters 
around their physical bodies for various social purposes. Thus, natives of France tend to prefer 
closer physical proximity for conversation than do Americans (Remland, Jones, & Brinkman, 
1991). I count coming to participate in this cultural norm a particularly pure instance of 
enculturation because it is accomplished without volitional participation. Generally people 
within a national culture acquire proxemic dispositions through cultural enmeshment without 
intending it, and even without awareness of the cultural norm.  

This pure form of enculturation is possible in a unitary culture in which only a single 
dispositional variation is present. However, one also can come to be enculturated into a 
subculture whose dispositional characteristics are distinctive among a range of other 
subcultures= (e.g., being a scientist, being a punk rocker, etc.). In such instances, inductees often 
seek to actively acculturate themselves to a subculture, thereby bringing volitional resources to 
acquiring the subculture=s dispositional characteristics. I define acculturation as intentionally 
Afitting in@ to a cultural milieu by emulating the cultural dispositions displayed therein. 
However, this process needs to be understood as supplementary to the more basic unconscious 
processes of enculturation going on around it all the time. A cultural milieu is constituted of 
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innumerable cultural dispositions, of which only a limited number can be consciously addressed 
through strategies of acculturation. Note, that Vygotsky=s (1987) Zone of Proximal 
Development conceives of learning in acculturationist terms as an active collaboration between 
student and teacher: AA central feature for the psychological study of instruction is the analysis 
of the child=s potential to raise himself to a higher intellectual level of development through 
collaboration to move from what he has to what he does not have through imitation@ (p. 210).  

Enculturationist and Acculturationist Pedagogies  
The enculturation/acculturation distinction points to two pedagogical strategies that can be 

discerned in the education literature. (Here, regretfully, I make a terminological distinction 
between enculturation as a learning process that may [or may not] include an acculturationist 
component, and enculturation as a pedagogical method conceived of as distinct from 
acculturationist pedagogy.)  

Enculturationist Pedagogy: In any teaching that aims toward students= enculturation, the 
teacher begins by identifying a reference culture and target disposition(s) within that culture. In 
enculturationist pedagogy, the instructional focus is on the classroom microculture. The 
enculturationist teacher works to shape the microculture so that it comes to more closely 
resemble the reference culture with respect to the target dispositions. Students, thus, come to 
acquire approximations of the target dispositions of the reference cultural through their 
enmeshment in the surrogate culture of the classroom. Yackel and Cobb (1996) most clearly 
articulate an enculturationist pedagogical agenda in their discussion of sociomathematical norms 
as the targeted dispositions of mathematical culture (e.g., the preference for mathematically 
elegant solutions) that come to be Ainteractively constituted by each classroom community@ (p. 
475).  

Enculturationist pedagogy presents the teacher with an obvious >chicken and egg= problem. 
Students can acquire the target dispositions only to the extent these dispositional characteristics 
already are constituted within the classroom microculture. However, in order for the classroom 
culture to embody these dispositional norms, (at least some) students must already manifest them 
in their interactional repertoire within the classroom. Yackel and Cobb (1996) borrow the 
construct of Areflexivity@ from ethnomethodology (Leiter, 1980; Mehan & Wood, 1975) to 
elucidate the problem:  

With regard to sociomathematical norms, what becomes mathematically normative in a 
classroom [i.e., the corporate dispositions of the classroom microculture] is constrained by 
the current goals, beliefs, suppositions, and assumptions [i.e., the individual dispositions] 
of the classroom participants. At the same time these goals and largely implicit 
understandings [the individual dispositions] are themselves influenced by what is 
legitimized as acceptable mathematical activity [the corporate dispositions of the 
classroom microculture]. It is in this sense that we say sociomathematical norms [the target 
dispositions of mathematical culture] and goals and beliefs about mathematical activity and 
learning [the currently manifest dispositions of individual students] are reflexively related. 
(p. 460)  

(In their theoretical perspective, Cobb and Yackel, 1996, mark a terminological distinction 
between individual and social perspectives that I find unnecessary for a crossdisciplinary 
approach, hence the explanatory bracketed insertions.)  

The solution to this problem constitutes the critical expertise of the enculturationist teacher. 
As Yackel and Cobb (1996) illustrate, through subtleties of attention and encouragement the 
teacher, over time, can come to exert considerable influence on the modes of engagement 
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manifest within the classroom microculture. It is through patient and directed encouragement 
that targeted modes of engagement, initially manifest within the classroom microculture by 
happenstance, gradually come to be normative. In this way, for example, argumentation usually 
based on deference to authority or on empirical generalization can progress toward the norms of 
logicality favored by mathematical culture.  

In nurturing a more sophisticated classroom microculture, the enculturationist teacher is not 
limited to the (relatively passive) tools of encouragement. Teachers also are members of their 
classroom communities, and can introduce modes of engagement through their own 
participation. What is crucial, however, in enculturationist pedagogy is that it is participation in 
the culture of the classroomBrather than emulation of the teacher as a solitary individualBthat 
continues to serve as the engine for students= acquisition of dispositional characteristics. To be 
effective, the teacher him or her self must be significantly knowledgeable about, and 
enculturated to, the reference culture. However, once the modes of engagement introduced or 
supported by the teacher come to signify as mathematical, this affords students who are 
mathematically identified the opportunity to bypass the surrogate microculture of the classroom 
and connect directly with the authentic culture of mathematics as manifest in their engagement 
with the teacher. In this case, the teaching role is significantly altered as we leave the realm of 
enculturationist pedagogy and verge into the acculturationist terrain with all the attendant 
complexities of personal identity.  

Acculturationist Pedagogy: I open this section with a brief anecdote. I recently had the 
opportunity to co-teach a senior level university mathematics course with two mathematics 
colleagues. The purpose of the course was to help students understand, appreciate, and 
participate more fully in mathematical culture. My colleagues, both senior members of a highly 
ranked mathematics department, were accustomed to, and successful in, the mentoring of 
doctoral students. The approach they took in our course involved assigning the students 
problems, discussing the problems with them, and in the process modeling their own 
(unprescripted) solution approaches, following fascinating tangents arising from the original 
problem, communicating their broad perspectives on mathematics, and sharing their excitement 
and passion for the field. I presume these are methods they would typically employ, with good 
effect, with their graduate studentsBstudents already self-identified as mathematicians. However, 
the undergraduate students in the courseBthough seniorsBgenerally were unable to appreciate or 
make use of the rich cultural resources offered by the instructors.  

This cautionary tale serves as an introduction to acculturationist pedagogy, a pedagogical 
method that builds on (or supports) students= identification with the reference culture. The 
acculturationist teacher is first and foremost a representative of the reference culture. The 
primary pedagogical activity is modeling dispositional characteristics of the culture. It is left to 
the students to appropriate these cultural resources and incorporate them into their evolving 
repertoire based on their own acculturationist goals. Or acculturationist pedagogies may seek to 
encourage cultural identification, as in Brown and Campione=s (1996) strategy of positioning 
students as experts on a particular scientific topic and involving them in email collaboration with 
actual scientists. The concern in the situated cognition literature for Aauthentic activity@ 
(Brown, Collins, & Duguid, 1989, p. 34) and Alegitimate peripheral participation@ (Lave & 
Wenger, 1991) are indicative of the acculturationist bent of that pedagogical movement.  

In practice, the distinction between enculturation and acculturation pedagogies can be subtle. 
In his classic volume, mathematician George Polya (1957) described his pedagogical role in 
modeling the self-questioning strategies that undergird successful problem solving in 
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mathematics. However, he was careful to emphasize the need to be unobtrusive and natural in 
supporting the students= own efforts with ongoing problems: AThe teacher should put himself in 
the student=s place, he should see the student=s case, he should try to understand what is going 
on in the student=s mind, and ask a question or indicate a step that could have occurred to the 
student himself@ (p. 1). In this respect, Polya demonstrated an enculturationist concern for the 
evolving microculture of the classroom problem solving situation rather than an acculturationist 
appeal to the mathematical self-identity of the student.  

There are some circumstances such as graduate education or after school math clubs in which 
acculturationist approaches seem clearly appropriate. Other circumstances, such as that described 
in the above anecdote, clearly are unsuitable. Those mathematics seniors needed an 
enculturationist pedagogical approach in which the forms of participation were interactively 
constituted, rather than just demonstrated or modeled. (I believe mathematics has a more 
pronounced problem than other subject areas in the lack of disciplinary enculturation generally 
achieved by undergraduates.) However, the extant pedagogical literature concerned with 
students= enculturation (e.g., articles cited herein) includes, without distinction, reference to both 
enculturationist and acculturationist techniques. This practice flirts with a variety of potential 
problems that will need to be addressed before enculturationist learning goals can achieve the 
status they deserve in education:  

! Are acculturationist and enculturationist pedagogies inherently in tension with one 
another? Does the personal self-identification of some students with the teacher as a 
representative of the reference culture subvert the work of establishing a classroom 
microculture that serves all students; or can a skillful teacher use the acculturationist 
gains of the few to support and strengthen the classroom microculture for the many? 

! Are there social chasms that emerge in a classroom in which the teacher reciprocally 
supports the identity construction of a few students? How do such chasms interact with 
divisions of race, class, and gender already present in the classroom? More generally, are 
there ethical considerations that arise in general education when a teacher places 
expectations of a particular cultural identification on students? If so, are such concerns 
outweighed by the importance for all students to have opportunities for identification 
with disciplinary cultures? 

! Are (teacher centered) acculturationist practices in which the teacher embodies cultural 
dispositions used to substitute for the delicate and difficult (student centered) work of 
nurturing those dispositions within the evolving classroom microculture? (The analogy, 
here, is to lecture, understood within crossdisciplinarity as a teacher centered approach to 
students= conceptual development that relies on students= metacognitive sophistication 
to bring dissonant understandings into productive contact with one another. Otherwise, 
the  student centered constructivist teacher must take on the responsibility for  
orchestrating cognitive dissonances through carefully contrived task experiences.) 

The enculturationist/acculturationist distinction introduced here previously is unnoted in the 
literature. As a result, the possibility for a pure enculturationist pedagogy, and the potential 
problems of blending enculturation with acculturation pedagogies, have not been addressed. I 
count it a strength of the crossdisciplinary approach that unifocal attention to the learning 
metaphors brings forth such distinctions, with all of their attendant possibilities and problems.  
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In this paper we explore teacher questions from a number of perspectives. We look at the 
broader activity contexts in which questioning takes place, we present a coding system for 
teacher questions and we explore qualitatively what such a coding scheme might tell us. We 
reflect on the grain size that is helpful in understanding differences in teaching, and we argue 
that teacher questions provide an important methodological lens for understanding relationships 
between teaching and learning. We also consider how teacher questions help shape the flow and 
direction of lessons.  
 

Introduction  
Teacher questioning has been identified as a critical and challenging part of teachers’ work. 

The act of asking a good question is cognitively demanding; requires considerable pedagogical 
content knowledge (Shulman, 1987); and necessitates that teachers know their students well. A 
number of research studies have shown that teachers rarely ask ‘higher order’ questions, even 
though these have been identified as important tools in developing student understanding 
(Hiebert & Wearne, 1993; Klinzing, Klinzing-Eurich, & Tisher, 1985; Nystrand, Gamoran, 
Kachur, & Prendergast, 1997). Research on the relationships between teacher questions and 
student learning has produced mixed results. Some researchers argue that higher order questions 
do correlate with pupil achievement and higher order thinking, while others conclude that they 
do not (Klinzing et al., 1985). Nystrand et al (1997) show that “authentic questions,”  that is, 
questions without pre-specified answers, are asked only rarely in eighth and ninth grade English 
classes. At the same time authentic questions do positively influence student engagement, critical 
thinking and achievement in eighth grade classes. In their ninth grade classes authentic questions 
had positive effects in high-track classes and negative effects in low track classes. They argue 
that this is because the authentic questions in the low-track classrooms did not focus on the 
substance of the literature students were studying. Hiebert and Wearne (1993) argue that 
questions need to be viewed within the context of the kind of instruction that is taking place and 
in relation to the tasks. In a comparative study of ‘traditional’ and ‘alternative’ elementary 
mathematics classrooms, they showed that while teachers in ‘alternative’ classrooms asked a 
high number of questions requiring recall, they also asked a larger range of questions and asked 
more questions that required explanation and analysis than did teachers in traditional classrooms. 
Students in the alternative classrooms achieved higher gains in performance over the year.  

Our study of questioning comes from a larger project in which we have worked to develop 
methodological lenses for the analysis of teaching and learning. Tools and methods for analyses 
of teaching are elusive, in part because conceptual analyses of teaching do not exist in the same 
ways that they do for learning (Leinhardt, 1993). Where rich accounts do exist, they are often 
produced by individual practitioner-scholars (Ball, 1997; Chazan, 2000; Heaton, 2000; Lampert, 
2001), or by researchers employing fine-grained qualitative analyses, (McClain & Cobb, 2001; 
Staples, 2003). These accounts have been generative in documenting important aspects of 
teaching, but the methods employed are time-consuming and difficult to implement across a 
large number of classrooms and researchers. Larger scale, quantitative analyses, such as process-
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product accounts of teaching (Good & Grouws, 1977), have enabled cross-classroom 
comparison, but they have often missed the important subtleties of teaching that may make the 
difference between more and less productive learning environments.  

In this paper we describe our attempts to develop and employ lenses that are of a large 
enough scale to be employed across a wide range of classrooms and by many different 
researchers, but are detailed enough to provide rich analyses. Such lenses fall between what have 
traditionally been conceived as quantitative and qualitative. Some progress in this direction has 
been made in previous studies of elementary mathematics classrooms (Hiebert & Wearne, 1993; 
Saxe, Gearhart, & Seltzer, 1999). A key focus of those analyses, as well as our analysis in this 
paper, has been teacher questioning.   

Data collection Our data comes from a larger longitudinal study that follows approximately 
1000 students in three schools. There are three different mathematics curricula across the three 
schools, two of which we characterize as ‘reform’ and one as ‘traditional’. In two of the schools, 
which we call Hilltop and Greendale, students choose between a traditional curriculum (T) and a 
reform curriculum (R1), called the Integrated Mathematics Project (IMP). The IMP curriculum 
takes an open-ended, applied mathematical approach in which students work predominantly on 
long projects that combine and integrate across areas of mathematics. The traditional approach 
comprises courses of algebra, geometry and advanced algebra, taught using traditional methods 
of demonstration and practice. In the third school, which we call Railside, the teachers have 
created their own curriculum, which we consider to be a reform curriculum (R2). They draw 
from CPM (College Preparatory Mathematics), IMP and other sources. Their curriculum fits into 
the traditional algebra-geometry-advanced algebra divisions but takes a more open, exploratory 
and conceptual approach to mathematics within these strands. This school also employs the 
method of ‘complex instruction’ (Cohen & Lotan, 1997) where students work in groups most of 
the time. In addition to monitoring the students over four years, we are studying one or more 
focus classes from each approach in each school. In these classes we have observed and 
videotaped lessons and conducted in-depth interviews with the teachers and selected students.  

Data Analysis and Findings  
As part of our analyses of the teaching and learning environments, we conducted qualitative 

analyses, describing and analyzing what we saw, using ‘thick description’ (Geertz, 1973), 
drawing upon our own observations as well as reports from students. With these analyses, we 
were able to make some cross-classroom comparisons. However, such analyses rely heavily on 
individual researchers’ insights. Therefore we simultaneously developed methods that would 
enable us to capture the important features of classroom environments through agreed upon 
coding schemes that different researchers could use across a wider range of classes.  

Our first coding scheme was a set of mutually exclusive and comprehensive categories of 
classroom activities at a broad level of description. These aimed to describe how students spent 
their time in class. The categories were: group work, individual work, teacher questioning, 
teacher talking, and student focus. A team of researchers worked to agree upon what constituted 
each of the activities, through repeated viewing of videotapes. When over 85% agreement was 
reached in our coding, we coded six lessons from each of our case study classes. Every 30-
second period of time was coded. When more than one activity happened during a 30-second 
period, we coded for the main activity. A final inter-rater reliability test again achieved 85%. 
Table 2 gives the results of our first, broad coding of general classroom activities.  
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Table 2: Percentage of time spent on each activity  
Teacher  School  Approach  Group 

Work  
Individual 
Work  

Teacher 
Questioning  

Teacher 
Talking  

Student 
Focus  

Other  

Mr. Jones  Hilltop  T  15.5  38  19  22  0.5  5  
Mr. Thomson  Greendale  T  6  58  12  20  0  4  
Mr. Boxwell  Hilltop  R1  34  1  28  17.5  13.3  6  
Mr. Morris  Greendale  R1  30  9  36  14  7.5  3.5  
Ms. Nelson  Greendale  R1  0  36.5  33  13  12.5  5  
Ms. Larimer  Railside  R2  72  0.5  6.5  3.5  10.5  7  
Ms. March  Railside  R2  70.5  1  11.5  6  7.5  3.5  
 

An important point about this table is that the categories were regarded as mutually 
exclusive. Teacher questioning, teacher talking and student focus were not coded when they 
occurred during group work and individual work. At Railside students worked in groups for the 
majority of the time and the teachers often questioned students during group work.  Therefore the 
table above does not represent the number of questions asked at Railside (but these are captured 
in our later analysis). This reservation also holds for the other classrooms, but to a lesser extent. 
Despite this, the table does communicate some useful information. One important finding is that 
activities in the classes of teachers using the same curriculum are strikingly similar, even when 
the classes are in different schools. The two traditional teachers, for example, spent 
approximately 20% of their time talking to the students, explaining methods and concepts.  The 
reform teachers spent less time talking but more time questioning. The average time spent 
questioning by the teachers of IMP classes was 32% whereas the teachers of the traditional 
curricula questioned for an average of 16% of the time. It is also interesting to note that students 
worked in groups for much more of the time in all of the reform classes, with the exception of 
one teacher. Ms. Nelson has a different profile to the other IMP teachers, as she engaged the 
class in more whole class discussion than others. Staples’ (2003) focused analyses of this teacher 
showed that her whole-class teaching was extremely collaborative. Looking across all of the 
reform classes we see that students were the focus of attention for approximately 10% of the 
time. This means that they were presenting their own work or taking some responsibility for the 
learning of the class. This pedagogical approach was absent in the traditional classes, and is a 
stark difference between traditional and reform teachers. The combined time that students spent 
in groups or presenting, compared to individual work, contrasted vastly in the different 
approaches. Students in traditional classes worked individually for approximately 48% of the 
time, compared to 9% of the time in reform classes. Thus different curricula do give rise to 
different broad activity settings and these provide some explanation for differences in student 
learning across curricula.   

While providing interesting information on similarities within the classes of teachers who use 
the same curriculum, this coding exercise did not capture important differences that we knew to 
exist between different teachers using the same curriculum. The differences were particularly 
evident among teachers using the reform curricula. Our detailed observations and qualitative 
analyses showed that the teachers generated very different classroom environments. In order to 
capture these differences we chose to move to a finer grain size and code the nature of teachers’ 
questions, as our observations suggested that teacher questions were very important.  We 
developed nine categories of teacher questions that were derived from an analysis of practice. 
We did not invent the categories a priori, rather we studied different examples of the teaching in 
our sample and attempted to describe and name the different types of questions we recorded. In 
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doing this, we were informed by other analyses of questions, particularly those of Hiebert and 
Wearne (1993) and Driscoll (1999). Table 2 shows the categories of teacher questions we 
developed.  
Table 2: Teacher Questions.  
Question type  Description  Examples  
1. Gathering  Requires immediate answer  What is the value of x in this  
information, leading  Rehearses known facts/procedures  equation?  
students through a  Enables students to state  How would you plot that  
method  facts/procedures  point?  
2. Inserting terminology  Once ideas are under discussion, 

enables correct mathematical  
What is this called? How 
would we write this  

 language to be used to talk about 
them  

correctly?  

3. Exploring  Points to underlying mathematical  Where is this x on the  
mathematical meanings  relationships and meanings. Makes  diagram?  
and/or relationships  links between mathematical ideas and  What does probability mean?  
 representations   
4. Probing, getting  Asks student to articulate, elaborate  How did you get 10?  
students to explain their  or clarify ideas  Can you explain your idea?  
thinking    
5. Generating Discussion  Solicits contributions from other  Is there another opinion about  
 members of class.  this?  
  What did you say, Justin?  
6. Linking and applying   Points to relationships among 

mathematical ideas and mathematics 
and other areas of study/life  

In what other situations could 
you apply this? Where else 
have we used  

  this?  
7. Extending thinking  Extends the situation under discussion  Would this work with other  
 to other situations where similar ideas  numbers?  
 may be used   
8. Orienting and  Helps students to focus on key  What is the problem asking  
focusing   elements or aspects of the situation in  you?  
 order to enable problem-solving  What is important about this?  

9. Establishing context  Talks about issues outside of math in  What is the lottery?  
 order to enable links to be made with  How old do you have to be to  
 mathematics  play the lottery?  
 

In coding teacher questions, we had to make decisions about what counts as a question. We 
know from work on classroom discourse (Mehan, 1979; Sinclair & Coulthard, 1975) that 
utterances in the form of a question often do not function as questions (for example “would you 
like to come and show us your idea”). Similarly, “prompts” (Ainley, 1987; Watson & Mason, 
1998) which do not look like questions can function to solicit answers (for example “sixty 
percent of fifteen is …”). We chose to include utterances that had both the form and function of 
questions, and which were mathematical (i.e. we excluded questions about other aspects of 
students’ lives, for example, “did you eat breakfast today”). We also coded repeated questions as 
such, and excluded them from our final counts. Two researchers worked to achieve clarity on the 
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question types, and an inter-rater reliability exercise achieved 90% reliability. Table 3 shows our 
initial results from the coding of over 800 minutes of classroom lessons. The work is still 
ongoing and we present interim findings here.  
Table 3: Percentage of different kinds of teacher questions  
Teacher  School, 

Approach  
1 
(fact)  

2 
(term)  

3 
(concept)  

4 
(probe)  

5 
(disc)  

6,7,8  9 
(context)  

Mr. Jones  H, T  97      2   
Mr. Thomson  G, T  99.5    .5     
Mr. Boxwell  H, R1  71   7  10  1.5  2  8  
Mr. Morris  G, R1  69.5  1  3  8  5  5  8  
Ms. Nelson  G, R1  63.5  1  8  13  8.5  2  3.5  
Ms. Larimer  R, R2  61  6  21  9  2    
 

Our findings in this table are stark. More than 95% of the questions asked by teachers using 
traditional curricula were of Type 1. In the case of the reform teachers, between 60 and 75% of 
their questions were also of Type 1 but they asked a greater range of questions. This range varies 
among the reform teachers and helps us distinguish between teachers of the same curriculum, 
who generate different classroom environments. For example, Ms. Nelson, the teacher who 
engaged students in more whole class discussion, shows an interesting profile. Almost 30% of 
her questions were classified as probing, generating discussion or targeting concepts. This 
compares with at most 20% for the other teachers of the same curriculum. We show below that 
her questions help her to take students to quite different mathematical terrain (Lampert, 2001). 
We also note the high percentage of conceptual and probing questions in Ms. Larimer’s 
classroom. Our observations suggest that the questions asked in this classroom are closely related 
to the teacher-developed curriculum, which is strongly grounded in exploring the conceptual 
links between different mathematical representations (Brodie, Shahan, & Boaler, 2004). We 
intend that qualitative analyses of when and how the different questions occur in the different 
reform classrooms will illuminate some of the intersections between curriculum and teaching 
approach. In what follows, we show the beginnings of such an analysis.  

The following extracts come from a lesson in the IMP curriculum, which is intended to 
introduce students to the notion of variables. Students had been working on a unit on the 
pioneering families that traveled across the United States. They were told that a particular family 
included three generations of women and the total of the women’s ages was 90. They were also 
told that women could not have children until they were 14. The students were asked to work out 
possible sets of ages for the three women. The students generated some ages and then the teacher 
told them that one student had represented the situation in this way: C + (C + 20) + (C + 40) = 
90.  The students were then asked to consider what C could mean. We join the discussion as the 
teacher reads from the book.  
Transcript  

Question  
 Type  
T:  OK, now it says in there one student in solving this problem wrote C+ 
(C+20) +  

 

(C+40) = 90.  So they didn’t have an answer but they started writing some   
equation.  So like the method over here was like guess and check.  They were   
guessing some numbers and then they were checking them against the constraint,   
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but somebody else decided to do their work C+ (C+20) + (C+40) is 90.  What in  3  
the world is 
C?  

Well it has to do with this problem obviously.   

S: It’s 10.   

T: We’ve got C+ (C+20) + (C+40) = 90.  What are you getting with 10?  
What’s  4  
10? Who is it that said 10?   

S.  I said 10.   

T. Jenny, said 10? Could you tell me how you got 10?  4(R)  

S. Ah, 40 plus ……  plus …..and then ….yeah, yeah, ‘cos 40 plus 10 is 50 and   
then 20 plus 10 is 30 and then 15 and 30 and then 10 more is 90.   

T. So, you, did 10 just come out of a guess? You were trying some numbers?  4  

S. I got it wrong and then….   

T. But now you got it right? Because on your homework, what’d you do?  4  

S. I said C was something else, I said C was 20.   

T. OK.  So now she’s saying 10 works.  Does everybody see why 10 works?  3  

T. OK.  So she said 10 plus 40 is 50, so we’ve got 50 here and 10 plus 20 she 
said  

 

was 30, and we’ve got 80 and we’ve got another 10 over here.  Now I’m 
curious  3  

why you put in 10 each time for C?   
 

In the extract the teacher asked for the meaning of C and received an answer (10) that was 
not the one she was looking for. At this point the teacher had many options, including telling the 
student that she was not looking for the number 10 but the meaning of C. It is typical of this 
teacher that she chose not to do that, but instead to probe the student to find out how she got 10. 
While this seemed to direct the focus of the discussion away from what the teacher originally 
wanted them to talk about, which was the meaning of a variable, in fact her maintaining of the 
discussion around the answer of 10 and why it is correct, served to create a basis from which to 
move. If more students were clear on what the value of C was, they might be more likely to 
participate in a discussion and come to understand the notion of C as a variable. Having 
discussed the answer of 10, the teacher reached a decision point. She knew that she needed to 
return to the concept of variables and she needed to decide – in that moment - how she might do 
that with a question. The question she chose: ‘Now I’m curious why you put in 10 each time for 
C?’ is an interesting one because it targeted the concept that the class was being introduced to at 
the same time as building from the student’s answer of 10. This moment illustrates the 
complexity of teacher questioning (Boaler & Humphries, in press). The teacher had to process 
many forms of information in that moment. For example, she needed to consider what the 
student said, the mathematical terrain (Lampert, 2001), and the direction the class should move. 
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She then needed to connect the students’ answer to the new terrain through a question that would 
be interesting and accessible. All of that thinking took place in an instant, in the midst of a class 
of students. We now rejoin the lesson.  
Transcript  

Question  
 Type  
T. I’m curious why you put in 10 each time for C?  3  

S. Because C has to be the same.   

T. OK.  That’s a really important point.  C has to be the same each time so we   
couldn’t have changed it and made it a different number.  OK, what is this topic   
called here? Up here.  What math topic is that called?  8  

S. Algebra.   

T. That’s called algebra.  OK.  So we’re doing some algebra, in fact, this unit is 
our  

 

algebra unit.  We’re gradually getting there.  But what does C in words 
represent?  

3  

What in the world does this algebra equation have to do with this problem we’re   
doing?   

S: Ummm   

T. What, what, what? I mean how in the world did they get a bunch of these  8  
things and then they get this C junk with 30’s and 40’s?   

S: Urrrr.   

T. Well, what could that possibly have to do with the problem?  8  

S. Uh?.   

T. Jenny says the answer’s 10. Ten what? Ten, ten’s the number that.  3(R)  

S. Ten years? People?   

T. People—10 years? How does 10 years fit in with this problem? Ten years we  3  
were on the trail?     
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The extract above illustrates the importance of the range of questions we observed in our 
coding exercise. The questions we code as ‘3’ target the important concept of the nature of 
variables. But the teacher cannot only ask questions of this type, and the probing questions are 
critical in encouraging students to offer clarity and to justify and reason. There was an interesting 
moment in the lesson above that cannot be seen in the transcript, when many students who had 
been quiet started to become more involved. That happened when the teacher asked “Jenny says 
the answer’s 10, ten what?” This linking of the number 10 with the meaning of C gave many 
students access to the ideas under discussion. In the lesson as a whole the teacher asked 
questions of all the types we identified, and this range seems important for the quality of the 
discussions that were produced. Teacher questions are traditionally linked with the demand that 
is placed upon students, with higher order questions leading to a greater cognitive challenge for 
students (Hiebert & Wearne, 1993; Klinzing et al., 1985; Nystrand et al., 1997). But teacher 
questions also guide students through the mathematical terrain of lessons. When we focus upon 
the questions teachers ask we see that they shape the mathematical landscape in significant ways.   

In addition to the important role teacher questions play in shaping the nature of classroom 
environments and the mathematical terrain that is traversed, they also teach students to ask 
important questions of their own work. Our data shows that when teachers ask more conceptual 
questions, students start to ask conceptual questions themselves. In an analysis of the three 
teachers using the IMP curriculum we found that the students in Ms. Nelson’s class asked 
significantly more conceptual questions of themselves and each other.  In classes at Railside 
where teachers asked a significant number of probing and conceptual questions, we heard 
students in their groups ask questions such as, “She’s going to ask us where we got the 8, where 
did we get it?” demonstrating  the relationship between the teacher’s questions and those that 
students learned to ask.  

Conclusion  
Our coding of classroom activities and different teacher questions, suggests that important 

differences in learning opportunities are not always captured by a broad grain size. This is not 
particularly surprising, most educators know that it is not the fact that students work in groups or 
listen to the teacher that is important. What is important, is how they work in groups, what the 
teacher says and how the students respond. But while this may seem obvious, most debates of 
teaching and learning occur at a broad level of specificity.  Politicians, policy makers, parents, 
and others engage in fierce debates over whether students should work in groups, use calculators, 
or listen to lectures, for example. Our data suggests that such debates miss the essence of what 
constitutes good teaching and learning.  

Our coding of teacher questions also illustrates the importance of the different questions 
teachers ask in shaping the nature and flow of classroom discussions and the cognitive 
opportunities offered to students. Our work is ongoing and we intend to develop our analyses of 
teachers’ questions in order to capture important differences in teaching and learning 
environments. Our coding does not capture all that is important about teacher questions; indeed 
our coding of individual questions does not capture important issues of sequencing or intent. 
Nevertheless we regard this classification of teacher questions as important in capturing some of 
the important nuances of teachers’ work.   
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Although all forms of language are an integral part of day-to-day classroom experiences, few 
studies have focused on the language used in teaching mathematics concepts in both 
mathematics and physics classrooms. In this paper, the forms of language used by three teachers 
as they presented mathematical concepts associated with functions in mathematics and physics 
classroom are reported. Teacher beliefs influence the language and approaches used in the 
classroom. This study also reports the ways in which the beliefs of teachers about mathematics 
and physics, and about the teaching of mathematical concepts, is reflected in the language used 
in these classrooms.  
 

Purpose of the Study  
Students are conditioned to expect to learn mathematics in the mathematics classroom, and to 

learn physics in the physics classroom. But mathematical concepts are frequently encountered in 
the physics classroom, and physics applications are often appropriate for illustrating concepts 
encountered in the mathematics classroom. An understanding of any differences (and 
similarities) in the communication patterns that occur in mathematics and physics classrooms, as 
well as in teacher beliefs about mathematics teaching in these classrooms, should help to identify 
teaching approaches and classroom discourse practices which are most likely to support 
meaningful mathematics learning.  

This study represents an exploration of “science talk” and “math talk” in nonintegrated 
secondary school mathematics and physics classrooms focusing on the mathematical concept of 
functions. The specific questions guiding this research are: 1) What are the main characteristics 
of language genres found in their classrooms? 2) How do mathematics and physics teachers’ 
conceptions, beliefs and knowledge, about mathematical functions, school mathematics and 
school physics influence their classroom practice?  

Theoretical Framework  
Researchers have identified unique language genres or discourse practices in classrooms 

(e.g., Ellerton, 1999; Lemke, 1989; Wickman & Östman, 2002). A language genre is an agreed-
upon form and style of language which is developed in and by a particular discourse community 
to facilitate communication in that community (Bickmore-Brand, 1997; Ellerton & Clements, 
1991; Hasan, 1996; Lemke, 1989; Wallace & Ellerton, 2004). The language genres under 
observation in this study were “science talk” and “math talk” as they were developed by and 
among the students and their classroom teacher. By observing classroom discourse the researcher 
can begin to identify patterns that constitute contextually-based language genres. Classroom 
discourse can be thought of as instances of communicating that represent dynamic actions either 
between others or with the self as a reflective individual (termed “self as thinking” by Sfard 
[2000]) that occur in a classroom setting. This communication can include verbal utterances, 
written texts, physical gestures, and other social contexts by teachers or students (Roth & 
Lawless, 2002). Furthermore, discourse is seen as both a means of communicating and a means 
of learning. Therefore, it is necessary for students to learn how to communicate within classroom 



 

 785 

discourses. There exist characteristic ways of communicating in science and mathematics 
classrooms, namely “science talk” and “math talk.”  

Lemke (1982; 1989) first introduced science talk; Chapman (1997) then extended the idea to 
the realm of mathematics education by introducing math talk. The ways in which these terms are 
used in the current study are consistent with the ways in which both Lemke and Chapman used 
“talk,” and with the ways in which the linguistics literature defined and used genre. Science talk 
and math talk, therefore, are language genres of school classrooms.  

Ways of communicating in any given situation are determined in part by the speakers and the 
context of the speech. Over time this way of communicating is negotiated by the participants and 
becomes a language genre. The negotiated components of such talk are purpose, form, 
compositional structure, style, and content and provide constraints for the characteristics of a 
genre (Hasan, 1996; Swales, 1990). Members of the community recognize and participate in the 
genre (Swales, 1990). However, communicating within a genre is not necessarily a conscious 
choice but rather a matter of communicating with other members of the community. For 
example, students may encounter several genres within their classroom community. Marks and 
Mousley’s (1990) mathematics education research reported descriptions of several genres based 
on the function of the talk. The functions of talk discussed by Marks and Mousley were 
procedural, description, report, explanatory, and expository (see Marks and Mousley [1990] or 
Wallace [2004] for further details).  

The current study focused on language factors and teacher beliefs with respect to 
mathematical functions. The topic of mathematical functions was chosen because of its potential 
overlap between the two school curricula (algebra and physics). Although functions are not 
explicitly taught in secondary school physics curricula, functions do play an important role in the 
mathematical analysis and interpretation of various physical phenomena. Furthermore, little 
research has been conducted on teachers’ knowledge and beliefs about the teaching and learning 
of functions.  

Studies on teacher knowledge and beliefs indicate that teachers are not well aware of student 
difficulties and that teachers may have a limited understanding of the concept of function 
(Hadjidemetriou & Williams, 2002; Norman, 1992, 1999). Norman (1992) also discussed the 
lack of cognition of mathematical functions by teachers and introduced the concept of functional 
reasoning.  

Method of Inquiry  
Three secondary school teachers were selected as cases for a collective case study analysis 

and were, therefore, examined as a group (Merriam, 1998). The teacher’s conceptions (including 
beliefs and knowledge about mathematical functions) and classroom instructional practices 
provided the boundaries for each case. Semi-structured interviews with the three teachers were 
conducted, and the teachers’ discourse patterns were examined during classroom instruction. 
Their classrooms were observed four to six times throughout the course of one academic year. 
The interviews utilized pre-determined tasks and open-ended questions organized around the 
concept of mathematical functions. The semi-structured nature of the interviews also allowed for 
flexibility in pursuing relevant ideas arising from the conversations. Interview tasks were 
selected and modified from current literature on functions. In addition, through an exchange of 
emails, further questions were pursued and clarification sought. The interviews (and email 
exchanges) were conducted after the completion of the classroom observations to limit their 
potential influence on classroom instruction.  Teachers were observed and audio recorded during 
regular classroom instruction. Given the exploratory nature of the study, the audio recording was 
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limited to the teacher’s voice, although some student interactions were described in the 
researcher’s field notes. Audiotapes were later transcribed to provide a more detailed account of 
the teachers’ ways of communicating. Two of the three high school teachers who volunteered to 
participate in this research study were a 2nd 

 

year mathematics teacher, Mrs. Agnesi and Mr. 
Newton, a 10-year veteran physics teacher, both from the same Illinois High School. The third 
participant, Mrs. Arc was an experienced classroom teacher of 7.5 years who had taught both 
mathematics and science courses and was currently teaching Algebra 1 and Physics in an Indiana 
High School.  

Results and Conclusions  
To address the two research questions, interview transcriptions, email exchanges, classroom 

observation field notes, and classroom transcriptions were analyzed by comparing the language 
associated with instruction on the concept of functions in mathematics and physics classrooms. 
The transcriptions and other written records were analyzed using an iterative process. The data 
were recorded and read multiple times with successive readings being compared to initial themes 
in such a way to determine the common patterns or themes among the talk of the teachers during 
their instruction. Therefore, as themes emerged from the analysis, the themes were compared to 
the remaining data for confirmation and revision.  
Language Genres  

The use of everyday language (i.e. language used in situations familiar to students and non-
technical terms) was the most common theme across all three of the cases. These teachers 
expressed the belief that students should be introduced to new material first through language 
that connects with the students, then possibly with a move towards more formal language. 
Therefore, the way of communicating in these classrooms relied as much if not more on 
everyday language as it did on technical language(s) of the discipline(s).  

More specifically, everyday language was used as each teacher referred to formal 
mathematical language. Each teacher did so in a seemingly negative way. The teachers used 
these everyday expressions either in the interview, in class, or both educational situations: Mr. 
Newton used the word “mathwanese;” Mrs. Agnesi used the words “math garbage;” Mrs. Arc 
used the words “alphabet soup” to refer to mathematical language and its symbols, thus implying 
that mathematical language is cumbersome. Although each teacher used formal mathematical 
language correctly, each emphasized it in different ways, as will be discussed later.  

Mrs. Agnesi alternately used everyday terms with technical terms, but did not make much 
use of physical situations. During her non-honors second-year algebra class, Mrs. Agnesi worked 
through several examples of simplifying polynomials. The teacher’s role in the simplification 
process was to lead the students by posing questions that would lead the students through a set 
method, as shown in the first excerpt.  

Mrs. Agnesi: Let’s do another one. ( )4334422
252 xyyxyxxyyx +++!  

First they want to simplify. … So what am I looking for when I simplify? What in  
the world am I looking for?  
Student 1: Like terms. 
Mrs. Agnesi: Like terms, are there any like terms in this polynomial? … 
(Another student makes a suggestion.) 
Mrs. Agnesi: Good, this is the only one that has the same variables with the same powers, 
those are the only like terms here. So when I simplify I still have all this other stuff. 
[rewrites this on the board.] And so when I simplify I combine these two terms. What is it? 
Student 2:  –6 4

xy . 
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Mrs. Agnesi: Good, so 4
6xy! .  And the next thing and you could do this in one step if you 

wanted to. You are going write this in decreasing order of x and I said of x for a reason, 
because you are not looking for the y degrees you are looking for the x degrees so the first 
one would be what, student? (Classroom algebra episode)  

Mrs. Agnesi did make use of everyday language and attempted to relate algebra to her 
students by appealing to their sense of humor. The use of the mnemonic, FOIL, in the next 
excerpt demonstrates the math talk in Mrs. Agnesi’s classroom with respect to the use of non-
mathematical situations as a means of interpreting the algebra.  

Mrs. Agnesi: You are supposed to be using the laws to multiply these together. [The 
teacher reads the answer] OK, on this last one, (x + 2)(x - 5), is what we are going to be 
doing today. And that particular problem you are supposed to use “FOIL.” Captain Foil is 
here [a large cartoon character is drawn on the board]. So “FOIL,” everybody should be 
familiar with “FOIL,” by now in your algebraic lives. “FOIL” stands for First, outer, inner, 
last [writes this on the board]. And what it is, is just a saying that helps you remember how 
you multiply polynomials. (Classroom algebra episode)  

While the cartoon figure was meant to reinforce the mnemonic, the primary focus was the 
mathematics instruction.  

Both physics teachers approached their respective courses as a laboratory, where knowledge 
was built inductively from the phenomenon being investigated. The physics teachers specifically 
referenced mathematics as a means of analyzing and interpreting phenomena. This was 
mentioned in their interviews and was inherent in their classroom discourse, yet physics 
remained the focus of instruction as illustrated by the following three transcript excerpts.  

Mr. Newton: It has lots of inertia. While the earth loves this thing very much it wants to 
give it a huge hug. This thing is just way too cool to just go screaming to the earth because 
it has some serious inertia. It is just hanging tough here with some inertia. OK, 
mathematically when you look at this big force, big mass; small force, small mass. OK, 
can those two products be the same? Oh my goodness quotients, when do you get to use 
quotients in a sentence? Can those two quotients be the same? (Classroom physics episode)  

Thus, Mr. Newton introduced technical language of physics through everyday language with 
simplified concepts. In the second transcript, Mrs. Arc was discussing her instructional technique 
with the researcher. She explained how any in-depth analysis of concepts is (and should be) 
preceded by informal discussion.   

Mrs. Arc: In my AP course, when we introduce a new formula, we talk a lot about how the 
formula is set up and direct and inverse relationships and unit analysis and what cases, … 
would influence it. Like, for the universal gravitation what happens when r approaches 
infinity, or when r approaches zero. And we can do in depth analysis of that. (1st 
interview)  

The final excerpt is drawn from an episode in Mr. Newton's class. Mr. Newton made use of a 
mathematical notion (reference point), but only used it insofar as it was helpful in solving a 
physics projectile problem. (Both Mr. Newton and Mrs. Arc solved physics problems by 
organizing the information given in the problem statement and that which could be derived. The 
information is separated into the vertical dimension and horizontal dimension.)  

Mr. Newton: That is the vertical distance, put it on the vertical side of it … [Mr. Newton is 
filling in the horizontal and vertical “knowns” chart for the problem.] Now, just for giggles 
to be real specific, is that [points to a distance value written on the board] an initial 
distance or a final distance?  
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Mr. Newton: It depends, and this is where we go back to chapter 3 and I said that you 
could set your reference point wherever you want. This distance, 43.9, is talking about this 
[points to picture height of “cliff”]. If I put my reference point here that is what this is. OK.  
Mr. Newton: The 43.9 is what this is. This would be final and my initial would be?  
[A student responds with “Zero.”]  
Mr. Newton: And because this is 43.9 meters down and I call down positive that  
is correct. Now if I put my reference point down here, … this is what position?  
(Classroom physics episode)  

Thus Mr. Newton tried to explain what the axes represented and again introduced mathematical 
concepts, through informal language. The numbers to which he pointed referred to values from 
the problem statement. Mr. Newton’s physics talk, however, referenced the numerical values as 
more than numbers—they pointed to aspects of a physical situation and were interpreted as such. 
The phrase “real specific” indicates that the discussion that followed would provide such an 
interpretation of the numerical values.  
Similarities and Contrasts Between Math Talk and Physics Talk  

The physics teachers drew clear distinctions between what was mathematics and what was 
science. Mathematics was not simply used to obtain a numerical result, but was seen as helpful in 
further analysis of the physical situations; students were expected to learn the usefulness of 
mathematics in science. In this sense, the discourse relied heavily on the mathematical language 
used for developing further understanding of the science concepts and situations.  

Both physics teachers introduced material by connecting science concepts to realistic 
situations from the students’ lives. Once the informal connections had been made the material 
was presented or derived in more formal scientific notation. Mathematics was used to analyze 
and, therefore, to give more meaning to the physical situation at hand. Students were expected to 
interact with the teacher and each other during this presentation and when discussing new 
material or during laboratory discussions. The physics teachers were more likely to present new 
material by connecting it to previously learned material or to a realistic situation in students’ 
lives. These teachers’ knowledge of the overall science curricula helped them avoid repeating 
material and assisted them in making intra-science connections with old material.  

The mathematics teachers were less likely to gesture and refer to diagrams and formulae in 
their mathematics classrooms than the physics teachers during their instruction. These physics 
teachers used formal terminology, but students were encouraged to conceptualize these formal 
ideas in more personal terms.  
Teacher Beliefs  

Mathematics teachers in this study perceived that physics teachers do not use mathematics in 
as rigorous a manner as they believed should be the case, and the physics teachers believed that 
mathematics teachers are overly abstract in their presentation of mathematical concepts. Thus 
although mathematics and physics share the language of mathematics, this language is used 
differently in the two contexts. Although the mathematics teachers were willing and interested in 
introducing mathematical concepts in non-technical language as applied to everyday situations 
prior to formalizing the concepts, they rarely did so in the lessons observed. When a non-
mathematical situation was introduced by the mathematics teachers it was most often used to 
reinforce a specific set of steps or a mnemonic of a specified method.  

The concept of function was approached differently in the two disciplines. There is strong 
evidence to suggest that the mathematics teachers were better able to formalize the mathematics  
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and move between different representations of function. With respect to Norman’s (1992) 
functional reasoning, the mathematics teachers were better able to provide generalizations for 
functions and identify patterns from algebraic representations. The mathematics teachers were 
also better able to communicate within functional situations.  

Mathematics was used in physics as an analysis tool, often through equations and graphing of 
data. Mr. Newton’s limited understanding of functional reasoning combined with the nature of 
school physics led him to use these ideas as equations and graphing tools with little exploration 
of the powerful mathematics involved that could extend his knowledge.  

All three teachers emphasized the need to introduce material informally in the classroom 
through situations relevant to their students. All three teachers found formal mathematical 
language less than appealing and clearly set this way of speaking and thinking aside as they 
taught the curriculum. They implied that there is more to mathematics than symbolic language 
and this was reflected in their classroom instruction.   

Implications  
As teachers become more aware of their instructional talk they can begin to identify how 

their students are talking and why. Understanding the talk of students allows teachers to provide 
more specialized instruction. The mathematics talk by the mathematics teachers emphasized 
mathematics as a prescribed set of steps, whereas the mathematics talk of the physics teachers 
emphasized mathematics beyond a tool for carrying out calculations, and as useful for the 
interpretation of real-life situations.  
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Two parallel strands in mathematics-education research—one that delineates students’ 
embodied schemas supporting their mathematical cognition and the other that focuses on the 
mediation of cultural knowledge through mathematical tools—could converge through 
examining reciprocities between schemas and tools. Using a gesture-based methodology that 
attends to students’ hand movements as they communicate their understanding, data examples 
from design research in two domains illustrate students’ spontaneous spatial articulation of 
embodied cognition. Such embodied spatial articulation could be essential for deep 
understanding of content, because in performing these articulations, students may be negotiating 
between their dynamic image-based intuitive understanding of a concept and the static formal 
mathematical formats of representing the concept. Implications for mathematics education are 
drawn.  
 

The growing body of literature on ‘situated cognition’ and ‘cognition in context’ (e.g., Lave 
& Wenger, 1991; Hutchins & Palen, 1998) is informing research in mathematics education. In 
particular, we are challenged to think of mathematical cognition not as “abstract” in-the-head 
processes devoid of concrete grounding, but as phenomenologically, intrinsically, and 
necessarily dwelling in student interactions with objects in their environment (Heidegger, 1962; 
Freudenthal, 1986; Varela, Thompson, & Rosch, 1991), such as mathematical representations. 
Some scholars maintain that mathematics is possible at all as a human endeavor, because the 
cognition of mathematics leverages and elaborates on embodied schemas that underpin thinking, 
such as ‘containment,’ ‘repetition,’ or ‘extension’ (Lakoff & Nuñez, 2000). Other scholars focus 
on the role that mathematical tools, such as representations and calculation devices, play in the 
interpersonal mediation of mathematical reasoning, such as Stigler (1984), who studied the 
“mental abacus.” The plausibility of these parallel strands of research—the former possibly more 
“Piagetian” and the latter more “Vygotskiian”—invites the question of how individuals learn to 
use cultural tools. Specifically, if the scope of mathematical cognition is largely dictated by a 
repertory of embodied schema and if mathematical reasoning simulates the internalized 
operation of mechanical tools, how do these ends meet? Do existing schemas accommodate 
structures inherent in new tools? Do new tools foster the development of new schemas? Answers 
to these questions, and in particular a framework and terminology for describing what transpires 
in student–tool interactions, should be of interest to constructivist-education practitioners: 
Designers who strive to create learning tools supporting intuitive understanding of mathematical 
concepts often do not have a language to articulate what it is they are doing when they create 
tools that “work,” and so it is difficult to evaluate and teach effective design; Teachers informed 
by a framework articulating types of student–tool interactions that are important for deep 
understanding of the concepts inherent in the tools may be encouraged to create classroom 
opportunities for such types of interactions. Addressing the issue of schema-driven learning 
versus tool-driven learning, this paper takes a position that the truth may lie somewhere in 
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between. The objective of this paper is to spell out a theoretical position and to outline, through 
examples, a methodology for gathering data towards supporting this position. Future work will 
elaborate and expand on this theory and apply the methodology to support the position.  

Learning mathematics with understanding involves students’ ongoing negotiation between 
their embodied schemas and the cultural tools students engage with when participating in 
classroom activities. This theoretical position evolved through observations of students’ 
discourse pertaining to innovative mathematical representations that were introduced into their 
classroom as part of design-research studies (Abrahamson, 2003, 2004a, 2004b; Fuson & 
Abrahamson, 2004; Abrahamson & Wilensky, 2004a, 2004b, 2004c). To support this position, it 
is necessary first to explain why this position has not been stated up to now. For that, we begin 
by focusing on the mathematical representations or, more broadly, the ‘bridging tools’ 
(Abrahamson, 2004a) that were designed for these studies. A design perspective in the study of 
student learning is helpful, because the agenda of designers is to create tools that “work,” and 
this agenda informs—at least tacitly—the designers’ search for mathematical representations that 
resonate with students’ intuitions. Such resonance may be indexed by the extent of fitness 
between students’ embodied schemas and the structures inherent in the designed tools. Following 
are pedagogical motivations for designing bridging tools and a discussion of gesture-based 
methodological lenses on student discourse. These lenses afford a distinction between evidence 
of students’ schema-driven and tool-driven learning. Using examples from classroom 
interactions, we will demonstrate how embodied schemas and cultural forms are separate yet 
reciprocally related resources in students’ learning, and how this learning can be articulated in 
terms of students’ reconciliation between the schemas and the forms.   

Bridging Tools  
Abrahamson (2004a) discusses bridging tools, pedagogical mathematical representations that 

are designed to foreground and ground processes underlying a domain. The position of bridging 
tools between simple visual contexts and formal mathematical notation is designed to resonate 
with constructs, perceptual mechanisms, and schemas that are taken to be universal for the target 
population of students. Working with such tools, students can engage their experience and 
mathematical knowledge towards developing an informed fluency with more advanced concepts.   

The term ‘bridging tools,’ although coined in the context of current design work, applies also 
to traditional mathematical representations that are effective in fostering learning with 
understanding. That is, mathematical representations that foster deep understanding are those 
that, either through historical “natural selection” or intentional design, are a priori tuned to 
accommodate learners’ resources, such as their embodied cognition. Such bridging tools may 
paradoxically encumber the study of students’ embodied cognition, because students’ 
interactions with these tools do not easily reveal embodied cognition as a phenomenon that 
merits a standalone construct. All you see is “kids working with stuff”—the students attend 
selectively to elements within the mathematical tools, move objects from place to place, write 
numbers in appropriate locations, and so on. That is, the nature and order of students’ attentive 
glances, manual operations, and solution procedures appear governed entirely by the implicit 
protocols afforded by the tools and by the classroom facilitator who models for students the 
conventional use of the tools. Thus, any putative ‘embodied cognition’ underpinning students’ 
attentive operations remains a hypothetical construct of tenuous theoretical or practical standing. 
A theoretical decoupling of students’ embodied cognition from their hands-on operating on the 
tools becomes more plausible upon closely examining students as they communicate what they 
see in the tools and what they are doing with them, such as in classroom discussions. In order to 
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examine schemas, forms, and student negotiations between them, I use lenses from the theory 
and methodologies of gesture studies. These lenses purportedly reveal embodied cognition as 
decoupled from operations on tools yet reciprocally related to these tools.  

Gesture Studies as Lenses on Embodied Cognition  
The study of student gesturing, formerly a disparate intellectual pursuit associated mostly 

with psycholinguistics (e.g., McNeill & Duncan, 2002) and anthropology (e.g., Urton, 1997), has 
become a growing research effort within the community of scholars of mathematics education 
(e.g., Alibali, Bassok, Olseth, Syc, & Goldin-Meadow, 1999). Gesturing plays a crucial role in 
establishing shared meanings for new artifacts (Hutchins & Palen, 1998; Roth & Welzel, 2001). 
Through extended operating on new artifacts, learners develop skills of imaging these artifacts 
and operating on these images even in the absence of the physical embodiment of the artifacts 
and without any observable gesturing on these images (see Stigler, 1984, on the “mental abacus”; 
see Nemirovsky, Noble, Ramos–Oliveira, & DiMattia, 2003; see Urton, 1997, on tacit cultural 
images; see Goodwin, 1994, on how a professional culture mediates ways of seeing).   

Whereas students’ internalizations of mathematical learning tools do not subsume all that 
students learn in mathematics classrooms, it could be that these internalized spatial–dynamic 
images are vehicles of mathematical reasoning upon which hinge and cohere other aspects of 
effective domain-specific mathematical practice, such as the modeling of situations and solution 
procedures (Abrahamson, 2003, 2004a; Fuson & Abrahamson, 2004). Also, there does not 
necessarily exist a monotonous relation between gesturing and learning, and so the extent of 
gesturing in communicating a mathematical idea cannot index learning in any simple way. For 
instance, gesturing may wax towards a moment of clarity (“aha!”) and then wane once the 
novelty of the new insight subsides (Goldin-Meadow, 2003) and is constituted as no longer 
warranting explication. Finally, bringing into classrooms innovative mathematical 
representations does not necessarily imply that students will not have had any prior experience 
with other representations that incorporate similar features. Therefore, it is probably not 
warranted to infer from the innovativeness of the tools that they incorporate innovative forms. 
On the contrary, the design principles of bridging tools together with the assumed historical 
reciprocity between embodied schemas and structures inherent in cultural forms means that 
students’ classroom negotiations are informed by prior exposures to similar forms in other 
contexts. That is, the embodied schemas are probably not innate and the symbolic forms are not 
innovative, but rather both are woven into learners’ “interconnected patterns of activity in which 
they [the symbols] are embedded” (Dreyfus, 1994, cited in McNeill & Duncan, 2000). This said, 
in the next section, we will focus on cases in which students appear to be coordinating between a 
way of seeing a mathematical object—a way of seeing that was not explicitly or at least not 
consciously conveyed by the facilitator who was the first to model the use of the object—and the 
format of the consensual mathematical notation associated with the concept in question.  
Examples of Negotiation Between Embodied Knowledge and Mathematics Learning Tools  

Students’ negotiations between their kinesthetic schemas and the forms of mathematical 
representations are yet uncharted territory in mathematics education. Following are two 
examples of this phenomenon. In both examples, students use their body so as to articulate an 
idea within their body space (the ‘peri-personal space’). The examples differ both in that they are 
taken from design studies in different mathematical domains and in that, whereas the first 
demonstrates a student spatially articulating a mathematical operation, the second shows a 
student reorganizing real objects in her immediate space towards expressing them as a 
mathematical relation. Such analyses and the questions that they raise inform ongoing work on a 
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particular design, but they also can set an agenda for a research program that detects and 
classifies students’ embodied metaphors of mathematics as observed in classrooms. A 
classification of students’ embodied mathematics as it relates to mathematical representations 
may constitute a resource for design in mathematics education. The following data are presented 
in the translipction format that combines transcription, clips, and superimposed diagrams 
(Abrhamson, 2004; Fuson & Abrahamson, 2004).  
Ratio and Proportion: Negotiating Between Schemas of Growth through Rhythmic 
Repetition and Constant Increments Between Products Going Down Multiplication-Table 
Columns  

In a design for ratio and proportion (Abrahamson, 2003, 2004a; Fuson & Abrahamson, 
2004), M’Buto used the multiplication table to solve a ratio-and-proportion word problem (see 
Figure 1, below). In the problem, an agent was advancing by increments of 5 units per some 
fixed time unit, and a sub goal towards the solution of the problem was for students to find out 
how far the agent advances in 11 increments. M’Buto added an 11

th

 row at the bottom of his 
multiplication table (in front of him on his desk) that had 10 rows. In this 11

th

 row, he wrote ‘55’ 
in Column 5 (the column that has a ‘5’ at the top; see Figure 1, on left). Ms. Winningham asks 
M’Buto how he knew to write ’55.’ In his oral response, M’Buto connects between a model of 
multiplication as repeated addition and the use of the multiplication table to retrieve 
multiplication cross products. In his gestures that complement the oral communication, M’Buto 
first reveals an image of multiplication as a rhythmic progression along a straight trajectory 
beginning at his torso and extending diagonally away, remaining in the plain of his torso (Figure 
1, center). Immediately after, (Figure 1, on right) M’Buto scallops vertically down a column of a 
large multiplication table he is apparently imaging as if positioned directly in front of his face.  

 
Figure 1: Negotiating between an embodied spatial–dynamic topology of multiplication (center) 
and an understanding of a column in the multiplication table as growing by a constant increment 

(on right), in explaining a strategy for determining the product of 11 and 5 (on left).   
M’Buto’s scalloping motion down the present–absent multiplication table that accompanies 

the utterance “it goes up five” (see Figure 1, above, on right) corresponds to the gesture 
employed by the researcher–teacher (the author), the classroom teacher, and students 
participating in classroom discussions on several occasions on the intervention days prior to this 
moment (Abrahamson, 2004a, 2004b; Fuson & Abrahamson, 2004). Also, the sweeps and scope 
of this gesture correspond to the physical size of the classroom multiplication table used 
extensively in this unit (the scope is much larger than the multiplication table that is in front of 
M’Buto on his desk). However, the gesture accompanying M’Buto’s first words (Figure 1, 
above, in the center) was never employed by the teachers, at least not explicitly. Where did this 
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gesture come from, how does it correspond to the multiplication table, and what does all this 
reveal about M’Buto’s learning process?  

There appears to be a separation, for M’Buto, at this point, between an inner sense of 
multiplying and how it may plot onto the mathematical representation introduced in the design. 
M’Buto is negotiating personal and classroom resources on several levels. He is: (a) deploying 
an embodied model of the multiplication operation pragmatically in problem solving and 
obtaining a numerical solution; (b) plotting an embodied sense of “timesing” onto the concrete 
multiplication-table column, perhaps mediated by the imaged multiplication table; (c) interfacing 
the concrete multiplication table upon which he added the 11th row with the imaged 
multiplication table; and (d) articulating a kinesthetic theorem-in-action within the linear 
constraints of the spoken communication medium. Where and how did M’Buto form or 
internalize the embodied spatial–dynamic image of multiplication? If this image is shared by 
other students, what does this mean in terms of helping students link the image with the 
multiplication table? What can we make of the fact that M’Buto successfully speaks of the 
numbers “going up” while his hand is patently going down?  
Probability and Statistics: Using Embodied Hemispheres to Link to an a:b Symbolic Form  

In a design for probability and statistics (Abrahamson & Wilensky, 2004a, 2004b, 2004c), 
Carry responds to a student–leader’s prompt to explain a sample taken out of a population of 
thousands of green and blue squares on a computer interface (see Figure 2, below). Looking 
away from the computer, Carry gesturally extracts the green squares, placing them on the left 
“hemisphere” of her body, and then places the blue squares on her right hemisphere. Within 2.5 
minutes of discussion, six students engaged the same embodied mechanism to parse and 
structure their seeing of the visual stimulus. This uniformity in students’ gesture patterns 
suggests that a shared mathematical vision is being co-constructed in the classroom. This vision 
is design driven: The computer-based bridging tool is aimed to assist students in negotiating 
between, on the one hand, proportional reasoning and enumeration, and, on the other hand, the 
formal notation of multiplicative constructs involving proportionality, such as density (of green 
in the population). It could be that whether or not a gesturing person does so consciously, these 
gestures help other students see the tools in like ways that are conducive to similar 
understanding.   

 
Figure 2: Negotiating between a visual metaphor of density and the formal a:b ratio symbol.   

Embodied Spatial Articulation  
Embodied spatial articulation is an individual’s design-facilitated negotiation between 

personal and cultural resources pertaining to the visuo-spatiality of mathematical situations and 
representations. The personal resources are proto-mathematical action-based images and the 
cultural resources are the appropriate seeing-in-using of classroom spatial–numerical artifacts. I 
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wager that embodied spatial articulation underpins human interacting with epistemic artifacts 
historically, developmentally, in the designer’s workshop, and in classroom space–time (see 
Abrahamson, 2004a, 2004b, for references supporting this contention). The roles of gesturing in 
the teaching and learning of mathematics are in supporting the students’ intra/inter-personal 
engagement of tacit body-based strategies for spatial modeling of mathematical concepts. This 
modeling serves in the co-constitution of domain-specific epistemic forms (Collins & Ferguson, 
1993) that come from and respond to artifacts.   

Educational Significance  
If students achieve deep understanding of mathematical concepts by negotiating between 

embodied resources and cultural artifacts, then learning environments should ideally foster such 
negotiations—the environments should include historical and innovative representations that 
readily afford relevant embodied schemas as well as activities, such as individual work and 
group discussion, designed to create space and time for these negotiations. An embodied-
cognition approach together with the gesture-based lenses on student discourse afford a 
methodology for obtaining nuanced descriptions of students’ learning processes. This 
perspective responds to Confrey’s (1991) call to attend to students’ voice, only here we are 
listening to a body-based voice that has been historically neglected.   
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MEANINGFUL MATHEMATICAL ACTIVITY: 
OPPORTUNITIES FOR LINKING IN DIVERSE MATHEMATICS CLASSROOMS 
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This study researched the development and negotiation of practices of equity and mathematics 
reform in three high school mathematics classrooms with highly diverse populations of learners.  
Drawing on theoretical insights from the cultural practice and the situative perspectives, I 
utilized the construct of linking to examine the operation of classroom norms and practices in 
affording and constraining the social and cultural practices of students.  Opportunities for 
linking were examined in aspects of mathematical content, classroom discourse, and 
participation structures. Multi-level interaction analyses of videotape documentation and 
observation transcripts collected over the course of a school year were triangulated with 
interviews, surveys, and student shadowing transcripts to capture the nature of linking as it 
emerged in moment-to-moment classroom interaction.  Results indicate that opportunities for 
linking were shaped by two levels of classroom norms, framing and positioning norms.  These 
norms served to afford and constrain different forms of student participation in classroom 
activity, and thus, what counted as mathematics learning.  
 

Linking is a fundamental aspect of meaning making, both in terms of how we interpret the 
world around us, and how we view ourselves in it.  We make sense of unfamiliar objects by 
noting characteristics they share with objects that are familiar.  We come to understand the things 
that people do and the ways in which they do them by placing them within a meaningful context.   
We can even recognize ourselves more easily in situations when people interact with us in ways 
that are consistent with whom we think we are (and are becoming).  We engage in linking, then, 
to make phenomena, situations, and people relevant to our lives.   

Schools are increasingly concerned with making school-based learning (or information) 
relevant or authentic to students in the sense that what is being learned has meaning in students’ 
lives.  One reason for this shift is that research indicates that students have better recall of 
material when it is embedded in meaningful contexts (Anderson, 1995) and become more 
engaged in learning when they perceive the subject-matter to have intrinsic value to their lives 
(Deci & Ryan, 1985).  A related finding is that schools organize their learning environments--the 
forms of knowledge they support and the norms they uphold for how students should engage 
with this knowledge—in ways that are more or less meaningful for different groups of students 
(Banks, 1993; Moll & et al., 1992).  Thus, meaningfulness resides not only within the subject 
domain itself, but also with the ways in which different groups of individuals participate in joint 
activity within this domain.  With respect to issues of equity and access to mathematics learning, 
researchers have argued that we need to consider the ways in which mathematics classrooms 
afford connections to purposeful and authentic participation for students of different 
backgrounds (Cobb & Hodge, 2002; Nasir, 2002).  

There is a common misperception that the domain of mathematics is too rigid or abstract to 
lend itself to linking.  Students do find mathematical achievement to be meaningful to them, but 
often in the sense that it shapes their future success in higher education and professional 
activities (D’Amato, 1996; Nasir & Hand, 2003). Attempts have been made to infuse relevancy 
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into mathematical activities, for example, by linking mathematical contexts to everyday contexts 
with word problems, or more recently with problem-based learning.  Yet all too often, students 
find these contexts artificial, lacking true relevance to the things that they do in their everyday 
lives (Boaler, 1997).  In other words, to package mathematics in the trappings of the ‘real world’ 
does not guarantee increased meaningfulness.    

Another way that the issue of relevancy has been addressed in mathematics education has 
been through a reconsideration of what it means to learn mathematics.  Greeno (1997) and other 
researchers from situative and/or sociocultural perspectives have argued for mathematical 
activity to be representative of the ways that people solve problems together in the world (Lave, 
1988).  Thus, the development of mathematical practices, or the ways in which students and 
teachers engage in mathematical activity within and beyond the classroom, has become a core 
concern of the mathematics reform movement.  One way to conceptualize the work that has been 
done in this area is along two broad lines of research: one line of research attempts to model 
classroom mathematical practices on the practices of mathematicians and other individuals who 
engage in real world mathematical activity, while another line of research attempts to model 
classroom practices on the cultural practices students engage in as members of their local and 
broader communities.  (This is an admittedly cursory treatment of an extensive and diverse body 
of research in mathematics education, learning, and culture.)  Taken together, what these two 
lines of work suggest is that it is important to consider both how the norms and practices guiding 
classroom mathematical activity are meaningful to real world activity, and how alignment can be 
promoted between the expectations held for students in their classroom participation, and the 
expectations students hold for themselves and others in joint social activity.   

This study examined the ways that teachers and students organized their activities within 
mathematics classrooms towards the construction of mathematical activity that was meaningful 
to both parties.  Mathematical activity was examined in three reform-based mathematics 
classrooms in a highly-diverse urban public high school that was notably successful at producing 
strong mathematics learners (Boaler, 2003).  As an instance of meaningful mathematical activity, 
linking was operationalized at multiple levels—task, discourse practices, and participation 
structures.  Multi-level interaction analyses of videotape documentation and observation 
transcripts collected over the course of a school year were triangulated with interviews, surveys, 
and student shadowing transcripts to capture the nature of linking as it emerged in moment-to-
moment classroom interaction.  At the first level of analysis, the moves that students and 
teachers made to position themselves and each other in and around mathematical activity were 
considered.  At the second level, task affordances and constraints were considered.  At the third 
level, the analysis concentrated longitudinally on the features of the classroom activity system:  
the development of classroom norms and practices, the trajectory of mathematical activity, and 
opportunities for links to students’ social and cultural practices.    

Analysis of classroom tasks that were designed to promote links to contexts familiar to 
students from diverse social and cultural backgrounds (e.g., “youth culture”) revealed that the 
discursive practices that emerged around these tasks were not necessarily engaging to students 
(and sometimes supported the development of oppositional stances).  This finding supports 
Greeno and Hull’s (2002) contention that the contexts of information, or settings of mathematical 
content, can be at least as much, if not more important than the contexts of activity, or settings of 
mathematical activity, in the design of authentic learning environments.  This study found that 
mathematical tasks that supported linking were valuable tools in providing multiple access points 
into mathematical concepts; yet their location within a broader classroom activity system 
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constrained and afforded student appropriation of these tools.  Thus, it was the patterns of 
participation that emerged over time in each classroom, or the participation structures, that 
shaped opportunities for linking in significant ways.    

An examination of participation structures in each of the three classrooms revealed 
differences among them in what was considered to be productive mathematical activity. A bi-
level model of classroom norms was generated to differentiate these participation structures, and 
the opportunities they provided for linking.  In this model, a set of framing norms operates at the 
first level to organize categories (or not) into which different forms of participation are separated 
(e.g., mathematical or non-mathematical), while a set of positioning norms operates at a lower 
level to situate the participation that has been framed with respect to ongoing classroom activity 
(e.g., on-or off-task) [See Diagram 1]. It is important to note that the framing norms may or may 
not engender distinctions between different forms of participation (e.g., mathematical and social 
activity) and thus support the development of categories.  

 

Diagram 1: A model of the operation of framing and positioning norms on classroom 
participation structures in mathematics classrooms.  

In the first case, the polarized model, the framing norms sort participation into social and 
mathematical, and the positioning norms treat these two forms of participation as being in 
opposition to each other. In other words, there are clear distinctions made between what is and is 
not mathematical activity, and social activity is positioned as off-task.  This model constrains 
linking to social and cultural practices by making a prior distinctions in activity.  

In the second case, the co-existing participation structure, the framing norms create 
distinctions between forms of participation, but the positioning norms support negotiation of 
participation according to the features of the context that emerges in moment-to-moment 
classroom interaction.  Thus, in one instance, a form of participation could be positioned as 
productive (or at least compatible) with classroom activity, while in another it could be treated as 
counterproductive.  Co-construction of participation structures (or linking) was afforded and 
constrained in moment-to-moment activity.    

In the third case, the open participation structure, the framing norms do not make distinctions 
between different forms of participation.  Participation is generally positioned as being 
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productive to ongoing mathematical activity.  This model affords links to social and cultural 
practices to support the transformation of all participation into mathematical activity. Classroom 
participation structures are continuously shaped and re-shaped by the participation that students 
and teachers enact within them.  Classrooms characterized by the open participation structure 
supported higher levels of engagement by all students and students themselves reported 
enhanced feelings of belonging and relatedness. This structure also thwarted the development of 
resistance and oppositional behavior among students, as different forms of student participation 
were often treated as a bid for students to “take up their space” and co-opted to re-engage them 
back to classroom mathematical activity.  

These results support related findings by Gutierrez and her colleagues (Gutierrez & et al., 
1995; Gutierrez, Baquedano-Lopez, & Tejada, 1999) regarding the construction of third space, 
or hybrid classroom participation structures, in classrooms.  Gutierrez has studied the tension 
that can arise between the teacher and students when their sociocultural discourse or classroom 
“scripts” are polarized and reflect the reproduction of broad sociopolitical dimensions around 
race, culture, and ethnicity within local classroom activity.  She argues that this tension can only 
be resolved when students and teachers attempt to move beyond given scripts towards a hybrid 
discourse structure or third space. Third spaces emerge when teachers seek out ways to enact 
links between student and teacher scripts.  

Similarly, Lee’s (Lee, 1995, 2001) concept of culturally responsive pedagogy supports the 
practice of teachers to leverage and mine students’ sociocultural practices to create links to 
subject-matter knowledge.  Lee proposes that students possess a repertoire (Gutierrez & Rogoff, 
2003) of informal understandings in their everyday practices that can be cultivated and refined to 
promote domain-specific comprehension.  An important assumption guiding the theories that Lee 
and Gutierrez propose is that the informal knowledge that students bring into the classroom is 
situated in ways of participating that, at first blush, may or may not be relevant to the learning 
goals of the classroom.    

The results of this study suggest that classroom norms may afford distinctions in different 
forms of participation that necessarily impede opportunities for students and teachers to uncover 
meaningful links to mathematical activity. In contrast, mathematics classrooms that employ 
strategies to transform student participation into mathematical activity support the development 
of rich, diverse mathematical experiences that are meaningful to students.  Thus, as reform-based 
mathematics classrooms grapple with the development of equitable mathematical practices, 
insights such as these may provide valuable windows into strategies for classroom design that 
serve diverse populations of mathematics learners.  
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Discursive practices of middle grades mathematics teachers (grades 4 – 8) were investigated, 
focusing on how types of talk and verbal assessment interact to mediate mathematical meaning 
within whole group instruction. Grounded theory methodology, multiple-case study design, and 
sociolinguistic tools were applied within a social constructivist framework to analyze the 
discourse, especially as related to univocal (transmitting meaning) and dialogic (dialogue to 
generate new meaning) functions. Categories of talk (i.e., monologic, leading, exploratory and 
accountable) and verbal assessment (i.e., inert and generative) were identified. Relationships 
among the various forms of talk and verbal assessment were examined. A model representing the 
flow of discourse in mathematics classes was developed, suggesting potential tools for both 
researchers and reflective practitioners. 

Introduction 
Today, mathematics provides an academic passport into virtually every avenue of the labor 

market and higher education opportunity (Malloy, 2002). Leaders in business, government, and 
education recognize that effective mathematics education is the foundation for developing and 
maintaining the type of mathematical skills needed to become a productive citizen of the 21st 
century; however, many also acknowledge that mathematics education in the United States is in 
need of improvement (NCES, 1999, 2001; NCTM, 2000). National organizations, such as the 
National Council of Teachers of Mathematics [NCTM], have responded to the call for reform by 
developing and promoting standards that focus on content and process, such as problem solving, 
reasoning, and communication (NCTM, 1989, 1991, 2000). Communication, sometimes referred 
to as discourse, has been an integral part of the reform documents over the past two decades. 

Verbal discourse, defined for the purposes of this study as, “Purposeful talk on a mathematics 
subject in which there are genuine contributions and interaction” (Pirie & Schwarzenberger, 
1988, p. 460), can provide potentially important scaffolding to the learning-teaching process 
(Cobb, Yackel & Wood, 1992). Although meaningful discourse can enhance learning, the mere 
presence of classroom talk does not ensure that thinking and understanding follow—the quality 
and type of discourse are crucial to helping students think conceptually and procedurally about 
mathematics (Kazemi & Stipek, 2001). The predominant form of discourse in mathematics 
classes is univocal—that is, discourse that relates to one-way transmission of meaning (Lotman, 
1988; Wertsch & Toma, 1995).  In contrast, discourse that aids in the generation or construction 
of new meaning has been characterized as dialogic (Knuth & Peressini, 2001). 

Numerous studies have focused on classroom discourse (Cazden, 2001; Sinclair & 
Coulthard, 1975), its functions (Brendefur & Frykholm, 2000; Nassaji & Wells, 2000), and its 
structures (Coulthard & Brazil, 1981; Mehan, 1985). Although discourse specifically related to 
mathematics instruction has been explored (Nathan & Knuth, 2003; van Oers, 2002), a coherent 
model of discourse related to mediating mathematical meaning has not been developed. 
Therefore, this study investigated interactions among categories of talk and verbal assessment in 
middle grades mathematics classes in order to develop a model of discourse to promote 
mathematical meaning.   
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Background of the Study 
To understand the role of discourse in the mathematics classroom, it is critical to examine 

connections between social constructivism and theories of language.  Although many linguists 
have viewed the primary purpose of language to be a transmitting device (Saussure, 1959), some 
theorists have shifted viewpoints to align with social constructivism, recognizing 
interrelationships of thought and speech (Vygotsky, 2002; Wertsch, 1998). This ecological 
approach recognizes complex links in “utterances” that are “filled with dialogic overtones” 
(Bakhtin, Holquist, & Emerson, 1986, p. 92). Thus, discourse can be categorized according to 
two main functions: univocal and dialogic (Lotman, 1988; Wertsch, 1998).   

Many researchers have identified and discussed basic components of classroom discourse 
(Mehan, 1985; Sinclair & Coulthard, 1975). For example, Wells (1999) parsed language 
according to the following categories: move, exchange, sequence, and episode. The move, 
exemplified by a question or an answer from one speaker, is identified as the “smallest building 
block” (p. 236). The exchange, made up of two or more moves, occurs between speakers.  
Exchanges are categorized as either nuclear or bound depending upon whether they can stand 
alone or are dependent upon or embedded within previous exchanges. The sequence is the unit 
that contains a single nuclear exchange and any exchanges that are bound to it. Finally, the 
episode is the level above sequence and represents all the talk necessary to perform an activity.   

The most common pattern of classroom discourse follows the three-part exchange of teacher 
initiation, student response, and teacher evaluation (IRE) or teacher follow-up (IRF) (Cazden, 
2001). In the initiating move, the type of question asked guides the flow of discourse toward 
univocal or dialogic. Additionally, the last move in the exchange has been found to be pivotal in 
judging whether the discourse will tend more toward univocal or dialogic.  For example, when 
the teacher uses the follow-up move as an evaluation tool, the intended function of the discourse 
is typically to convey meaning (i.e., univocal). On the other hand, if the teacher’s follow-up 
move is related less to evaluation and more to an exploratory stance, the discourse is more likely 
to tend toward dialogically generating meaning.  Dialogic inquiry is more probable when 
teachers pose questions that require exploration, negotiation, explanation, or justification, rather 
than a simple display of information (Wells, 1999; Wertsch, 1998). 

Research has examined various categories of classroom talk such as, monologic (one person 
speaking with no verbal response expected), leading (where students are led to the teacher’s 
understanding), exploratory (Cazden, 2001) (speaking without answers fully intact), and 
accountable (interactions that require accountability to accurate and appropriate knowledge, to 
rigorous standards of reasoning, and to the learning community) (Michaels, O'Connor, Hall, & 
Resnick, 2002). In any category of talk, the teacher’s ongoing monitoring and verbal assessment 
affects the dynamics of discourse (Chazan & Ball, 1995) and its tendency toward univocal or 
dialogic (Wells, 1999).  The flow of talk is guided by assessment: generative [GA] and inert 
[IA].  GA mediates discourse to promote students’ active monitoring and regulation of thinking 
(i.e., metacognition) about the mathematics being taught, supporting tendencies toward dialogic 
functions.  IA tends to maintain the current flow of discourse and to move discourse toward 
univocal functions. Exploring interactions of categories of talk and assessment has the potential 
to increase understanding of how discourse may be used to scaffold mathematical understanding.  
The purpose of this study was to uncover the types of talk and assessment that influence 
tendencies toward univocal or dialogic discourse, thus, providing opportunities to better 
understand how students make meaning in middle grades mathematics classrooms.   
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Research Question 
This study proposed to build theory and to develop a model of classroom discourse as a tool 

for mediating meaning in middle grades mathematics classes. Therefore, the following research 
question was addressed: What model can be constructed to explain how teachers use language 
(i.e., discourse) in middle grades mathematics classes to mediate mathematical meaning? 

Methodology 
Participants 

The participants were a purposive sample of seven middle grades mathematics teachers who 
were identified as having characteristics indicative of expertise (Darling-Hammond, 2000). The 
participants (4 females; 3 males) included three teachers with National Board for Professional 
Teaching Standards certification in early adolescent mathematics, two Presidential Award for 
Mathematics and Science Teaching awardees, and two teachers who had been recommended by 
university faculty for their experience in using discourse in mathematics classes. Years of 
teaching experience ranged from 5 to 35 years, with three participants having taught more than 
20 years.  The schools where the participants were employed included three urban schools, two 
suburban schools, and two suburban/magnet schools.   
Data Collection   

Data were collected via semi-structured interviews, classroom observations, field notes, 
audiotapes, and videotapes.  Pre-observation interviews included pre-defined questions designed 
to uncover background traits related to effective practices; professed knowledge, goals, and 
beliefs associated with teaching; and the “lesson image” and “action plans” (Schoenfeld, 1998) 
associated with the lessons to be observed.  Mathematics lessons were observed, field notes 
written, and classroom discourse audiotaped, and videotaped.  Post-observation interviews 
included common themes, but were individually designed to allow participants to explain 
intentions and shifts in action plans, as well as to explore pivotal actions or events that occurred 
during the lessons. Excerpts from transcripts were read to the participants during the post 
observation interviews to stimulate recall of specific events or actions.  Audio recordings from 
interviews and observations were transcribed.  
Data Analysis 

This study used grounded theory methodology to link data collection and analysis to generate 
a model of classroom discourse (Strauss & Corbin, 1990).  Constant comparison provided 
evidence to inspect, test, and refine the theory and models being developed (Miles & Huberman, 
1994).  Using strategies adapted from Wells (1999) and Nassaji and Wells (2000), transcripts 
from observations were formatted in tables to facilitate coding of discursive moves.    

A preliminary model of discourse was developed and used as an initial template for mapping 
the flow of discourse for each sequence.  These diagrams, referred to as sequence maps, mapped 
the flow of discourse from an initiation phase, through types of talk and assessment, moving 
toward either univocal or dialogic functions. Numbered moves within each sequence were 
indicated on the sequence maps, allowing the researcher to follow the flow of the discourse.  
Descriptions of sequence maps were written to explain the classroom context, connecting the 
transcript with the diagram (see Figure 1). Constant comparison of coded data, maps, and 
descriptions were used to develop and refine the sequence maps and to build a graphic model for 
larger discursive units (i.e., episodes).   
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Figure 1.  Example of description, map, and coded transcript from a selected sequence.  
Sequence four was lengthy, complex, and dramatic, including leading, exploratory, and accountable talk 
and both inert and generative assessment.  Students were allowed to serve in the role of primary knower 
(Berry, 1981), the teacher modeled metacognitive reasoning, and new meaning was generated.  The 
sequence built from the previous three sequences where common language and consensus on the basic 
solution to the problem had been established. The teacher then used these as springboards for setting up 
exploration of richer concepts by conjecturing a hypothesis named after the student who demonstrated the 
initial problem’s solution: “The sum of reciprocals of prime and composite factors of a number will always 
be one.”  The teacher said, “I wonder if this always works…” and proceeded to have students explore 
possibilities, including “corollaries” to the theorem.  The teacher’s knowledge of mathematics and of 
pedagogy was apparent.  He encouraged the students to explore and to conjecture, but also supplied 
meaningful verbal assessments that provoked them to generalize, to question, to justify, to reformulate, and 
to develop new meaning, thus including tendencies toward dialogic discourse. 

 
Excerpt of Coded Transcript for Sequence Four 

Mp# Ln
#  

Sq
#  

Who Text K1 Exch Mv Pros Func Comment 

42 86 4 B8 It didn’t work for 21.  Dep R G Inform Expl Tlk 
43 87 4 T Didn’t work for 21! [whistles] 

Yeah? 
 Dep F A/D Revoice/ 

Nom 
IA 

44 88 4 B4 Didn’t work for 14.   Dep R G Inf Expl Tlk 
45 89 4 T Didn’t work for 14. B2.  Dep F/I A/D Revc/Nom IA 
{46} 90 4 B2 It didn’t work for 36—which 

is an abundant number. 
 Dep R/ I G+ Inform S. as K1 

AT-AAK 
47 91 4 T Woe! A what? [dramatically]  Emb F A/D Req rept IA 
48 92 4 B2 An abundant number. K1 Emb R G+ Repeat AT-AAK 
49 93 4 T An abundant number! What is  

 an abundant number?  
 Emb F/I A 

D 
Uptake 
Req explain 

K1 status 
to B2 
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The sequence maps were inspected on multiple levels, with special emphasis on transitions 
from one form of talk to another, especially when tendencies toward univocal or dialogic were 
indicated. These pivotal points were reexamined within the coded transcripts to further explore 
and identify the associated moves, exchanges, and sequences in order to describe and categorize 
their unique properties. Along with providing evidence for understanding relationships of talk 
and assessment within the model, this integration of data and analysis served to refine the model 
itself.  Both open and selective coding were applied to transcripts from interviews to establish 
teachers’ professed expertise, goals, beliefs, knowledge, lesson images, and action plans 
(Schoenfeld, 1998), as related to discourse.  Pre- and post-observation interview responses were 
compared with each other and with data from observations. Axial coding (Strauss & Corbin, 
1990) was used to explore connections among the categories, focusing particularly on 
relationships between discursive practices and indicators of mediating mathematical learning 
processes.   

Results and Discussion 
The Model 

The central result of this research is the development of a model of discourse in mathematics 
classes, as shown in Figure 2. This model depicts forms of talk and assessment that exist in 
whole group instruction in middle grades mathematics classrooms, allowing observers to map 
the flow of discourse and to begin to understand how discourse may be used to mediate 
mathematical meaning.  Although other categories could be argued, these four forms of talk (i.e., 
monologic, leading, exploratory, and accountable) and two forms of assessment (i.e., inert and 
generative) have shown themselves to be adequate in mapping the discourse of the participants in 
this study.    
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Figure 2.  Model of discourse. 
Description of the model 
The flow of discourse as it relates to the model moves back-and-forth among the various 

categories of talk and verbal assessment.  Within individual sequence maps the numbered moves 
demonstrate the paths of the talk and assessment.  For example, in the sequence map shown in 
Figure 1, the discourse was initiated at 1, advanced to accountable talk at 2.  The teacher offered 
an inert assessment at 3.  This was followed by another instance of accountable talk at 4.  A 
generative assessment was infused at 5.  Accountable talk continued at 6, and so on.  The 
ensuing discourse included interactions of the forms of talk and assessment that resulted in 
discourse that tended, in this case, toward dialogic function.  It is clear that there are many paths 
regarding how the classroom discourse might flow.   

Theoretical and practical implications of the model 
The model of discourse can serve as a graphic template for creating sequence maps, 

suggesting uses within research and professional development activities. For instance, the model 
could be used for mapping teaching practices of in-service or pre-service teachers—providing 
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evidence for research and/or self-reflection.  For example, a teacher who views a sequence map 
that is made up exclusively of leading talk and IA may ask him/herself about the instructional 
intent. If the sequence was intended to perform simple classroom routines, the mapped discourse 
may be deemed appropriate. However, if the intent was to engage students in discussing 
mathematical ideas, the teacher may reflect on questioning techniques that may promote 
generative assessments. From a theoretical perspective, this model brings together work from 
mathematics education, theories of learning and socio-linguistics, and discourse analysis. Along 
with building on previous research, the model illustrates the relationships of the talk, assessment, 
and univocal or dialogic tendencies.   
Mediating Meaning 

In addition, the model provides an opportunity to assist in beginning to understand when 
students are constructing meaning. Social constructivist theory purports that dialogic speech—
that occurs between and among people—can serve as a mediator of meaning to enhance speaking 
and thinking, and thus affect the intramental processes (Wertsch, 1998; Vygotsky, 2002). 
Through its focus on the interactions of talk and verbal assessment and their relationships toward 
univocal and dialogic tendencies, the model supplies indicators to whether meaning is being 
conveyed or it is being constructed. Wertsch (1998) noted that one reason for conflicting results 
in research related to meaning making was a “failure to appreciate the power of the mediational 
means involved” (p. 119). The model deals with this reported weakness by explicitly focusing on 
the talk and assessment as mediators of meaning.   

For example, Figure 1 illustrates a sequence where talk and assessment served as mediators 
of meaning. First, it was very lengthy and complex, including multiple examples of both GA and 
accountable talk. Also, this sequence was preceded by three simpler sequences that established 
common language and a frame of reference from which meaning could be built; the complexity 
of this sequence would not have been possible without the connections to the preceding 
sequences. Within this sequence, leading talk was used to continue to establish and to reinforce 
common language (e.g., numbers 24, 52, and 56). IA was used to praise, to evaluate, and to 
maintain existing talk functions (e.g., numbers 43, 45, and 47). Exploratory talk (e.g., numbers ) 
and accountable talk (e.g., numbers )were used to suggest (e.g. 16, 42, and 44) and explain (e.g., 
46, 48, and 50)conjectures about a hypothesis that had been offered. GA was infused throughout 
the sequence (e.g., numbers 9, 11, and 17), helping to focus the discourse toward meaning 
making. For example, at move 77, the path advanced toward dialogic function when students 
voiced connections between a rich problem introduced in an earlier sequence and new 
knowledge established in this sequence. The flow continued, re-initiating at move 78, back to 
accountable talk, on to GA, and so on.  Multi-level analysis, that included magnification of the 
sequence map and cross-referencing of transcript and interview data, resulted in a richer 
understanding of how the teacher mediated meaning.   

Final Remarks 
Providing a model of discursive practices related to promoting mathematical meaning has the 

potential to help teachers, mathematics educators, and researchers to make sense of mathematics 
instruction and, in turn, to improve it. Such a model has the potential to provide opportunities for 
identifying themes, examining patterns, and revealing pivotal points in classroom discourse. The 
model may provide possibilities for those entrusted with the charge of educating our children to 
begin to make sense of the nature and role of discourse within middle grades mathematics 
classes and, ultimately, to explore how students come to understand and make meaning of 
mathematics. 
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COURSE-TAKING AND EQUITY: THE EFFORTS OF ONE HIGH SCHOOL  
MATHEMATICS DEPARTMENT  
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Purdue University  
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This paper outlines the case study of one high school mathematics department that engaged in 
curricular redesign in order to address high failure rates in lower level mathematics courses 
disproportionately populated by students of color. The department implemented four major 
changes that were facilitated by four department characteristics. The changes, accompanied by 
two challenges, when considered collectively did little to increase students’ likelihood of taking 
more higher level mathematics courses. The limited improvement of the curricular changes was 
influenced by the teachers’ expectations of their students and their beliefs about the nature of 
mathematics.   
 

Introduction  
The scope of what it means to be successful in mathematics expands beyond skill-acquisition 

and procedural knowledge and includes sense-making and conceptual understanding. Still, 
mathematics achievement remains a key issue in educational research. Achievement on skills-
based tests provides critical information regarding students’ competencies to the educational 
community. These tests continue to illustrate that US students’ performance is mediocre 
(Dossey, Mullis, Lindquist, & Chambers, 1988; McKnight, Crosswhite, Dossey, Kifer, Swafford, 
Travers, & Cooney, 1987; Moore & Smith, 1987; Secada, 1992; Tate, 1997) and that students’ of 
color performance is lower than their White counterparts (Secada, 1992; Tate, 1997). Research 
has been conducted in various areas attempting to explain this phenomenon. Students’ 
background factors (Moore & Smith, 1987; Rech & Stevens, 1996; Signer, Beasley, & Bauer, 
1997; Tate, 1997), school level factors such as opportunity to learn (Lee, 1997; Oakes, 1990), 
and the relevance of content in the curriculum (Ladson-Billings, 1995; Silver, Smith, & Nelson, 
1995) are some of the factors that have been examined.  

In particular, research that considers students’ opportunity to learn has examined course 
offerings and patterns in course-taking as a means to address mathematics achievement (Lee, 
1997).  A general argument extrapolated from this research suggests that students experience 
higher achievement in mathematics as they take higher level mathematics courses (Miller & 
Linn, 1998; Reynolds & Walberg, 1992; Tate, 1997; Winfield, 1993). Additionally, departments 
that have been successful at getting large numbers of students who traditionally underperform in 
mathematics to take more advanced level mathematics courses (Gutierrez, 1996; 2000) have 
been examined. Both of the aforementioned research lines have considered course offerings (or 
curriculum – in a narrow sense) as a means to examine successful efforts or to illustrate how 
advanced course offerings increases student achievement.  

Objectives/Purposes  
I examine the process in which one high school mathematics department engaged in order to 

redesign its curriculum to respond to high failure rates in lower level mathematics courses that 
were disproportionately populated by students of color.  

Hereafter, these courses are referred to as targeted courses. The targeted courses include a 
geometry course, two versions of an algebra course, a pre-algebra course, Math Explorations, 
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and Math Review. Math Explorations and Math Review were two remedial courses designed by 
the department and are described in greater detail later in this paper.  

Previous research indicates that students benefit from taking advanced level mathematics 
courses. In this study, I examine how one high school mathematics department engaged in the 
process of redesigning its curriculum and restructuring its course offerings with the intention of 
improving student achievement and providing a greater number of students with access to higher 
level mathematics courses. An examination of this process is critical in that it provides insights 
to other high school mathematics departments that have identified low-achievement, 
disproportionate offerings of lower level mathematics courses, and course offerings that promote 
lateral course-taking. Among the findings, I identify aids and challenges to the department’s 
efforts to redesign its curriculum, discuss the course offerings influence on access to advanced 
mathematics courses, and discuss how teachers’ beliefs influenced curricular changes. This study 
is also significant to the field of mathematics education in that it takes an up-close look at the 
process to restructure course offerings while most prior research has examined course offerings 
that were already in place.  

Methodology  
Site  

This case study was conducted in the mathematics department of one mid-size high school 
located in a small, mid-western city. Rolling Meadow High School (RMHS) (pseudonym) has a 
student enrollment of approximately 1500.The racial demography of the school is 65% White, 
28% African American, 5% Hispanic, and 2% Asian/Pacific Islander.  

Performance on state standardized exams was as follows. Thirty-nine percent of the student 
body met or exceeded state mathematics requirements, and statistics from various racial groups 
was as follows: 44% White, 19% African American, 42% Hispanic, and 71% Asian/Pacific 
Islander. The graduation rate was 68% for the student body, and statistics from various racial 
groups was as follows: 75% White, 55% African American, 41% Hispanic, and 67% 
Asian/Pacific Islander.  

The mathematics course offerings at RMHS were broad and were categorized as a part of 
either the Standard or the Gifted/Accelerated curricula. Among the mathematics courses offered 
were pre-algebra, transitional mathematics, two versions of algebra, two versions of geometry, a 
second year of algebra with trigonometry, a third year of algebra with geometry, introductory 
statistics, pre-calculus, and two versions of calculus which included Advanced Placement 
Calculus. While several options in mathematics were available, research suggests that such leads 
to lateral movement, thereby restricting students from taking more advanced courses (Gutierrez, 
1996). Moreover, Lee, Croninger, & Smith (1997) found that students learned more when they 
attended schools with a narrowed curriculum.   
Participants  

The participants included twelve of the thirteen teachers in the department, the principal, and 
a guidance counselor. All of the teachers were White; eight were female, and four were male. 
The participating teachers’ average years of K-12 teaching was 10.8.  Four of the teachers had 
less than three years of teaching experience, and three had postsecondary mathematics teaching 
experience. Teachers who participated in classroom observations were recommended by the 
school principal based on my request for teachers with varying levels of experience and who 
were teaching targeted courses.  
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Data Collection  
Data collection extended over eight months and included field notes from classroom 

observations and observations of department meetings, a focus survey, audiotaped interviews, 
and school documents. Each teacher completed a focus survey that provided foundational 
information on their own educational background, beliefs about their students’ capacity to do 
advanced level mathematics, and the nature of mathematics. Each teacher also participated in at 
least one 45-minute interview. Three of the twelve teachers were key-informants (Wolcott, 1988) 
participating in two additional interviews and permitting me to observe their classes. I observed 
five sections of mathematics classes from the list of targeted courses, twice a week for six 
months. The principal and guidance counselor participated in one 30-minute interview. I 
collected field notes from the five classes that I observed, six department meetings, and two sub-
department meetings. Sub-department meetings consisted of all the teachers who taught a 
particular course. Among the school documents that I collected were School Report Cards, the 
master course schedule, the Student Handbook, course listings and prerequisites, curricula 
guides, and school polices.   
Data Analysis  

Data analysis included constant comparison analysis (Strauss, 1987), triangulation of data, 
and a search for disconfirming evidence. Transcripts of each interview, field notes from 
classroom observations and department meetings, and school documents were coded and 
analyzed separately and then together. While listening to the audio-taped interview, I followed 
the transcripts, coded the transcripts utilizing a coding scheme that was initially compiled from 
the research literature. I periodically revised the list of codes based on ongoing analysis. With 
each iteration of data analysis, I identified emergent themes and revised my list of codes 
accordingly. The revision of the list of codes included collapsing multiple themes, adding new 
codes, and eliminating codes that were deemed inappropriate. The revised list informed future 
data collection and my search for disconfirming evidence.  

I also analyzed school documents. I examined teachers’ schedules comparing their schedules 
with the master schedule in order to identify when and if additional courses were added to the 
course listing and under what circumstances. I identified which teachers typically taught the 
targeted courses and their level of experience. This analysis is significant since prior research has 
found that lower level mathematics courses are often taught by less experienced teachers (Oakes, 
1990).  

Findings  
The RMHS mathematics department implemented four major curricular changes in their 

efforts to address low achievement. In this section, I describe the four curricular changes, 
departmental characteristics that aided and challenged the redesign process, and the resulting 
course offering structure and students’ accessibility to advanced mathematics courses. Finally, I 
discuss how the changes selected by the department were influenced by the teachers’ beliefs 
about their students’ capacity to do higher level mathematics and the nature of mathematics.  
Curricular Changes  

The mathematics department at RMHS implemented four major curricular changes in the 
process of designing the mathematics curriculum in order to respond to high failure rates in 
lower level mathematics classes that were disproportionately populated by students of color. The 
first change was a switch from offering Extended Algebra to offering Modified Algebra. 
Extended Algebra was a two-year or four semester sequence of a high school algebra course that 
satisfies the basic college requirement of one year of high school algebra. Modified Algebra was 
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a one year or two semester sequence of introductory high school algebra which also met the 
basic college requirement of one year of high school algebra. Algebra 1-2, a traditional one year 
or two semester algebra course, was also offered. Modified Algebra differed from Algebra 1-2 in 
that topics received less depth in coverage in the Modified Algebra course. Students received 
two mathematics credits towards graduation for completing Modified Algebra or Algebra 1-2. 
Completion of Extended Algebra satisfied the four semester mathematics graduation 
requirement.  

The second curricular change was the addition of a Modified Geometry course. The Modified 
Geometry course was a two semester version of geometry that was offered in addition to a 
traditional, one-year geometry course, Geometry 1-2. While Geometry 12 was recommended for 
the college bound student, Modified Geometry was recommended for students who had 
completed Modified Algebra or students who had passed Algebra 1-2 and received a letter grade 
of C or below. The primary difference between Modified Geometry and Geometry 1-2 was that 
Modified Geometry excluded formal proof. Students received two mathematics credits towards 
graduation for completing either Modified Geometry or Geometry 1-2.   

The third curricular change was the redesign of Mathematics Explorations. Math 
Explorations was a course for incoming freshmen who had scored below the range deemed 
appropriate for placement into Pre-Algebra. Math Explorations had previously been offered as a 
course for students who failed the first semester of various courses in order to fortify their skills 
for reenrollment into their previously failed course. The department deemed the initial design of 
Math Explorations as ineffective because it consisted of students from too many courses. 
Students received two elective credits for completing Math Explorations and were placed in Pre-
Algebra the following year.  

The fourth curricular change was the addition of Math Review. Math Review was a one-
semester remedial course for students who had failed the first semester of Modified Algebra. 
Admission required a teacher’s recommendation and a maximum number of missed assignments 
and missed days during the semester in which the student failed the first semester of Modified 
Algebra. Sections of Math Review were capped at 15 students, and each teacher could 
recommend three students for course. Establishing sections of Math Review for students who 
had failed the first semester of Pre-Algebra was theoretically possible. However, 15 students 
were not recommended even though 30% of the 150 students taking Pre-Algebra failed the first 
semester.   
Aids and Challenges  

The four major redesign efforts were significant changes for the department and required a 
great deal of time and effort. I identified four characteristics which aided the department in 
making these changes.  These characteristics facilitated a relatively smooth or, at least, an 
essentially resistant-free implementation of the curricular changes. The first characteristic was 
the department’s willingness to try new things. Teachers went to conferences and workshops, 
returned, and shared new ideas that resulted in the utilization of mathematical software and 
projects. Moreover, the department’s implementation of the four previously described curricular 
changes indicated that members of the department did not shy away from implementing multiple 
changes simultaneously. The second characteristic was that the department had a well-organized, 
well-liked, and highly respected department chair. The third characteristic was the presence of 
enthusiastic volunteers who completed the majority of the legwork in order to implement the 
curricular changes.  These four teachers, all of whom had taught at RMHS for less than five 
years, completed multiple tasks which included book selections, drafting letters to be sent to 
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parents about new courses, and synthesizing data on students’ performance in the targeted 
courses. The fourth characteristic was the existence of frequent department and sub-department 
meetings in order to engage in planning for and discussions about the curricular changes. The 
department had about one meeting per month, and attendance at the meetings was at least 75% 
with all teachers attending several of the meetings.  

I identified two challenges to the curricular design efforts. The first challenge was the 
department’s perception of the Guidance Office and the corresponding stance that the department 
took. Several members of the department viewed the aims of the Guidance Office as conflicting 
with the department’s goal of students learning mathematics. Consequently, the mathematics 
department created policies for placement into courses that sought to limit the Guidance Office’s 
flexibility in placing students. The second challenge was the department’s rush to implement 
changes. The department did not engage in long-term planning when implementing curricular 
changes and nor did it outline possible ramifications of individual or collective changes. 
Moreover, the planning was quick and lacked foresight. In particular, planning for Math Review 
began only weeks before it was first offered, and the course was taught by the teacher who had a 
section of Modified Algebra dissolved as a result of having too many students to fail to sustain 
offering the section the second semester.  
Resulting Course Structure & Accessibility to Advanced Mathematics Courses  

The course structure that resulted from the four curricular redesign efforts yielded both 
positive and negative ramifications on students’ access to advanced mathematics courses. The 
switch from Extended Algebra to Modified Algebra increased the likelihood that students would 
take a geometry course since it decreased the number of mathematics credits some students 
received for completing algebra. And, although the addition of Modified Geometry provided an 
option to students who typically did not reach a high school geometry course, the Modified 
Geometry course excluded formal proofs – a weakness that many members of the department 
acknowledged especially if students were to take mathematics beyond geometry. However, this 
positive change was mitigated by the addition or redesign of the two remedial courses, Math 
Explorations and Math Review. Overall, the four curricular changes did little to increase 
students’ access to advanced level mathematics courses and established a mathematics glass 
ceiling with the design of Modified Geometry as a dead end course.   
Influences on Curricular Redesign: Teacher Beliefs  

Two factors, the teachers’ expectations of their students and the teachers’ beliefs about the 
nature of mathematics, emerged as key influences on the department’s curricular redesign 
efforts. The teachers held low expectations of their students. Although the department had a goal 
of increasing the level of mathematics to which all students reached, the expectations for varying 
groups was different and bounded for students enrolled in the targeted courses. Teachers viewed 
a geometry course as a major gain for students enrolled in targeted courses, and consequently 
rationalized that designing the course as a dead end was not problematic since at most a few 
students would take a course beyond geometry. Additionally, the department’s goal for students 
taking more mathematics courses did not equate to students taking more advanced courses or 
even more courses at the same level as was evidenced with the redesign of Math Explorations, a 
course below Pre-Algebra, and Math Review, a remedial course. Additionally, the department 
opted to eliminate formal proof in the design of the Modified Geometry course because it was 
the content that presented problems for students in the targeted courses.  

The teachers held a procedural and sequential view of mathematics. An emphasis on skill 
proficiency was evidenced by the design of Math Explorations and Math Review as courses to 
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fortify skills. Additionally, observations revealed that most class instruction emphasized drill and 
practice with little attention being paid to conceptual understanding. For example, Modified 
Algebra permitted more time for drill and practice and lacked depth or emphasis on sense-
making. The teachers did not attempt alternative pedagogical approaches to enhance learning; 
rather, they designed courses that provided students with more opportunities to learn low-level 
mathematics and emphasized skill-proficiency.   

Conclusion  
The department engaged in four major efforts to address high failure rates in lower level 

courses. However, when taken together, these changes did little to enhance students’ access to 
advanced mathematics courses. This study points to the significance of teachers’ beliefs in 
making curricular decisions and the need for critical participants in the redesign process to 
facilitate well thought-out discussions about ramifications of curricular changes and possible 
unintended outcomes. These insights suggest that good intentions and a willingness to try new 
things are insufficient in addressing equitable mathematics education.  
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CALCULUS TEXTBOOKS IN THE AMERICAN CONTINENT: A GUARANTEE FOR 
NOT UNDERSTANDING PHYSICS  

Ricardo Pulido Ríos, Ph.D. 
ricardo.pulido@itesm.mx  

 
This report explains some relevant aspects of an investigation which shows the contrasting 
visions around differentials in physics and calculus courses for engineering majors.  We analyze 
certain traits related to the differentials of discourse  developed in calculus textbooks [CTB) 
from the US, which limit those whose knowledge of calculus depends on them. These limitations 
refer to many areas of physics, for example fluid mechanics, electricity, and magnetism. This 
criticism is based on the deeply rooted practice in physics referring to differentials that, as we 
show here, cannot be epistemologically reconciled when using the discourse of the CBT. The 
emphasis of this research is socio-epistemological in that we recognize the importance of 
considering the social practices influencing mathematical ideas in order to evaluate the teaching 
of mathematics, so that the student acquires the tools to permit progress in the study of the basic 
science. 
  

Introduction  
In all of Latin America and the United Status there are calculus courses for engineering 

majors based on US textbooks [such as Larson, 1989; Leithold, 1987; Purcell, 1993; Stewart, 
2001; Thomas-Finney, 1987; Zill, 1987); these books have established the true in mathematics 
(philosophy and ideology), and have helped create a paradigm in teaching and learning that we 
still suffer from. 

Criticism has been widely documented as to the emphasis on the logicodeductive character of 
the content in calculus textbooks (Artigue, 1995; Cantoral, 1990; Dreyfus, 1990). One indication 
of this emphasis is the desire to present the final state of knowledge, apparent in the index of 
these books: real numbers, functions, limits, continuity, derivatives, applications of derivatives, 
Reimann sums, etc. This form of presenting the content is associated with the students’ difficulty 
in understanding the concepts that are intended to be communicated. The content is foreign to the 
student who lacks understanding of its essence. As a consequence the content will not belong to 
him; he can be forced to study it because of of school obligations, but will not able to learn it.  

Faced with the evidence of the lack of understanding of the students, the professor tries to 
algorithmicize part of the content, emphasizing the learning of techniques more than the ideas. In 
this way, learning calculus is synonymous with solving routine exercises, and it is common that 
students boast that they “know calculus” because they can “derive and integrate.” 

The fundamental ideas of calculus and its reason for being are hard to extract from the 
proposals of the CTB. The recurring complaint is that students know how to “derive and 
integrate” but they don’t know when they should use those processes. This occurs not only in 
countries on the American Continent but also in others like France and Spain that also suffer 
from a teaching of calculus that emphasizes more logicomathematical chaining of content than it 
encourages showing the interrelationship of relevant ideas to the student. 

Purpose of the Research 
This report attempts to corroborate another aspect of the content of the CTB which 

negatively affects learning the science, above all in engineering students. We will show the low 
level of articulation between what is taught in calculus courses [supported by the CTB] and the 
form of mathematization in other areas of the science, such as physics.  Specifically, we argue 
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the existence of a style of working in physics in which concepts are formulated and differential 
equations are constructed:  we refer to the differential style in which the differentials (infinitely 
small quantities) and the setting of the differential element play a determining role; in contrast, 
differentials in the CTB play a confusing and contradictory role, and in fact, the notion of the 
infinitely small does not exist (Pulido, 1998). 

This situation should be changed because the engineering students exposed to the content of 
the CTB will necessarily have difficulties in learning the science, in spite of their capacity or the 
enthusiasm of the professor, as they exposed to the crossfire of ideas coming from their calculus 
and physics courses. 

Theoretical Framework 
This research adopts a socio-epistemological perspective for the study of phenomena related 

to learning in the classroom, as discussed in Cantoral and Farfán (2003). This approach includes, 
besides cognitive, epistemological and didactic dimensions, a sociocultural component. This 
perspective helps center the claims we make in the analysis of certain practices around 
differentials that we have found in classroom physics, substantially different from those found in 
the CTB. In fact, it is only possible to explain this distance through the evolution of practice in 
key moments in the history of physics and mathematics. 

Methods 
By a review of the textbooks in physics we show the presence of a style of work based on the 

differentials, and with a historical-epistemological analysis, we show that behind the differential 
style, there is Leibnizian calculus in which infinitely small quantities are a fundamental part. On 
the other hand, an epistemological analysis of the CTB allows us to see that the discourse 
attempts to conform to classic real analysis, as it is called, in which real numbers are behind all of 
the concepts. Of these two analyses come the epistemological distancing of both presentations: 
the infinitely small are not real numbers; in fact, a didactic analysis of the CTB around the 
“differentials” shows how incoherent and confusing the discourse is as a result of adopting a 
definition of real number for the differential. 

Conclusions 
Analysis of an epistemological kind, within a socio-epistemological framework allows us to 

determine the incapacity of calculus courses based on the CTB to encourage students to enter 
successfully into the learning of physics, a serious problem for those who study engineering.  

Considering the same approach, it is necessary to create new proposals of calculus that take 
into account the practices of the other disciplines that it attempts to support. Salinas, Alanís, 
Pulido et al (2002) offers one of these attempts. 
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VOICING SUCCESS IN MATHEMATICS CLASS: ANDREA’S STORY OF SUCCESS 
 

Janelle McFeetors  
River East Transcona School Division  
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This paper reports on the results of a practitioner-based research study conducted in a grade 10 
Consumer Mathematics (entry-level) class. Using narrative inquiry, I inquired into the nature 
and evolution of success of students who approached mathematics with an unsuccessful stance. 
Because listening to student voice through story-telling is central to this study, the telling of 
Andrea’s story illuminates the students’ success: the emergent/ce (of) voice. Andrea’s story of 
the evolution of her use of words is an exemplar that demonstrates emergent voice can be 
characterized as being vocal, verbal, and intentional. These characteristics address the static 
nature of success; however Andrea’s story will also address the dynamic nature of the evolution 
of success – from voicelessness to emergent voice.  
 

Success in high school mathematics has become a focus of stakeholders in education. 
Debates on the essentiality of students enrolling in high school mathematics has lead to students 
not only studying mathematics in high school, but also understanding and valuing the 
mathematics they are studying. In teaching Consumer Mathematics (Manitoba Education, 
Training and Youth, 2002), a course designed for students who do not intend to pursue post-
secondary mathematical studies and often approach mathematics with little confidence, I had 
noticed that success could be fostered through relational teaching as articulated in Noddings’ 
(1984) understanding of teaching as caring and van Manen’s (1986) pedagogical relationship. 
However, what I did not fully understand were the ways in which these students came to be 
successful – leaving a stance where they perceived themselves as unsuccessful as they began to 
see themselves differently during the course.  

My practitioner-based inquiry focused on the question: How does the nature of success of 
learners evolve in grade 10 Consumer Mathematics? The research methodology drew on 
narrative inquiry (Clandinin & Connelly, 2000), where narrative texts (data) is used to interpret 
the lived experiences of individuals. Eleven students participated, writing interactive journals, 
constructing portfolios, and participating in three conversations (informal interviews). These data 
pieces were used, along with daily field notes, to construct a narrative for each learner that 
highlighted successful moments. During each conversation, the learners and I were in discourse 
about their narratives of success as we came to understand the nature of their success.  

In preparing for this inquiry, I was not certain about the types of success that the students 
would be experiencing or how I would come to understand their success. So, I prepared myself 
with six theoretical frameworks from educational researchers including Belenky, Clinchy, 
Goldberger, and Tarule (1986), Baxter Magolda (1992), Chickering and Reisser (1993), Weiner 
(1972), Dudley-Marling and Searle (1995), and Romagnano (1994). Throughout the inquiry, 
these models became secondary to the priority of the students’ experiences and their descriptions 
of their learning and success. This paper will relate the story of one student, Andrea, making 
limited use of the above frameworks and will conclude by offering a generalized theme of 
success for Andrea that was supported by theory, but informed and shaped by the experiences of 
Andrea and her classmates.  
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Andrea’s Story of Success:  Using Words to Tell  
Andrea approached the beginning of the school year with tentative steps. She was new to the 

city and to the school, so her interactions with students within the classroom were limited. She 
rarely asked questions in class and did not take part in whole-class interactions. Because Andrea 
was behind in her high school credits, she had enrolled in a variety of grade 10 and 11 courses, 
even though she was the same age as other grade 12 students. She wrote in her first journal that 
she took Consumer Mathematics to be assured of a grade 12 mathematics credit, because she 
believed that it was “easier than the other math courses.” Her journal statement indicates her 
belief that she was not a successful mathematics learner in school. As well, her interactions with 
me at the beginning of the semester also point toward her inability to say things about herself, 
her thinking, her learning or her successes. Although Andrea began her journey of success saying 
very little, the way in which Andrea used words in class evolved over the semester. I came to 
understand that the theme of her story of success was “Using Words to Tell”. Listen carefully to 
the way in which Andrea used words as I re-tell her story, in order to hear the individual steps of 
success Andrea took and how they contributed to her journey of success in mathematics class. 
Asking a Teacher for Help  

Near the beginning of the semester, Andrea’s predominant interaction in class was to ask me, 
her teacher, questions when she did not know what to do. Andrea would use a limited number of 
words to indicate where she was stuck, so that I would explain clearly and slowly how to 
complete a question. She used this strategy to request of me to tell her exactly what to do and 
then she would do it. Andrea viewed me as an authority figure in terms of mathematical 
knowledge as well as knowledge of her as a learner. She also believed that the knowledge she 
needed to have could be given to her by an authority figure. At one time, Andrea had approached 
a resource teacher, viewed as an authority figure as well, to explain similar triangles to her. In 
our first conversation, Andrea related, “And finally, she told us what to do. And then, she said 
that what we were doing was wrong. But we were doing it the exact same way she taught us.” 
Andrea’s expectation that the teacher would listen patiently and tell her clearly how to complete 
the question can be seen in Andrea’s frustration with the perceived “help” she had received.  

Andrea’s description demonstrates her stance toward knowledge and authority in the 
classroom. The manner in which she solicited help from authority, using words in a limited 
manner to point to where she was stuck while omitting her communication of what she did 
understand and what she had done correctly, demonstrates her devaluation of her own words and 
ideas. The expectation in which she waited for a teacher to tell her the mathematical steps to 
complete a question shows her reliance on an authority to give her knowledge. Andrea’s limited 
use of words and her reliance on authority demonstrate an approach to knowing that Belenky et 
al. (1986) recognized as silent knowing. Silent knowers rely on authority that they perceive to be 
all knowing. Their lack of confidence in their ability to know and learn is exemplified in the 
difficulty they experience describing themselves and engaging in self-reflection. Andrea’s initial 
stance in Consumer Mathematics is characterized by silent knowing.  
Asking Peers for Help  

As the semester progressed, Andrea began to ask her peers for help. When we discussed this 
emerging strategy in our first conversation, Andrea mentioned, “’Cause if you don’t understand a 
question, and they do, then, if they do, then somebody you know tells you how to do it. They 
explain it differently.” Andrea believed that her peers could explain, better than a teacher, how to 
do a question because they would use words that she understood. She found teacher’s words hard 
to understand, partly because “they learned it so many times, they sometimes talk like their 
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professors would talk.” When I probed further, Andrea clarified that her peers explained the 
same steps to her, but just in different words. There is a shift in Andrea’s actions in class when 
she needed help, to ask peers because their words were more understandable than a teacher’s 
words, without a shift in her belief about the nature of knowledge.  

Although Andrea still relied on others to give her knowledge and tell her how to complete 
questions, her prioritizing of asking peers for help demonstrated a shift of authority roles in the 
classroom. The shift in stance is from obtaining the teacher’s knowledge from the teacher to 
obtaining the teacher’s knowledge from peers, in peers’ words. This stance demonstrates more 
closely the positioning of a received knower (Belenky et al., 1986), someone who still does not 
construct their own knowledge yet begins to use words to affect her/his identity. A received 
knower has emerged from a stance of silence, but still uses words in a limited way and perceives 
others as being authorities of the knowledge he/she views as valuable. While there was progress, 
Andrea was using words in this context just to complete specific questions rather than using 
words to learn mathematical ideas or skills.  
Interacting with Others to Learn  

As I continued to observe Andrea and talk with her in further conversations, I began to notice 
that asking peers for help was not the only way that she interacted with classmates. Andrea was 
building on that success by engaging in more complex interactions with her peers. While the 
previous interactions with individuals had occurred before the first conversation, I began to 
notice this next type of interaction between the first and second conversations. The theme of 
Andrea’s second narrative was the way in which she used words in the classroom. In response to 
the narrative, Andrea told me about the unique characteristics of each of her learning partners.  

When Andrea sat with Susanne, she did more than ask Susanne how to do specific questions. 
She stated, “And Susanne, well, we’re both kind of the same, try to figure it out both … well, we 
had fun trying to figure out stuff for the assignments!” Rather than asking questions or telling 
each other how to do something, Andrea and Susanne were figuring out the concepts and skills 
that they were learning together. The mutuality indicated in this phrase demonstrates that Andrea 
and Susanne were working toward a common goal of learning. Andrea was developing a sense of 
authority over her actions in the classroom as she began to see the importance of learning with 
her table partner. The intentions that Andrea had for her words, to affect her learning and to 
affect her relationship with Susanne, was a step forward from the intention of acquiring help.  

A shift in Andrea’s role within the peer-to-peer relationship is evident as she moved from 
listening to actively engaging in the classroom discourse and her learning. Within this process, 
Andrea was actively involved in using words to learn with others and to learn about 
mathematics. Learning to use words in more complex ways, similar to constructing mathematical 
knowledge and understanding (Borasi, 1992; Ward, 2001), is a rich and complex task that 
requires the individual to be active throughout the process. By using words in more sophisticated 
ways, Andrea was beginning to say things about herself and her learning.  
Explaining Mathematical Concepts and Skills to the Class  

As Andrea built confidence in her context, both with individuals and with mathematics, the 
nature of her interactions continued to evolve. Just before our second conversation, I noticed 
Andrea was becoming more active in class, willing to provide explanations to the whole class. 
Because this was a new way that I noticed Andrea using words, I highlighted the moment as a 
part of her second narrative of success:  

You are often willing to volunteer answers in class when we are going over an assignment. 
Most of the time, it happens after you and I have had an opportunity to work on some 
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questions together. One example is looking at food labels and working with the 
recommended daily intake. You explained really well to the class that you would need to 
eat 10 servings of cereal to receive the recommended daily intake of a vitamin because 
there is 10% of it in one serving. Another example was the definition of perimeter, when 
you told the class perimeter is just the distance around. When you answered in class, I used 
your words to make the notes for the rest of the class. I’m wondering if these are examples, 
for you, of times when you had a good math idea that you thought others should hear as 
well. It also makes me wonder whether putting the math ideas in your own words is what 
makes the ideas important to share.  

Andrea took part in the classroom discourse in two different ways. First, with the daily 
vitamin intake question, she described to the class a solution and answer after she was sure to 
check with me first to confirm she was correct. She still did not view the idea as her own, but she 
engaged in vocalizing a mathematical idea and took ownership of giving that knowledge to her 
classmates. This still demonstrates a received knower’s stance (Belenky et al., 1986), yet Andrea 
was beginning to recognize the importance of her words and that they had value for her and for 
others – a stance that demonstrated movement away from silent knowing. As I helped Andrea 
with the assignment and then observed her explaining it to the class afterwards, I recognized 
growth from her previous stance of being the individual who had to be told. Now, Andrea was 
doing some of that same telling.  

A few weeks later in class, providing the definition and formula of perimeter was a second 
way in which Andrea was involved in class. Andrea recalled this example as a time when she 
explained something to the class without checking with me first. She felt it was a successful 
moment because the ideas she explained were her own and, “’Cause it’s, like, it really makes you 
feel confident. Like, other people are using how you describe stuff.” Andrea was using her words 
to affect her identity as a confident mathematics learner and also to affect her classmates’ 
knowledge. As well, Andrea’s belief that an idea was her idea demonstrates a significant shift in 
her use of words from our first introduction to her as a student who said very little because she 
believed her words and ideas held little value.  
Having a Good Idea, But Remembering It?  

As the semester progressed, I continued to look for moments of success where Andrea was 
constructing her own ideas and saying them out loud. During a perimeter/area inquiry, Andrea 
and Whitney were exploring rectangles with constant areas and differing perimeters. Andrea 
described to me how the perimeter of a “2 by …” rectangle increased by two units every time she 
added a column of two blocks. It was an astute pattern-recognition moment in which Andrea was 
generalizing a pattern she noticed and was saying the generalization to me. Andrea’s 
mathematical success was the idea that she constructed from the inquiry activity to build a more 
complex understanding of area and perimeter. I was certainly encouraged by Andrea’s thinking.  

However, Andrea demonstrated in an extra conversation a few days later that she had no 
recollection of thinking the idea or saying it out loud. Andrea’s success, in this example, is not 
contained in the event that she could not remember having a good idea. Her success is in having 
the good idea. Eleanor Duckworth views “the having of wonderful ideas [as] … the essence of 
intellectual development” (1996, p. 1). Having her own idea was enough to see this as a 
successful moment. What is also significant about this moment is that I noticed the success. I 
knew Andrea well enough as a student, learner, and individual, to recognize this moment of 
cognition as something that was significant to her lived experiences in the classroom. My 
noticing Andrea’s success signifies that a student’s shift in the use of words requires another to 
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be inviting students to engage in the process and to be vigilant. These small shifts in stance 
would be easy to miss if the teacher did not live in pedagogic relationship with them and was not 
engaged in listening closely. As I lived with my students, I was continually looking for 
successful moments that I could celebrate with each learner.  
Valuing Her Own Words for Understanding  

Although there was fragility in Andrea’s use of words as it became a more complex process, 
Andrea was beginning to perceive the value of her own words. In our second conversation, 
Andrea selected the phrase “resaying other people’s words” from her second narrative to signify 
her success. She believed it was important because:  

Andrea:  Well, if they can describe it better. And you don’t really have the right 
{inaudible words} trying, what you’re trying to say. But you know the 
answer, but you can’t write it down in your own words. Then it’s easier to 
use somebody else’s because then you can look back on it. And if there’s a 
question on describing it, then you, later on you’ll put it in your own 
words, instead of using other people’s.  

Janelle:  So, for right then when you’re not quite sure, you write down exactly what 
somebody else said.  

Andrea:  No, you change it a little. ‘Cause they can use their words, and you might 
not understand it. But, you can kind of change it a little so that you will 
understand it. And then, later on you’ll be able to put it all into your own 
words.  

Janelle:   Oh, okay. And, is it important to put it all into your own words later on? 
Andrea:   Yeah.  
Janelle:   How come? 
Andrea:   ‘Cause then you’re not relying on other people all the time.  

Andrea believed that it was important to put mathematical ideas in her own words so that she 
could understand and develop an independent stance in her learning. Her words contained an 
intention to support her learning so that she could understand the problems she was solving.  

Within Andrea’s story of success, this interaction is significant because Andrea was coming 
to value the words she said as effective in learning mathematics and in identifying herself as a 
successful mathematics learner. Andrea had turned inward in her explanations, intending to 
affect her understanding and learning. Valuing her own words for understanding demonstrated a 
shift away from received knowing (Belenky et al., 1986) because she was engaged in 
constructing her own understanding with her words instead of relying on the teacher to give her 
the mathematical ideas and the words.  
Andrea Telling about a Successful Moment  

Andrea completed the semester approximately a week early, and in anticipation of that she 
was required to complete several textbook assignments independently by reading the examples in 
each lesson and then practicing several questions. One of the topics was capture-tag-recapture 
sampling, a ratio-based method used to determine wildlife population. Because Andrea’s last day 
was not definite, she happened to be in class when the rest of her classmates learned this topic.  

Although Andrea never had an opportunity to retrospectively tell me about this moment, I 
recorded our interaction in my field notes. This is what I wrote:  

Andrea was really happy that she had done the assignment already and knew how to do the 
questions. She came up to me, just before I went over the questions on the chalkboard with 
the class. She said (something like), “You know what I saw with these questions, Mrs. 
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McFeetors? You just use the numbers backwards from the way the question is written. You 
start with the last number and you put it over the second last number and then that’s equal 
to the first number over what you need to find. I noticed that [pattern] while I was working 
on the questions.” She was really proud of herself. And, she came up to me just to tell me 
that.  

There are several elements of Andrea’s use of words in this moment that point to her success 
in grade 10 Consumer Mathematics. There is the metacognitive statement that Andrea made to 
me when she generalized the steps for the question, noticing that the steps were the same for 
each of the questions she had completed. There is Andrea’s responsibility to complete 
assignments ahead of time and in a nearly self-directed manner. There is Andrea’s learning how 
to complete capture-tag-recapture questions on her own, without the support of her peers or 
teacher. Rather than placing significance in Andrea’s metacognition, responsibility or 
independence, her ultimate success was located in Andrea noticing and expressing her success. 
She used her words to say when and how she had been successful, with the intention of shaping 
her identity and her relationship with others. It was a pinnacle moment for Andrea’s learning and 
self-identity because of the nature of her use of words.  

Drawing Meaning from Andrea’s Story of Success  
The particular theme of Andrea’s success was the evolution of her use of words. This theme 

was closely tied to Andrea’s learning in Consumer Mathematics – and the particularized themes 
of each of the learners in the inquiry differed because of their uniqueness. As data collection and 
interim data analysis concluded, as an inquirer, I was left to make sense of the learners’ 
successes. I wanted to draw a theme of success from all of the learners in order to come to 
understand the nature of their success and how it evolved over the semester.  

Andrea was not the only student that changed the way she used words over the semester; in 
fact, it was a success that all the students experienced in some way. As I recognized this 
commonality, I considered how the six theoretical frameworks I had prepared myself with could 
inform this kind of success. I could not find a match between the progress that previous 
researchers had noticed and the way in which my students spoke in mathematics class evolved 
over the semester – the learners’ success seemed to augment existing theory. The 
epistemological frameworks of Belenky, Clinchy, Goldberger, & Tarule (1986) and Baxter 
Magolda (1992) provided a starting place for data interpretation. An underlying story line that 
Baxter Magolda (1992) recognized in her data was the “development and emergence of voice” 
(p. 191). I began to consider the usefulness of this theme to illuminate the success of Andrea and 
her classmates because of the similarity to the way in which individuals use words to say things, 
especially about themselves. There was one significant difference, however, between Baxter 
Magolda’s participants and my students – throughout her inquiry her participants were cogently 
self-descriptive while it is clear that Andrea could say very little at the beginning of the semester.  

I noticed that the learners in my inquiry had begun the course voiceless (Belenky et al., 1986) 
in relation to mathematics and mathematics class – they could not say things about themselves, 
their role as students, their learning, and their success. Over the semester, their successful 
moments occurred as they began to say things about mathematical ideas, themselves, their 
learning, and their success. Through listening closely to the students, I noticed the initial 
utterances of internal voice that other educational researchers had not reported previously. Their 
voice was emerging. The movement away from a stance of silence embodied the emergence of 
voice for each of the learners as the essence of their success in Consumer Mathematics – 
emergent voice, their new voice-stance, was indicative of all the learners’ success.  
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What I captured in the students’ moments of success was the emergence of voice, the 
tentative sounds of the students’ emergent voice. The evolution of Andrea’s use of words 
evidence three characteristics of emergent voice drawn from the data. The students came to be 
vocal as they used words to say things they believed were worth saying. The students came to be 
verbal as they chose specific words to point toward the things they believed were worth saying. 
And finally, the students came to be intentional as they used words to affect themselves and their 
context. They were in the process of becoming – forming their identity as students, learners, and 
human beings.  
Andrea was Vocal  

The first characteristic of emergent voice is that the individual is vocal. Being vocal means 
that the students felt that they could speak out, or say things aloud (in writing or orally), and that 
they did speak out. Because an absence of words was related to an initial stance of silence, the 
fact that students, like Andrea, were saying things about mathematics, themselves, and their 
learning becomes a foundational element of emergent voice. For Andrea, her ability to speak out 
is apparent as she began to explain mathematical skills and concepts to the class. She vocalized a 
mathematical idea, with scaffolding from me, when she explained the daily vitamin intake 
questions. Andrea’s voice was emerging as she took ownership of giving that knowledge to her 
classmates. She further consolidated her ability to be vocal when she explained perimeter 
without teacher scaffolding, demonstrating more independence. Andrea was moving in a 
progressive manner, even within one element of emergent voice. Speaking out meant Andrea had 
the confidence to explain mathematical ideas to the class.  

As Andrea’s voice emerged, she began to say more things to me about the quality of her 
learning. For instance, Andrea was evaluating an emerging effective strategy for learning when 
we talked about how she had begun to ask peers for help. She could recognize and say that 
asking peers was a better strategy to support her learning than asking her teacher. Expressing that 
one strategy was better than another demonstrated an increasing authoritative stance toward her 
learning. Belenky et al. (1986) noticed that individuals who are in the process of gaining a voice 
are also beginning to see themselves as their “own authority” (p. 54), rather than relying on 
external authority to tell them what to believe and to give them knowledge. Andrea was 
becoming an authority on her learning.  

Freire (2000) emphasizes the significance of being vocal when he states, “Human existence 
cannot be silent . . . human beings are not built in silence, but in word” (p. 88). To begin to 
emerge from silence, Andrea and her classmates needed to first say something – and the content 
of what they said was not as significant as the fact that these students were beginning to say 
things to themselves and to others. As the students began to be vocal, they were saying with their 
words that the teacher was not the sole authority on their thinking and learning. They were 
becoming aware of their thinking and learning, and were developing a sense of authority.  
Andrea was Verbal  

Being verbal, the second characteristic of emergent voice, means that the individual is 
pointing toward specific objects through the selective use of words, rather than just putting 
words to thoughts and saying them aloud. Freire (2000) identifies this process as naming, which 
includes identifying significant objects in the individual’s world through reflection and giving a 
name or label to the object. Andrea’s reflective stance can be seen in our second conversation 
when she selected an example as a successful moment for her in Consumer Mathematics. As she 
identified her success by reflecting on her experiences and the narrative I authored, she used the 
phrase “resaying other people’s words” that I had written as a label to point toward a significant 
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moment of her success. This example illuminates the ability of Andrea to verbalize as she named 
her success by using a phrase to reflect on and point toward a specific moment. Andrea’s use of 
the label “resaying other people’s words” further refined the meaning and use of the name 
(Searle, 1983) in describing her success.  

By speaking out and being in discourse about her successes, Andrea had already begun to 
develop authority in her emergent voice. However, with the additional element of being verbal, 
Andrea became an author of her own success. An authorial stance required Andrea to identify 
successful moments and label them with meaningful words that she could use to interact with the 
world around her. As Andrea stated a pattern for “2 by …” rectangles, she was engaged in an 
authorial act in naming her cognition. More than requesting others to tell her or simply noticing 
the pattern, Andrea spoke with an emergent voice as she authored the pattern-generalization. The 
authoring of Andrea and her classmates was at once retrospective as they talked about what they 
had done well, and prospective as they were beginning to say how they were succeeding in 
mathematics class. Andrea was Intentional  

Intentionality is the third characteristic of emergent voice. Being intentional means that 
individuals say things to themselves and to others with specific purposes. The learners in this 
inquiry developed intentionality in what they said (chose what they wanted to say) and how they 
said their words (chose the words they wanted to say). Although some similarities to being vocal 
and verbal exist, learners were using their nascent abilities of speaking out and naming to say 
things to a specific audience with the intent of affecting the audience. The students sometimes 
said things to themselves, intending to affect their success, when they viewed self as audience. 
Belenky et al. (1986) observed that individuals who were gaining voice would “engage in self-
expression by talking to themselves” (p. 86). Emergent voice needs to say things to self in order 
for the individual to internalize, author words of significance, and explore intentions imbued in 
statements to self and others. The students viewed others as audience when they said things to 
someone else, usually to me, about their thinking and learning, intending to affect the teacher-
with-learner relationship. In this case, the students often believed they would help me understand 
them and notice their success in mathematics class. Emergent voice needs to say things to others 
in order to establish the individual’s authority and to make intentions explicit to others.  

As Andrea began to speak out during the semester, her intentions became more sophisticated, 
demonstrating complexity and confidence in speaking with her emergent voice. As well, this 
growth occurred in parallel with her sense of authority over her learning. Andrea exemplified a 
shift from asking me questions to asking peers questions in order to be given mathematical 
knowledge. She was intentionally selecting the audience with which she believed she could learn 
mathematics. She was using words to gather knowledge, rather than learning mathematics in 
meaningful ways. Andrea demonstrates progress from this stance as she began to interact with 
peers in order to learn and affect her relationship with them. Further, as she responded to 
questions in class and began to explain mathematical ideas to the class, she continued to select 
others as audience, but now for a different intention – to affect her identity as a confident 
mathematics learner.  

Andrea’s movement inward with her intentions signified that her audience for using words 
was evolving from others as audience to self as audience. As she spoke with her emergent voice, 
Andrea was using words to affect herself and her understanding. In our second conversation, 
Andrea communicated that putting ideas in her own words was important for her to understand 
and learn. Her intentions were directed at improving her mathematical understanding, and her 
emergent voice was intentional in supporting her success at mathematical learning. There is a 
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complexity present in Andrea’s intention with words as she comes to use her emergent voice to 
affect herself.  
Andrea’s Voice was Nascent  

The three characteristics of emergent voice were indicators that the voice-stance of the 
students was evolving, from voicelessness to emergent voice. However, being vocal, verbal, and 
intentional are not necessarily small steps away from voicelessness, each requiring sophistication 
in their use. While the idea that learners spoke with an emergent voice was a significant success 
for them in mathematics class, their voices were just emerging, not reaching a fully refined state 
by the end of our semester. Instead, their emergent voice was nascent, in the act of coming into 
existence and in the process of being established.  

Emergent voice is nascent because of its tentative nature, where it is prone to “fall backs” as 
voice emerges. Recall Andrea’s expression of a pattern-generalization about “2 by …” rectangles 
and her inability to remember that moment days later. Within this mathematical success, there is 
fragility in Andrea’s ability to use words to learn. Andrea’s inability to remember her good idea 
highlights her struggle to believe in the value of her ideas and words. Rather than moving away 
from received knowing (Belenky et al., 1986), it would seem that Andrea was moving toward 
silence again. Kieren and Pirie believe that students need to “fold back to an inner level of 
activity in order to extend their current action capabilities and action spaces” (Kieren, Pirie, & 
Gordon Calvert, 1999, p. 218; italics in original).  So, although at a cursory glance the tentative 
nature of emergent voice seems to denote a pause in success, it is a necessary for individuals to 
return to a former stance as their voice emerges. The tentative nature of emergent voice 
highlights that the success the students experienced was not static – rather, it was a dynamic 
success that captured growth as it was occurring, and that the growth itself (not the destination) 
was what was important in the learners’ journeys of success.  

Finally, Andrea’s capstone moment of success, noticing and expressing her success with 
capture-tag-recapture, illuminates the three characteristics of emergent voice interacting as 
Andrea’ engaged in the emergence of voice. I would encourage the reader to return to this 
example to notice that the emergence of Andrea’s voice, from voicelessness toward emergent 
voice, is captivated in a moment she and I could celebrate together.  

Andrea’s Journey as an Exemplar  
Andrea is an exemplar of the emergence of voice. An exemplar is an individual that serves as 

an ideal model for a group of individuals. Andrea is an exemplar because her story amplifies 
many of the small steps of the emergence of voice, from voicelessness. The emergence of voice 
occurred through her active involvement as I listened closely to her successes and as we were in 
conversation. The journey was not flawless, because no journey in the gaining of voice is. 
Rather, the return to previous stances provided opportunities for Andrea to consolidate specific 
characteristics of emergent voice before building on more complex successes. Andrea is not an 
exemplar of the emergence of voice because she experienced the largest or smallest amount of 
growing and stretching during our semester. Each learner’s story is distinct and highlights 
different processes of the emergence of voice, perhaps in differing orders and also in differing 
intensities. What Andrea’s story does exemplify, on behalf of all of her classmates, is that the 
emergence of voice was a tentative process and one in which I needed to listen closely to their 
moments of success to catch the subtle shifts in stance as they lived a process of forming their 
identity. Andrea also illustrates, on behalf of her classmates, the brilliance of each of the small 
steps the learners took as they moved away from a stance of silence and the fact that they were 
constantly in the process of building on more complex successes to the ones that they already 
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had. The pleasure of watching and living with the learners as their voice emerged was particular 
to each of them, but significant for all of them.  
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Numerous classroom technologies are being designed to support construction of mathematics 
and science knowledge (cf., Kaput & Hegedus, 2002; Linn & Hsi, 2000; Soloway et al., 2001; 
Wilensky & Stroup, 1999), but largely without regard to the social and cultural resources 
traditionally under-served students bring to classrooms. Carol Lee (2003) notes, “the tremendous 
funding being invested in the development of such computer-based tools in education may be 
simply reinforcing current inequities in opportunities to learn, unintentionally widening the 
achievement gap” (p. 58). There is little hope of attending to that gap if research and 
development efforts ignore issues of culture. However, with few exceptions  (Lee, 2003; 
Pinkard, 2001), research and design in instructional technologies has not treated underserved 
students’ social, cultural, and academic resources as central considerations.  

To build understanding of the influence of culture on technology-supported classroom 
learning, we turn to a growing body of promising work that treats underserved students’ cultural 
backgrounds and practices as important resources for learning (cf., C. Lee, 2001; Greenberg & 
Moll, 1990; Gonzalez et al., 1995). Okhee Lee (2003) argues that equity is unattainable if 
students are not given access to powerful discourses, but that appropriation of discourse is made 
more difficult if school science (and mathematics) is simply imposed on students. Appropriation 
is better supported by drawing on students’ social and cultural practices as resources rather than 
as barriers to overcome (cf., Civil & Kahn, 2001; Moll & Gonzalez, 1995). For example, Haitian 
Creole students’ story-telling and argumentation skills have been shown to support their 
engagement in science (Warren et al., 1992) and irony, satire, and metaphor in African American 
Vernacular English to scaffold students’ analysis of canonical literary works (C. Lee, 2001).   

We examine the unique potential of a next-generation networked classroom technology 
(HubNet and Participatory Simulations, Wilensky & Stroup, 1999) to draw on students’ cultural, 
social, and academic resources to support learning in mathematics. We attend to both (1) content 
and representations of content; and (2) the participation/interaction of students as dual 
dimensions of the social space of classrooms. Attending to these dual dimensions highlights “ a 
generative, creative tension between the structuring role of math and science and the structuring 
role of social activity” (Stroup, Ares, & Hurford, in press). Of particular interest are the 
following research questions:  

(1)  In what unique ways does network-mediated activity scaffold learning for underserved 
students?  

(2) How is mathematical knowledge and practice enhanced through inclusion of underserved 
students’ social and cultural resources in network-mediated learning?  

Examining these issues will deepen our understanding of the construction of mathematical 
content and practice through social interaction. We hope to identify effective ways to begin to 
close the achievement gaps between cultural, social, and economic groups by broadening the 
range of tools and knowledge teachers use to allow all students to reach their highest potential.  
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Network Mediated Learning  
HubNet and Participatory Simulations includes a wireless network of graphing calculators, 

being developed with funding from the National Science Foundation and Texas Instruments 
(Wilensky & Stroup, 1999, 2000). In Participatory Simulations, participants act as individual 
agents and observe how the behavior of the system as a whole emerges from their individual 
behaviors. The emergent results become the focus of in-class discussion and analysis. In the 
Elevators Participatory Simulation used in this study, the system collects students’ input to 
individual calculators through the network (arrangement of blocks, Fig. 1, left), and displays the 
emergent system formed from their collective contributions in an “up front” public space (an 
array of all students’ elevators moving together, along with position and velocity graphs; Fig. 1, 
right).   

 

Figure 1. A sample delta blocks arrangement (left) and projected elevators screen, with position 
and velocity graphs (right).  
Among others, qualitative understandings of the mathematics of change (Kaput, 1994; Stroup, 
1996, 2002) that start from the integral and then move to the derivative are goals of this activity. 
Features of this system that may offer avenues for enlarging the social, cultural and academic 
practices used as resources include: 1) multiple modes of contribution (language, text, physical 
and electronic gestures), 2) multiple representations (texts, graphs, visual displays of emergent 
systems, language), and 3) inquiry-oriented discussion and analyses, “in which students are 
supported in making public the strategies they are employing as well as the evidence and 
reasoning they are using, … [and] where instructional conversations are not solely directed by 
teachers’ intentions” (C. Lee, 2003, p. 48, 49).   

Examining ways to draw on the varied, often untapped, resources available in heterogeneous 
classrooms can support important advances in classroom technology development by pinpointing 
features of their design and use that can become culturally responsive and that support the 
achievement of underserved students. Further, it can provide important information to teachers as 
they consider whether and how to incorporate networked and other classroom technologies into 
their teaching.  

Methodology  
We focus on social activity, discourse, networked technology, and learning in a sociocultural 

theoretical framework (Vygotsky, 1987). Learning is viewed as being mediated by social activity 
involving both people (teachers, peers) and tools (networked technology). Further, learning 
involves co-constructing mathematical knowledge and meaning through appropriation of 
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discipline-specific content, discourses and practice. Discourse analysis (Gee, 1999) enables us to 
analyze students’ appropriation of the content, discourses and practices of mathematics as a 
discipline. We situate that appropriation within the social space of classrooms that is formed by 
the intersection of dual dimensions of 1) social and cultural resources, and 2) content and 
representations. Thus, network-mediated learning in the social space of the classroom is shaped 
by the dynamic, mutually constitutive roles of mathematics-specific content and representations, 
and participation and cultural resources in learning (Stroup, Ares, & Hurford, 2004, in press).   
Setting   

Approximately 50% of the students in the high school in which this study was conducted 
were Hispanic, 21% African American, 25% European American, and 4% Pacific Islander, 
Native American, and recent immigrants from a variety of countries; those demographics were 
reflected in the two classes that participated. One of the two classes had 17 students; the other 
had 15. The teacher, Sylvia (a pseudonym, as are all names), was a European American, veteran 
mathematics teacher with 15 years of experience. She was interested in using networked 
classroom technology to support her commitment to problem-based instruction, and as 
complementary to her regular Interactive Mathematics Program (IMP; Fendel, Resek, Alper, & 
Fraser, 1997) curriculum. The two sessions taught by her but with different students were video-
taped, one when the network was in use and another when it was not. Analyses centered on 
characterizing classroom activity both with and without the networked technology.  
Quantitative analysis of classroom talk  

Whole-class talk was coded by one researcher as to the type of comment or question 
contributed by Sylvia or students (e.g., invitation to explain, observation), drawing on the work 
of Brenner and Moschkovich (2002) on everyday and academic mathematics, but including 
codes that emerged as important as well. A second researcher used the scheme to evaluate its 
usefulness, add emergent codes, and delete codes. The two researchers arrived at the final coding 
scheme through a process of discussion, independent coding, checks of inter-rater reliability, and 
more discussion. The final inter-rater reliability check yielded 71% agreement. Frequency 
diagrams were constructed to examine how the numbers of comments or questions within 
categories changed over the course of each class session, to examine teacher versus student 
contributions, and to conduct cross-session analyses.   
Qualitative analysis of classroom Discourse  

Transcripts of videotapes were analyzed to identify patterns of participation, and use of 
social, cultural, and academic resources. Following Moschkovich (2002) and Gee (1999), we 
used the following questions for Discourse analysis [Discourse defined as “ways with words, 
feelings, values, beliefs, emotions, people, actions, things, tools, and places that allow us to 
display and recognize characteristic whos doing characteristic whats” (Gee, 1999, p. 19)]:  

• Discourses: What Discourses are involved and produced in this situation? What 
Discourses are relevant (or irrelevant)? What systems of knowledge and ways of knowing 
are relevant (and irrelevant) in the situation? What Discourse practices are students 
participating in that are relevant in mathematically educated communities or that reflect 
mathematical competence?   

• Activity building: What is the larger or main activity going on in the situation? What sub-
activities compose this activity? What actions compose these sub-activities and activities?  

• Resources: What are the multiple resources students use to communicate 
mathematically? What sign systems are relevant (and irrelevant) in the situation (e.g., 
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speech, writing, images, and gestures)? By what means are they made relevant (and 
irrelevant)?  

 
 

Findings  
This section is organized in terms of Discourses produced, activity building, and resources, 

followed by examination of the dual dimensions of the social spaces that emerged in the two 
class sessions.  
Discourses  

A Discourse of school mathematics problem solving was produced in the IMP activity, while 
a Discourse of dynamic systems thinking was the product of the Participatory Simulation. 
[Dynamic systems thinking “focus[es] not on the elements of something, but on the relationships 
or interactions between the elements … shifting from a concern for detail complexity to a 
concern for dynamic complexity: concern for dynamic relationships, rather than fine 
distinctions” (Ramsey & Ramsey, 2002, p. 99).] The problem solving Discourse was 
characterized by the more mechanical aspects of mathematics (e.g., order of operations, 
converting fractions to decimals) being embedded in a task, in this case, determining the profit 
ferry owners made by transporting white settlers moving to the Western US and their wagon 
trains across the Kansas River. Thus, contextualizing formal mathematics and embedded 
arithmetic were the focus (Ares, Stroup, & Schademan, 2004). We use the term ‘school math’ 
because the ways of knowing involved were teacher- and textbook-dominated, as evidenced by 
the nature of students’ contributions (largely procedural) and Sylvia’s invitations (see Table 1), 
which constituted 62% of the coding.  
 
Table 1. Nature of Students’ Contributions and their Teacher’s Invitations  

 
However, an important exchange in the IMP lesson drew on students’ knowledge of the broader 
world, providing an opening for drawing on social and cultural resources. The profit formula 
included a wage of 40 cents per hour for the ferry operator. A student remarked, “That sucks.” 
Sylvia asked whether there were people making that little now, and what would be a fair wage 
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today, which precipitated a discussion of varying wages around the world, including students’ 
own pocket money. Here, though relatively briefly, students’ social resources were fodder for 
critical connections between mathematics in school and the world. The dynamic systems 
thinking Discourse involved in the Participatory Simulation was characterized by students and 
Sylvia exploring relationships among position and velocity graphs, and among those 
representations and the motion of the elevators. Here, the focus was on predicting and describing 
relationships, and development of increasingly sophisticated understandings of those 
relationships. The following exchange is representative:  

Sylvia:  I’d like to hear from some of you about what you think we’re gonna see up front 
when they send all these up.  .  

Lydia:   At the point where all of our graphs are going up and down at the same time on 
the…  

Sylvia:   …This little section? [pointing to the worksheet plot of blocks]  
Lydia:  yea, on that little section all of the ah line graphs will go up the same amount and 

down the same amount. [uses hands to indicate simultaneous movement]  
Sylvia:   Um.  So what’s it gonna look like up there?  On the graph.  [pointing to the public 

display]  
Jose:   Parallel. 
Lydia:   They’ll be parallel [uses arms to demonstrate parallel lines]. 
[once the simulation was run] 
Sylvia:  What, what’s happening right here? [points to position graph] 
Brian:   Jaime. 
Sylvia:   What else is happening? 
Jaime:   No no.  Everyone goes crazy again? 
Sylvia:   That’s true.  Everyone does kind of go crazy again, or do their own thing. What’s 

happening right here? [points to an intersection of two lines on the position 
graph]. 

S:   Someone went up and then stopped.  
Sylvia:   But I mean this very point, right there.    
Jaime:   They’re crossing?  
Sylvia:   What does it mean? 
Jaime and Lydia:  They’re on the same floor.  
Jaime:   For that second.   

The ways of knowing that were relevant here and across the whole activity involved shared 
construction of understanding, where student’s individual elevator’s motions served as examples 
for exploration and construction of, for example, an informal metric for speed, and the graphical 
representations were examined for “how we did” in coordinating activity, lending a collective 
sensibility to this Discourse. The shared construction and collective sense invited more 
participation by students, evidenced by the finding that 57% of codes were attributed to Sylvia.   
Activity building  

In the IMP class, textbook-centered, step-by-step work through procedures for solving the 
profit problem was the main activity, while movement between individual creation and collective 
exploration of emergent mathematical objects was the main activity of the Participatory 
Simulation. The sub-activities that composed the IMP main activity included responding to 
known-answer questions with fill-in-the-blank answers, reporting results, and talking through the 
steps of procedures (e.g., converting fractions to decimals), balanced somewhat by explanations 
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of procedures or why the formula “made sense” (see Table 1). The sub-activities that supported 
the Participatory Simulation main activity involved interpreting graphical representations, i.e., 
predicting and visualizing position and velocity graphs based on the arrangements of elevator 
floors, and observing/describing real-time development of graphs and elevators’ motion (see 
Table 1). Important opportunities to draw on social and cultural resources of students were also 
in evidence, as Sylvia issued open-ended invitations: “you can do whatever you want on either 
side of this (required arrangement),” and, “do something interesting.”  Thus, students were 
invited to contribute social and academic resources (explorations, understandings) in creative, 
even playful ways to the group’s efforts.  
Resources  

Discourses were made relevant through the use of tools or cultural artifacts, especially the 
textbook in the IMP class and the networked system activities and technology in the Elevators 
class. In addition, both activities drew on English and Spanish language, text (book for IMP, 
worksheet for Elevators), peers and Sylvia, calculators, and mathematical symbols (profit 
formula, graphs). However, the real-time public display in which students could identify their 
own and others’ contributions, physical and electronic gestures (e.g., using arms to indicate 
parallel lines, individual elevator motion), and multiple representations of relationships were 
additional, unique resources available in the Participatory Simulation. Through the use of 
gesture, multiple representations, and public display, diverse ways of knowing were involved in 
the situation, inviting contributions of both social and academic resources, in addition to cultural 
resources embodied in language.  

Dual Dimensions of Social Space  
We examine two dimensions of the social space of the classrooms -- 1) content and 

representations, and 2) participation, including using of social, cultural and academic resources – 
to address the research questions. Comparative analyses help us pinpoint unique ways in which 
network-mediated activity may scaffold learning for underserved students, and how 
mathematical knowledge and practice may be enhanced through inclusion of underserved 
students’ social, cultural and academic resources in network-mediated learning.  
Content and representations  

Not surprisingly, the content involved in each class session was markedly different (see 
Table 2). Both sessions engaged students in learning important content, though the variety was 
greater in the Elevators activity. In addition, the wider variety in the representations available for 
students to make sense of content in the Elevators session expanded the social space along one of 
the dimensions of interest, providing opportunity for students to explore multiple relationships 
among variables of interest. Finally, the nature of those contributions and the content addressed 
were such that students had much more latitude to act, given the focus in the IMP activity on 
mostly textbook-determined progression through a more constrained task.  
Participation including use of resources  

While there was considerable overlap in the types of resources available and used in both 
class sessions, the Elevators session did offer additional tools and avenues for participation, 
expanding the social space along the participation dimension of the classroom. The technological 
capabilities of HubNet and design of the Participatory Simulation that allow individual inputs to 
be collected and displayed as a real-time emergent, evolving system represented a unique activity 
structure in which students could identify themselves and others as individual elements, and 
examine the nature of a complex interaction of elements. Students were invited to both 
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contribute and draw on diverse social, cultural, and academic resources in the situation, as they 
used gesture, text, language, and images as resources in their exploration.  

 
 
 

Table 2. Content addressed in two class sessions  

 
Conclusion  

The results emerging from this study point to the potential for networked technologies to be 
culturally responsive in design and use. The Elevators class session involved increased variety of 
avenues for engaging content and representations, and each other, expanded social space, 
broadening opportunities to serve under-served students by enlarging the ways of knowing and 
systems of knowledge treated as important resources for learning. Further, our findings indicate 
that mathematical knowledge and practice may be enhanced by diversifying classrooms’ 
academic, social and cultural resources, and drawing on those of under-served students. The 
point also needs to be made that connections to the world outside school in this case were 
stronger in IMP; the strengths of the IMP problem solving approach in inviting some diversity in 
experience is clear. Still, the variety of ways of acting available in the Participatory Simulation 
was larger than in IMP as enacted. Our findings indicate that looking closely at classroom 
activity can identify some existing features of networked technology design and use that have 
potential to better support under-served students’ mathematical learning, especially in terms of 
academic and social resources. However, cultural practices proved to be much more difficult to 
pinpoint. We argue that this is due to the limits of looking only in classrooms. To move to truly 
culturally relevant classroom technology design and use, exploration of social, academic, and 
especially cultural practices of under-served students must be done across contexts, including 
peer and home communities, to identify those that can be important in supporting rigorous 
mathematical learning. This is partly or largely due to schools’ historical and ongoing under-
appreciation and misunderstanding of the practices of under-served students. They are often 
viewed as lacking, and their families and communities have been viewed through a deficit 
model. Until we move outside the structure of schools and traditional approaches to technology 
design, we will be missing important opportunities to enlarge the social space of classrooms in 
ways that serve all students.  
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In this paper, we expand upon prior research by comparing the strategies and solutions of the  
students in this study, who were from a low-income, inner city high school, to students from 
higher SES backgrounds who had longer and more extensive exposure (at times many years) to 
inquiry oriented environments. Our hypothesis was that if the students in this study were 
provided with classroom instructional conditions that were similar to the ones present in the 
other studies, after a relatively short period of time, they too would exhibit the same or very 
similar problem-solving behaviors, solutions and justifications to the problem being explored. 
Indeed, we found that the students did come up with justifications that matched those of their 
suburban counterparts.  

Introduction 
“The future of American society will be determined in large measure by the quality of its 

urban schools. We have the responsibility and the obligation to make that future far better than 
the present we now know.” (Noguera, 2003, p.156). Indeed, in the state of New Jersey (and 
elsewhere) there exist extreme, persistent, and dramatic differences in performance between 
students attending resource-rich schools that tend to be located in suburban neighborhoods, and 
students attending schools serving high proportions of economically, socially disadvantaged, or 
minority students that tend to be located in urban communities (Camilli & Monfils, 2002, 2004). 
In addition, national reports (see Education Trust, 2003a,b), document the disparities that exist in 
performance between different groups of students, noting that African American and Hispanic 
students continue to lag well behind their white counterparts. 

Much has been written about the differences that exist in the instructional approaches that are 
used in schools serving economically disadvantaged or racially diverse students and schools 
serving higher socio-economic status (SES) students. For example, Anyon (1997) notes that in 
inner city classrooms in general, instruction is often more limited to low level, rote and 
unchallenging material. Regarding mathematics instruction, Ladson-Billings (1997b) reports 
“despite the much talked about changes in mathematics education, African American students 
continue to perform poorly in school mathematics” (p. 7). Knapp (1995) states that for many 
low-income students, the educational experience “lacks meaning and importance to the learners. 
Thus, students learn to work two-digit subtraction without understanding in some basic way what 
the two columns of figures represent or even what subtraction is, much less how it relates to their 
lives” (p. 1-2). 

There are many reasons why mathematics instruction may be different in inner city 
classrooms, particularly those serving African-American populations. Some argue that state 
testing may be responsible for some of the differences in the ways in which teachers teach 
(Schorr and Firestone, 2004), in particular, a focus on testing may result in more “teaching to the 
test” (McNeil, 2000), thereby causing an over reliance on rote and procedural knowledge 
(Schorr, Firestone, and Monfils, 2003). Others, like Stiff (1998), note that classroom 
management may have something to do with it. He states, “Often, teachers believe that control of  
African American students is paramount and can best be achieved in teacher-centered 
classrooms.” He goes on to appropriately counter this notion by stating that “control is not the 
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goal of classroom instruction, learning is.” (p. 71). Some researchers call attention to the 
differences in language that may exist. For example, in discussing the mathematical problem 
solving of African American students, Orr (1997) found that many of the difficulties that her 
students experienced were rooted in the ways in which they used language.  

Other barriers like  cultural prejudices, lack of resources, and teachers who don’t really 
believe that all students can  learn mathematics also contribute to minority students “tuning-out” 
of math classes (Franklin,  2003). The situation is exacerbated when the students themselves do 
not believe that higher  education is a necessity or even an option (Franklin, 2003), and therefore 
mathematical study is  not very important. Cultural differences also exist amongst students’ 
home, community, and  personal backgrounds, and their schools, curriculum and teachers. These 
differences can be quite  dramatic, and manifest themselves in the ways in which students 
respond to problems. In a  dramatic example, Ladson-Billings (1997b) calls attention to the 
different ways in which white  suburban students and African American urban students often 
think about the same mathematical  problem. She discusses how the white students responses 
“represented their very different life  experiences and approaches to problem solving…they 
made sense of it as an abstraction. The  problem had little meaning, but they knew enough 
arithmetic to manipulate the numbers. [While]  the African American students…situated it in 
their own social contexts.” (p. 9). 

The situation gets worse as students proceed through their school careers. Koller, Baumert & 
Schnabel (2001), Baumert & Koller (1998) and Gottfried, Fleming & Gottfried (2001) state that, 
in general, interest in mathematics ebbs through high school. But for inner city African American  
students, the data is even more exasperating. The Educational Trust (2003a) reports that by the  
end of high school, “African American students have math and reading scores that are virtually  
the same as those of 8th grade White students” (pg. 1). Mendick (2002) makes the point that  
among other things, procedural work makes it difficult for students of high school age "to come  
to think of themselves as mathematicians and so it becomes less likely that they will study the  
subject further." (p. 3-329). How much more so would this be the case for African American 
students in a low income, inner city school? With this in mind, we report the results of a study, 
which compares the work of students in an inner city high school with that of their 
predominantly white, suburban counterparts.  

Theoretical Framework 
While much has been written about the differences that may exist between different groups  

of students, this study was designed to investigate the problem solving similarities that are 
present, particularly between African American students coming from one of the lowest  
performing, least advantaged high schools in the state, and their predominantly white suburban  
counterparts. In order to do this, we decided to focus on a task that had been used over a period 
of years with many different students, and in particular, many suburban students who were 
younger, the same age, or older than the students in this study (Tarlow, 2004; Glass, 2002; 
Maher, 2002; Maher and Martino, 1996) This allowed us to analyze the solution strategies of the 
students in the current study and compare them to those produced by the others. 

The task that was chosen, unlike the one noted by Ladson-Billings (1997a,b), did not involve 
a “real world context” but did involve a topic with which the students had little or no prior 
experience. The topic involved combinatorics, and had been perceived by the students in the 
other studies to be interesting. In addition to being able to compare the solutions of the students, 
the researchers in this study felt that by using such a topic, students who had been “turned off” 
by traditional school mathematics might find opportunities for mathematical discovery and 
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interesting, non-routine problem solving (Goldin, in press). Indeed, Goldin notes that when 
solving such problems low-achieving students can demonstrate mathematical abilities that may 
have gone unnoticed in the past.  

While it was important to choose a task that had been used extensively, was well 
documented, and provided opportunities for students to experience a “non routine” type of 
problem, the researchers in this study also felt that an appropriate comparison could not be made 
unless the classroom culture and instructional environment was also similar to that of the 
students in the other studies (Tarlow, 2004; Glass, 2002; Maher, 2002; Maher and Martino, 
1996) and consistent with the recommendations of the National Council of Teachers of 
Mathematics (see NCTM, 2000). In these studies, and in this study as well, students were always  
encouraged to formulate conjectures, test the conjectures, and defend and justify solutions in the  
context of an inquiry-oriented learning approach. More specifically, students were always  
provided with opportunities to build, modify, revise, refine, test, and extend their own ideas,  
discuss, question and justify solutions, make connections between different representational  
systems and revisit earlier ideas. Such instructional environments have been shown to be  
effective in longer-term interventions with inner city students (c.f. Schorr, 2000; Schorr, 2003;  
Campbell, 1995 as cited in NCTM, 2000; Silver and Stein, 1996; NCTM, 2000). Knapp, (1995)  
has noted that “the more classrooms focused on teaching for meaning—that is, geared  
mathematics instruction to conceptual understanding and problem solving…the more likely  
students were to demonstrate proficiency in problem-solving ability…all other factors being  
equal.” (p.142). Similarly, Schorr (2000) reports that urban students who were taught in an 
inquiry-based manner outperformed their counterparts who were not, and Stipek, Salmon, 
Givvin, Kazemi, Saxe & MacGyvers (1998) found that reform-oriented instruction led to more 
interest and motivation to engage in mathematical activities.  

This study expands upon prior research by comparing the strategies and solutions of the 
students in this study to students from higher SES backgrounds who had longer and more 
extensive exposure (at times many years) to inquiry oriented environments. Our hypothesis was 
that if the students in this study were provided with classroom instructional conditions that were 
similar to the ones present in the other studies, after a relatively short period of time, they too 
would exhibit the same or very similar problem solving behaviors, solutions and justifications to 
the problem being explored. We anticipated that this would occur despite the fact that the 
students in this study had not typically been exposed to inquiry-oriented instruction.1 

In the sections that will follow, we will describe the problem, the classroom environment, 
and the solution strategies—along with a comparison to the strategies used by the students 
reported on in previous research.  

Methods and Procedures 
Background, Setting and Subjects 

Twenty African American students from a low SES inner-city high school in New Jersey 
were invited to participate in an educational program at Rutgers University for 5 weeks. They 
were paid a stipend (as part of a grant designed to bolster the number of students who would 
graduate and go on to college) and participated in 11 sessions in mathematics, each spanning 
three hours. This paper reports on the 6th  and 7th sessions. 

All of the students attended a large urban public high school, where they were about to enter 
their senior year. The school is part of a district that is currently under state takeover. In this 
particular school, over the past several years, approximately 90% of the students perform below 
the “proficiency” level in mathematics (as noted on http://just4kids.org/).  
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The sessions were directed by a mathematics education professor at Rutgers University, who 
is the first author of this paper, with the support of two teaching assistants, one being the second 
author of this paper. The students worked in small groups, though some, at times, chose to work 
alone. 

Since the type of problem solving that occurred during these sessions had not been part of 
their typical classroom experience, many students were unaccustomed to coming up with 
convincing arguments, sharing their ideas with others, or working with others to solve problems  
over extended periods of time. To encourage the development of thoughtful explanations, 
teachers constantly encouraged the students using probes such as: “I’m really interested in your 
thinking” or “Can you tell me how you would explain that to someone else who didn’t 
understand?” For this particular activity, teachers also added the following probes “Can you tell 
me how you would explain that to someone else who found more (or fewer) towers than you 
did?” or “Suppose that I was sure that there were more, how could you convince me that there 
weren’t any others?” or “How can you be sure that you don’t have any duplicates?”  
Data 

Both authors collected detailed field notes. Careful documentation of meetings, held both for 
the purpose of planning and evaluation, were recorded as well. All students’ original work was 
available for examination. Additionally, parts of the sessions were videotaped by a handheld 
camcorder. 
Tasks 

The task, which is the subject of the sessions examined here, is called The Towers Task (c.f. 
Maher & Martino, 1996; Maher, 2002). In this task, students are provided with unifix cubes of 2 
colors and asked to stack them into what are called “towers”. The task follows here.  

How many towers, 4-tall, can be made when selecting from two colors? How do you know 
you have them all and that there are no duplicates? In an effort to push students to a deeper 
examination of the problem, they were subsequently given the same problem for towers 5-tall. 
Before beginning to work with towers 5-tall, students were asked to predict how many towers 
there would be. They were then encouraged to investigate their predictions in order to prove or 
negate them. In addition, students investigated several other extensions of the tasks.  

We note that this task, in and of itself, may not be considered to be a particularly difficult one 
if all that is expected is a numerical solution. However, as noted above, students in this program 
were always challenged to defend, justify and extend their solutions.  

In the sections that follow, we will highlight the mathematical problem solving of some of 
the students, noting in particular how they compare to those of their suburban counterparts.  

Results and Discussion 
In this section, we highlight the work of the entire class, and then hone in on several students, 

indicating their solution strategies and the evolution of their understanding of the underlying 
conceptualizations related to this problem. Before beginning, it is important to point out the 
initial reluctance exhibited by all of the students to discuss their ideas, and to delve more deeply 
into problems done during any of the sessions. We note that this was expected since this type of 
problem solving had not been part of their typical classroom experience, and they were therefore 
unaccustomed to sharing ideas, working with others over extended periods of time, or defending 
and justifying their solutions. 

Their initial justifications ranged in scope from “I just can’t find anymore” and “We’ve been  
looking for a long time, and there just aren’t more” to partial justifications in which the seeds of 
a more formal proof could be found. These types of responses were completely consistent with 
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the initial responses reported in prior research (Tarlow, 2004; Maher and Martino, 1996; Glass, 
2002; Maher, 2002). As with the students whose work is documented in the above-mentioned 
research, in time, the students did develop two main types of proofs –a proof by cases, and a 
proof by induction. The students also ultimately extended their understanding to an isomorphic 
problem. We also note that the students, like their suburban counterparts, were able to make 
connections to Pascal’s triangle and the Fibonacci series. We will now share some specific 
instances of student responses.  
Overview of the Entire Class 

When the problem was first distributed, one student immediately, as if intuitively, said there 
would be 16 towers. When he was asked why, he was unable to articulate any explanation. 
Rather, he wanted to build the towers and see if his intuitive response was correct. Later in the 
session, when he was once again questioned, he held up one tower and removed the top cube. He  
said that for that top you had only 2 choices of color and in every other position there were also  
exactly 2 choices. He was unable, at that time to offer a more complete explanation, again 
choosing to examine the towers more closely. We would speculate that he was beginning to 
formulate a proof by induction. He attempted to explain this method to his partner who was 
unable to follow his line of reasoning. His partner had instead chosen to record, using paper and 
pencil, all 16 towers without using blocks. While the partner had listed all towers, (by 
representing them with letters for the colors) he could not provide an explanation for his solution 
at the time. Ultimately, both students could justify their ideas to some extent, the first 
formalizing his inductive proof, and the second, though informally, using a partial proof by 
cases, but only after considering an extension involving the number of towers 5 high. When 
recording all of the towers 5-tall, the partner developed an orderly listing of the towers, 
indicating first the towers that would have one blue, and then the ones that would have one 
yellow cube. After that, the towers were listed along with their “opposites”.  

Some pairs of  students spontaneously began to consider simpler cases in which towers two 
or three high could  be built. They noticed that the number of towers doubled as the height of the 
towers increased by  one, but recognized this from examining the pattern and could not give a 
logical reason for the  apparent rule. They were content to recognize the pattern, and base their 
justifications on it. 

Several other pairs built their towers incorporating the concept of “opposites” and several 
conjectured that there were 16 towers because, they explained, 4 x 4 is 16. Those who believed 
the latter predicted that if the number of cubes in each tower were 5, then there would be 25 
towers in all. At first, some pairs did not notice the inconsistency created by this prediction, 
given that they believed that every tower had an opposite. When one pair built these towers, they  
stopped when they reached 25, believing that they were “done”. They indicated that they had  
used their method of building opposites to build most of these. They were then asked to pair the  
towers with their opposites. When they attempted to do this, they found that they had a few 
towers, which had no opposites. When these were built, they ended up with all 32 possible 
towers. This pair eventually provided a proof by cases, explaining why they had all the towers 
with no yellow cubes, 1 yellow cube, 2 yellow cubes, 3 yellow cubes, 4 yellow cubes and 5 
yellow cubes. They arranged the towers which had 2 blue (3 yellow cubes) into the following 
subsets. 
B Y Y Y   B B B   Y Y   Y 
B B Y Y   Y Y Y   B B   Y 
Y B B Y   B Y Y   Y Y   B 
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Y Y B B   Y B Y  B Y   Y 
Y Y Y B   Y Y B   Y B   B 

They created the opposites of these subsets. In this arrangement, it appears that they began by  
keeping two blue cubes together and moving these two blue cubes down along the tower. Then  
they held one cube constant while changing the other within each subset. This, as mentioned  
above, led to a proof by cases.  

Ultimately all students were asked to predict how many towers 5-tall would be built and then 
to test their hypotheses by constructing the towers. One pair of students generated an inductive 
solution by reasoning that since towers which were 4-tall numbered 16, there would be 2 choices 
for a 5th cube for each of these towers and therefore the there would be 32 towers. When they 
were questioned, they tried to express this idea by saying that there were 2 sets of towers, which 
were 4-tall, and therefore there were 32 towers 5-tall. Some students spontaneously posed the 
question of how many towers there would be if they were 6-tall, and then built the towers to 
confirm their predictions.  
A Closer Look at Two Students 

We will now focus in on two students, Jasmin and Lavar whose work we highlight for the 
purpose of documenting in greater detail, the actual proofs and justifications that they developed. 
These students worked together at times, but more often worked independently seeking deeper 
understanding of the towers task and extensions of that understanding to other related problems. 
They continued their work with the towers over the course of two days, not even wanting to stop 
for lunch. During these sessions, Lavar worked primarily in symbolic notation, not always 
connecting his representations to concrete towers, while Jasmin almost always built the towers 
prior to developing symbolic representations. Both students also decided, quite spontaneously, to  
explore what would happen if the towers could be built from three colors, and eventually any 
number of colors. 

While they were seated at the same table during the lunchtime sessions, Jasmin and Lavar 
worked independently, at times glancing at each other’s work. They repeatedly questioned each 
other’s work, at times in very challenging ways (we speculate that some of the challenges arose 
out of some social dissention between them). Jasmin challenged Lavar’s careless algebraic 
representations while Lavar alluded to an easy understanding of what Jasmin had struggled to 
understand, the inductive reasoning behind the doubling pattern.  

Lavar tried to build a “formula” for finding the number of towers. He understood that if you 
take towers of any height, you could add either one of two colors to each, when building towers 
one taller. This would result in a “doubling rule”. He wanted to represent this idea by using 
variables but at first, had difficulty doing so. Interestingly enough, when he was asked to explain 
his thinking, he would construct and then take apart (as part of his explanation) the same towers. 
When asked to build new towers rather than to “deconstruct” the ones he had already built, he 
appeared to have difficulty doing this and needed to be asked again. This seems to indicate that 
his understanding of the towers and how they “grew” was tightly connected to their actual 
constructions. Nevertheless, he demonstrated the inductive reasoning justifying why the number 
of towers doubled.  

We found that throughout the sessions, Lavar created a model of the towers, a drawing that 
he kept going back to. This model looked like a stack of squares with the number one inside each  
square. He explained that the one represented one block tall and that for each one block tall there  
would be the same number of choices as there were colors. He then multiplied these numbers to  
get the total number of towers. When asked why he multiplied these numbers, he did not give a  
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clear explanation. Ultimately, he assigned the variable, h, for height, to the number of cubes high 
that the towers were and the variable, c, to the number of colors available from which to choose.  
He knew that the generalization would involve exponential growth when created the formula  
h=cp, where p represented some power. When asked how his formula could be used to represent  
the number of towers 7-tall, using 15 colors, he immediately said it would be 157. This seems to  
indicate that although he was unable to create a totally accurate formula using variables, which  
was his goal, he did understand what was happening. He was not able to map the induction to an  
algebraic representation even though he appeared to clearly understand it.  

Jasmin spent a great deal of time handling the towers, rearranging them and thinking about 
what was happening. It was when she realized that the number 2 in the solution, 2n, was not 
random, and was the number of colors available, that she was able to understand the inductive 
reasoning behind the generalization. She pursued this idea by examining what would happen if 
there were 3 colors available. She had a difficult time representing these towers until she stopped  
assuming that each tower had to have all 3 colors.  

Jasmin:  This [her work on towers 2-tall] is the lowest one [height of possible towers] 
you could start with is two ‘cause it’s two different colors… 

Researcher1: Right… 
Jasmin:  and you’re goin’ up to three you can only start with three [height of possible 

towers]. 
Researcher2: So, can I ask you a question? 
Jasmin:   Sure 
Researcher2: Is it not possible then to have towers 2-tall when you’re using three colors? 
Jasmin:   No 
Researcher2: How come? 
Jasmin:  ‘Cause the point is using all three colors and having all three colors in the 

[unclear] positions. 
Jasmin knew that there were 3n towers possible towers based on the original problem, where 

n represented the height of the tower. Since in this case, n would equal 4, there would be 81 
possible towers and this alerted her to the fact that she was thinking of something incorrectly, 
since she was unable to generate a number of towers close to 81. In spite of the disequilibrium 
that Jasmin experienced, she persevered and revised her hypothesis, coming up with an accurate 
solution. 

Both Jasmin and Lavar worked on a towers extension problem which had the added 
stipulation that one of the two colors of the blocks, blue, was always glued to another blue block, 
so that when a blue block was used, it would have to be used only as a double block. This 
problem generates the Fibonacci sequence. In this problem, Lavar built towers before working 
symbolically, recording the number of towers he would get by building each successive height of 
tower. He noticed the pattern, and described this both in terms of the numbers and the joining of 
the concrete towers. It was apparent that this sequence of numbers was not familiar to him, 
though. Lavar recognized that his hypothesis was based on pattern recognition, but wanted to 
understand more. He described the recursive aspect of the pattern, and then stated “But if there’s 
a quicker way to do that, I would definitely have to figure that out.” He then conjectured that the 
ratio of blue blocks to yellow blocks was always 2:1. 
Comparison to Students in Other Studies 

The solution strategies, justifications, and explanations of the students in this study were 
remarkably similar to their predominantly non-minority, more affluent counterparts at the same 
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grade level. Tarlow, (2004) studied the problem-solving behaviors of eleventh grade students 
who worked on the same problem. Many of these students were involved in problem-solving 
sessions similar in nature over the period of several years. However, all students worked side-by- 
side to solve the problem under discussion. Tarlow (2204) states that, “In grade eleven, Robert  
and his partner Michelle, two students who had been in the study for many years, used inductive  
reasoning to build towers and to justify having all of the towers for any given height. In addition,  
they used this reasoning to explain their theory that the total number of towers for height h and x  
available colors would be x to the h, which was an extension of their original theory for towers  
with two available colors and height x, two to the x. Angela and Magda, two students who had  
joined the study later, had also developed this idea, which they named Angela’s Law of Towers”  
(pg. 223). She also notes that several other students “built and organized towers …into cases”.  
We note that these types of proof almost exactly mirrored the proofs generated by the students  
who were the subject of our study, all of whom had no prior experience in solving this type of  
problem.  

Conclusions 
Our results support our hypothesis that the students in our study developed solution strategies 

and methods of proof and justification similar to the those present in the other studies, after a 
relatively short period of time, even though they had little if any prior exposure to problems of 
this type or to inquiry-based instruction. We also note the initial reluctance on the part of the 
students in this study. Many did not seem to know what, beyond stating the obvious, “We can’t 
find anymore”, was required to provide a convincing argument, since this was not something that 
they were accustomed to doing. We note, however, that after a short time, they did get the “hang 
of it” and were excited to be able to delve more deeply into the problem. We believe that this 
study documents that after a very short period of time, these students could provide convincing 
arguments, formulate two general types of proofs, and work over extended periods of time (often 
skipping lunch) on mathematical problems. We cannot say if this pattern persisted consistently in  
their everyday classroom environment; we can say that the level of enthusiasm was maintained  
over the course of our study, as we worked on subsequent problems. We can also say that some  
students expressed feelings of empowerment in the ability to approach and persevere in  
mathematical problem solving. As one student said, “If we had stuff like this in our regular  
school, it’d be more interesting. People wouldn’t cut so much… What I see is I can be a good  
mathematician.”  

Endnotes 
1.  This was based upon extensive visits to the school, and to the teachers who taught the 
students for the past 3 years. 
2.  Note that the scores of the individual students in this study were not available. Rather, the 
reported scores reflect the proficiency levels for the entire school. 
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In this paper Scientific Mathematics (ScM), School Mathematics (SM) and Informal Mathematics 
(IM) are characterized. According to the definitions proposed, it is argued that there is greater 
continuity in certain aspects between IM and ScM, than between ScM and SM.  
 

Background 
The need to provide a definition for the different types of mathematics arose during a 

longitudinal study which is being carried out. The purpose of the investigation is to understand 
the evolutionary processes of primary school children’s beliefs related to the use of informal 
procedures to solve arithmetic problems in school as well as out of school.  

In the research course it was necessary to solve two problems: a) to delimit what SM and IM 
are; because while the former includes a reference to school contents and practices, the latter has 
blurred borders; and b) to define each type of mathematics applying uniform criteria so as to 
make them commensurable. To solve the problem ScM was used as a parameter. The 
characterization became necessary because although in specialized literature a great amount of 
definitions can be found, they are generally based on diverse disciplinary perspectives, and 
consequently comparison becomes difficult.   

Sense of ScM, SM and IM. Based on mathematical education research reports, Mathematics 
is defined as a complex system (García, 1986) constituted by:  

a)  a mathematical knowledge domain;  
b)  the cognitive activities carried out by members of a community related to mathematical  

knowledge; activities that take place within the framework of social interaction 
(Bauersfeld, 1980) from which epistemological procedures related to i) construction, 
communication and representation of knowledge, ii) argumentation and proof of 
mathematical results, iii) application of validity criteria and iv) solution of specific 
problems, are highlighted;  

c)  the axiological, attitudinal and conative aspects of the members of the aforementioned  
community; and  

d)  a culture, in the sense of a sum of customs, practices and beliefs (Wilder, 1985) which is  
expressed through activities and attitudes shared by the community integrants (Cobb &  
Yackel, 1988; Seeger, Voigt & Waschescio, 1988).  

The previous generic definition provides a logical possibility of viewing each type of 
mathematics through the same lens. With this framework, ScM is under a permanent building up 
process carried out by integrants of the mathematician’s community. The purpose of ScM is to 
solve theoretical and practical problems. The knowledge domain of ScM includes formal 
theories sustained by the community experts using their proof and validity criteria.  

IM is used by subjects of small groups in informal contexts. The purpose of IM is to solve 
specific problems to make decisions (Lave, 1988; Carraher, Carraher and Schliemann, 1988). 
The knowledge domain of IM is formed by self-generated mathematical knowledge and/or 
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knowledge acquired in informal and formal non-institutional ambits (Scribner & Cole, 1973) and 
also from compulsory schooling.  

SM is performed by teachers with their groups of students in their classroom. The knowledge 
domain of SM is the set of mathematical contents included in the curriculum and in the textbooks 
teachers use; contents are linked with forms of representation and communication and with 
validity and proof criteria (included in pedagogical, didactical and evaluation prescriptions); all 
of them are related with those accepted in ScM. The purposes of SM, set up by students and 
teachers in a classroom community, are limited and tend to meet the requirements established by 
the school assessment system, even though from an institutional point of view the goal is to have 
the students come into contact with certain contents to acquire competencies.  

In the following table, examples of epistemological activities and procedures carried out by 
members of the different communities are described.  

 
Final comments 

The three types of mathematics differ in their scopes and purposes, as well as in the culture 
shared by the members of the communities who performed them, which makes their practices 
and customs different. However, in spite of this, there are analogies among them, such as the 
“continuities” the authors seek to make explicit in this paper. The ideas synthesized will be used 
to establish an analyses framework – where ScM is placed at the core of mathematical education, 
whether in or out of school – for the investigation in progress.  
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Research shows student collaboration is important in planning and implementing distance 
teaching and learning of mathematics (Arnold, Shiu & Ellerton, 1996). This report considers  
some Sri Lankan elementary teachers’ ideas for making a distance-based course more useful for 
their growth as learners and teachers of mathematics.  
 

Conceptual Framework  
This report is part of a study that analyzed issues in improving Sri Lankan elementary 

teachers’ learning and teaching of mathematics in the context of CEPM, a distance-based course 
(de Silva, 2001). Although Sri Lanka had a large number of untrained elementary teachers, by 
1998, a 3-year distance education program begun in the 1980s was being phased out, and short-
term distance education was being implemented as a means of professional development. Tatto, 
Nielsen, Cummings, Kularatana & Dharmadasa (1991) found graduates of the 3-year program 
had a significant drop in their mathematical knowledge and pedagogical skills. Given the Sri 
Lankan authorities’ plan to use distance education for ongoing professional development, it is 
important to implement the research findings of Arnold et al. (1996) and to include teachers’ 
ideas in designing courses that will empower their growth beyond the duration of a course.  

Methodology  
My questions called for a qualitative approach where one “begins with an area of study and 

what is relevant to that area is allowed to emerge” (Strauss & Corbin, 1990, p. 23) as theory 
grounded in the respondents’ experiences. In particular, I used a critical ethnographic approach 
(Thomas, 1993) where I raised my voice to “speak to an audience on behalf of [my] subjects as a 
means of empowering them by giving more authority to the subjects’ voice” (p. 4, italics in 
original) and “became active in confronting explicit problems that affect the lives of the subjects  

– as defined by the subjects – rather than remain [a] passive recipient of “truth” that will be 
used to formulate policies by and in the interests of those external to the setting” (p. 29). Data 
was collected data throughout the yearlong course. Four interviews with each of 10 teacher 
respondents, interviews with course designers, tutors, and administrators, analysis of the 15 
course modules (CEPM 101-115) and teachers’ assignments, and field notes from classroom and 
tutorial observations allowed for triangulation of data.   

Results  
The CEPM course objectives were to improve elementary teachers’ understanding of the 

mathematics they teach and the way they teach it. However, my research identified problems in 
the relevance of the course to the teachers and a dichotomy between what the course proposed to 
accomplish and what the modules, tutorials, assignments, and assessments emphasized.   

For example, despite the course proposing that teachers gain a deeper understanding of 
elementary mathematics, the content was geared to secondary mathematics. While discussion of 
higher-level mathematics was considered important, respondents believed the focus on fewer 
topics, developed thoroughly from simple to abstract ideas (as exemplified in the first module), 
would be enable their ability to continue to learn beyond the course.   
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Further, despite the CEPM course pre-requisites asking participants to have at least five years 
of teaching experience, the course did little to build on teachers’ this experience. In particular, 
discussion of issues related to teaching mathematics was rare and teachers were not encouraged 
to discuss their experiences or to conduct teaching experiments. Many felt it was important to 
continually make connections between learning and teaching mathematics: instead of having five 
modules on pedagogy at the end, “classroom methods and things, if we had it at the beginning, it 
would be good. …Then if they connected the others to them it would be more successful” 
(Indrani). Others suggested that all modules should involve discussion of teaching activities 
appropriate to their students, rather than have separate modules on pedagogy. For example, Mala 
proposed making a learning aid in, and a lesson plan for implementing some aspect of, each 
content module. Other suggestions for alternative structures to the modules, tutorials, and 
assignments included: Kamala’s of incorporating the nature of mathematics and mathematical 
thinking (CEPM 111) as an ongoing discussion in tutorials; Sunila’s of integrating a classroom 
methods (CEPM 113) discussion into each content modules’ final assignments.   

As continuing professional development, courses such as CEPM should reflect the needs of 
the times. Hence Lanka’s suggestion, of analyzing the new primary mathematics curriculum to 
understand the way mathematical concepts build on and connect to each other, was particularly 
timely. (While none of the modules referred to the new curriculum, one of the eight tutors I 
observed did so on occasion.) Based on my respondents’ concerns, it was also evident that 
programs for teachers must address the changing socio-economic conditions in the country. 
Many teachers perceived lack of nurture as an increasing problem in children’s upbringing. 
However, as Kamala pointed out, authorities were unwilling to discuss the consequences of this 
lack within the context of primary teaching let alone incorporate it into the CEPM course.  

Conclusion  
They were going to the schools doing a project about teacher education – about different 

diplomas, degrees, College of Education’s training, ... to ask teachers themselves how teacher 
education should happen. Thushara, fourth interview Given the one-way communication of 
instruction and policy that I had usually observed, I was delighted to hear of a systematic effort 
by authorities to get teachers’ ideas, to hear their voices. Given my critical approach, throughout 
my research I had actively communicated teachers’ ideas to tutors and administrators in the 
many discussions we had. It was heartening to know that future professional development 
programs might actively include teachers in course design.   
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This study examines high school mathematics teachers’ learning about classroom practice 
and subject matter through their interactions with their colleagues. In this presentation, I 
elaborate on how collegial conversations that (a) focus on the specificity of the classroom and (b) 
are purposed toward improving practice effectively supported the development of conceptually 
transparent language for teaching mathematics.  

In particular, I analyze the conversations of teachers in an American urban high school who 
have worked to increase equity in their mathematics classrooms. At this school, students enroll in 
advanced mathematics courses at higher-than-average rates. In addition, a comparative study of 
student mathematical performance shows that, while these students enter high school with 
weaker mathematical preparation than their college preparatory peers in more affluent high 
schools, they actually outperformed them after two years of instruction (Boaler & Staples, 2003). 
These successes are particularly notable in a working-class school in which the majority of 
students come from traditionally underrepresented groups.   

Understanding how the teachers have successfully implemented mathematics reforms would 
therefore greatly contribute to our larger efforts at improving practice and creating more 
equitable classrooms. Prior work on teachers’ responses to reform emphasizes the impediments 
to successful implementation that arise from teachers’ beliefs, existing practices, and subject 
matter traditions (Cohen, 1990; Stodolsky & Grossman, 1995). At the same time, research on 
teacher communities suggests that certain kinds of collegial environments can support innovative 
classroom practice (Gutiérrez, 1995; McLaughlin & Talbert, 2000; Cochran-Smith & Lytle, 
1999). Yet the ways in which those collegial environments interrupt the common impediments to 
reform and support innovation need to be further specified.  

In this study, I went inside a reform-oriented teacher community to understand some aspects 
of collegial environments that support innovation. During a two-year comparative ethnographic 
study where I taught and worked alongside the teachers in the study, I collected a variety of data 
targeted to capture teachers’ formal and informal collegial interactions. These included audio and 
videotape recordings of teacher meetings, scheduled and spontaneous collegial conversations, 
and fieldnotes of classroom observations. Using sociolinguistic methods, I employed a 
sociocultural framework to specify the mechanisms by which the teachers learn from each other 
in informal conversations and interactions (Horn, in press). In this presentation, I focus on the 
ways that the teachers’ conversations rendered a figurative version of the classroom, thus 
providing an interactional space for them to consult closely about issues of practice.  

The analysis of video and audio-transcripts of the teachers’ conversations showed that the 
classroom was often figured using two particular forms: (a) teaching replays –– blow-by-blow 
accounts of classroom events that included directly quoted student voices, and (b) teaching 
rehearsals –– anticipatory versions of classroom events that either reworked interactions that had 
occurred or defined prototypical interactions and appropriate teacher responses. The close 
rendering of the classroom created multiple opportunities for the teachers’ collaborative 
pedagogical problem solving. First, by locating problems in the specific interactions of the 
classroom, the teachers often faced the ambiguity and complexity of their teaching choices. 
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Second, by sharing the normally private events of the classroom with their peers (Lortie, 1975, 
Little, 1990), they coordinated expectations and teaching strategies, creating a more consistent 
environment for their students. In addition, by taking on both the student and teacher voices in 
these replay and rehearsal-laden conversations, they laminated student identities onto 
themselves as teachers, intertwining their voices in the roles of teacher-as-teacher and teacher-as-
student. By extensively taking on the student voice and perspective in their deliberations of  
practice, the teachers’ constantly considered their students’ intellectual and emotional responses 
to their teaching.   

Part of what emerged from these classroom-specific, multiply-perspectived conversations 
was a conceptually transparent language for teaching mathematics. Some of this language was 
already in use at the time of the study. For example, in explicating the elements of linear 
functions (y=mx +b), the teachers introduced the idea of slope as a “grow-by number” and the y-
intercept as a “start-at number.” Likewise, they eschewed the conceptually opaque term 
“canceling out,” preferring the more conceptually transparent and mathematically distinct terms 
“making ones” to describe the reduction of rational expressions or “making zeroes” to describe 
combining opposite signed terms in an expression. In this presentation, I will analyze an instance 
in which conceptually transparent language is shared in conversation. This study supports the 
notion that teachers' professional development is more effective when closely linked to 
classroom practice and provides a model for building such learning within a departmental 
community.  
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In this paper, I use a critical discursive framework to examine a middle school mathematics 
unit’s “voice.” Attending to the text’s voice helps to illuminate the  construction of the roles of 
the authors and readers (and the relationships between them)  as well as the portrayal of 
mathematical knowledge. The critical discursive framework  focuses one’s attention on 
particular language forms, including personal pronouns,  imperatives, nominalizations, modals, 
and words that develop continuity. The aim of the  analysis was to examine the voice of the unit 
to see if the authors of the unit achieved two  ideological goals put forth by the NCTM Standards 
(1991) document: 1) to portray  mathematics as a human construction, and 2) to shift the locus 
of authority away from the  teacher and the textbook. The findings indicate that achieving these 
two goals is more  difficult than the authors of the Standards may have thought. I conclude by 
discussing the  implications of these findings for curriculum developers and for future research.  
 

Introduction 
In an attempt to make the Standards (1991) more concrete, the National Science  Foundation 

(NSF) announced funding for the development of curriculum materials that  embodied the ideas 
explicated in the Standards documents. While the presence of some  of these goals (e.g., problem 
solving) may be more apparent when examining curriculum  materials, others require a closer 
look. For example, the Discourse Standards suggest that  mathematics textbooks be positioned in 
a different manner than what has previously been  the case: “Discourse entails fundamental 
issues about knowledge: What makes something  true or reasonable in mathematics? How can 
we figure out whether or not something makes sense? That something is true because the teacher  
or book says so is the basis for much traditional classroom discourse. Another view, the one put 
forth here, centers on mathematical evidence as the basis for the discourse” (NCTM, 1991, p. 
34). Rather than the textbook and teacher acting as major sources of authority, students are 
encouraged to rely on mathematical reasoning and evidence when discussing mathematical 
solutions, drawing the locus of authority away from the teacher and the textbook. Not only is the 
textbook to be used differently, but also the view of mathematics that is portrayed is intended to 
“represent mathematics as an ongoing human activity” (NCTM, 1991, p. 25). The question 
remains as to whether these deeper ideological and epistemological goals are being met.  

This  new positioning of the textbook and its different view of mathematics are related to 
“voice,” i.e.,  “how the voice of the authors/designers is represented and how they communicate” 
with the  reader (Remillard, 2002, p. 6). These particular goals of the Standards are related to the 
“voice”  of the textbook because they are inherent in the subtle messages the textbook embodies. 
The  discursive choices1, which can be examined in the voice of the text, send subtle ideological 
messages both by constructing the roles for and relationships with the reader and by portraying 
mathematics as a particular type of knowledge.  

The majority of analyses of mathematics  textbooks have focused on mathematical ideas, 
their forms of representation, and their  organization for student learning (e.g., Fuson, Stigler, & 
Bartsch, 1988; Li, 2000; Schmidt,  Jakwerth, & McKnight, 1998). An additional important 
dimension is being ignored: the language  that is being used. While you cannot read culture 
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directly from language, language does  indirectly index particular kinds of dispositions, 
understandings, values, and beliefs (Ochs,  1990). It is through the examination of language 
patterns in textbooks that ideological and  epistemological issues can be scrutinized. In this 
paper, I argue that people who develop  curriculum materials need to carefully attend to their 
discursive choices so that they can “hear”  their voice and not undermine their own intentions.  

Analytic Framework 
A critical dimension of understanding how teachers use curriculum materials are the written 

materials themselves (Lloyd, 1999). To examine written materials, they must be viewed as an 
objectively-given structure (Otte, 1983). That is, the structure and discourse of the written unitnot  
what happens when an individual interacts with it- must be the focus of the analysis.  
“Voice”  

One way of attending to subtle and unintended features of a text is to examine its “presence.” 
Love and Pimm (1996) define the “presence” of the text as encompassing the “features of the 
text that are usually taken for granted” (p. 379). They distinguish between the presence of the 
text and the presence in the text. Related to the first, they claim that the inherent authority of the 
text is something that teachers cannot ignore. A textbook is a codified version of what is 
accepted content at a given point in time; it is a message from the mathematical community 
outside of the school, teachers, and students. The presence in the text includes the author 
“voice”, which is intimately related to discursive choices made by the authors (Love & Pimm, 
1996, p. 381). The notion of choice is important when examining subtle and unintended 
meanings in text because it helps focus attention on ideological issues:  

Whenever an utterance is  made, the speaker or writer makes choices (not necessarily 
consciously) between alternative  structures and contents. Each choice affects the ways the 
functions are fulfilled and the meanings  that listeners or readers may construct from the 
utterance. … The writer has a set of resources  which constrain the possibilities available, 
arising from her current positioning within the  discourse in which the text is produced 
(Morgan, 1996, p. 3).  

The aim of this paper is to examine  the voice of one mathematics unit. More specifically, I 
inspect the positioning of the textbook  with respect to those who will be reading it and the ways 
in which mathematics as a body of  knowledge is conveyed.  
A Critical Framework for Examining the “Voice” of the Text  

The  discursive framework I adopted for this analysis was developed by Morgan (1995; 
1996), who  draws on Halliday’s (1973) three metafunctions of language: the ideational, 
interpersonal, and  textual. These metafunctions of language allow the analyst to examine the 
roles of the reader and  author and the relationships between them as well as the particular view 
of mathematics captured  by the text. I chose this framework because it offers a systematic 
approach to the analysis of  unintended messages and thus fits the intent of this analysis.  

Morgan describes the combination  of these metafunctions as making up the “style of 
writing” and the cohesiveness of the text. The  style of writing focuses the analyst’s attention on 
the use of imperatives (or commands), personal  pronouns, and modality. Imperatives implicitly 
address the reader and involve her in the  construction of mathematics. Imperatives enable the 
author to speak with an authoritative voice  because they are used to direct the reader’s attention. 
First person pronouns (I & we) indicate the  author’s personal involvement with the activity in 
the text; the second person pronoun (you)  directly addresses the reader. Modality focuses on the 
“degree of… weight or authority the  speaker attaches to an utterance” (Hodge & Kress, 1993, p. 
9). It appears in modal auxiliary  verbs (e.g., must, could, will), adverbs (e.g., certainly, 
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possibly), or adjectives (e.g., I am sure  that…). An examination of the coherence of the text 
focuses one’s attention on the modes of  reasoning and its features that preserve continuity.  

Methods 
The Text 

When NSF released its call to fund innovative mathematics curriculum materials, interested 
and  qualified parties were asked to submit proposals to compete for funding. The authors of the 
Connected Mathematics Project (CMP) (Lappan, Fey, Fitzgerald, Friel, & Phillips, 1998a) were  
one such group to receive financial support.  

Broadly speaking, the CMP curriculum is a middle  school problem-centered curriculum 
where almost every problem occurs in a “real life” context. Each grade level of CMP is 
published as a  set of separately bound units; each unit centers on a big mathematical idea and is 
50 to 80 pages  long. Problem sets are organized into “Investigations” which typically involve a 
series of related  problem solving situations. At the end of each Investigation, a set of homework 
problems is  given (called Applications-Connections-Extensions or ACE problems). Periodic 
reflections (i.e.,  “Mathematical Reflections”) ask students to make mathematical connections.  

The particular 64- page student unit I focus my analysis on is the Thinking with 
Mathematical Models (Models)  (Lappan, Fey, Fitzgerald, Friel, & Phillips, 1998b) student 
edition. Because this unit focuses on mathematical modeling, it has some characteristics (e.g., 
experiments in  which students are required to collect actual data) that are not as prominent in 
some of the other  units. Therefore, one should not conclude that this analysis is indicative of 
what appears in other  units2. Since the purpose of this analysis is to examine the unintended 
messages of the text, these unusual characteristics are inconsequential. I do not make claims 
about CMP itself; rather, I examine Models closely so as to raise issues about the difficulty 
inherent in developing curricular  materials that convey unconventional messages to readers 
about their roles and about what it means to know and do mathematics. Even when the authors 
believe strongly in the goals of the reform, the analysis reveals that capturing the reform ideals in 
written form is a difficult task.  

There are many explicit ways in which this curriculum embodies the vision of the ideas put 
forth  in the Standards documents, e.g., through its goals of mathematics for all, its focus on 
eliciting   and using student thinking, and its pervasive use of problem solving to teach big 
mathematical  ideas in meaningful ways. However, curriculum materials also need to be 
examined on a more  tacit level to see if deeper, ideological goals are being met.  

When I examined the discursive forms of this unconventional mathematics curriculum to 
describe its voice, I attended to the linguistic tools described in Morgan’s framework (i.e., 
imperatives, pronouns, modality, nominalization, features that preserve continuity, and modes of 
reasoning). The guiding question was: What is the nature of the voice of this text? Two related 
sub-questions were: What images of mathematics does it capture? How are the reader’s roles and  
the relationship between the author and reader constructed?  
Process of Analysis 

In order to examine the discursive features of the unit, I used both a written copy and an 
electronic version of the unit and moved back and forth between them. I used the electronic 
version of the text primarily to do a word count for the entire text, and to search for particular 
words (e.g., “you”) or symbols (e.g., a question mark). I followed most of the electronic searches 
with an examination of the written unit because I needed the text that surrounded specific 
word(s) to interpret their use.  
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I focused on the discursive elements of the text suggested in Morgan’s framework. For the 
majority of the analysis, I examined the written copy sentence-by-sentence. To interpret these 
language forms, I used both the text around the forms as well as the location of the form within 
the larger unit. I also had to continually situate the text within the larger context within which it 
was being used. For example, I continually reminded myself of the presence of the text.  

Results 
Style of Writing 

The style of writing focuses the analyst’s attention on imperatives, personal pronouns, and 
modality. Each will be addressed in this section.  

Imperatives  
Often there were strings of imperatives listed in the book and sometimes when the  authors 

said they were going to ask questions, they used imperatives instead. The most common  
imperatives include: “explain” (42) 3, “make” (35), “use” (34), “write” (29) and “describe” (33).  
Morgan (1996) points out that the use of conventional and specialist vocabulary in conjunction  
with imperatives “marks an author’s claim to be a member of the mathematical community  
which uses such specialist language and hence enables her to speak with an authoritative voice  
about mathematical subject matter” (p. 6). Given the unequal relationship between the authors of  
textbooks and the readers in schools, it is likely the case that this combination of specialist  
vocabulary along with strings of imperatives is viewed as being used to inculcate students into  
the mathematical community.  

Another characteristic that needs to be considered is whether the  imperative is inclusive or 
exclusive (Rotman, 1988). An inclusive imperative (e.g., consider,  define, prove and their 
synonyms) demands “that the speaker and hearer institute and inhabit a  common world or that 
they share some specific argued conviction about an item in such a world”  (Rotman, 1988, p. 9). 
In contrast, an exclusive imperative requires only that “certain  operations… be executed” 
(Rotman, 1988, p. 9). Inclusive imperatives emphasize the reader’s  role as that of a “thinker”; 
exclusive imperatives construct the role of the reader as a “scribbler”  who performs activities. In 
Models, 70% (221 of 315) of the imperatives were exclusive,  including “make” (35), “use” (34), 
“write” (29), “draw” (17) and others (e.g., “find,” “place,”  “copy” (106)). The choice of 
imperatives emphasizes the reader’s role as someone who performs  actions rather than 
contemplating and thinking about them.  

Personal Pronouns 
First person pronouns (I & we) were entirely absent from the unit, obscuring the presence of  

human beings in mathematical activity and distancing the author from the reader. The four major  
forms associated with the second person pronoun “you” are summarized in Table I below.  

 
Table I 

Form Examples from the Text Instances 
You + verb “You find”, “you know”, 

“you think” 
165 

You + modal verb “You will”, “you can find”, 
“you would” 

56 

Inanimate object (as subject) + 
animate verb + you (as direct 
object) 

“The graph shows you”, 
“the equation tells you” 

37 

You + hedged verb “you might have found” 5 
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Because the second and fourth forms in Table I are related to “modality,” I will address those in 
the next section. In the first form, you + verb, the authors typically made explicit what they 
thought the reader was doing.  

The third form offers a striking example of “nominalization”; that  is, the transforming of 
processes into objects. In mathematics, many processes (e.g., “rotating”)  become objects (e.g., 
“rotation”). In the unit, inanimate objects (e.g., “the graph”) perform  activities that are typically 
associated with people (e.g., “tells you”). This type of nominalization  depicts an absolutist 
image of mathematics, portraying mathematics as a system that can act  independent of humans.  

This is not to say that mathematical objects are the only actors in this  textbook. In fact, many 
of the problems have human actors in them. The combination of human  actors and 
nominalizations send mixed messages about the role of humans in the process of  mathematics.  

Modality 
One type of modality appears in the authors’ use of “hedges” which are “linguistic pointers 

to moments of uncertainty” (Rowland, 1995, p. 328). For example, “that is a linear model,” is 
more direct and certain than if I use, “I think that might be a linear model.” As Table I shows, 
there are only five instances of hedges associated with the word “you” in which the authors 
acknowledge that they do not know the actual readers of the text. For example, after introducing 
a fulcrum problem using the context of a teeter totter, the authors state, “You may have 
noticed…”. The hedged verb “may have” indicates that this is information about the reader 
which the authors do not know. The other most common modal verbs are “would” (55), “can” 
(40), and will (40), all of which express more certainty than other verb choices like “could.” This  
combination of certain modal verbs with few hedges indicates the authors have great conviction  
about their knowledge of mathematical modeling and where mathematics is used.  

Coherence of the Text  
Examining the coherence of the text helps inform the interpretation of the style of writing. 

The  coherence of the text can be seen in how reasoning is constructed as well as how continuity 
is  maintained throughout the text.  

Construction of reasoning 
Words like “because” and “so”, which express connective reasoning, were rare in the unit.  

Rather, reasoning was constructed more often through a narrative telling of how someone else  
came to a particular conclusion. For example, the unit gave an extensive example of how a “class  
in Maryland” did a particular experiment and then asked the readers to repeat what the Maryland  
class had done. Often, after the description of the exemplar class or person, a series of  
imperatives were given to direct the reader’s actions. According to Morgan (1996), a  
combination of temporal themes and imperatives constructs an algorithm to be followed,  
reinforcing the student’s role as one of “doing”.  

Maintaining continuity 
Continuity is maintained in the text through the author’s use of recurrence: past events 

resurface  (e.g., a class bike trip or fundraising activities), some actors appear in more than one 
place,  mathematical terminology is introduced either in bold or italics and later is written with 
normal  lettering. An interesting form used to maintain continuity appeared in statements like 
“you  found.” For example, the authors wrote phrases like “In the last investigation, you tested 
paper  bridges of various thickness. You found…”. In these statements, the authors give meaning 
to the  activity, shaping, defining, and controlling the “common knowledge” (Edwards & 
Mercer, 1987)  of the classroom. In fact, the authors need to do this because they are counting on 
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a common  readership that has done and found certain things before they can proceed to the next 
section of  the text.  

Discussion 
Does this unit portray mathematics as a human activity? The analysis indicates that the 

textbook  is devoid of first person (singular and plural) pronouns, indicating that the presence of 
human  beings is concealed. In the second person pronouns, the authors obscure agency by 
having  inanimate objects perform animate activities. Morgan contends that this suggests an 
absolutist  image of mathematics as a system that can act independent of humans. In contrast, the 
authors  have human actors throughout the textbook who both engage in and use mathematics. 
The type  of reasoning that is used throughout is narrative in nature, valuing the human 
experience. Thus,  the message sent to the reader is a mixed one.  

How is the unit positioned with respect to  authority and its epistemological stance? I have 
shown how almost all of the hedged forms  appear where the authors draw on an experience that 
they cannot know if the students have been  a part of or not (i.e., balancing on a teeter-totter). To 
soften their assertions, the authors hedge the  verbs in the problem. The most prominent forms of 
modal verbs in the text (i.e., “would”, “can”,  “will”) indicate that the text represents a viewpoint 
of strong conviction.  

The style of writing of  the text is authoritative. The repeated imperatives in the experiments, 
problems and ACE  construct the author of the text as having an unequal relationship with the 
reader; the author’s  role is to inculcate students into the mathematical community. Because most 
of these imperatives  are exclusive, the authors emphasize the role of the student as a scribbler. 
Furthermore, the  combination of temporal themes and imperatives support this role as students 
are instructed to  follow particular algorithms.  

Mathematics educators need to deeply consider the ways that  language indexes a particular 
ideological stance. While there is a growing interest in how  language can be used in the teaching 
and learning of mathematical content, less attention is given  when examining written resources 
like textbooks and curricular materials. The findings reported  here illustrate how powerful the 
hegemony of traditional discourse in mathematics curriculum  materials can be. The curriculum 
developers themselves are dedicated to the vision of the NCTM  Standards, yet they are not 
immune from the hegemonic discourses of traditional mathematics  education.  

Implications  
In the following paragraphs, I address the implications of this research for both curriculum 

development and future research.   
Implications for Curriculum Development   

If we want to pursue unconventional goals in new curriculum materials, we need to expand 
our  view of who needs to be involved in the development of those materials. Schwab’s (1978) 
highly  cited work suggests bringing together a team of people to develop curricular materials, 
including  both subject matter specialists and experts from the social sciences. Many of these 
specialists are  steeped in more conventional ideologies. To allow for ideological or 
epistemological shifts,  consideration needs to be given to the choice of language in the 
curriculum materials. Discourse  analysts could be involved in the creation and revision of new 
curricular materials or could be  consultants to people who are trying to develop less 
conventional materials. Attending to  discursive choices offers one way to illuminate ideological 
assumptions and to ensure that  curriculum developers are not unintentionally undermining their 
own goals.  
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Implications for Research 
The findings of this analysis raise other questions that should be pursued in educational 

research.  A similar analysis could be done with other unconventional curricular materials to see 
if deeper  ideological and epistemological goals are being met. Additionally, an analysis could be 
done to  compare the more traditional textbooks to unconventional materials. A comparative 
analysis  would be important to make claims about the prevalence of some of the discursive 
patterns. For  example, while this text had more exclusive than inclusive imperatives (70% vs. 
30%), an  examination of other mathematics textbooks may uncover that this is a relatively high 
number of  inclusive imperatives for a mathematics textbook.  

Moreover, the question remains as to whether  changing some of the more traditional 
language patterns in textbooks would make a difference in  classrooms. Research on students’ 
and teachers’ beliefs in mathematics classrooms who are  using less conventional curricula has 
shown that they have different beliefs than those using  more traditional curricula (Schoen & 
Pritchett, 1998; Wood & Sellers, 1997). Would choosing  our words more consciously so they 
reflect a different ideological stance change the way that  students and teachers interact with the 
curricular materials?  

Alternatively, these findings may   suggest that we need to examine the ideals put forth in the 
NCTM Standards more carefully. The  authors of the Standards suggest these shifts as if they 
might be unproblematic to realize. As  mentioned earlier, a textbook represents a message from 
the larger mathematical community  about what students should learn in their school 
mathematics experience. Some of the  discontinuities between the ideas suggested by the 
Standards and the discursive choices that  appear in the mathematical unit may be easier to 
resolve than others. Other modifications may be  more difficult to make. One set of changes that 
would be difficult is the ones that modify the  genre of a mathematics textbook beyond what an 
average reader may expect, given her past  experience with mathematics textbooks. How might 
readers respond to such changes?  Additionally, Apple (1986) has clearly articulated the politics 
involved in textbook writing and  marketing, which raises a related question: would companies 
consider publishing such an  unconventional genre of mathematics textbook? If publishers are 
mainly concerned with making  a profit, the curriculum materials may never even go to press.  

Representing mathematics as a  human construction is not easily captured in written 
materials for at least two reasons: a) the  authors have to help the readers learn particular 
mathematical ideas and b) the authors need to  assume some particular ideas have been learned in 
order to write the next section of the textbook.  Adopting a discovery approach to mathematics 
may be more straightforward for curriculum  developers because they have particular 
mathematical ideas in mind that the students need to  learn. This tension has been explored in 
mathematics education literature related to teachers and  teaching, but has not been examined 
related to curriculum and curriculum developers. As a  community, we need to consider more 
conscientiously the difficulties inherent in some of the  shifts being suggested in the Standards 
documents.  

Endnotes 
1.  Whenever I use the word “choice,” I do not mean that they occur at a conscious level for the  
person using them.  
2.  Also, the curriculum is now being revised, so the findings reported might not be applicable to  
the next edition.  
3.  Numbers in parentheses indicate the number of occurrences of that word or phrase in the  text.  
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Here we discuss teaching/learning situations in math classrooms based on one teacher’s 
listening and comprehension as he follows a group of four girls working on an open-ended 
problem. The teacher has earlier participated an in-service course about working with open 
problem solving. The lesson is recorded on video, which in an episode involving group work 
shows some of the difficulties the teacher seems to have with getting his pupils to understand the 
points with the tasks. We analyze the communication with a listening taxonomy together with the 
epistemological triangle. The result shows us that in order working with open problems will 
succeed, it is of paramount importance that the teacher learns to listen his pupils with 
understanding.   
 

Theoretical background  
The role of communication has been increasingly emphasized in mathematics education 

research in the last decade. Communication is central to pupils’ formalization of mathematical 
concepts and procedures. If a teacher pays attention to this, she is compelled to listen to her 
pupils and to follow their thinking process before she tries to understand them, and before she 
tries to get them to understand her. One method of achieving this is to use discussion as an 
element of teaching. Very often pupils have preconceptions (or misconceptions) about the 
subject to be learned. The teacher may try to understand her pupils’ way of thinking by listening 
to discussions among pupils or having a dialogue with her pupils. The comprehension she gains 
through such a communication can be used as a reflecting point for planning her teaching 
(Schoenfeld, 1987).  

In his book Luhmann (1984) describes communication as composed of three components: 
selection of information, selection of form, and selection of understanding. The speaker 
understands information and selects form, while the listener has the hard task of understanding. 
If information and/or form is unclear, it may be difficult to listen and to understand what the 
speaker means. Listening and understanding will always depends on the listener’s way of 
thinking.   

In the literature, one may find many different, usually hierachic classifications for listening. 
For example, Covey's taxonomy (1989, 240) contains five levels of listening:  1. Ignoring the 
other, 2. Pretending to listen, 3. Selective listening, 4. Attentive listening,  5. Empathic listening. 
He states that “One should seek to understand before to be understood”. Burley-Allen (1995) 
operates with three levels of listening – to listen only every now and then, to hear, but not really 
to listen, and empathic listening. These are almost the same as Coveys last three levels. In her 
paper, Davis (1997) considers three kinds of listening: evaluative listening, interpretative 
listening, and hermeneutic listening.  

In comparing empathic and interpretive listening Stewart (1983) points out some theoretical 
and pedagogical advantages of the interpretive approach to listening.  However, he considers a 
balanced situation, in the sense that the participants are equal. As we are focussing on a teacher-
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pupil discussion at least some aspects of empathic listening should be taken into account – the 
teacher should try to understand her pupils holistically, not other way round.  

Steinbring (1999, 44) uses the theory of Luhmann and Saussure to develop an 
epistemological triangle that “contains very specific features with regards to the particularities of 
mathematical communication”. The epistemological triangle consists of context of reference, 
sign or symbol and concept. Together with the classifications for listening we will use this idea 
to analyze the communication in the classroom.  

Listening has been in the center of communication research more than fifty years (Stewart 
1983, 379), but in mathematics education it has a shorter history. Today one may find many 
studies on communication (with the focus on listening), among them: Fernald (1995) describes a 
method to teach students in psychology to listen empathically. Pirie (1996) discussed the 
meaning of discussion from different perspectives - What? When? How? -and developed a 
model for a listening teacher. Davis (1997) reports a collaborative research project with a middle 
school mathematics teacher and gives some examples how the teacher listens.   

Focus of the paper  
Our paper concentrates on a teacher’s listening to his pupils during a mathematics lesson 

with open problem solving. We are interested in determining, on what levels a teacher listens in 
such a situation. In order to look for explanations, we ask: On which levels does the teacher 
listen to his pupils? Why are there gaps in the teacher’s listening? And we will discuss its 
consequences for learning.   

Classroom visiting  
In the spring of 2003, the researcher (the second author) visited – in order to get authentic 

information on classroom communication related to open problem solving – a school in 
Copenhagen and videotaped a mathematics lesson. The class in question was an 8

th

 grade with 
14–15 year-old pupils – 22 pupils in all. The teacher was a young man with five years of 
teaching experience. He had earlier participated a teacher in-service education course given by 
the researcher with open problem solving as one content area. Before the course the researcher 
had interviewed him about using open problem solving, and another interview took place after 
the lesson.  

The teacher explained to the researcher in advance that the topic of the lesson was equations 
and functions. His choice of ‘open approach’ in the lesson resulted him to produce some open 
problems himself. Most of the tasks were formulated as commands, such as “Tell a story on what 
the arithmetic expressions could be about: 2x = , 37x = or 43,25x =  ”. During the active part of 
the lesson, the class was divided into groups of four or five. The tasks were new to the pupils and 
most of them did not know how to solve or give an answer to these tasks. Therefore, they 
discussed in their groups what to do.   

It seemed to the researcher that the pupils liked their teacher, and that they wanted to find a 
solution or an answer to satisfy his command. At the same time they were confused about what 
kind of answers would be good enough, and about what kind of mathematical knowledge they 
should use or look for.   

The following episode from the lesson is a part of the communication from a group of four 
girls, whom we shall call Anna, Betty, Cecilia and Doris. During the episode, the teacher visited 
the group every now and then. The open task in question is the one mentioned: “Tell a story […] 
2x = ; 37x = or 43.25x =”. The teacher’s introduction to the whole class for the episode was, as 
follows: “As you know the letter x can be whatever you want like a dog, a ball or a number. You 
choose it yourselves; it is your story.” The whole episode took about 10 minutes.  
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The discussion episode 
ANNA: It could be a multiplication table for the number 2? ]  
BETTY: Or it could be two cows on the field. ]  
CECILIA: That is not a story.  
ANNA calls the teacher; everybody is silently waiting for the teacher to come.  
[4] BETTY: What do you want us to write? The multiplication task for the number 2?  
[5] TEACHER: Yes, I will say it is an expression of the multiplication table for the number 

2. Yes, that is perfectly correct.  
[6] ANNA: Is that what we should do?  
[7] TEACHER: Yes, you should find an expression and a story. When I was a little boy in 

first grade, this table was one of the first tables I learned. That was a good story, wasn’t 
it?  

[8] ANNA: Can I just write the multiplication task for the number 2?  
[9] TEACHER: Yes, maybe someone else will come out with something else.  
[10] ANNA: I still don’t understand it…  
[11] TEACHER: Just make a story; we will try it all together, if it is good enough.  
The teacher leaves and the pupils write the multiplication table for the number 2 and after a 
short discussion the multiplication table for the number 37 for the story to 37x = . The next task 
43.25x =  gives them new troubles.   
[12] BETTY: Now we have used the multiplication for the number 2 and 37, why can’t we 

use the multiplication for the number 43.25?  
Long silence while the others look confused.  
[13] DORIS: Is that a table? Maybe it could be some shopping?  
[14] BETTY: You don’t use exactly 43.25.  
[15] DORIS: More than the multiplication of the number 43.25. Maybe we buy something that 

costs 43.25? A bag of coffee, maybe?  
[16] BETTY: Oh I don’t feel like doing it. A bag of coffee doesn’t cost 43.25. I don’t think we 

should do it in this way. Shopping means to find the sum of what I buy, not to multiply. 
No, I give up.  

[17] ANNA: Let us write that we use the money to buy something.  
[18] DORIS: If we buy two bags of coffee and each cost 43.25, then we multiply?  
[19] BETTY: But if we multiply by two we get the double, can’t we say that we measure 

something?  
Confusion spreads all around the table.  
[20] ANNA: When do we need this?  
[21] BETTY: Does it mean anything? It is unimportant? It is the point he wants.  
[22] ANNA: What is the point with all this?  
[23] BETTY: Let us say the multiplication table for the number 43.25.  
[24] ANNA (calls the teacher saying): We are sitting here, and we are very stupid.   
The teacher arrives.  
[25] BETTY: Could it be the multiplication table of the number 43.25?  
[26] TEACHER: It is a little unrealistic, I would say, maybe.  
[27] ANNA: Maybe something with shopping?  
[28] TEACHER: Yes, why are you saying shopping?  
[29] CECILIA: You talk about application.  
[30] TEACHER: Yes (obliging)  
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[31] DORIS: If we wanted to buy a football with the price 43.25 and we wanted to buy  
two…  

[32] BETTY: No, we are not finding the sum. You can double up.  
[33] TEACHER: The principle is the same. [Now follows a story about buying wood in a 

lumberyard]  
[34] BETTY: Can’t you measure something and then multiply?  Like base multiplied by the 

height?  
[35] TEACHER: (to BETTY) Maybe if you can convince your group. I think you should go 

on with your ideas you can do it.  
[36] ANNA: If you knew how long time we already spent on this.  
[37] TEACHER: Yes, it sounds reasonable too with the multiplication table of the number 

43.25. I don’t know what to use the multiplication table of the number 37 for either. But 
do you understand it?  

[38] ANNA: I don’t understand anything at all.  
The teacher leaves and the group decide to write the multiplication table of the number 43.25.  

Interpretation  
In interpreting the levels of the teacher’s listening, we will use Covey’s five-step taxonomy 

(1989, 240).  
The communication episode in the group can be structured in four phases, two of them 

without the teacher, and the other two with the teacher. In the first phase [1]-[3] the pupils 
suggest and reject proposals. When BETTY suggests two cows, it is in continuation of the 
teacher’s instruction. The second phase [4]-[11] is communication between the teacher and the 
pupils in the group where the teacher accepts the multiplication table of number 2 as a 
mathematics story and gives the pupils an example of a story about this multiplication table, 
maybe more a ‘meta’ mathematics story than a normal mathematics story. The third phase is 
[12]-[24] discussions in the group. They cannot agree on any of the suggestions, and they seem 
helpless in relation to the point of the task [22]. They are going in circles when BETTY again 
mentions the multiplication for the number 43.25 as a solution [23]. The phase [25]-[38] is again 
communication with the teacher where he at last ‘gives up’ and accepts an ‘unrealistic answer’, 
his own words [26].   

All the pupils are more or less engaged in solving the tasks, but from the beginning they are 
uncertain about what is acceptable as answers. The task at hand is new to them. Asking their 
teacher does not yield a clear answer. On one hand, he says it is perfectly correct to use the 
multiplication table [5], and on the other hand, he tells a story and says that someone else will 
surely come up with something better. Following Covey’s taxonomy, the teacher ignores ANNA 
(level 1) who tells him that she doesn’t understand [10]. In [11] he pretends to listen (level 2) 
using an automatic ‘teacher’ sentence before he leaves. The group is left to its own devices, and 
the pupils are unable to come to any understanding of how a story could look like. DORIS 
suggests several times the idea of buying coffee ([13], [15], [18], [31]), but the group did not 
accept her suggestion. An explanation may lie in social relations within the group – she was 
maybe not in a position within the group to tell the others what to do.   

The leader of the group appears to be BETTY who didn’t understand the idea of buying 
coffee. BETTY understands a shopping situation totally differently: for her, shopping means 
‘making sums’ [16]. ANNA several times expressed that she doesn’t understand what to do 
([10], [24], [38]), but on the other hand, she actively tries to solve the tasks. When she calls the 
teacher [24], she tells him that she feels stupid, but he ignores her again (level 1). BETTY is able 
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to get him to listen, but the answer doesn’t help them solve the problem [26]. In the same 
utterance the teacher says that it is ‘unrealistic’ and ‘maybe’. Now ANNA tries with shopping 
and the teacher listen attentively [28] (level 4). He repeats the words but when BETTY takes 
over once more it seems like he is only listening to her [32] – [35]. He tells another story about 
himself in lumberyard (difficult to hear exactly) before he encourages BETTY to go on with her 
ideas and to convince the group, he says to her: “You can do it.” The sentence in [35] seems 
again to be an automatic ‘teacher sentence’. ANNA tries twice to tell him that she needs help 
[36] and [38], but he ignores her (level 1).   

CECILIA was not an active member of the group. During the whole episode, she made only 
two comments ([3] and [29]). The teacher listens to her once for very shortly [29] and [30] when 
she answers his question about shopping. A couple of times during the episode the whole group 
seemed to be confused [12] and [19]. But when they ask their teacher, he seemed a little 
uncertain himself about what answers he would accept from them [37]. It seems like he did not 
envisage this answer, and even though he finds it unrealistic he decides to accept it. In this 
sentence he gives up finding a better solution and finishes the sentence with a standard teacher 
sentence: “Do you understand it?” But he doesn’t wait for an answer.   

Discussion  
The teacher in question tries to do something else than just follow the textbook. He has been 

in a teacher in-service course about open problem solving, and now he wants to show what he 
masters. Behind his resistance to change could be a wish to be seen as a respectable teacher (cf. 
Pehkonen 2001). Maybe he wanted to demonstrate to the researcher that he is able to use open-
ended tasks in mathematics class – that he is an innovative teacher, and in that sense to be 
respected.   

But at the same time he lacks some necessary skills in mathematics as well as in pedagogy, 
e.g. in asking questions and in listening. He seems to be on his very first ‘steps’ of using open-
ended tasks (i.e. using a constructivist type of teaching, e.g. Maher 1998). This can be seen in the 
setting of the task “Tell a story … about 2x =…” which is a little cumbersome. Another 
observation is that he is not sensitive to his pupils’ thinking process. He is mostly ignoring his 
pupils, only once he is attentively listening. Thus his listening is on lower levels of Coveys 
taxonomy, he does never listen empathically.   

Working with open problem solving demands quick decisions from the teacher. Will he 
accept or reject pupils’ ideas and why? How can he prepare himself? What kind of answers can 
he expect? How can he in the situation concentrate on his next move in the classroom situation? 
The teacher in question seems to be uncertain on several levels: He lacks experience with 
teaching open problems, and he has obvious problems with using mathematical terms for 
equations and functions correctly. One explanation for this uncertainty might be the fact that his 
teaching is videotaped.   

If we follow the epistemological triangle we can first examine the teacher’s intentions, and 
then the pupils’ understanding; where is agreement and where discrepancy. The teacher wanted 
to develop the concept of a relation between equations/functions to applications in real life. As 
‘context of reference’ he used ‘stories as a narrative expression for the mathematical terms’. He 
used expressions as ‘2x = ; 37x = ; 48.25x = ‘ as ‘sign or symbol’. But what happens is that none 
of the pupils in the group sees his point [22]. Instead of stories they see the expressions as tables 
for multiplication numbers, and the relation between equation and function, like seeing x as a 
placeholder or a variable is total overlooked. The expressions are neither equations nor functions. 
So the pupils are left to come up with solutions on the basis of the teacher’s authority 
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(Steinbring, 1999) and not understanding mathematics.  What the teacher thought to be a smart 
way to combine equations and functions confused the pupils. It was new to them and became 
another item in their school mathematics vocabularies without any general mathematical 
connection.  

The teacher told the group a story about himself as a little boy and about multiplications of 
the number 2 [7]. It was a story about the story, and the pupils were left confused. Why did the 
teacher tell that story instead of listening to what their problems really were? An explanation 
could be that when the teacher speaks himself he does not need to listen. Another one is that 
working with new skills is demanding in the way that every thing is new and therefore it cannot 
be done automatically.  

The problem of teachers’ pretending to listen to their pupils is well documented. For 
example, Perkkilä (2003) described a class situation where the teacher asked her pupils 
questions, but she used only such answers that she could fit into her plan for the lesson. The 
other answers, many times good prompts, were ignored. Covey (1989) says that a consequence 
of non-listening may be non-understanding. During the recorded lesson, the pupils seem to be 
confused, and not to understand the points of the teacher’s intension. And since they do not 
understand, they are uncertain and unable to come up with answers of any quality. Because the 
pupils are only searching for answers to satisfy their teacher, they only use surface strategies. In 
this situation the open problems are so vague that the pupils cannot see the limits for solutions. 
When working on a open-ended problems, a stage of confusion is very usual. But in a well-
managed case, pupils develop some understanding, and based on this they can make reasonable 
plans for solving the problem. Such development did not happen here. The pupils accepted non-
quality solutions for all parts.  

Conclusion  
The crucial question is how the teacher can develop his professional skills. This teacher 

dared to try to change his teaching in a constructivist way by working with open problem 
solving, but he has not listening skills required to understand his pupils. He told the researcher in 
an interview after the lesson, that he was very tired and aware that something was not working, 
but he did not recognize what was wrong or how to change it. This seems to be a good entry 
point for helping him to reflect on his teaching, but still there is a way to go to develop his skills. 
Although he seems to know what understanding is in theory, he is not able put his knowledge 
into practice. And in the class he acts as if his pupils are able to read his thoughts and understand 
what he means.   

As a rule in the classroom, the teacher is not corrected when speaking or explaining, whereas 
the pupils are. Some pupils may ask the teacher to explain the topic in more detail, but only very 
seldom will the teacher stop his presentation and ask his pupils questions and listen to their 
problems – usually the teacher just explains the topic once more, sometimes even using the very 
same words, only more slowly.   

A year ago the teacher in question was on a course to learn using open-ended tasks, and he 
was therefore eager to show how he can implement them. But the use of open-ended tasks is a 
very delicate process, where a teacher should have clear objectives and ideas on how to move 
ahead. The teacher made some of his first attempts, and was therefore primary interested in the 
outer form of open approach, i.e. he gave his pupils freedom to solve something that has multiple 
answers. It seemed that he did not have a clear mental image of what he expected his pupils to 
accomplish, and he was therefore not able to help them properly when they were confused and 
asked for his help. This lead us back to the in-service course. The teacher wants to use his new 
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skills but it seems to be very difficult and maybe the course did not ‘gave’ him the skills but only 
appetite to do it. To change one’s teaching style is a difficult process, and if it is to succeed 
maybe both the teacher and the researcher need to learn to understand pupils.  
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In the spring of 2000, the Inuit community and the Kativik School Board were pondering 

over the difficulties encountered by students in mathematics and the measures that could be 
taken to help students. One significant fact that could help explain these difficulties is that Inuit 
students learn Inuit mathematics (for example, a base 20 numeral system) in their own language 
in the first three years of their schooling and then go on to study in either French or English. It 
would thus seem that for these students two separate  and distinct universes are cohabiting: the 
world of day-to-day life and the “southern” mathematical world. Faced with this dual 
phenomenon, the instructional situation becomes highly complex: how can these two cultures be 
combined and accommodated in mathematics teaching situations?  

In this project we call on ethnomathematical research findings (Saxe, 1991; Bishop, 1988; 
Gerdes, 1985…) to help us better understand the impact of culture on the learning of 
mathematics and to provide methodological tools, while a collaborative approach to research 
guides us in our work with the teachers (Bednarz, Poirier, Desgagné and Couture, 2001; 
Desgagné, Bednarz, Couture, Poirier and Lebuis, 2001).  

The cooperation between the researcher and teachers in creating adapted teaching situations 
involves a planned alternation of situation development, classroom experimentation, and 
feedback. We believe that a triple input is essential to the development of teaching situations, 
namely didactics, the teachers’ experiential knowledge, and the cultural knowledge of the Inuit 
community. The team includes, besides the researcher, 6 inuit teachers form the Kativik School 
Board, 3 members of the Inuit community working as Inuit teacher educators, and curriculum 
development.  

During this presentation, we will first talk about the environment and cultural aspects that 
brought the Inuit to develop their numeration system, their ways of measuring (length, distance, 
time…) and their great aptitudes in spatial representations. Then, we will discuss the current 
collaborative project that aims in the development of teaching situations adapted to Inuit 
classrooms.  
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Damarin (2000) identifies the mathematically able as a socially marked category.  Such groups 
are frequently ridiculed by society in general and function as communities in their own right.  
The purpose of this paper is to document, discuss, and give meaning (in light of Damarin’s 
observation) to three coping behaviors used by mathematics department members at a teaching 
focused institution.  These behaviors form the burden of mathematics.  At once a weight and a 
badge of honor for department members, the burden functions to help members and the group 
maintain self-esteem and value mathematics.  Moreover, it defines membership in the 
department, by drawing lines of distinction between the department and other groups on campus 
and by providing the measure for vetting new members. Day-to-day life in an 18 member 
department was observed during three extended site visits.  These observation periods totaled 
twelve weeks (seven at the start of the fall semester, three in late November, and two at the start 
of the fall semester) and data collection focused on shadowing a new department member.  All of 
his interactions with colleagues, students, and university staff were observed.  Data included 
field notes, interviews with department members, and journaling.  
 

Definition of the Burden of Mathematics  
During analysis three types of behavior emerged as common to most collegial interactions 

within the department: (1) sassing students; (2) decrying the new professional evaluation system 
at the university; and (3) expressing exasperation at mathematical errors and innumeracy in the 
public.  Following short descriptions below, these behaviors, collectively termed the burden of 
mathematics, are given cultural meaning by understanding their function in group definition and 
self-esteem protection.  
Sassing students 

Sassing students is joking disrespectfully about students’ poor mathematics.  One might 
laugh about students not knowing how many feet there are in a mile or trying to separate 
problem solving from reasoning.  Sassing students is blowing off steam.  It’s a stress reliever.  It 
is not part of professional teaching work and is never directed at known, specific individuals.  
Rather it’s made up of stories about archetype students who fail in ways that seem unbelievably 
uninformed to anyone who values mathematics.  
The faculty evaluation system 

The site university was in the first year of a new system for faculty evaluation. It combined 
several scores in a weighted average to assign each faculty member a rating between 1 and 5, this 
used to compare faculty across departments and to determine all merit pay and performance 
recognition awards.  Rolling their eyes, the department members would emphasize that “this is 
carried to one decimal place!” The content of this remark and of department members’ feelings 
about the system is a belief that they, as the principal group on campus that should be 
professionally able to evaluate such a system, know it will not work and their objections have not 
been addressed.  One department member said “there is a belief out there that ‘because it’s 
numbers, it’s more accurate’. We’ve been fighting that for years, and now we’ve lost.”  
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Public errors 
 Department members commonly regaled each other with stories about mathematical errors 

or innumeracy in the larger community.  One popular story was about a trip the chair had made 
to K-mart where he found a bargain bin with prices marked “0.03¢ each”.  He filled an entire cart 
of merchandise and then made the checkout clerk and the store manager suffer as he explained 
the meaning of the decimal system.  Department members also bemoaned a recent federal law 
specifying that carpet must be sold in square feet.  Here the problem is the apparent need to 
protect consumers from having to convert between measurement systems.  

Telling stories like these was a popular entertainment.  Moreover, being able to do so and to 
appreciate their humor, as with participation in the sassing of students and the derision of the 
faculty evaluation system, was key to defining the department and its membership.  
Cultural Significance  

Self-esteem is that aspect of self that is concerned with protecting the identity.  We may 
apply the concept to a social group just as to an individual.  In each case self-esteem is often 
established through comparison with others (Osborne, 1996).  In particular Gibbons and McCoy 
(1991) and Crocker, et. al. (1987) found that individuals will engage in downward social 
comparison whenever the self is under attack.  The burden of mathematics is exactly a set of 
downward social comparisons in response to the attack represented by students who dislike 
mathematics and a general societal bias in favor of innumeracy. Further, participation in the 
burden and working to protecting group self-esteem define group membership.  

The University defines department membership through job descriptions and hiring 
qualifications.  Yet, the evidence of student clients and of the faculty evaluation system is that 
the university as a whole does not value the department for its skill with mathematics.  Thus it 
falls to department members to give value to mathematics.  Underlying each aspect of the burden 
is the common statement that participants are better than others because they understand 
mathematics.  Students are laughed at because they have little mathematical skill.  The faculty 
evaluation system is ridiculed as “silly” because mathematicians know it cannot work.  The 
public as a whole is derided for not understanding the decimal system or needing protection from 
having to convert between measurement systems. It each case, an insider, a department member, 
is validated in his or her ability with mathematics by derogating innumeracy in others.  Thus the 
department self-esteem is related to skill with mathematics and protected by taking up the burden 
of mathematics.  

Beyond protecting self-esteem, the burden of mathematics is used to vet new department 
members on the basis of ability to take up the burden.  It is the fact a new department member 
understands the humor and participates in each of these activities that offers real proof of 
membership.  The Ph.D., the piece of paper, is a university requirement.  Community 
membership is conferred to those who demonstrate, through the burden, being different from 
others (understanding and valuing mathematics) and who derogate innumeracy in general.  
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The extent of student participation in the conduct and direction of the verbal discourse in 
mathematics classrooms has been the focus of a considerable body of research since the release 
of the NCTM Standards. A question that has emerged from that body of literature is how to 
transform students’ role in the discourse beyond simply presenting a variety of solutions. My 
study on mathematics classroom discourse focused on how teachers involve students in 
discussions in which solutions are justified, evaluated, and ultimately compared for their 
mathematical claims or qualities, which I classified as reflective discourse (Cobb et al., 1997).   

In my review of the literature on discourse in mathematics classrooms (cf. Cobb, P., Boufi, 
A., McClain, K., & Whitenack, J., 1997;. Cobb, P., Wood, T., Yackel, E., & McNeal, B., 1992; 
Forman, E. A., Larreamendy-Joerns, J., Stein, M. K., & Brown, C. A., 1998; Lampert, M., 1990; 
O'Connor, M. C., & Michaels, S., 1996; Yackel, E., & Cobb, P., 1996), I identified three 
conditions for reflective discourse to occur. First, teachers provided students the opportunity to 
present and justify mathematical claims regarding solutions. Second, teachers aligned students 
with mathematical claims, by attributing ownership of claims to students and positioning other 
students with similar or competing claims. Third, teachers provided support for students to 
participate in the practices of evaluating and comparing claims.  

The main research questions in my study were primarily to determine the extent to which 
teachers were able to create the conditions for reflective discourse and secondarily to determine 
the impact of reflective discourse on student engagement. In order to characterize the nature of 
student engagement, I coded each student turn as substantial or non-substantial. Examples of 
substantial turns included explanations, questions about the mathematics of a problem or a peer’s 
solution or explanation, or comments on a peer’s solution or explanation. I coded teachers’ turns 
by their role in initiating or sustaining reflective discourse. The two main codes for teacher turns 
were reformulation and seeking comments. The reformulation code was used for teacher turns 
that made reference to a student’s explanation or solution. Turns coded as reformulation were 
further classified according to whether they served to close down or extend a discussion.   

I observed approximately ten lessons each of two seventh grade teachers who were 
implementing the Variables and Patterns unit of the Connected Mathematics Program. I selected 
up to two tasks for analysis from each lesson, for a total of 28 tasks. One teacher, SJ,  had 
remarkably consistent discourse patterns across tasks while the other teacher, LR, had highly 
variable discourse patterns. I chose to do a microanalysis of nine episodes based on how 
representative or explanatory was the discourse pattern found in the episode. Due to the 
consistency of the patterns found in SJ’s class, I was able to use one episode to characterize his 
practices in relation to reflective discourse. The variability in LR’s lessons in part stemmed from 
four long discussions from fourteen lessons, each of which lasted over 50 turns and 5 minutes. I 
selected episodes from LR’s class to analyze: the extent to which the three conditions for 
reflective discourse were present; whether LR used reflective discourse to close or extend a 
discussion; and the amount of substantial student engagement, especially in the long discussions.   

SJ’s turns coded as reformulation tended to close a discussion and, in general, SJ directed 
and controlled the flow and content of classroom discussions. Although SJ provided 
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opportunities for students to present their solutions, he did not align students with mathematical 
claims nor provide support for students to evaluate and compare claims. Student participation in 
reflective discourse was limited to presenting solutions and explanations; evaluation and 
comparison of explanations and solutions were non-existent practices.   

In the episodes in LR’s class containing lengthy discussions, LR recruited explanations and 
comments on explanations, even when the correct answer was already given. On several 
occasions, LR was able to align students with clearly articulated claims. In these cases, students 
evaluated peers’ claims and on two occasions students compared competing claims. During these 
episodes, there was a high number of turns rated as substantial engagement as well as 
considerable student-to-student interaction.   

What is striking about the discourse patterns in the 28 tasks is the rarity of occasions when 
the classroom discourse went beyond serial explanations. In only a few cases did reflective 
discourse occur, and when it did the discussions were animated and lengthy. For the most part, 
the teachers met one of the conditions for conducting reflective discourse: providing the 
opportunity for students to present and justify solutions. The teachers to a far lesser extent 
explicitly aligned students with mathematical claims and did not create classroom norms that 
served to support the practices of evaluating and comparing claims. Although I was able to 
identify several episodes for each teacher in which opportunities for reflective discourse were not 
fully realized, these episodes highlighted the challenges for teachers to identify and articulate 
students’ claims in real time.  

This study shows that providing opportunities for students to present solutions is a necessary 
but not sufficient condition for moving beyond serial presentations. Students require more 
explicit articulation of claims and knowing their status relative to a claim. The challenges for 
teachers include being able to understand which aspects of explanations and solutions are worth 
pursuing as claims and then being able to align students’ explanations with those claims in real 
time.  
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Purpose  
This study evolved out of a commitment to improve mathematics teaching and learning in an 

alternative high school and to begin to reverse the cycle of educational failure for students 
labeled “at-risk.” Although research in teacher preparation has explored the ways in which 
preservice teachers learn to teach mathematics, few studies have focused on how teaching in an 
alternative high school interacts with and complicates this process. Paralleling the need to 
improve the preparation of preservice teachers to work with at-risk and other marginalized 
students is the need for more effective mathematics education programs for at-risk students. The 
purpose of this study was to investigate the influences of reform-based methodologies and 
materials on preservice teachers’ instructional strategies and the mathematical development of  
at-risk students in an alternative high school. 

Theoretical Framework  
When students’ home resources and experiences differ from the expectations on which 

school experiences are built (McCarthy & Levin, 1992), they are often at risk of not realizing 
their personal and academic promise. While the literature suggests that learners are at risk due to 
factors related to their socioeconomic status, family background, or community, it is more likely 
that learners are at risk because schools are not meeting their specific educational needs 
(Baptiste, 1992). For example, mathematics for at-risk learners is typically perceived as a 
hierarchy of skills that are learned in a particular sequence (Carey, Fennema, Carpenter, & 
Franke, 1995).   

Instructional practices reflect teachers’ conceptions which resonate with their own 
experiences and background (Thompson, 1984; Cooney, 1985; Ernest, 1991; Cabello &  
Burstein, 1995). Mathematics teachers’ knowledge, conceptions, and attitudes about students and  
student learning impact the way in which these teachers interact with students in their classrooms  
(Calderhead, 1984). Because teachers act upon their expectations of students, negative teacher  
conceptions or low expectations for their students influence classroom practices and may  
adversely affect student performance (Brophy, 1985). Learners labeled as less capable than their  
peers are taught less mathematics and are presented with skill-oriented, direct instruction, and  
practice rather than conceptually-focused instruction promoting problem solving and  
understanding (Campbell & Langrall, 1993). Rote instruction often fails because it reinforces  
learners’ negative selfperceptions and deprives them of cognitive stimulation (Silver, Smith, &  
Nelson, 1995). The current study draws inspiration from these earlier studies and seeks to draw  
together the findings from these works to inform practice.  

Method and Data Sources  
The methodological underpinning of this study is derived largely from orientations to 

research that draw attention to the importance of detailed qualitative fieldwork and the 
observation and analysis of participants in contexts (Goetz & LeCompte, 1984). Participants 
were selected using purposeful sampling strategies (Patton, 1990) and included five preservice 
secondary mathematics teachers and five alternative high school students. The preservice 
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teachers were enrolled in a field-based mathematics methods course during the final semester of 
their teacher preparation program. The learning environment for the course is based upon the 
NCTM Standards (2000) and models inquiry-based, student-centered, collaborative learning. As 
part of the field experience component of the methods course, preservice teachers participate in  
eightweek cross-cultural pre-student teaching experiences in urban classrooms. The preservice 
teachers utilize activities from the Connected Mathematics Program and the Interactive 
Mathematics Program during the methods course and then incorporate these reform-oriented 
methodologies and materials into their mathematics lessons during their field experiences.  

Consistent with the methodology of the study, qualitative data were triangulated via multiple 
sources of evidence, including: (1) observations, videotaping, and field notes of the preservice 
teachers’ mathematics lessons; (2) three semi-structured, open-ended interviews with each 
participant; and, (3) collection of the preservice teachers’ reflective journals, lesson plans, and 
student work. Qualitative data were analyzed utilizing a double coding procedure (Miles & 
Huberman, 1994) and major themes were developed using thematic analytic strategies (Spradley, 
1979). Quantitative data included pre- and post-study tests, rubrics, and questionnaires designed 
to measure mathematics content knowledge, instructional practices, and attitudes. These 
quantitative data were analyzed by computing statistical means and standards deviations. Results 
obtained through quantitative analyses supported the findings from the qualitative data analyses.  

Results and Conclusions  
Four major themes emerged from the data analysis. While informative, these present a 

picture that is general in nature. In order to provide some insights into the totality of an 
individual participant’s experience, a profile, in the form of an in-depth case study, was compiled 
for each participant. The profiles examine the themes in the context of the preservice teachers’ 
and students’ own experiences.  
Instructional Practices 

The findings suggest that, through their interactions with the reformoriented methodologies 
and materials in an alternative high school setting, the preservice teachers were prompted to 
implement a variety of reform-oriented instructional practices, including requiring students to 
think mathematically and reflectively rather than just practice. For example, Michelle, a 
preservice teacher who described herself as “strong in math” and attributed her success in 
mathematics to following a series of procedures, declared in her initial interview, “Teaching 
mathematics is giving students a set of skills they can apply to a variety of situations.” Like the 
other preservice teachers, she recognized that the reform-oriented materials and methodologies 
were instrumental in influencing her instructional practices, “I found myself moving away from 
the traditional way of teaching math to encouraging student explanations and looking at many 
ways of solving and representing a problem.”  
Constructs of Student Knowledge  and Student Learning 

Throughout the study, the preservice teachers made frequent reference to student knowledge 
and student learning. As they acquired experience working with the students and the reform-
oriented methodologies and materials, there were several changes to these constructs. In his 
initial interview, Luke, a preservice teacher asserted, “I expect that I will have to do a lot of 
watering down as far as math lessons are concerned.” At the conclusion of the study Luke shared 
one of the most widely noted insights by the preservice teachers: the recognition that, “You hear 
the words “at-risk”, “alternative high school”, you think right off the bat, a bad situation, how 
can these kids learn, let alone do math, but they did understand and they showed us they’re 
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thinking. They had different ways to solve problems and used their life experiences. They didn’t 
all learn in the same way.”  
Mathematics Content Knowledge 

Pre- and post-study test results showed that the students gained in their mathematics content 
knowledge. These results were supported by interviews, observations, and student assignments. 
Because their prior mathematics education experiences emphasized a step-by-step, rote approach 
to learning, the students initially resisted engaging in conceptually-focused learning. As one 
student, Anthony, reported, “I’m used to just get a formula and just take the numbers and put 
them in. The teacher set it up for me.” As a result of working with the reform-oriented 
curriculum materials, the students experienced growth in their knowledge and understanding of 
mathematics concepts. Anthony echoed the sentiments expressed by the students when he stated, 
“There’s things I know what they mean now, I understand it and I can explain it and I kindof like 
it, you know? When you know what it means, it’s kind of fun to do math.”  
Attitude toward Mathematics 

Initially, the students did not possess positive attitudes toward mathematics. Selena, one of 
the students, declared, “Math’s useless and boring. It’s hard to figure out. It’s different than the 
other subjects because it’s a bunch of numbers and the others are words.” Analyses indicated that 
the students exhibited changes in their attitude toward mathematics. It appears that the real-world 
connections, problem-solving orientation, and student-centered nature of the reform-oriented 
methodologies and materials increased positive attitudes toward mathematics. Selena shared the 
sentiments of the other students when she reflected, “I never learned math this way before. It’s 
different, figuring things out. For the first time I actually liked going to math class.  

The present study provides some insight into whether  and how reform-based methodologies 
and materials can promote changes to preservice teachers’  instructional practices and foster 
mathematics achievement among students who have been  labeled “at-risk.” An examination of 
what preservice mathematics teachers believe and do in  response to a student population 
composed of at-risk students revealed that the alternative high  school provided a unique 
environment for the preservice teachers to engage in a collaborative   process of reexamining and 
challenging their conceptions of mathematics teaching and  constructs of student knowledge and 
student learning. An important implication of this study is that a pre-student teaching experience 
in an alternative high school can foster preservice  teachers’ understandings of how at-risk 
students think mathematically and how to cultivate  mathematical thinking in these students. By 
providing some insight into the complexities of  mathematics teaching and learning in an 
alternative high school and revealing how reform-based  methodologies and materials can begin 
to break the cycle of educational failure for at-risk  students, this study is compatible with 
PMENA’s goal to “further a deeper and better  understanding of the psychological aspects of 
teaching and learning mathematics and the  implications thereof.”   
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Jerry:  He’s copying me. I put it right there and he’s like, he’s suddenly like… 
Randy:  No I wasn’t. 

The ethical concerns held by these 10-11 year old children, are expressed in their words, 
actions and interactions.  The purpose of this paper is to explore the ethical nature of copying as 
it arises in a mathematics classroom. Using the lens of hermeneutics to interpret student 
conversations, we investigate this phenomenon as part of the ethical dimension underlying 
interactions in a mathematics classroom.  

Situating the Study  
Over the past two decades, educational researchers in mathematics have widened their gaze 

from an almost exclusive focus on the individual learner to consideration of social and cultural 
contexts to develop understanding of learning within a classroom community (Cobb & 
Bauersfeld, 1995; Cobb, Yackel, & Wood, 1992; Confrey, 1999). A further expansion is needed 
to include the ethical dimensions of mathematics learning. As Maturana and Varela (1992) 
claim, every human act, “brings forth a world created with others…. Thus every human act has 
an ethical meaning because it is an act of constitution of the human world” (p. 247). Exploring 
the ethical dimensions of mathematics learning has implications for pedagogical practices, 
curriculum, and policy.  

A consideration of the ethical only occurs if there appears to an assault upon the common 
code of honourable human interaction. It is primarily an emotional response, although we may 
rationally try to justify the inappropriateness of the behaviour (Maturana, 1988). These emotional 
responses occur frequently in the mathematics classroom.  We investigate only one such 
phenomenon:  the act of copying.  As we listen to students interacting in a mathematical setting, 
how might we interpret their emotional response to an apparent breakdown in ethical behaviour?  
What determines whether an act of copying is viewed as unethical?  Wherein lies the affront to 
human respect?  What rational justification underlies their pointing to the unethical behaviour of 
copying?  By focusing on the interactions between students, we broaden our understanding of the 
ethical implications of living in community. We wonder: In what ways are notions of ownership 
of mathematics significant in the development of the children’s understandings of mathematics 
and the emergence of a complex learning system?  

Ethical Acts of Copying  
Students in a grade 4/5 class were part of an investigation into the nature of mathematical 

explanations formulated within the context of the classroom community. As we investigated 
ethical intonations in the classroom, we listened for emotional responses and common themes 
surrounding these responses.  One such theme that emerged in a number of lessons was that of 
copying.  

A familiar sight in the mathematics classroom is of the child hovering over his or her own 
page, shielding the work with the non-dominant arm.  Who are they shielding the work from and 
for what purpose? In many cases, it is either to hide their work for fear of being wrong, but very 
often it is to hide it from the eyes of potential plagiarists. An incident of copying occurred early 
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in the school year as the students shared their solutions to a magic square problem presented to 
them the week before.  

Jerry:   You’re copying me. 
Randy:   No. 
Jerry:   Yeah, you said you were doing that and then that. 
Randy:   I almost… 
Jerry:   He’s copying me. I put it right there and he’s like, he’s suddenly like… 
Randy:   No I wasn’t. 
Teacher:  Just because he looks at it, last time I looked he had all the numbers in. 
Jerry:  No he didn’t [group agreement]. He only had, he only had, he looked at, I 

was showing everybody my work and he looked at it and he put a 5 in 
there then.  

Teacher:  Well, if he knew the answer was 15, then all he had to do was figure out 
where the numbers went.  

Ellen:   Well, we said it was 15.  
Jerry:  Yeah, but you could put them in a different order. See, it’s exactly the 

same order as mine.  
Teacher:  But I think right now that we’re just sharing.  
Ellen:   You guys, it’s okay.  
Teacher:  Yeah, we’re sharing right now anyway. So…  
Randy:   So it’s kind of hard for me to look at it when I’m like this.  
Teacher:  Okay.  

It is obvious that the students are in conflict about the action that just occurred.  Jerry accuses 
Randy of copying.  What is implicit in his accusation?  Perhaps Jerry’s work or ideas have been 
stolen.  Yet, he still possesses it, even if a copy or imitation of it was made.  Is his work worth 
less because someone else has the same result?  As Ellen said, they too had 15 in the middle of 
the magic square.  Does he feel that he owns the mathematics that occurred as a result of doing 
the problem?  Both Jerry and the teacher deny that copying took place.  But these denials still 
uphold the unethical behaviour of copying.  It is only after several exchanges that the teacher 
attempts to move on by claiming that if the act did occur, it occurred in the context of sharing—
making it ethical.  This view is upheld by Ellen.  The culture of secrecy and possession remained 
firm in most of the students, but it was continuously challenged.  

Throughout the remainder of the year, certain patterns emerged that seemed to regulate 
acceptable behaviour within the collective. Some instances of copying were challenged by 
students within the groups: “You copied me”; “It’s the exact answer [as mine]”; and “Don’t copy 
that.” However, throughout the interactions, copying in the context of trading and checking 
answers seemed ethical. Assertions by students defending their behaviour challenge the culture 
of secrecy and possession: “Can I copy off you? Because you copied” and “I just need to know 
the answer to something. I’m not going to copy.”  

An analysis of students’ conversations suggests that copying was acceptable when it 
occasioned mathematical understanding but not appropriate when the answers were stolen.  

Jerry:   I’m going to copy out your example because it’s such a nice one. 
Amil:   Please don’t. 
Jerry:   But it’s so amazing I can’t stand the intellectual science [laughter]. And now that 

I have your amazing knowledge I can complete my lovely task. 
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Jerry, who was so adamant that copying was wrong, now seemed to acknowledge the benefit 
of copying ideas of others. However, ownership of the idea is still Amil’s in both his own eyes 
and in Amil’s.  What does Amil give up by allowing the example to be copied?  He gives up sole 
ownership.  He gives up possession of a precious secret.  

What might be gained by challenging the culture of secrecy and possession in the 
mathematics classroom?  We see that for Jerry, copying from Amil enlarged the space of the 
possible ways of acting and understanding. Viewing the phenomenon of copying through an 
ethical lens allows teachers and children to see themselves in relationships that build on the ideas 
of others and break down the stereotypes of individualistic learning in mathematics.  

Endnote 
1.  The research is supported by the Social Sciences and Humanities Research Council of 

Canada (SSHRC) Grant 410-2001-0500.  
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Mathematics education has long been about helping students understand mathematics. Thus 

the study of students’ mental constructions has been seen as fundamental. Recently, however, the 
field has taken a discursive turn. Discourse is becoming increasingly more valued in the learning 
and teaching of mathematics. Indeed, some scholars have come to see the discursive processes, 
carried on in sociocultural contexts, as better describing the “understanding” of mathematics than 
more cognitively focused studies. It is through participation in a discourse community that the 
individual learns how to engage in meaningful mathematical activity (van Oers, 2001). The 
structured nature of practice in a discourse community points to the presence of important norms 
(Yackel & Cobb, 1996) or meta-discursive rules (Sfard, 2001) that guide and bound accepted 
practice. While such underlying norms and meta-rules can be made the subject of explicit 
discussion and negotiation (Cobb, Wood, & Yackel, 1993), it is often difficult for participants to 
engage in such a discussion due to the tacit nature of the norms and meta-rules (Sfard, 2001). 
Thus, these norms and meta-rules are often taught and learned unknowingly by interlocutors 
through participation in the discourse community. These learned norms and meta-rules are often 
seen as being appropriated to form at least some of the mental structures and habits of mind that 
we traditionally view as an understanding of mathematics.  

Some researchers argue that social practice does not bring about learning; rather, 
participation in social practice is constitutive of learning (e.g., Lerman, 2001). Our view is that it 
makes no sense phenomenologically to ignore or devalue the existence of an inner mental life by 
reducing everything to practice or to participation in a discourse community. Clearly we do have 
a sense of “understanding” mathematical ideas, of remembering and executing mathematical 
procedures. Furthermore, a focus on participation in practice or discourse often is unsatisfactory 
as the sole lens for viewing mathematics learning, because knowing then becomes a property of 
the particular social context in which it took place, and thus there is no room for the notion of 
transfer (Sfard, 1998). This not only defies our sense that we carry something away with us from 
our social interactions, but also violates the underlying purpose of education, namely to enable 
people to participate appropriately in similar practices in a subsequent contexts that will 
unavoidably be different from the context in which the initial practice took place.  

For the above reasons, we agree with Sfard (1998) and Cobb and Bowers (1999) that when 
studying the learning and teaching of mathematics, it is necessary to attend to both individuals’ 
understanding and social contexts and practices. However, there are multiple approaches to 
attending to both perspectives. A common method for attending to both the individual and social 
is to accept the two perspectives as being complementary and useful for illuminating different 
aspects of learning and teaching. For example, a classroom event might be analyzed separately 
from the two different perspectives, which are then coordinated at the end (e.g., Cobb, 1996). In 
this case, the perspective not used recedes far into the background. An alternative approach 
might acknowledge that there is a reflexive relationship between individuals’ understanding of 
mathematics and the norms and practices of the discourse community in which they participate 
(cf Cobb et al., 1993). In this case, the analysis might proceed using many shifts between 
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“anthropological” and “cognitive” views that alternatively enrich the other. Neither view recedes 
far into the background, but they take turns as primary lenses. Regardless of which approach is 
used, the result is the alternate privileging of cognitive and discursive viewpoints. This is evident 
from the way that researchers switch lenses (sometimes quickly and often, sometimes more 
slowly), but never seem to see through both lenses simultaneously. Unavoidably, either the 
cognitive or the discursive is momentarily privileged.  

We argue for the importance of a theoretical lens that coordinates the two perspectives and 
allows one to simultaneously view both the individual and social aspects of cognition. We 
borrow from Sfard’s (2001) notion of thinking as communicating, which implies that for one to 
think mathematically, one must be able to individually engage in the same kind of discursive 
activities that were modeled in outside discursive practices. We assert that while mathematical 
understanding—knowledge of important mathematical ideas and connections between those 
ideas—is important, that understanding must be accompanied by knowledge of the discursive 
practices that guide and bound mathematical activity in order for an individual to be able to use 
that knowledge in appropriate ways. Similarly, knowledge of the meta-discursive rules and 
norms for mathematical practice is insufficient to engage in doing mathematics, because 
mathematical understanding is also required. Thus, we argue that when utterances are analyzed 
for evidence of mathematical understanding, that analysis must also consider the particular 
discourse the participants believe they are engaged in. Similarly, when utterances are analyzed 
for fluency in discursive practices, that analysis must also consider individual mathematical 
understandings that enable participation in the discursive practices. Consequently, in analyzing 
any mathematical practice, understanding and discourse must be attended to simultaneously. We 
refer to this perspective as understanding-in-discourse.  
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A research study is looking at community impact  on implementation of undergraduate 
computational science education initiatives.  The community structure and interactions are being 
analyzed via social network theory.  Preliminary findings indicate that effective utilization of ties 
and not merely the existence of ties is the keystone component to successful teaching and use of 
mathematics within other disciplinary contexts.  
 

The increasingly quantitative nature of our society has remarkably influenced not only 
mathematics education but other disciplines as well.  Computational science, the 
multidisciplinary overlap of computer science, mathematics tools or techniques and applications 
from other disciplines (Yasar & Landau, 2003), is working its way down from graduate degree 
programs and curriculum into undergraduate education (Swanson, 2003). This shift in 
educational focus has resulted in calls for more mathematical modeling, simulation, quantitative 
reasoning, and visualization in a wide variety of undergraduate courses and programs (MAA, 
2004).  Implementation is often impeded by the limited mathematics backgrounds of those 
instructors in client disciplines and the limited disciplinary experiences and knowledge of 
mathematics instructors.  

The National Science Foundation is addressing the issue by educating educators through 
computational science education initiatives such as the National Computational Science Institute 
(NCSI) (http://www.computationalscience.org/). NCSI primarily targets post-secondary faculty 
and has as its objectives to develop a national community of undergraduate faculty interested in 
computational science education issues and to have participants incorporate computational tools, 
techniques, and technologies into their teaching. Faculty are reached via presentations at 
professional meetings and individual campuses, on-line materials, and weeklong workshops. 
Within this NCSI setting, the notion of community and its impact on faculty development is the 
focus of the authors’ research.  The questions that guide our study are: 1) What is the structure of 
the NCSI computational science education community? 2) What roles exist within the 
community? and 3) What effect does the community have on members’ computational science 
education endeavors, within and outside the classroom?  

The concept of community as “a social arena with limits defined by the capital – cultural, 
social, economic, and symbolic capital, that is valued and needed for individuals to legitimately 
participate with it,” (Davis et al, 2003) has been successfully studied via social network theory in 
anthropology (Wellman, 1998).  Within this framework, individuals involved with the NCSI 
endeavors are network nodes. Connections between nodes, called ties, can be differentiated into 
categories (White, et al, 2004) such as participant-to-participant collaborations and external 
collaborations.  Wellman (1998) proposed that contemporary community ties are narrow, 
specialized relationships, contemporary communities are sparsely-knit, loosely bounded, 
frequently-changing networks, and that the nature of communities are effected by political, 
economic, and social milieus.  We will be comparing our characterization of this computational 
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science education community to these propositions as well as look at smaller subgroups and 
individuals’ identities within the community.  

Both qualitative and quantitative methodologies are being used in this study.  Current data 
collection methods used by the authors, who also serve as the NCSI project evaluators, include 
workshop applications, surveys containing both qualitative and quantitative items, daily 
feedback, on-site observations, informal interviews, collection of participant artifacts, 
documentation of presentations given by project staff and participants, e-mail between 
collaborators, and case studies where the authors visit selected institutions to observe how 
computational science initiatives are actually being implemented in and beyond the classroom 
setting.  These data collection tools provide both unique and overlapping opportunities to study 
individuals’ placements within the network, as well as categorize existing ties.  NetMiner™

 

software (http://www.netminer.com/NetMiner/home_01.jsp) will be used to generate network 
models to explore the patterns, structure and affiliations (ties) within the community. The 
NetMiner software, funded by an internal University Research Grant, also includes many 
statistical and social network tools to quantify tie types and strengths.   

Preliminary findings show that there are many individuals connected to this community 
beyond NCSI staff and participants, including other faculty, administrators, students, software 
developers, etc.  Strength of ties varies among these connections.  Overall, our analysis supports 
Wellman’s (1998) proposition that contemporary communities are loosely-bounded and 
sparsely-knit.  However localized subcommunities, such as the NCSI staff, serve as specialized 
support structures within a more well-defined boundary.  Members who do not have such small 
group ties find it more difficult to carry out their personal teaching objectives.  On the other 
hand, merely having ties is not enough. It is the effective utilization of ties that seems to be the 
keystone component to successful teaching and use of mathematics within other disciplinary 
contexts.  Effective utilization requires faculty to open themselves up to scrutiny and observation 
of others, to risk making mistakes or just “not knowing”, and to have the drive to use their 
experiences as a springboard for improving their teaching. As we continue this study, we plan to 
further investigate these findings and incorporate not only the structural component focus but tie 
utilization information as well into our data collection and analysis.  
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A DESIGN STUDY:  THE DEVELOPMENT DIFFUSION AND APPROPRIATION OF 
MATHEMATICAL IDEAS IN MIDDLE SCHOOL STUDENTS 

Sandra Richardson 
richars1@purdue.edu 

 
Much of the reform in mathematics education advocates collaborative learning and 

approaches that require students to explain their mathematical ideas. The identification of factors 
that influence the development, diffusion, and exchange of new knowledge among middle school 
students who work collaboratively on thought revealing mathematical activities (Lesh et al, 
2000) forms the basis of this presentation. The product of this classroom design study (Collins, 
1992) is a set of multi-revised principles for teachers for diffusing innovative mathematical 
knowledge in classrooms.  

Drawing on diffusion theory (Rogers, 1995) and communities of practice (Wenger, 1998), a 
set of implementation principles were developed for teachers to use in their work in encouraging 
the sharing of student-initiated ideas between students and establishing a collaborative inquiry 
practice. These implementation principles are intended to guide teachers in modifying the 
classroom environment to promote the spread and exchange of mathematical ideas, facts, 
concepts, problem solving strategies, tool usages.   

The final set of principles has undergone three testing iterations. This poster explains the 
revision cycle of each testing iteration and lists the coupled draft of principles. The final set of 
principles are:   

1.  Group Interaction Principle Advancing the knowledge of the community through the 
diffusion of knowledge  

is significantly influenced by students’ communications and interactions with both members 
of their working group and members outside of their group.  

2.  Accessibility, Transferability, and Meaningfulness of Resources Principle The 
development, diffusion, and appropriation of knowledge is facilitated when a resource or 
resource-related practice is transferable to different applications, easily accessible, highly 
desirable from a student perspective, well promoted by the teacher or other students, and a good 
fit into a system of meaningful practices.  

3.  Shared Practice, Process, and Product Principle The key variable in developing 
communities that lead to the diffusion of knowledge is the concept of developing an 
interdependent system through giving students legitimate roles as part of a larger community. A 
sense of identity determines how students direct their attention. What one pays attention to is a 
primary aspect of sharing ideas. Identity shapes this process.   

4.  Metacognitive Approach Principle Participating in critiquing one’s own thinking and the 
thinking of others promotes metacognition. This principle reflects the meteacognitive approach 
of advancing individual and classroom knowledge through reflecting on, testing, and, if 
necessary, revising one’s own solution.    
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PROBLEM CENTERED LEARNING AT THE COLLEGE LEVEL: STUDENTS’ 
PERSPECTIVES  

Sandra Davis Trowell  
Valdosta State University  

strowell@valdosta.edu  
 

This poster session will describe four students’ interpretations of a Problem Solving 
university course that focused upon problem-centered learning. Students’ ideas and solutions 
proved to be the focus of the course rather than procedures or solutions imposed by the 
instructor.   

The purpose of this session is to present an interpretation of four students’ beliefs and 
classroom actions as they participated in a university mathematics problem-solving course that 
used problem-centered learning as its model for teaching. (Wheatley 1991)  Observations of this 
course found the classroom interactions to be significantly different from a lecture oriented 
mathematics course in which the teacher is the dominant figure – students were presenting their 
solutions and discussing their mathematical ideas while the instructor seemed to fade from the 
classroom.   

Each of the classroom sessions was video recorded to accompany field notes.  Immediately 
following each class session, the instructor shared his ideas, reflections, and thoughts concerning 
the class in video recorded sessions.  Four students from the course were also interviewed 
throughout the semester.  For analysis of the data, an interpretive approach was taken (Erickson 
1986).  The methodological stance was similar to that described by Voigt (1989) and Wood 
(1993) in which “detailed descriptions and interpretations of video recorded classes” (Voigt 
1989, p. 28) were used to reconstruct patterns of interactions and routines.   

The taken as shared beliefs and actions that operated in defining this course came to include 
collaboration, intellectual autonomy, and a focus upon heuristics and strategies rather than 
answers.  The students discussed and elaborated upon problem solving, sharing solutions in 
class, the instructor’s actions and expectations, and classroom control.  This session will share 
the students’ comments and elaborate upon the themes that emerged throughout the course and 
interviews.  
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ONE TEACHER, TWO CURRICULA:  HOW AND WHY DOES HER PEDAGOGY 
VARY?  
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Iowa State University 

bhe@iastate.edu 
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University of Illinois 

stl@iastate.edu 

Lateefah Id-Deen  
Iowa State University 
liddeen@iastate.edu 

 
This paper discusses the case of one teacher, Jackie, whose instructional practices illuminate the 
importance of textbooks, time, and student/parent expectations in shaping pedagogy.  Jackie 
teaches in the Plainview district, which offers parents and students a choice between a 
traditional mathematics sequence (the University of Chicago series) and an integrated sequence 
(Core Plus). Each day Jackie teaches two very different sections of accelerated eighth-grade 
mathematics using each of these curricular materials. Drawing from students’ survey responses 
and classroom observations, we show that Jackie’s pedagogy differs considerably between the 
two courses. An interview with Jackie shed light on the reasons underlying this variation. By 
examining one teacher who teaches differently in two curricular contexts, this paper highlights 
factors that contribute to teachers’ enacted curricula—factors that have been understated in 
mathematics education research on teacher change.  
 

Perspectives/Theoretical Framework  
Taken together, bodies of literature about facilitating teacher development/change suggest 

that if we provide the appropriate policies, school-level supports, and professional development 
for teachers (Newmann & Associates, 1996), change teachers’ beliefs (Cooney & Shealy, 1997; 
Stipek, Givvin, Salmon, & MacGyvers, 2001), or engage teachers in reflective activities while 
they teach with innovative curriculum materials (Grant & Kline, 2000) --then teachers’ practice 
may become more reform-oriented. “Traditional” mathematics teaching is usually characterized 
as “provid[ing] clear, step-by-step demonstrations of each procedure, restat[ing] steps in 
response to student questions, provid[ing] adequate opportunities for students to practice the 
procedures, and offer[ing] specific corrective support when necessary” (Smith III, 1996, p. 390). 
In contrast, “reform-oriented” teaching (as defined by the NCTM Standards (1989; 1991; 2000) 
documents) has shifted the teacher’s role to be that of a facilitator who selects tasks, models 
important mathematical actions, guides student thinking, and encourages classroom discourse.  

At least three themes appear in the literature on teacher development that are relevant here. 
First, some of this literature attempts to outline developmental stages that teachers move through 
as they try to change their teaching practices (e.g., Franke, Fennema, & Carpenter, 1997; 
Goldsmith & Shifter, 1997; Spillane & Zeuli, 1999). Second, although researchers acknowledge 
that teachers’ beliefs and practices are not always aligned with one another, the work on 
developmental stages has consistently focused on teachers with fairly traditional beliefs and 
practices moving toward more reform-oriented pedagogy. The question remains as to what 
happens when the reverse occurs: What happens when a teacher who prefers reform-oriented 
goals and practices is asked to teach “traditional” algebra?   

Finally, this literature typically reports data collected in only one class period per day for 
each focus teacher. In the literature that examines elementary school teachers, the teachers have 
just one mathematics class each day. The literature on secondary mathematics teacher change is 
sparse and usually examines a few teachers in only one of their mathematics classes per day. 
This research design implies that a teacher’s particular pedagogical stance is at least somewhat 
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consistent throughout the teaching day, and can therefore be described and even categorized 
somewhere on a traditional-reform continuum. However, categorizing a teacher’s pedagogical 
stance can become more complex in the current curricular context where both traditional and 
reform-oriented curriculum materials are available for school districts to adopt. For example, 
what happens when a teacher is asked to teach two very different curricula (one from a 
traditional sequence and one from a reform-oriented integrated curriculum)?  The assumption 
that teachers would maintain a consistent teaching practice across these different contexts needs 
to be investigated empirically.  

Our paper examines how one teacher, Jackie, who has many of the attributes that the 
literature indicates will support reform-oriented teaching, enacts the two different curricula she 
has been asked to teach. Additionally, we investigate why she uses different teaching strategies 
in each of her two teaching contexts. This case sheds light not only on the importance of reform-
oriented curriculum materials in facilitating a reform-oriented pedagogy, but also on the 
importance of other factors that are often overlooked in teacher change literature:  the 
expectations of both students and parents.   

Context of the Study  
The school & curricula  

In the mid-1990’s, the Plainview1 

school district changed its elementary mathematics 
program to include the NSF-funded Investigations curriculum in grades K-4. At that time, 
Plainview also began piloting the NSF-funded Mathematics in Context (MiC) curriculum in 
grades 5-8. Despite the strong support of most people involved in these adoptions, there was 
heated controversy in the community about the transition to MiC. In fall, 2000, the district 
introduced a four-year, integrated mathematics sequence using the Core Plus texts. Hoping to 
avoid the controversies that arose in the community upon the transition to MiC, district leaders 
decided to offer a choice between the traditional sequence (Algebra, Geometry, Algebra II, Pre-
Calculus) and the Standards-based, Core Plus sequence that integrates algebra, geometry, pre-
calculus, and statistics (referred to as “Integrated Mathematics”). Accelerated middle school 
students in 7th  or 8th  grade were also given the choice.  
The Teacher  

Jackie began teaching in the Plainview district with a propensity for teaching in reform-
oriented ways. Having been a science major in her undergraduate program, she valued inquiry-
based learning and, when she stayed home to raise her young children, found herself subscribing 
to NCTM teaching journals because she enjoyed reading about students’ mathematical thinking. 
She received her mathematics teaching credential and came to Plainview to teach middle school 
mathematics at the time the district was adopting MiC. Jackie has been an advocate for 
mathematics reform in the district, even when it was unpopular. As a lead teacher of MiC, she 
participated in intensive professional development over several years.   

Changes in Plainview’s high school course offerings impacted the middle school, where 
accelerated students can now take Algebra I or Integrated. Jackie teaches three sections of MiC 
to 8th  graders, as well as one Algebra I and one Integrated to accelerated students. Given 
Jackie’s curricular situation, we were interested in the extent to which her teaching style varies 
by course. She is clearly an advocate for reform and she now teaches students who have 
intentionally chosen either traditional or reform-oriented curricular materials. In this intriguing 
context, we pose the following research questions: What is the nature of Jackie’s instruction in 
each class? How is her teaching similar/different? What are some factors that influence her 
decisions about what and how she teaches in each class?  
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Data Collection and Analysis  

Jackie’s Algebra I and Integrated students were surveyed each fall for the past four years 
(n=121 in Algebra I (a sampling of over 80% of her students) and n=82 in Integrated (over 90%  

of her students)). Students were asked a variety of questions intended to document their 
experiences in their courses, as well as their reactions to the courses (see the first column in 
Table I for some of these survey questions). The survey questions were designed to reflect some 
of the primary shifts advocated by the NCTM Standards and the Core Plus texts. The question 
response options were based on survey items from the National Assessment of Educational 
Progress, which asks students to report how often various activities occur in the classroom:  

“Almost every day,” “once or twice a week,” “once or twice a month,” or “never or hardly 
ever.”  

To add to the survey data, two researchers observed Jackie’s Integrated and Algebra classes 
for five consecutive days in March 2004. Two purposes for the classroom observations were: a) 
to see whether the differences reported by students were evident, and b) to capture more detailed 
examples of instructional similarities and differences between the two classes. One researcher 
took extensive field notes on the classroom interactions. The other researcher coded for various 
activities occurring in the classroom at 15-second intervals, following the observation system 
described by Foegen and Lind (2003). In coding activities for individual and small group work, a 
randomly selected male and female were observed, with the students reselected every 5 minutes.  

The coding categories were limited to the differences that were statistically significant in the 
student surveys (see left column of Table 2 for the coding categories). The choice of code made 
by the observer was based on behaviors that were defined by the researchers prior to the 
observations. For example, predefined distinctions were made amongst “teacher lecture”, 
“question and answer”, and “discussion” based on the talk that occurred in the whole group 
activities. Talk was coded as “teacher lecture” when a teacher monolog took place. “Question 
and answer” took place when the talk moved back and forth between the teacher and the 
students, often occurring in a Initiation-Respond-Evaluate format (Mehan, 1979). The 
interactions were coded as “discussions” when students expressed new or novel ideas and these 
became the discussion topic and/or more exploratory talk was happening as students tried to 
make sense of ideas and the teacher tried to understand their thinking about a problem (Nystrand, 
1995). Distinguishing between “question and answer” vs. “discussion” was important because 
literature on teacher change contends that student thinking is central to teachers who are 
changing their practices.  

The student survey data were analyzed in SPSS. Specifically, the four ordinal response 
categories (daily, weekly, monthly, never) were assigned values (1-4), and then two-tailed t-tests 
were used to compare the means of Algebra and Integrated students in order to determine 
significant similarities and differences in Jackie’s instruction.  

To analyze the coded observational data, the percentages of time spent in various 
instructional activities were compared between the two courses. A 1-tailed

2 

t-test was used to 
compare the mean percentages of time for each activity over the five days observed, using class 
periods as the unit of analysis. The t-test results are provided only as indicators of the strength of 
the Algebra-Integrated instructional differences, as opposed to suggesting that the differences 
would exist throughout the year, or for teachers other than Jackie. The field notes added nuance 
to our understanding of the similarities and differences in the two classrooms.  
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After analyzing the data, the results were reported to Jackie. The three researchers then 
interviewed her about the findings. The researchers took notes during the interview, compiled 
and then individually analyzed them for salient themes before coming back together to agree 
upon the main influential factors reported by Jackie.   

Results  
Results are reported for three data types: student survey, observational, and teacher interview 

data. The student surveys and observations shed light on the similarities in, and differences 
between the instruction occurring in Jackie’s Algebra and Integrated classes. Jackie’s interview 
data illuminates underlying causes of the patterns found.  
Student Survey Data  

There were statistically significant differences between Jackie’s Algebra and Integrated 
students on four survey questions: frequency of group work, teacher lecture, calculator use, and 
students working more than ten minutes on a single problem (see Table 1). While every 
Integrated student surveyed indicated that students worked in groups almost every day, only 3% 
of Algebra students indicated that group work occurred daily, and almost 80% of Algebra 
students indicated that group work occurred only once or twice a month or never. Similarly, 
teacher lecture was reported to be much more frequent in Algebra, with over two-thirds of the 
students reporting that Jackie lectured at the board for the majority of the class period “almost 
every day,” whereas only 8% of Integrated students indicated this frequency of teacher lecture. 
While the majority of Jackie’s students reported that they use calculators in their math class 
“almost every day”, this percentage was 98% in Integrated and only 82% in Algebra. Finally, 
twice as many Integrated (23%) as Algebra (11%) students reported that they spend more than 
ten minutes on a single math problem “almost every day”, with almost two-thirds of Algebra 
students (compared to less than one third of Integrated students) indicating that they spend such 
time on a problem monthly or never.   
Table 1: Student Survey Responses by Course  

In your math class, how        
often do these things   Algebra    Integrated   
happen?   N= 121    N= 82   
 Never  Once or  Once or  Almost  Never  Once or  Once or  Almost  
 or  twice a  twice a  every  or  twice a  twice a  every  
 hardly  month  week  day  hardly  month  week  day  
 ever     ever     
***Students work in 
groups  

39%  38%  20%  3%  0%  0%  0%  100%  

***Your teacher lectures 
at the board or overhead 
for most of the class period  

4%  9%  20%  67%  18%  21%  53%  8%  

**Students use calculators  0%  4%  14%  82%  0%  0%  2%  98%  
*** You spend more than 
10 minutes working on a 
single math problem  

26%  36%  27%  11%  1%  30%  46%  23%  

** Differences in means for Algebra and Integrated students are significant at p<.01 level.  
*** Differences in means for Algebra and Integrated students are significant at p<.001 level.  
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Observational Data  

We begin this section with some holistic description of the Integrated and Algebra classes we 
observed before presenting our analyses of the coded observational data.  

When Integrated began each day, the students physically rearranged their desks so that each 
group of four students faced one another, rather than all of the chairs facing the front of the room 
as they did in Algebra. Jackie often reminded Integrated students that they were to talk about 
their solutions with other students. Jackie expressed frustration with two of the groups after the 
first observation, stating that she had tried other groupings with the hopes that some of the 
quieter students would interact with their peers more. In Algebra, when students worked on 
homework, they were asked to lower their voices and to work quietly.  

During the second and third days of the week observed, Integrated students collected data for 
an investigation of decay and growth problems (e.g., dropping tacks on a paper plate that was 
divided into four equal parts). After taking roll and asking a few questions, Jackie interacted with 
students while they worked in small groups. On the fourth day, Jackie led a discussion about the 
findings of the experiments. Each group was asked to load the data they collected for one 
experiment into a single graphing calculator (GC) and Jackie went through a series of questions 
to help students recap and share their findings. Throughout this activity, more than one solution 
for many of the problems was discussed—sometimes Jackie requested this, other times it 
occurred without Jackie’s elicitation. Throughout the week, students used their GCs whenever 
they chose to do so.  

In contrast, Jackie spent the bulk of each Algebra class period at the white board in the front 
of the room. The lesson format was very similar to those described in traditional mathematics 
lessons: a) Jackie read through the solutions to the homework and answered students’ questions, 
b) the class listened as Jackie showed them how to solve the next type of problem, and c) 
students worked on the assigned homework problems. Students rarely used GCs. Homework was 
due each day in Algebra whereas Integrated students handed in homework problems once each 
week.  

According to our analysis of the coded observational data, there were statistically significant 
differences in the amount of time spent in small group work, whole-class interactions, teacher 
lecture, and in students’ use of GCs. (See Table 2.)  Specifically, whereas over one third (36%) 
of class time in Integrated was devoted to small group work, this occurred only 3% of the time in 
Algebra. Whole-class, teacher-led interactions occurred 76% of the time in the Algebra class, 
compared with only 37% in Integrated. During whole-class interactions there was a statistically 
significant difference only for teacher lecture, which occurred 39% of the time in Algebra, versus 
only 7% in Integrated. Finally, more student GC use occurred in Integrated than Algebra, with 
students using them on their own (without teacher direction) 27% of the time in Integrated, and 
never during the days observed in Algebra.   

Despite the substantial differences, there were aspects of instruction that were similar 
between the two classes. In both classes, the detailed field notes suggested that Jackie stressed 
connections and sense making when she spoke. There were instances in both classes of Jackie 
taking an idea from the domain of whole numbers and connecting it to algebraic ideas. She also 
focused on the derivation of mathematical words in both classes.  

There were no statistically significant differences in the percentages of time devoted to 
individual student work, teacher-facilitated questions and answers, and student/teacher 
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discussion.
3 

In fact, student/teacher discussion occurred rarely in both classes. The detailed field 
notes captured the nature of the whole-group interactions and during these, Jackie did the 
majority of the talking. While the talk moved back and forth between procedural and conceptual 
in both classes, rarely did Jackie ask students if they agreed or disagreed with other students’ 
ideas or explore a unique idea in depth that was offered by a student. The difference in whole-
class GC use was also not significant.   

 
Table 2:  Summary of Observational Data – Percentage of Time Spent in Various Activities  

 Class  Day 
1  

Day 
2  

Day 
3  

Day 
4  

Day 
5  

Average  

Level of Participation Structure        
Individual Work  Algebra  0%  6%  23%  0%  0%  6%  
 
 Integrated  35%  0%  36%  0%  9%  16%  

Algebra  1%  1%  13%  0%  0%  3%  Small Group Work*  
Integrated  21%  69%  38%  0%  52%  36%  
Algebra  87%  91%  55%  84%  64%  76%  Whole-Class, Teacher-Led 

Interactions*  Integrated  27%  23%  13%  95%  27%  37%  
Nature of Whole-Class Interactions        

Algebra  24%  42%  43%  55%  30%  39%  Teacher Lecture**  
Integrated  4%  6%  11%  15%  .2%  7%  
Algebra  61%  46%  11%  29%  33%  36%  Teacher-Facilitated 

Questions and Answers  Integrated  12%  16%  1%  77%  24%  26%  
Algebra  2%  .2%  0%  0%  0%  .4%  Student/Teacher Discussion  
Integrated  11%  1%  0%  2%  1%  3%  

Graphing Calculator Use        
Algebra  0%  0%  0%  0%  0%  0%  Using GC (Individual Use 

by Target Students)*  
Integrated  42%  22%  11%  0%  62%  27%  
Algebra  9%  0%  0%  0%  0%  2%  Using GC (Teacher-Led, 

Whole-Class Use)  
Integrated  1%  2%  0%  74%  0%  15%  

* Differences in means between Algebra and Integrated classes are significant at p<.05 level, using 1-tailed test.  
** Differences in means between Algebra and Integrated classes are significant at p<.01 level, using 1-tailed test. 
Table note:  The percentages of time spent in the three levels of participation do not sum to 100% because of non-
instructional tasks such as taking roll.  
 

When examining the differences in both the student survey and observational data, one is 
struck by the differences in key aspects of the role of students and teachers in these classrooms. 
In Algebra, Jackie appears to lecture the majority of the time, group work is rare, and students 
infrequently work for an extended period of time on any one mathematics problem. In the 
Integrated class, the scene is dramatically different on these dimensions.  
Interview Data  

When delving into why these differences exist, the most important information source is 
Jackie, herself. Jackie is fully aware that she used a different pedagogical style in each class and 
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she described the students’ responses as “accurate.” During our interview, Jackie consistently 
revealed her agreement with the Standards, but also pointed to key barriers she faced:  

The Standards fit the way I like to do things (or vice versa), so it wasn’t hard to adjust. One 
barrier is parent reaction – if they don’t know what you are doing and why you are doing 
it, that can cause some problems. Also, it is difficult for me to redesign curriculum 
materials that are not Standards-based. Time is a huge factor in that, but so is the 
knowledge that many of the students who have chosen to take algebra make the choice 
because they want a traditional approach

4

.  
The reasons for Jackie’s different practices appear to be related to at least four factors, some of 
which are highlighted in the above quote:  a) the curriculum materials; b) time constraints; c) 
parental expectations; and d) students’ reactions to the curricular materials.  

Algebra and Integrated curricula provide different types of activities for the students to do 
and present the mathematical content in very different ways. The Algebra book is set up in a 
format that supports more traditional pedagogy:  new information is given and homework 
problems are offered to practice. The connections between mathematical ideas are emphasized 
more in the Integrated materials, so Jackie finds it easier to talk about algebraic representations 
(i.e., tables, graphs, and equations) and how they are related. In Algebra, the ideas and 
representations are treated separately, “so connections are not easily made.”  

Jackie recognized that she could teach the Algebra course differently, but to do that, she 
would need to create a curriculum herself: “If I wanted to teach Algebra as a Standards-based 
course, I’d have to design everything from the ground up…and I probably should do that, but 
then here are all these parents who didn’t want that. So what is my obligation here?” This quote 
highlights the complexities in teaching in the context of curricular choice: sometimes what the 
teacher thinks is better for students conflicts with parental expectations. This tension is not 
unfamiliar to Jackie, having been involved in the parental backlash related to MiC. Additionally, 
parental pressure can be felt through the administration because they “leave the teachers alone 
and assume you are doing a good job unless a parent complains.”  

Jackie knows that the parents make the decision to enroll their child in a particular course and 
have specific expectations about what will happen in each class. The students are also involved 
in this decision and Jackie recognizes that some students “want to be told how to do it, see it, 
and then do it.” In fact, sometimes the intensive writing and talking involved in Integrated made 
it difficult to teach because students were not always motivated to be involved and sometimes 
resented having to write in their mathematics class.  

Consistently these themes – curriculum materials, time, parent expectations, and student 
reactions, arise when Jackie discusses her choice of instructional practices. Although Jackie 
implements Standards-based instruction throughout most of the school day, these critical factors 
compel her to teach traditionally one period each day.  

Discussion/Conclusion  
Due to page constraints, we conclude with a description of our plans for further research 

about Jackie and her students. First, while the students are reporting different experiences in 
these two classrooms, we are still analyzing other data we have gathered to see how these 
experiences might impact student understandings and achievement. Second, while Jackie has 
identified these crucial components that influence what and how she teaches (i.e., curriculum 
materials, time, parents, and students), we still need to carefully examine how these themes 
impact her daily decisions. For example, a more detailed cross case study has been planned for 
next year to try to understand the influence of the curriculum materials on her teaching practices. 
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Third, part of this upcoming case study will also examine further her discourse patterns in each 
class.  Although Jackie mentioned that she wished her students would talk more, she seemed 
dissatisfied that most of the interaction patterns in her classroom were of a question-answer 
format.  This leads us to wonder if discourse patterns are one of the latter changes to be made, 
even when a teacher takes a strong reform-oriented stance about her teaching. As scholars seek 
ways to reform teachers’ practices, political and social factors that influence teachers need to 
become more focal. These constraints need to be carefully examined so that we can better 
understand how to support teachers in their endeavors to teach in reform-oriented ways.  

Endnotes 
1.  For more information about Plainview school district and its curricular history, see Lubienski 
(In Press). 2 A 1-tailed test was used because the purpose was to confirm the differences reported 
in student surveys. 3 However, it is important to note that the number of days examined was 
small, and if more days were examined, it is likely that some of these differences in these areas 
would be significant. 4 In this section, the italicized words are quotes from the interview with 
Jackie. 
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A qualitative case study was conducted to describe and understand the beliefs and experiences of 
Algebra I teachers who have high failure rates. This paper illuminates findings about teaching 
efficacy as related to teacher attributions for student failure. Self-efficacy was found to be 
closely related to teachers’ attributions for student failure and, more importantly, to whether the 
teachers felt they could influence the factors to which they attributed student success or failure. 
As teacher educators challenge teachers’ beliefs about the nature of mathematics and 
mathematics teaching, they must also help teachers to develop new sources of efficacy that are 
aligned with reformed practice.  
 

The reasons for failure in high school algebra are undoubtedly complex, but there is no doubt 
about the seriousness of the problem: the National Center for Educational Statistics reports that a 
failure rate of 40-50% is typical (Mullis, et. al, 1991). Indeed, as minority students fail at 
significantly higher rates than Whites (Confrey, 1997), and with the increasing importance of 
algebraic reasoning in the job market, Bob Moses calls access to algebra a civil rights issue 
(Ladson-Billings, 1997; Williams and Molina, 1997).   

An ethnographic study was conducted to describe and understand the beliefs and experiences 
of Algebra I teachers who have high failure rates. The purpose of this paper is to illuminate 
findings about teaching efficacy as related to teacher attributions for student failure.  

Theoretical framework  
A growing body of research provides evidence that teacher beliefs affect instructional 

practice (Thompson, 1992; Brown & Baird, 1993). Sigel (as cited in Pajares, 1992) defined 
beliefs as constructions of experience that are held to be true and that guide behavior. According 
to Pajares (1992), the broad construct of educational beliefs includes beliefs about the teacher's 
ability to affect students' learning (teaching efficacy), about confidence in oneself to perform 
certain tasks (self-efficacy), about the nature of mathematics (ontology) and the nature of 
mathematical knowledge (epistemology), and about causes of success or failure (attributions).   

This study focuses on two belief constructs: attributions and teaching efficacy. Attributions, 
or causal perceptions about success or failure, may be classified according to locus of control 
(Weiner, 1983). Teaching efficacy refers to teachers' beliefs about their capacity to affect student 
performance. General teaching efficacy refers to the belief that good teachers can affect students 
regardless of their home environments. Teachers who have personal teaching efficacy believe 
that by trying hard they personally can reach even the most difficult students. Teaching efficacy 
is important because research shows that teachers with teaching efficacy expect and, in fact, 
elicit greater achievement from students (Ornstein, 1995).  

Conceptual Framework  
A conceptual framework was constructed to investigate teacher attributions for student 

failure. Secondary math teachers participating in graduate classes and staff development 
workshops were asked the reasons for the high failure rate in Algebra I. Their responses were 
consistent with the research on this problem and with my own experiences as an Algebra I 
teacher. The reasons cited by teachers were organized according to locus of control, that is, 
whether the factor is associated with the teacher, with the student or home environment, or with 
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the curriculum and class structure. A concept map was developed to provide a visual display of 
the conceptual framework. The concept map underwent several revisions prior to the study in 
response to the literature, critiques and suggestions from other mathematics educators, and my 
reflections. Figure 1 displays the concept map at the beginning of data collection. Further 
modifications were made during the study, and are described in another section of the paper.  

 
Figure 1. Factors to which teachers attribute student failure in Algebra I, organized according to 
locus of control.  

Research Design  
The research design was a qualitative case study using ethnographic techniques of (a) 

semistructured interviewing (b), participant observation, (c) collection of artifacts, and (d) 
reflective field notes. The study was conducted at a suburban high school with a diverse student 
population, located in a large metropolitan area in the southeast United States. The school had 
recently adopted an alternating-day block schedule, with four 90-minute periods daily. The high 
school offered four beginning algebra courses designed for students of different ability levels. It 
should be noted that advanced students completed Algebra I in eighth grade; students taking 
beginning algebra at the high school often had a history of difficulty in math classes.   

Participants in the study were four mathematics teachers who taught beginning algebra 
courses.  This paper reports results for two teachers who held very different efficacy beliefs. 
Beth and Chad (pseudonyms) were young and new to the field; both held masters’ degrees and 
were familiar with the National Council of Teachers of Mathematics (NCTM) Curriculum 
Standards (1989).  

Data were collected primarily through semistructured interviews, supported by data from 
classroom observations and examination of artifacts. Four interviews were conducted with each 
teacher; questions were planned to guide discussion, but teachers were encouraged, and in fact 
did, speak freely about their beliefs and practices, and their concerns about teaching and 
learning. All interviews were recorded and transcribed verbatim by the researcher. Data from the 
interviews often informed the questions planned for later interviews. Classroom observations 
provided data on instructional and management strategies and assessment techniques.   

 Text units from transcribed interviews were coded and analyzed according to a coding 
scheme that was initially developed from the concept map. A computer software program 
designed for qualitative data analysis allowed me to modify the coding scheme, assign multiple 
codes to a text unit, recategorize data, and search for patterns and connections. The concept map, 
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and the coding scheme, underwent several revisions as data were collected and analyzed. In the 
final interview, each teacher was asked to highlight the concept map to indicate attributions for 
student failure, modifying the map as they saw fit. They added and deleted factors, drew lines to 
indicate relationships between factors, and commented on which factors a teacher could 
influence.   

In assessing the general and personal efficacy of the teachers, I first examined the coded 
interview data, looking for evidence that they believed they could, or could not, impact student 
learning. I then examined responses to a 16-item Teacher Efficacy Scale (Gibson & Dembo, 
1984), completed by each teacher during the last interview. I also analyzed the thoughts they 
shared during this final interview about the concept map I had developed and revised. I examined 
all of this data for relationships between teachers’ attributions as coded in the interview data and 
highlighted on the concept maps, their responses to the Teacher Efficacy Scale, and the interview 
data coded to efficacy.  

Findings  
Contrary to my expectations, failure rate was not a factor in the efficacy of these teachers. In 

fact, none of the teachers had calculated their failure rates for the previous semester, nor had 
school administrators analyzed grade data. I collected from the teachers themselves the grades 
they had turned in to the registrar, calculated failure rates, and verified my calculations with the 
teachers. The different configurations of the courses and class sections made comparisons of 
grades by teachers or courses meaningless. Failure rates for classes ranged from 10% to 57%; 
Blacks failed at higher rates than Whites, and in students in lower level classes (Applied Problem 
Solving) were more likely to fail than students in Algebra I. Teachers were not surprised at the 
high failure rate in some classes, and in fact expressed greater concern that many students who 
received passing grades had not in fact learned the mathematics necessary to prepared them for 
further coursework.  

During the time of this study, all four of the teachers appeared to have low general teaching 
efficacy, as reported on the Teacher Efficacy Scale (Gibson & Dembo, 1984); teachers were not 
strong in their beliefs in the ability of teachers to affect student performance.  The state was in 
the midst of an educational reform movement, perceived by teachers to be a top-down, mandated 
program. Media reporting of this reasons for and potential consequences of this reform had a 
negative impact on teacher morale across the state. 

 Personal teaching efficacy, or an individual teacher’s conception of his or her ability to be an 
effective teacher, varied for the four participants in the study. In this brief paper I focus on two of 
the teachers, selected because of the distinct differences in their personal teaching efficacy 
beliefs. A higher percentage of Beth’s students than Chad’s received passing grades in both 
Algebra I and Applied Problem Solving classes; despite this apparent success her sense of 
personal efficacy was much lower than Chad’s.    
Beth  

Beth was discouraged and frequently expressed doubts about her teaching ability. She did not 
understand why students did not learn and retain what was taught. While recognizing that 
repetition was ineffective, she didn't seem to have other pedagogical strategies available to her. 
She felt that she ought to incorporate laboratory activities into her algebra classes, but did not 
know how to help students make the connections from the activities to the concepts involved. 
Discipline was also a factor in her decision to abandon a laboratory approach. Beth felt most 
successful (or least unsuccessful) with a teacher-directed lesson “when they're sitting there 
taking notes. Which is terrible and I hate, but…most of them listen, when you’re up there 
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talking, they sit there and pay attention and usually you have two people that are trying to nap, 
but…that's one of the only times I can get those 33 people in my class to be quiet and think about 
anything at all.” Although she felt classroom management was important to the learning process, 
she seemed to have no effective strategies.  

Each time I visited Beth she seemed more tired and depressed by her inability to make a 
difference in the classroom. She even shared her feelings with students: “I'm obviously in the 
wrong profession since you have no idea what you're doing and we've been working on this, you 
know. I'm obviously not so good at my job, because nothing is getting across.”  

Most of Beth’s attributions were related to student factors (motivation, immaturity) and 
system factors (class size, block schedule). On the concept map she highlighted almost all of the 
elements related to students, adding several in this area (see Figure 2). She removed classroom 
management, listed as a factor in the teacher’s locus of control, from the concept map, while 
emphasizing the student-related factors of discipline and maturity. When asked if she could do 
anything about any of these factors, Beth replied hesitantly that she might have some control 
over behavior and could try to help students with organization.  

 
Figure 2. Beth’s attributions for student failure.  
 

Clearly for Beth the locus of control was with the students; it was not surprising that Beth 
had a lack of teaching efficacy. It was unlikely that this young woman, who had only taught for 
two years, would remain in the profession much longer: “I know it's important. I know that there 
need to be good teachers, yet I don't want to do it. And I just hope that there are people that do 
enough to stick with it.”  
Chad  

Chad, an energetic young man who served as department chair, enjoyed discussing his 
teaching methods. Like Beth, Chad also attributed student failure predominately to factors that 
were related to students (see Figure 3). However, he had a great deal of personal teaching 
efficacy. Although Chad attributed student failure to many student-related factors, he believed a 
good teacher could overcome most of these. He often reflected on "what is it I can do that . . . 
helps them to connect" concepts, asserting, "the pedagogy really matters." For example, he added 
confidence to the list of student factors on the concept map, but believed that his enthusiasm and 
encouragement could bolster his students’ confidence in their ability. He taught organizational 
skills, and planned ways to help students connect new learning to existing knowledge.  
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Figure 3. Chad’s attributions for student failure.  
 

This sense of control contributed to Chad’s efficacy, as did the extensive time he spent 
creating his own instructional materials. However, the amount of time he spent at home was a 
major factor in his decision to leave education for computer programming at the end of the year. 
It was difficult to accept that someone who seemed so interested about all aspects of teaching 
and learning could completely leave the field of education, and I broached this subject with 
Chad.  

Researcher:  There's so much enthusiasm when you talk about teaching…Your face just  
lights up when you're talking about the pedagogy…  

Chad:  Yeah, I mean I really love it. But part of it also is just me. When I was in 
psychology, because I really love learning and… I knew I wasn't going to 
pursue that but it was just fascinating to me. I'd read on my own and I 
would light up talking about research or about a particular study or about 
cognitive development in a child . . . Then when I got into math ed at first 
it was just to be around kids and mentor them and, you know, be a positive 
influence. And then I got so into the math and the pedagogy. It's like this 
is just fascinating and it really is.  

Researcher:  So you're going to be this excited about computer programming?  
Chad:   Well, partly I think.  

Chad was saying that he would feel efficacious in whatever he chooses to pursue. My 
understanding of personal efficacy was enlightened by this revelation. Was it possible that Beth, 
who could not commit her life to music (her undergraduate major field) and now planned to 
leave education for Biostatistics, would have difficulty feeling efficacious in this new venture? 
Or had she just not found the right match for her skills and interests? Chad seemed capable of 
creating, or taking control of, an environment where he felt effective. Would Beth ever find that 
place?  

Discussion  
Differences in self-efficacy were closely related to attributions for student failure and, more 

importantly, to whether the teachers felt they could influence the factors to which they attributed 
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students’ success or failure. Each teacher modified instructional practices in ways that enhanced 
personal teaching efficacy. Teaching efficacy appeared to be strongly linked to the teacher’s 
ability to create the type of classroom environment in which he or she had experienced efficacy 
as a mathematics student. Beth, a disciplined student herself who found math easy to learn, 
envisioned a classroom where the teacher explains concepts and algorithms, and students sit 
quietly, listen, and follow directions. However Beth’s students did not behave or learn this way, 
and Beth had low teaching efficacy. As a mathematics student, Chad had found it important to 
keep highly organized notes, to see patterns and to look for connections among concepts. His 
high personal teaching efficacy came from his belief that he could develop these skills in his 
students. That it did not work for many (as evidenced by Chad’s high failure rate) did not seem 
to deter him. Despite the fact that both teachers were knowledgeable about the Standards, and 
Chad in particular spoke often of reform-based teaching, their teaching practices emphasized 
mastery of procedures and skills. Chad’s teaching efficacy was based his ability to make choices, 
establish attainable goals, plan strategies for attaining them, and then achieve them. His 
attributions were mainly for factors he believed he could control. On the other hand, Beth’s low 
teaching efficacy correlated with her attributions for factors outside her locus of control.  

Lappan (1997) observed, "Traditional practice offers a sense of accomplishment for 
teachers” (p. 209). Smith (1996) discusses the strength of the traditional model of “teaching by 
telling” in supporting the teacher’s sense of personal teaching efficacy. This model clearly 
defines the role of the teacher and the student, identifies a strong link between the teacher’s 
actions and the student’s learning, and provides a clear structure for daily instruction. As teacher 
educators challenge teachers' beliefs about the nature of mathematics and mathematics teaching, 
they must also help teachers to develop new sources of efficacy. According to Principles and 
Standards for School Mathematics (NCTM, 2000), effective mathematics teachers have a deep 
understanding of mathematics, understand their students as learners, and are able to establish a 
classroom environment where all students are challenged and engaged by worthwhile 
mathematical tasks. The authors acknowledge, “The vision for mathematics education described 
in Principles and Standards for School Mathematics is highly ambitious” (p.3). In addition to 
deeper content and pedagogical content knowledge, teachers must develop beliefs in teaching 
efficacy consistent with the vision of a mathematically rich environment where all students are 
engaged in problem solving, and the teacher is a facilitator of learning.  In a standards-based 
classroom, efficacy must be derived from the teacher's ability to help all students gain 
mathematical power.  
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Research suggests a strong relationship between what teachers believe about mathematics and 
teaching mathematics and the way they teach. However, we know very little about the nature of 
the relationship between teachers’ beliefs and what they know about mathematics and how to 
teach it. For the past several years, we have been conducting research concerning the 
mathematics beliefs and conceptions of preservice elementary teachers. In this paper, we report 
on some of the general beliefs and conceptions of preservice teachers and those of mathematics 
specialists and nontraditional preservice teachers.  
 

A substantial body of research suggests a strong relationship between teachers’ beliefs and 
their teaching practices (Ma, 1999; Foss & Kleinsasser, 2001; Thompson, 1984, 1992; Wilson & 
Cooney, 2002). However, relatively little is known about the relationship between teachers’ 
beliefs and their knowledge. Since the nature of teachers’ beliefs about learning, teaching, and 
mathematical knowledge affects their instructional decision-making, it should therefore continue 
to be an integral part of research.  

The overall aim of this paper is to report on research we have been conducting over the past 
several years concerning the mathematics beliefs and conceptions of 716 preservice elementary 
teachers. Specifically, in the paper we focus on three questions:  

 What conceptions of mathematics and of mathematics teaching and learning do 
elementary preservice teachers bring to teacher education programs?  

 What does taking more mathematics mean for preservice teachers’ beliefs about 
mathematics and teaching mathematics?  

 What mathematics beliefs and conceptions specifically do nontraditional students 
bring to teacher education programs?  

The question about the amount of mathematics studied by teachers is particularly important 
in the preparation of elementary preservice teachers. Therefore, in addition to identifying 
preservice teachers’ beliefs and conceptions, we have also been comparing the beliefs and 
conceptions of preservice teachers who had taken the minimum amount of required mathematics 
with those who had chosen to take an additional five or more courses of university mathematics 
above the minimum required for teacher certification. The study also looked at the relationship 
between the number of mathematics courses taken in high school and college and the preservice 
teachers’ beliefs about mathematics and its teaching.  

Identifying the beliefs and conceptions of another distinct group, nontraditional preservice 
teachers, is becoming increasingly important as the number of alternative certification programs, 
and thus nontraditional preservice teachers, is rapidly increasing. As a result of the No Child Left 
Behind Act’s (NCLB) focus on teacher quality and mandate that all teachers in all classrooms 
are "highly qualified,” the Department of Education has become increasingly interested at 
initiatives aimed at facilitating and promoting alternative routes to teacher certification and 
accordingly bringing a different, nontraditional group of teachers into the classrooms. Therefore, 
this study also has been comparing the beliefs and conceptions of traditional preservice teachers 
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with those of nontraditional preservice teachers, students who were 23 years old or older at the 
time they became involved in the study.  

Research Methods  
The Preservice Teachers  

From January 2002 through December 2003, 716 participants (about 88% female) were 
enrolled in one of three programs of study: (a) the regular program for prospective elementary 
teachers who have not chosen mathematics as their area of specialization, (b) a program for 
prospective elementary teachers who have chosen mathematics as their area of specialization, 
and (c) an alternative certification program for students who have earned a baccalaureate degree 
in an area other than education. A fairly small percentage of the students in the regular program 
had completed more mathematics than the two required college courses in mathematics for 
elementary teachers. The 136 mathematics specialists participating in the study had previously 
studied a range of mathematical topics in other courses, including calculus, linear algebra, 
statistics, and advanced Euclidean geometry, in addition to the two mathematics courses required 
of all prospective elementary teachers. The 50 alternative certification students had varied 
mathematics backgrounds, but about half of them had taken at least one 200 or higher level 
mathematics course during their baccalaureate studies.  
Procedures  

At the beginning of each semester, the participants completed a 75-item survey involving 
items related to their beliefs about mathematics teaching and learning. The survey, which used a 
traditional five-point Likert-type scoring format, included items from the National Assessment of 
Educational Progress (National Center for Education Statistics, 2001) and the Indiana 
Mathematics Beliefs Scales (IMBS) (Kloosterman & Stage, 1992). Additional items pertaining to 
general background information and their beliefs were also included. The items from the survey 
were pooled to represent four scales: (a) Confidence in Doing Mathematics (12 items), (b) the 
belief that students’ Conceptual Understanding of mathematics is a primary goal of teaching 
mathematics (7 items), (c) the belief that Effort makes one smarter in mathematics versus the 
belief that one’s ability is a fixed trait (7 items), and (d) the belief that mathematics is Useful (8 
items). The reliability (Cronbach’s alpha) for the four scales were as follows: .89 for Confidence 
in Doing Mathematics, .81 for Conceptual Understanding, .91 for Effort, and .82 for Usefulness.  

Based on responses to the survey, a sample of students (over 50) with particularly “positive”, 
particularly “negative”, and relatively average beliefs about mathematics and mathematics 
teaching was selected to participate in in-depth interviews during the spring and fall of 2002 and 
spring of 2003. The interview used a semi-structured format consisting of 22 questions to look 
into aspects of the strengths and nature of the students’ beliefs. The questions solicited 
information about the participants’ previous educational background, feelings about 
mathematics, and their beliefs about the nature of mathematics and mathematics learning and 
teaching. During the interview, the participants also were asked to complete tasks used by Ma 
(1999) (specifically the tasks involved subtraction with regrouping, an error in the application of 
the algorithm for multiplying large whole numbers, and the relationship between area and 
perimeter). These tasks were used as one indicator of how the preservice teachers would deal 
with classroom situations involving mathematics errors and misconceptions of children. That is, 
the consistency of the prospective teachers’ responses to the survey items were compared with 
their responses during the interviews in an effort to determine if what the participants claimed to 
be their beliefs (on the survey) were similar to the beliefs they exhibited when confronted with 
classroom teaching situations.  
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Research Results  
In this section, we discuss some key results of our analyses of the survey and interview data. 

The discussion is organized into three sections. The first section focuses on the general results 
from the analysis of the survey data and addresses research question 1: What conceptions of 
mathematics and of mathematics teaching and learning do elementary preservice teachers bring 
to teacher education programs? The second section focuses on research question 2: What does 
taking more mathematics mean for preservice teachers’ beliefs about mathematics and teaching 
mathematics? And, the third section focuses on the mathematics beliefs and conceptions that 
nontraditional students bring to teacher education programs.  
General Results  

In the paragraphs that follow, we report on selected results from the surveys and interviews. 
Note that we chose to report on those findings that we felt were often the most disconcerting, and 
the tone of many of the questions is negative. Primarily we report on the preservice teachers’ 
beliefs about (a) their confidence in teaching and doing mathematics; (b) effort making one 
smarter in mathematics; and (c) the role of problem-based learning.  
Confidence in teaching and doing mathematics 

Collectively, 16% of the 716 participants did not believe that they could be effective teachers 
of mathematics in an elementary school, and another 23% were unsure of their ability to teach 
effectively. Not surprisingly, the students who were more confident in their ability to do 
mathematics were also more confident in their ability to teach (r=0.68, p<.01). However, many 
of the students reported (about 1/3 of the students interviewed) that they were only confident 
teaching the lower elementary grades. Perhaps most puzzling of all was the finding that about 
25% of the students interviewed were not confident in their ability to do mathematics but were 
confident in their ability to teach.  
Effort 

Sixty-two percent of the students interviewed felt that “anyone can be good at it 
[mathematics] if they work hard,” suggesting that a majority of students regard effort as the 
primary determinant of success in mathematics. However, 40% of the students surveyed did not 
believe or were unsure that “by trying, one can become smarter in math.” The survey also 
revealed that about 34% of the preservice teachers believed that there are students who simply 
cannot do well in mathematics no matter how much effort they give and 26% were unsure if 
everyone can do well in mathematics if they try. About 22% of the students surveyed did not 
believe or were unsure that one’s ability in mathematics can be improved by effort. Thus, it 
seems that these prospective teachers were divided as to the importance of effort in success in 
learning mathematics.  
Problem-based learning 

Three-fourths of the students interviewed agreed with the statement, “Elementary students 
remember math the best when they figure it out for themselves, and thus a good math teacher 
may let them struggle on a challenging problem.” (Even though the interviews took place early 
in each semester, several of the students admitted that the methods course they were taking 
influenced their position on this statement.) However, on the survey, only 35% agreed that it was 
reasonable to expect students to “solve problems that they have not been taught solution 
procedures for.” During the interviews, some students reported that it is okay to let elementary 
students struggle, but at the high school and university levels, teachers should explain more. 
Conversely, others felt that elementary students should not struggle, but that struggling is okay in 
the upper grades. For example one student reported, “Elementary teachers need to explain 
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everything, but mathematics in college should be more challenging.” So, it appears that the issue 
of how much students should be challenged and expected to struggle was an undecided issue for 
many of the participants.  
Effect of Formal Mathematics Studied on Beliefs  

The belief scales 
The mean scores on each of the four beliefs scales (Confidence in Doing Mathematics, 

Conceptual Understanding, Effort, and Usefulness) comprising the 75-item survey were 
compared to determine if there were significant differences between the beliefs of those students 
specializing in mathematics and those not specializing in mathematics. The analyses indicated 
significant differences in favor of the mathematics specialists on only one of the four scales 
(t=3.94, p<.01), Confidence in Doing Mathematics, and in favor of the non-mathematics 
specialists on another (t=-2.19, p<.05), Effort. Specifically, the mathematics specialists were 
more confident in their ability to do mathematics, but those students who did not specialize in 
mathematics had stronger beliefs that effort makes one better able to learn mathematics. Note 
that the two groups’ beliefs about the role of Conceptual Understanding in learning mathematics 
and the Usefulness of mathematics did not differ significantly.  

Three of the four beliefs scales (Confidence in Doing Mathematics, Conceptual 
Understanding, and Usefulness) and the number of mathematics courses the students had taken 
in high school and college were correlated (p<.05) (see Table 1). The fact that the correlations 
between the subscales and the number of courses taken were significant (p < .05) indicates that 
the more mathematics the students had taken, the more likely they were to have positive beliefs 
on each of the three scales. However, despite the significant correlations, the strength of the 
relationship among the beliefs subscales and the number of mathematics courses taken is not 
nearly as strong as might be expected.  

 
 
Interesting questions 
 In addition to the beliefs encompassed in the four scales, we find that several of the 

individual questions captured interesting beliefs of these two groups of preservice teachers.  
When asked about their confidence in their ability to teach, about 66% of the mathematics 

specialists agreed that they could be very effective teachers of mathematics at the elementary 
school level, and around 11% were unsure of their ability to teach. Likewise, around 61% of the 
non-mathematics specialists agreed that they could be effective elementary school mathematics 
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teachers, and over 25% were unsure of their teaching ability. Note that even though the 
specialists appear to be more confident, the two groups’ responses did not differ significantly.  

Yet, when the two groups, the math specialist and non-math specialists, were asked about 
their beliefs about mathematics learning, they did respond significantly different (p<.01) to the 
following statement: “Memorizing steps is necessary for doing mathematics.” Believing that 
memorizing steps is essential in doing mathematics, about 45% of the specialists and 64% of the 
non-specialists agreed with the statement. About 30% of the specialists and 21% of the non-
specialists disagreed with the statement. Likewise, the two groups responded significantly 
different (p<.01) to the statement: “Learning mathematics is mostly memorizing facts.” Again, 
the specialists were more likely to respond negatively to the role of memorization in learning 
mathematics. However, the percentage of specialists believing that memorizing plays an 
important role in learning mathematics was still rather high.  
Beliefs of Non-Traditional Students  

The belief scales 
As with the mathematics specialists and the non-mathematics specialists, the mean scores on 

each of the four beliefs scales (Confidence in Doing Mathematics, Conceptual Understanding, 
Effort, and Usefulness) were compared to determine if there were significant differences between 
the beliefs of the traditional and non-traditional preservice teachers, those students (102) who 
were 23 years old or older at the time the survey was administered. The analyses indicated no 
significant differences on any of the four scales. Specifically, the two groups’ confidence in their 
ability to do mathematics did not differ, nor did their beliefs about effort making one better able 
to learn mathematics, the importance of conceptual understanding in learning mathematics, and 
the usefulness of mathematics.  

Interesting questions 
Once more, we also find that several questions captured interesting beliefs of these two 

groups of preservice teachers.  
When asked about their confidence in their ability to teach, over 61% of the traditional 

preservice teachers agreed that they could be very effective teachers of mathematics at the 
elementary school level, and about 24% were unsure of their ability to teach. Likewise, around 
65% of the non-traditional students agreed that they could be effective elementary school 
mathematics teachers, and about 18% were unsure of their teaching ability. Again, the two 
groups’ responses to the question did not differ significantly.  

When the two groups, the traditional and nontraditional preservice teachers, were asked 
about their beliefs about teaching mathematics, they did respond significantly different (p<.05) to 
the following statement: “It is unreasonable to expect students to solve problems that they have 
not been taught solution procedures for.” Over 41% of the non-traditional and 34% of the 
traditional students believed that students should be expected to solve problems that they have 
not been taught solution procedures for. And, about 30% of the non-traditional and 46% of the 
traditional students believed that it is unreasonable to expect students to solve problems that they 
have not seen before.  

Discussion  
Among the results we have found to date, a few are particularly noteworthy and have begun 

to make us rethink the mathematics content and pedagogy courses we require of prospective 
teachers at our university. Studying Mathematics and the Relationship with Positive Beliefs about 
and Conceptions of Mathematics  
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Although it is inconclusive, our data suggest that taking more mathematics seems to have 
some salutary effects: it enhances elementary preservice teachers’ self confidence in doing 
mathematics, and it may promote the development of various healthy conceptions of 
mathematics learning and teaching, such as the belief mathematics is useful and that conceptual 
understanding plays an essential role in learning mathematics. These findings reaffirm Ma and 
Kessel’s (2001) position that teachers’ attitudes towards mathematics and the teaching of 
mathematics and their knowledge of mathematics content are interrelated. However, our results 
also suggest that taking more mathematics does not support the belief that success in 
mathematics is related more to effort than to some sort of innate ability. Rather, the results 
showed that those students who did not specialize in mathematics had stronger beliefs that effort 
makes one better able to learn mathematics. Thus, these results should be interpreted with 
caution for two reasons. In the first place, the fact that course taking and beliefs are related 
should not be interpreted as meaning that taking more mathematics alone causes healthier beliefs 
and conceptions. Indeed, it may be the case that these students chose to study additional 
mathematics because they already had positive beliefs and attitudes about mathematics. 
Furthermore, what mathematics prospective teachers study seems more important than how many 
courses they take (Ma, 1999). In our view, it would be a mistake to simply suggest that students 
take additional mathematics courses without also considering the nature and emphases of the 
courses. This position is consistent with the recommendations of a joint committee of the 
Mathematical Association of America and the American Mathematical Society. This committee 
recommends that the mathematics courses prospective elementary teachers take must be 
designed to give special attention to the topics of special relevance at the elementary school level 
and be taught in a manner consistent with an inquiry-oriented approach (Conference Board of the 
Mathematical Sciences [CBMS], 2001).   
Teacher Education Programs Must Attend to Prospective Teachers’ Beliefs and 
Conceptions  

As we note above, an alarming number of preservice elementary teachers do not believe they 
can be effective teachers of mathematics. This result suggests that  

preservice teachers’ mathematics content and methods courses need to address more than 
mathematics content and pedagogy; they also need to focus on helping these prospective teachers 
develop healthy attitudes towards mathematics and beliefs about the nature of mathematics and 
how it should be taught. Even though there is growing concern in the U.S. for preservice teachers 
to gain adequate mathematical and pedagogical content knowledge, there should also be concern 
about what beliefs teacher candidates have about mathematics since these beliefs will impact not 
only how they will teach but also the children these prospective teachers will teach. Foss and 
Kleinsasser (2001) have observed: “Today, political pressure to restructure schools and concerns 
for quality in teaching imply that research on the culture of teacher education and the methods 
courses therein is as timely as research in elementary classrooms” (p. 289). As we continue with 
our investigation into the nature of the beliefs and conceptions about mathematics of preservice 
elementary teachers, we must at the same time give heed to how our programs of teacher 
preparation should be modified.  
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Thirteen preservice middle school mathematics teachers from a four-year teacher education 
program in Turkey were interviewed about their beliefs related to mathematical understanding. 
The analysis yielded four components of mathematical understanding with various 
subcomponents: Content, reasoning, applications, and procedures. The competitiveness of high 
school background seemed to have an effect on participants’ beliefs about mathematical 
understanding. Participants from the most competitive high school background seemed to have 
richer conceptions of mathematical understanding.   
 

Teachers’ knowledge and beliefs have become a recent focus of educational research. Of 
particular interest is the relationship between the teachers’ beliefs about the nature of and the 
teaching and learning of subject matter and their classroom practices (Calderhead, 1995; Koehler 
& Grouws, 1992; Thompson, 1992). Preservice teachers are likely to have different beliefs from 
inservice teachers about the nature of and teaching the subject matter since they have not met 
real classroom conditions yet (Haggarty, 1995). They carry their existing beliefs from precollege 
education to their teacher education programs (Lampert, 1990) and they learn to teach through 
the lenses of what they know and believe about teaching the subject matter from those years 
(Foss & Kleinsasser, 1996; Joram and Gabriele, 1998; Llinares, 2002). Moreover, their beliefs 
can affect the ways that they conduct lessons in the first few years of teaching (Feiman-Nemser, 
2001) usually as a limiting factor (Cooney, 1985). Hence, preservice teachers’ beliefs become an 
important concern in teacher education programs (Llinares, 2002). With this motivation, the 
present study investigates preservice middle school mathematics teachers’ beliefs about 
mathematical understanding through asking them directly and allowing them to talk more about 
their own ideas.   

Theoretical Background  
Beliefs are considered to be a “messy construct” since many researchers have used the term 

to represent similar subjective constructs and provided definitions based on their own research 
agendas (Pajares, 1997). Thompson (1992) prefers to investigate the literature about teachers’ 
beliefs in mathematics rather in terms of conceptions which she refers as “a more general mental 
structure, encompassing beliefs, meanings, concepts, propositions, rules, mental images, 
preferences, and the like” (p. 130). She claims that the distinction between the conceptions and 
beliefs might not be drastic but conceptions include many subjective terms besides beliefs. 
Beliefs and conceptions can be characterized as subjective in nature, likely to differ among 
people, free from social norms of validation and reflect differences attributable to various 
background and environmental factors (Thompson, 1992). Operationally, beliefs are teachers’ 
perspectives or references that they use to analyze their teaching practice and its effect on the 
students (Anderson & Bird, 1995). Beliefs can have varying degrees of conviction and they are 
not consensual as others might have different beliefs. On the other hand, knowledge is rather 
objective, and has truth-value which is the same for everyone (Thompson, 1992). There are 
contradictory issues among the beliefs that people hold, but knowledge is true and certain. 
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Hence, teachers’ beliefs reflect differences attributable to various background and contextual 
factors when compared to their knowledge.   

Beliefs seem to play an important role on how teachers view and/or perceive or develop a 
conception of knowing, understanding and teaching the content (Calderhead, 1995). In teaching 
mathematics, teachers’ beliefs about mathematical knowledge and understanding are found to be 
associated with their teaching practices (Stipek, Givvin, Salmon and MacGyvers, 2001), and 
with their students’ beliefs about mathematical knowledge and understanding (Hiebert & 
Carpenter, 1992).   

Teachers conceptualize teaching and learning with an eclectic collection of different beliefs 
that they have as a result of their experiences in classroom settings (Thompson, 1992). These 
experiences include their pre-college experiences and university level courses as students, as 
well as classroom experiences as teachers. Teachers’ experiences about how to do mathematics 
in the school years are acquired by watching and listening to what their own teachers say and do 
(Lampert, 1990; Schmidt & Kennedy, 1990). Research on preservice teachers’ knowledge and 
beliefs has concluded that the ways preservice elementary teachers have been taught 
mathematics, which is typically as discrete bits of procedural knowledge, affects the ways that 
they understand mathematics and relate the ideas to each other in their own teaching. Both 
preservice teachers from elementary and secondary majors generally believe that to know 
something in mathematics means to remember rules and to use the standard procedures without 
difficulty (Ball, 1990).  

The nature of mathematical knowledge and understanding is generally analyzed within two 
main domains. The first one, conceptual knowledge, is defined to be rich in relationships and is 
developed through building relationships between new and existing pieces of knowledge and 
among the existing pieces of knowledge (Hiebert & Lefevre, 1986; Rittle-Johnson & Siegler, 
1988). It seems that conceptual understanding emphasizes on awareness of one’s building those 
relationships and how one knows what one knows as well as finding out the answers of “why” 
and “what” questions (Skemp, 1987). The second one, procedural knowledge, includes symbolic 
system, algorithms and rules such as “step-by-step instructions that prescribe how to complete 
tasks” (Hiebert & Lefevre, 1986, p.6), or sequences of actions for solving problems (Rittle-
Johnson & Siegler, 1988). This type of knowledge and related understanding address the answer 
of “what” (Skemp, 1987).  

Methodology 
Context  

The Turkish pre-college educational system that participants come from is a central system 
with national curriculum. The high schools in this system can be grouped into three levels of 
competitiveness depending on how the student population is formed in the high schools. The 
most competitive high schools, Exam-Track High Schools (E-HS), take their students from a 
competitive national exam and the teachers of these schools are also considered to be superior in 
terms of knowledge and skills in teaching. Most high schools in this group have one-year English 
preparation class. The medium competitive high schools, Foreign-Language Based High Schools 
(F-HS), take their students according to their middle school cumulative grade and have one year 
of English preparation class before the ninth grade. The least competitive high schools, Regular 
High Schools (R-HS), take all students regardless of their middle school cumulative grade or 
national exam score. Although the curriculum is the same in all high schools, there are 
differences in terms of the depth of the instruction and the load of class work. More competitive 
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high schools generally have deeper instruction especially in mathematics and science compared 
to the less competitive high schools.  
Participants  

The study was conducted with the senior students of a four-year teacher education program 
that aims to educate mathematics teachers for the middle school grades (6th, 7th and 8th grades). 
The subjects were seven female and six male fourth year students chosen among the students 
who volunteered for the study based on the type of the high school that they have attended. It 
was assumed that the competitiveness of the high school would affect participants’ beliefs about 
the nature of mathematics and the teaching and learning of mathematics. The participants, their 
gender, and their background are given in Table 1.  

Table 1. High School Background and Gender of Study Participants 
 Exam-Track High  Foreign-Language Based  Regular High 

School (E-HS)  High School (F-HS)  School (R-HS) 
Female  4  2  1  
Male  2  2  2  
Total  6  4  3  

 
Participants’ ages ranged from 21 to 23. These 13 students formed the 54% of the whole 

fourth year students. The program offered five courses on mathematics teaching, four courses on 
educational psychology, nine courses on mathematics, and three semesters of student teaching 
besides the electives. The participants had completed all requirements of the program at the time 
of the study.  
Instrument  

Semi-structured interviews including 23 main questions were conducted to investigate 
preservice teachers’ beliefs related to mathematical understanding, teaching and learning 
mathematics, and high school and college settings that might have affected these beliefs. 
However, this report focuses on the answers to the first ten questions about the nature of 
mathematics and different types of mathematical understanding. The following are the sample 
questions from the interview considered for this study: What is mathematics for? What does it 
mean to know mathematics? Can you tell me what a “mathematical concept” is depending on 
your own ideas? How do you know that a student has understood a mathematical concept? 
Probing or additional questions were asked to explore the emerging issues during the interview.  
Procedure  

The interviews were conducted at the time and the place that subjects preferred in one-on-one 
settings, and took 45 minutes to one hour. The answers to the other questions were also 
considered during the analysis if there appeared an issue related to the focus of this study. The 
interviews were transcribed and similarities in the responses among all of the participants were 
investigated through a set of predetermined set of response types. These response types were 
based on an initial study with a similar focus took place in the same setting and the literature 
review. The results are combined under categories that include similar type of answers. All 
names are pseudonyms.   

Results and Analysis  
The answers given to the questions related to the mathematical understanding resulted in four 

components: Content, reasoning, application and procedures. The nature of these components 
and the evidence from the participants are presented below.  
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Content: Beyond Surface Level Knowledge  
Six of the seven participants who mentioned content knowledge as being a part of what it 

means to know or understand mathematics emphasized that there are more things to be 
considered besides numbers, operations, and formulas when knowing and understanding 
mathematics are considered. Moreover, such knowledge can appear in rich ways, like knowing 
where things come from, as two of the six E-HS, three of the four F-HS, and one of the three R-
HS participants mentioned. For example, Yvonne (E-HS) indicates this focus on going beyond 
surface level knowledge: “..knowing the meaning of the concepts, and where and what they are 
used for is necessary [knowledge, too].” The participants generally believed that mathematics 
content should not only include the surface level knowledge of rules and formulas, but also the 
deeper knowledge of how these formulas came out and what the concepts mean through 
theorems and proofs. The emphasis on how concepts are formed seems to be an evidence of 
relational or conceptual understanding (Skemp, 1987).  
Reasoning: Logical Thinking and Multiple Views  

Twelve of 13 participants expressed that understanding mathematics helps in improving the 
habits of thinking in general. One of these habits is thinking logically in studying mathematics or 
thinking about the logic that bases the concepts studied, as five of the six E-HS and one of the 
three R-HS participants mentioned. For example, Tom (E-HS) said that, “I think that logical 
thinking is fundamental to the mathematics. It involves thinking and acting logically.”  

Another habit of thinking is developing multiple approaches in thinking about not only 
mathematical tasks but also other situations. Two of the six E-HS, one of the four F-HS, and two 
of the three R-HS participants mentioned this view, as exemplified by Arthur (F-HS): “We 
probably don’t realize it, but mathematics … help us in developing multiple views when we 
come across a situation.”  

The evidence that the participants sought for habits of thinking, or whether one has logical 
thinking and multiple approaches in studying mathematics, was one’s verbal explanation of these 
habits of thinking and multiple approaches. Four of the six E-HS, three of the four F-HS, and one 
of the three R-HS participants claimed that the verbal explanation should involve one’s own 
words and the expressions gathered in a meaningful way, as indicated by Mark (F-HS): “I would 
not want a student to solve me a problem, I would want him to explain me verbally [what he has 
done].”  

The underlying issue may be that if one is logically organizing his own ideas, then he surely 
knows what he is doing, which seems to be related to one’s awareness of what one is doing and 
why (Skemp, 1987). Participants considered that the specific path of reasoning that includes 
logical thinking and multiple views is likely to appear in verbal explanation. The verbal 
explanation should have a unique language, determined by one’s own words and expressions, to 
indicate mastery in reasoning.   
Application: Mathematical Dimension and Building Connections  

All of the participants thought that being able to apply mathematical knowledge to other 
mathematical tasks or problems and to other contexts such as science and social sciences is an 
important task of knowing and understanding mathematics. This seems like finding the 
mathematics within other contexts, or building context-free relations among different types and 
areas of knowledge (Hiebert & Lefevre, 1986), as indicated by Gail (E-HS): “It [mathematical 
understanding] can be considered as adding a mathematical dimension to the concepts in other 
fields.”  
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Application of mathematical ideas to other contexts also means building connections to other 
mathematical knowledge. This also includes the connection between the abstract and concrete 
knowledge and the cause-effect relationship, as two of the six E-HS and two of the four F-HS 
participants mentioned, as Emily (E-HS) notes: “Given a concept, if one can build connections 
between that concept and some other concepts, and can comment on the cause-effect 
relationships between them, then I can say that one has mathematical understanding.”  

Real-life contexts were commonly mentioned both as a special area in the application of 
mathematical knowledge and also in relation to the nature of mathematics, as indicated by Stacy 
(F-HS): “The mathematical things that we don’t see make life go on. It [mathematics] is for life.”  

The participants believed that knowing and understanding mathematics could be seen 
through the skills such as applying the mathematical knowledge on other tasks and fields, 
building connections through various pieces of knowledge and thinking mathematics within the 
real-life context. The conceptions of building relationships had many dimensions and seemed to 
be an indication of conceptual understanding as described in the literature (Hiebert & Lefevre, 
1986; Rittle-Johnson & Siegler, 1988). According to the participants, application is not simply a 
skill of being able to implement rules and procedures on similar situations, but being able to 
search for the existing mathematical ideas, rules or procedures in different contexts.  
Procedures: Steps to Follow  

The participants generally viewed mathematical understanding as a multi-dimensional 
construct. Although most of the participants could not express what conceptual understanding 
might be, a total of nine participants including four of the six E-HS, three of the four F-HS, and 
two of the three R-HS ones were able to mention a step-by-step pattern for what they believe 
procedural understanding might be in the context of solving a question or a problem. Mark (F-
HS) was one such student; he said that understanding a procedure involving knowing, “The steps 
that one should follow… If we ask a question, and if the question has several steps, than one 
should know where to start.”  

If the task is a question, then having procedural knowledge allows one to decide on which 
steps to take to solve the problem. If it is a problem, then the participants seem to associate the 
step-by-step pattern with the problem solving steps, and consider the usage of such pattern a as 
an indication of procedural understanding. There appears to be a consistency between the 
participants’ beliefs about procedural understanding and the way it is defined either in terms of 
step-by-step structure (Hiebert & Lefevre, 1986) or as problem-solving sequences (Rittle-
Johnson & Siegler, 1988).   

Discussion  
This analysis of preservice teachers’ beliefs about mathematical understanding showed that 

the four components include various subcomponents. In general, preservice teachers mentioned 
the reasoning, application, and procedural components of the mathematical understanding more 
often than the conceptual component. Although most of the participants could not express what 
conceptual understanding might be, the way they described it through student actions and task 
examples showed that their beliefs about conceptual understanding aligns towards how it is 
defined in the literature. Procedural understanding, on the other hand, was expressed through 
definitions and examples more fluently. Although some of the responses to the questions were 
clearer, some of them did not fit only one component of mathematical understanding, but had 
relationships to the other components or subcomponents.   

High school background had some effect on the participants’ views of nature of mathematics 
and teaching and learning mathematics. This effect seems to be a combined effect of the school 
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type and mathematics teacher. More competitive schools have more skillful teachers and the 
probability of having a good mathematics teacher increases for the students of more competitive 
high schools. Preservice teachers from E-HS, which are the most competitive high schools, did 
not mention content knowledge as frequently as they mentioned the other three components 
(reasoning, application, and procedures). Most of F-HS participants mentioned all four 
components. Content knowledge was also mentioned less than the other three components by the 
R-HS preservice teachers, who had the least competitive high school background.   

Participants generally emphasized reasoning, building connections through other 
mathematical ideas, and deepening the meaning of the concepts and presented richer conceptions 
of mathematical understanding. Preservice teachers with richer conceptions, who were mostly 
coming from E-HS background, did not hesitate in responding to the questions and provided 
deeper insights when asked to explain more. These participants seem to exhibit properties of 
conceptual knowledge and understanding since they mention about rich relationships between 
the concepts (Hiebert & Lefevre, 1986; Ma, 1999; Rittle-Johnson & Siegler, 1988) and 
emphasize on how the concepts are formed (Skemp, 1987).   

The way preservice teachers mention real-life and other contextual applications of 
mathematical ideas seem to be an indication of reflective conceptions of mathematical 
knowledge (Hiebert & Lefevre, 1986) since they refer to the relationships among the 
mathematical ideas independent from the context the ideas are presented. Claims about the 
multiple approaches in dealing with mathematical tasks seem to provide evidence on preservice 
teachers’ richer conceptions of mathematical understanding as Ma (1999) argues. Moreover, 
participants generally mentioned about the procedural knowledge and understanding in terms of 
step-by-step structure (Hiebert & Lefevre, 1986) and problem-solving sequences (Rittle-Johnson 
& Siegler, 1988).   

Preservice teachers with poorer conceptions and with the least high school background, on 
the other hand, could not provide complete and clear expressions, especially for conceptual 
understanding. Hence, they were not able to provide the relationship between the conceptual and 
procedural understanding in terms of students’ actions or hypothetical tasks. Moreover, they 
generally tended to give examples of measurement processes, such as pre and post testing of the 
students, for analyzing the students’ mathematical understanding, rather than the actual student 
work. In general, the participants from the most competitive high schools seemed to have richer 
conceptions of mathematical understanding compared to the participants from the least 
competitive high schools.   

As the teacher education research evolved through a picture of more complex relationships 
(see Koehler & Grouws, 1992), there appears a need to clarify the pieces in the picture. The 
study reported here attempts to describe preservice teachers’ beliefs about subject matter, to 
provide preservice education and further inservice development with an insight of strength and 
quality of ideas that the teachers have. The results seem to confirm the previous findings about 
the effect of pre-college education on preservice teachers’ beliefs about mathematics (Ball, 1990; 
Lampert, 1990; Schmidt & Kennedy, 1990) in a different context. However, more investigation 
with more participants from different year levels is needed to understand the differences related 
to the high school background and how teacher education program might have affected their 
beliefs. The results of this study might be considered in designing content and pedagogical 
content courses for preservice mathematics teachers.  
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AFFECTS OF ENGAGEMENT IN REFORM-BASED PRACTICE ON A COLLEGE 
INSTRUCTOR’S CONCEPTIONS OF MATHEMATICS  

Riaz Saloojee 
OISE/UT 

riaz.saloojee@senecac.on.ca  
 

A case study of a college instructor’s first engagement with a reform-based approach to teaching 
mathematics is the focus of this study.  Teaching in this manner did not seem to have caused any 
significant, genuine changes in the participant’s conceptions of mathematics.  Further, because 
of the differences in the author’s and the participant’s conceptions of mathematics, there are 
differences in how each perceived the taught unit.  The author, who has fallibilist conceptions of 
mathematics perceived the unit to be more successful than the participant who exhibits emerging 
absolutist conceptions.  
 

Objectives  
Reform practices are being advocated for by mathematics education researchers and various 

professional organizations involved in mathematics education, NCTM (1989; 2000) specifically.  
While research and literature on reform to mathematics education is prevalent, advocating of 
reform in traditional community colleges is less prominent.  My study aims to add to the 
discourse surrounding the issues that relate mathematics instructors’ subject conceptions and 
engagement with reform-based practices in mathematics education.  The hope is that this 
research study will contribute to the goal of defining and initiating reform practices in traditional 
community college mathematics classrooms.  Students need to engage in the doing of 
mathematics in addition to learning what has been done.  Of course, students will not have the 
opportunity to engage in a reformed method of mathematics education if their teachers do not 
teach mathematics in this way.  And, teachers will not teach mathematics in this way if they are 
not exposed to a broadened perspective of what mathematics is and what it means to do 
mathematics.  For this reason, my research addresses the question: How are a college instructor’s 
conceptions of mathematics and mathematics education affected by their engagement in reform-
based practice in mathematics education?  

Theoretical Framework  
NCTM (1989; 2000) recommends fundamental changes take place in mathematics education 

as it is traditionally practiced.  However, before substantial systemic changes occur, teachers’ 
beliefs about the nature of mathematics need to be addressed.  Legitimate reform cannot take 
place in mathematics education until there is fundamental change in teachers’ views about the 
nature of mathematics. Teachers’ personal philosophy of mathematics impact what teachers do 
in the classroom (Edward and Roberts, 1998; Ernest, 1989; Roulet, 1998; Thom, 1973; 
Thompson, 1992).  As Thom (1973) articulates, “all mathematics pedagogy, even if scarcely 
coherent, rests on a philosophy of mathematics.” This does not imply that changing teachers’ 
conceptions of mathematics is sufficient to affect changes towards reform practices, but it is 
necessary for its commencement (Battista, 1994).  

Absolutist conceptions of mathematics are characterized by accurate results and infallible 
procedures.  Within this conception, mathematics teaching involves presentation of concepts and 
procedures with students acting as passive recipients of mathematical knowledge.  Students are 
then presented with opportunities to identify concepts and perform procedures (Ernest, 1998; 
Thompson, 1992).  
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Conversely, fallibilist views arise from “sociological analysis of mathematical knowledge 
based on the ongoing practice of mathematicians” (Thompson, 1992).  Unlike absolutist views, 
fallibilists conceive of mathematics as a mental conglomeration of ideas, through social 
construction, that involve conjectures, proofs, and refutations, the results of which are validated 
by the contemporary social and cultural milieu (Ernest, 1998; Hersh, 1997; Lakatos, 1976; 
Thompson, 1992).  The conception of mathematics teaching that follows from this view is one 
that engages students in meaningful activities spurred by problem situations that require 
reasoning, creative thinking, discovering, inventing, communicating, collaborating, and social 
validating (Thompson, 1992).  Knowledge of concepts and procedures then, are valued only to 
the extent to which they are applicable in these meaningful activities.  

Recognizing that the absolutist view has been predominant in traditional practices in 
mathematics instruction, Thompson (1992) makes a case for the denouncement of this 
misrepresentation of mathematics, and a movement toward fallibilist views through a process of 
changing teachers’ conceptual understandings of the nature of mathematics.  This process is 
necessary to facilitate mathematics education reform (Battista, 1994).  Though, analyses of 
research of the nature of the relationship between beliefs and practice suggest that this 
relationship is complex, dynamic, and dialectic rather than causal (Thompson, 1992).  

Ernest (1989) identifies three philosophies of mathematics.  In the instrumentalist view, 
mathematics is an accumulation of facts, rules and skills to be used in the pursuance of some 
external end – a set of unrelated but utilitarian rules and facts.  Still within the sphere of 
absolutism is the Platonist view that mathematics is a static but unified body of certain 
knowledge – mathematics is discovered not created.  Contrary to these two views, the problem-
solving view recognizes mathematics as a dynamic, changing social creation, a cultural product. 
Mathematics in this conception is a process of inquiry; its results remain open to revision, as 
opposed to a finished product (Ernest, 1989; Hersh, 1997; Lakatos, 1976). 

Associated to each of these views there is a generalized representation of the role of the 
teacher.  The instrumentalist views their role as that of an instructor emphasizing mastery of 
skills, whereas the Platonist is an explainer disseminating knowledge for the student to receive.  
The constructivist (problem-solving view) however, perceives their role as that of a facilitator 
with students actively constructing their own knowledge.  They encourage student exploration 
and autonomous pursuit of their own interests (Ernest, 1989).  

Researchers and professional organizations, such as NCTM, advocate a reform of current 
practice in mathematics education from transitive methods of instruction to those of a social 
constructivist approach (Roulet, 1998).  Various associations and organizations (NCTM, 1989; 
OAME/OMCA, 1993) conclude that traditional mathematical practices tends to be uniform in its 
approach – the major part of class time consisting of the teacher presenting new material while 
students listen and take notes.  The change in this methodology being advocated for is not new.  
The groups interested in fostering this change have been campaigning a number of years.  
Romberg (1992) identifies a change in epistemology of mathematics in schools as the “the single 
most compelling issue in improving school mathematics” in closing the gap between espoused 
visions of mathematics and traditional school practices.  Teachers’ pedagogical choices then are 
seen as manifesting from their personal conceptions of mathematics (Roulet, 1998).  

Research Method  
Again, the nature of the relationship between beliefs and practice is complex, dynamic, and 

dialectic rather than causal.  Practice here is inclusive of “everything teachers do that contributes 
to their teaching” (Simon and Tzur, 1999), including their beliefs and attitudes about math.   
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A case study approach (Merriam, 2001) was employed for the proposed research as it offers a 
means of investigating the complex, multi-variable nature of the relationship between 
engagement in reform-based practices and a teacher’s conceptions of the nature of mathematics, 
in a real-life context.  Qualitative research methods (Merriam, 2001) were utilized as a means of 
exploring this relationship; specifically, to understand and document the experiences of a college 
teacher who is engaging in a reform-based approach for the first time.  I wanted to understand 
this phenomenon from a holistic perspective that captures as many dimensions of this experience 
as possible.  I sought to understand this in deep ways that included the teacher’s feelings, 
attitudes and explanations of her experience.  Further, I wanted to know how the teacher’s 
background, beliefs, and conceptions of mathematics and mathematics education caused their 
perceptions of this experience to be different, or similar, to mine.  
Background and Population Sample  

The Liberal Arts Program [LA] (pseudonym) offered at Carling College of Applied Arts and 
Technology (pseudonym) is an articulation program, with a rigorous course of study and high 
expectations. It is said to be a program that is demanding yet forgiving; demanding in that a high 
level of commitment and achievement is expected in this rigorous course of study, but forgiving 
in that the nature of the program takes into consideration that students entering this program, for 
numerous reasons, did not meet their academic potential in secondary environments.  All efforts 
are made to actualize these students potential.  Those students who meet the minimum two-year 
requirements of the program have the option of entering a third year at various universities with 
whom LA has articulation agreements.  Coordinators, instructors, and support staff are strongly 
committed to this program and the success of its students.  

Successful completion of a mathematics course is a requirement of all LA students in the first 
semester of their program.  Prior to entrance, students write a competency placement test. Based 
on the results of this test, students are placed into one of four first semester mathematics courses 
ranging from basic (remedial) algebra to intermediate algebra to calculus.  The level of 
sophistication and content of the mathematics taught within each course is left to the discretion 
of individual instructors, though voluntary collaboration transpires.  Instructors make decisions 
based on what they gauge as students’ prior understandings of mathematics, possible student 
demands and needs, and their own views of what mathematics should be taught within a minimal 
framework that is negotiated between the instructors and program coordinators.  Thus, there is a 
high level of autonomy for instructors with regard to their curriculum development, teaching 
methodologies, textbook choices and manners of use, and assessment and evaluation methods.  
Kayla Adams (pseudonym), the study’s participant, is a mathematics teacher within the LA 
program.  No preordained criteria, such as specific beliefs or teaching practices were imposed 
other than her capacities within the program.  
Data Collection  

A full range of data collection techniques associated with qualitative research (Merriam, 
2001) was utilized to explore the affects of Kayla’s engagement in reform-based practices on her 
subject conceptions.  Personal interviews were conducted with Kayla, structured on her personal 
reflections.  Document notes, audio and video recordings of interviews, audio recordings of 
planning session discussions, and extensive notes recorded in logbooks were maintained so as to 
ensure the accuracy and integrity of this study.  Field notes were taken during interviews, 
discussions, and during observations of Kayla in her classroom setting.  All interviews and 
planning session discussions were transcribed, and forwarded to Kayla to ensure accuracy of 
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what she had said. Further, Kayla was asked to certify that what was recorded reflected 
accurately the meanings she was trying to convey.  

Kayla’s was initially asked to independently reflect on, and complete a background 
questionnaire addressing questions related to her mathematics education and her images of 
mathematics to be used for analysis.  This was followed by two one-and-a-half-hour semi-
structured interviews, one prior to commencement of classes and one after completion of the 
unit.  Also, Kayla and I engaged in five planning session discussions.  

The first interview addressed issues concerning Kayla’s mathematics education, her teaching 
experience, her confidence in mathematics, her conceptions of mathematics, and her 
mathematics teaching strategies.  

Kayla and I then co-planned and co-taught a unit on fractions in her pre-algebra course, 
utilizing a reform-based approach.  Kayla and I planned lessons collaboratively.  The discussions 
during the planning sessions were recorded and transcribed for further analysis.  

Upon completion of the unit, a follow-up questionnaire was given to the Kayla to 
independently reflect on the unit of study, and to revisit some of her initial beliefs about 
mathematics.  This formed the foundation for the final interview that addressed her feelings and 
attitudes about the unit taught in a reform-based manner.  As well, Kayla’s attitudes and beliefs 
about mathematics, the mathematics teaching/learning process, and her confidence in teaching 
mathematics in this manner were revisited and reflected upon to gauge change, and possible 
reasons for this change, or lack thereof.  Data was connected to Kayla’s conceptions of 
mathematics, and examined for recurring ideas or themes.  
Participant  

Kayla was born and raised in a large urban city in Ontario, and completed all of her 
elementary and secondary schooling in that city’s public board.  Kayla remembers feeling 
“neutral” about her elementary math schooling, neither enjoying it, nor disliking it.  

Kayla was surprised by her high achievement in grade nine algebra.  This marked the point 
when Kayla’s confidence in mathematics began to grow.  Her continued success in grade ten 
mathematics prompted Kayla to continue her mathematics schooling beyond this minimum 
required for graduation.  Kayla’s success prompted her decision to do her grade thirteen maths.  

In spite of alternate family expectations, and without much of their support, Kayla completed 
a Bachelors degree from a large, recognized university in Ontario, with a concentration in 
mathematics.  Personal, non-academic goals, family pressure, and societal norms were factors in 
Kayla’s decision to graduate with her three-year degree and move on to teacher training, which 
she completed the following summer.  Kayla spent two years teaching at the secondary level 
before deciding to have children.  Never really thinking about returning to teach at the secondary 
level, it was many years later that Kayla was asked to cover for an acquaintance taking leave 
from Carling College. Her background in mathematics helped gain Kayla a part-time teaching 
contract position at the College.  This “evolved” into a full-time, tenured teaching position at the 
College, where Kayla has been teaching ever since.  
Researcher’s Role  

As a researcher and participant in this study I moved between two roles, that of a researcher, 
vis-à-vis observer as participant and that of a participant as observer (Merriam, 2001).  Though 
at times the lines between these two roles became blurred, the need to wear both a researcher and 
a participant’s hat was essential to this study.  Though this report is being written from the 
perspective of a researcher, I draw extensively upon my experiences as a participant as observer.  
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My role during the planning and teaching of the unit was that of a participant as observer. 
Kayla and I engaged in our planning sessions as colleagues.  I acted as an “expert” in reform-
based methodologies at times during our planning interactions.  “Expert” here is not used in the 
sense that I was the bearer of professional knowledge that I transmitted to Kayla.  Rather, a 
meta-constructivist approach was used in which I brought forth some new ideas and materials, 
and we collaboratively designed activities and decided how to utilize materials.  Since this was 
Kayla’s first exposure to this manner of teaching, vis-à-vis reform-based mathematics education, 
at times I acted as a mentor for Kayla and modeled ways in which this approach may be enacted 
upon. Further, I documented my impressions of student’s reactions to the approach, and 
engagement with the activities.  Kayla was asked to do the same.  Her impressions and 
perceptions were analysed from her written reactions in her logbook, and her verbal reflections 
during subsequent discussions and the final interview.  

Discussion  
Kayla is a professional educator and conducts herself as such.  She shows genuine concern 

for her students both in and out of the classroom.  This includes her ongoing quest to improve 
her teaching.  I feel that Kayla is looking for an optimal method for teaching mathematics, 
almost formulaic.  This search led Kayla to a conference where she listened to “interesting 
speakers” that presented innovative ideas that she could add to her repertoire of teaching 
methods.  However, Kayla states, “I don’t think any of that translated into using it [the new 
ideas]… I would need to do something hands-on… within a classroom at the same time; so I 
would need to apply things.”  This quest for improved teaching methods is what motivated Kayla 
to participate in this study and engage in a reform-based approach (RBA) to teaching a unit in 
fractions.  

Kayla notes that the differences in the RBA and her usual (traditional) way of teaching 
fractions were like “night and day.”  Particularly noticeable for Kayla was the idea of students 
“discovering” meanings for themselves versus placing the abstract concept of a fraction on the 
board and iterating, “Here’s a fraction; this is what you do with a fraction.”  Kayla further notes, 
“What I normally do is very teacher-led in terms of fractions.”  This is not surprising as her 
experience with those who have taught the same, or similar courses is that “the norm is definitely 
teacher-led.”  This RBA was not only different from how Kayla has ever taught, but also from 
how she has ever learned mathematics.  

One noticeable difference for Kayla between the RBA and her traditional approach was the 
amount of time needed for the unit.  The RBA was not as efficient a way of teaching 
computation, something Kayla values as a goal of teaching fractions, as her usual method.  This 
is discussed further below.  Also, Kayla notes that her role as a teacher within the RBA was 
different from her usual one in which she teaches concepts in front of the class, with everyone 
arriving at the same answer via the same “path.” In the RBA Kayla viewed her role as one of 
facilitating the learning. Facilitating what though is a question discussed in more detail below.  

Another difference Kayla noted was that in general students enjoyed the RBA to this unit and 
that the RBA helped alleviate some of the “fear of fractions” that she usually notices amongst her 
students.  She feels this is because of their more concrete understanding of what a fraction is.  

A recurring area of concern for Kayla was how students are supposed to make the “leap” 
from concrete understandings to abstract ones.  Embedded in her concern seems to be a search 
for how to “teach” through this leap.  This indicates to me that Kayla has not fully understood 
the ideas of discovery learning and constructivist theories.  There is reluctance on her part to 
render control of learning to the students.  Although Kayla had been immersed in the RBA 
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within her own classroom, this lack of understanding may be a limitation of this study.  Whether 
this is a result of a limited engagement (one month) with the RBA, insufficient to gain a holistic 
perspective, or due to her conceptions of epistemological understanding of how mathematical 
knowledge is acquired is unclear.  A longitudinal study related to this may yield greater 
understanding.  

This issue is complicated further as Kayla and I have differing aims for teaching fractions.  
Kayla admittedly places much emphasis on “computation over comprehension” as her indicator 
of success – success here is taken as students’ mastery over the material and Kayla’s 
effectiveness as a teacher.  Computational fluency is an emphasized goal of Kayla’s and she 
questions whether the RBA will necessarily lead to this. It certainly is not the most efficient 
route, nor is it intended to be.  For me, computational fluency as part of the automatization of 
operations for greater efficiency is still a goal, but a rather low priority one.  Further, I feel this 
should only be sought after sufficient understandings of concepts have been actualized.  Kayla 
would like to see both computational fluency and understanding occurring concurrently.  

This issue seems to be a root for a further divide between Kayla and myself, that being the 
idea of incorrect answers.  Kayla expresses much concern over students moving in “incorrect” 
directions.  Kayla had to fight the urge to show students the “direct” route, i.e., the most efficient 
route to gaining proficiency.  This reflects Kayla’s lesser valuing of mistakes than myself – both 
as a necessary part of learning, and as part of the mathematical process that should be embraced, 
as opposed to stumbling blocks to be avoided.  My willingness to “allow” students to continue 
on incorrect trajectories, producing incorrect mathematical products, stems from my perceiving 
of good mathematical processes of conjecturing, testing, refuting, and refining taking place in the 
classroom.  For myself, good mathematical process may occur independent of good 
mathematical products. Kayla believes that as the teacher if she does not correct mistakes 
promptly, students will incorrectly believe something to be true.  This may be due to differences 
in Kayla’s and my conceptions of the teacher as an authoritative source of knowledge versus a 
facilitator of learning.  

I return here to Kayla’s earlier statement of the teacher’s role in a RBA as a facilitator. Kayla 
and I have differing understandings of what this entails.  My understanding of this role is that the 
teacher facilitates learning environments that provide students opportunities to construct 
knowledge.  Students here build their own knowledge on previous knowledge through various 
means.  Thus knowledge is not merely transmitted.  When Kayla was asked to expand on her 
meaning of “facilitator,” she contended that the teacher facilitates the students’ getting through 
the curriculum.  In other words, a guide as to what mathematical content students should master.  
Our uses of the word “facilitate” thus differ greatly.  

Although by the end of the unit Kayla has begun to appreciate the use of concrete 
understanding more than when she began, her conceptions of mathematics as merely a final 
product and not necessarily the process of achieving this product remains unchanged.  She also 
maintains utilitarian ends as her primary aims for teaching and learning mathematics.  Further, 
she retains a dual, incoherent conception of mathematics as being both discovered and invented.  

This RBA has not shifted Kayla’s conceptions of what good mathematics teaching entails.  
Kayla views this RBA as merely pedagogically different from her traditional approach.  For 
Kayla, good teaching includes being flexible in how you approach teaching.  For her, this RBA 
is just part of that flexibility.  Kayla doesn’t seem to realize that a genuine RBA is more than 
simply another way of delivering curricula; that it entails a paradigm shift in terms of 
philosophical underpinnings, inherent aims and purposes, and broadened understandings of what 
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mathematics is.  Perhaps this is because this study did not span a long enough time to foster any 
significant, genuine change in her conceptions of mathematics.  Or perhaps it is because these 
types of changes can only result from deep reflection ensuing from existing and recognized 
incongruence between individuals’ beliefs and their personal experiences.  It was hoped that 
Kayla’s engagement with a RBA would produce this type of catalytic experience. It is 
conceivable that a dissonance may need time to ferment.  Nonetheless, this has been a rewarding 
and enriching experience for myself, and cause for my own dissonance and self-reflection.  
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This paper discusses theoretical assumptions either explicitly stated or implied in research on 
teachers’ beliefs. Such research often assumes teachers can easily articulate their beliefs and 
that there is a one-to-one correspondence between what teachers state and what researchers 
think those statements mean. Research conducted under this paradigm often reports 
inconsistencies between teachers’ beliefs and their actions. This paper explores an alternative 
framework that views teachers as inherently sensible rather than inconsistent beings. Through 
the lens of coherentism, teachers’ beliefs are not seen as inconsistent; rather, researchers’ 
interpretations of teachers’ beliefs as well as teachers’ abilities to articulate those beliefs are 
seen as problematic. Implications of such a view for research on teacher beliefs as well as for 
the practice of mathematics teacher education are discussed.  
 

Numerous studies in the 1970s and 1980s focused in one way or another on describing, 
exploring, and explaining teachers’ beliefs and possible relationships between those beliefs and 
the practice of teaching. In 1992, Kagan, Pajares, and Thompson each published a synthesis of 
research on beliefs. These three syntheses, although from slightly different vantage points, each 
tried to accomplish a similar goal: to portray various research agendas and the resultant research 
on teachers’ beliefs. Kagan (1992) and Pajares (1992) discussed educational research on beliefs 
across disciplines; Thompson (1992) discussed primarily research in mathematics education. 
Pajares (1992) focused primarily on the underlying definitions of belief and belief systems 
necessary for quality research on teacher beliefs; Kagan (1992) focused on the variety of 
methodological underpinnings and implications of such research. Thompson’s (1992) synthesis 
spanned both of these while focusing on mathematics education. All three essentially concluded 
that research on teacher beliefs, although fraught with pitfalls to avoid and difficulties to 
surmount, had great potential to inform educational research and practice and was therefore 
worth the effort.  

Research on teachers’ beliefs often takes a positivistic approach to belief structure, assuming 
that teachers can easily articulate their beliefs and that there is a one-to-one correspondence 
between what teachers state and what researchers think those statements mean. Research 
conducted under this paradigm often reports inconsistencies among teachers’ beliefs as well as 
between their beliefs and their actions. This paper describes an alternative framework for 
conceptualizing teachers’ beliefs that views teachers as inherently sensible rather than 
inconsistent beings. Through the lens of coherentism, teachers’ beliefs are not seen as 
inconsistent; rather, researchers’ interpretations of teachers’ beliefs as well as teachers’ abilities 
to articulate those beliefs are seen as problematic. When apparent inconsistencies arise, the 
framework calls for further elucidation; it calls for a deeper understanding of teachers’ beliefs 
and a better understanding of our inferences as researchers.  

Theoretical Framework: Sensible Systems of Beliefs  
The word conception has been used by some (e.g., Lloyd & Wilson, 1998; Thompson, 1992) 

as a general category containing constructs such as beliefs, knowledge, understanding, 
preferences, meanings, and views. Educational researchers generally agree with this broad 
category; it is when we get down to distinguishing the members of this set that there is 
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considerable variation (Pehkonen & Furinghetti, 2001). In particular, the relationship between 
belief and knowledge has been viewed in extremely different ways, although this disagreement 
may be more semantic that substantive (Pajares, 1992). Some choose to view knowledge as a 
subset of beliefs; others view beliefs as a subset of knowledge. The desire to distinguish these 
two constructs and yet maintain a strong relationship between them stems primarily from a desire 
to make this definition consistent with our everyday usage of these terms. We speak of these 
constructs similarly, yet differently. If there is something we claim to know for certain, such as 
that there are 50 states in the United States of America, it would seem odd to make the statement,  

“I believe there are 50 states.” Somehow, in this instance, knowing is stronger than believing 
(Rokeach, 1968). But that does not mean beliefs need be seen as a subset of knowledge. I have 
found it more useful to consider those conceptions to which we assign some truth value as 
beliefs, and then to refer to as knowledge a certain subset of those beliefs. How do we define that 
subset? Knowledge is a belief we take as fact. We may learn some conceptions as knowledge, or 
fact, from the beginning. Other conceptions may start out as belief and become knowledge over 
time. When we say we know something, we no longer state we “merely” believe it. Despite the 
inclusion of one within the other, it is most common in our everyday language to speak of beliefs 
and knowledge as separate constructs, and I will continue to do so. Although knowledge is a 
subset of beliefs, we tend to refer to the compliment of knowledge, rather than to the set within 
which it resides, as beliefs. When I use the term belief in this study, I am referring to the subset 
of beliefs we do not refer to as knowledge.   

The definition of belief for this framework pays particular attention to the notion that what 
one believes influences what one does, adopting Rokeach’s (1968) description: “All beliefs are 
predispositions to action” (p. 113). This description does not imply, however, the person holding 
a belief must be able to articulate the belief, nor even be consciously aware of it. It thus makes 
sense to discuss uncovering, discovering, and exploring one’s own beliefs. In addition, a belief 
“speaks to an individual’s judgment of the truth or falsity of a proposition” (Pajares, 1992, p. 
316), but the belief may exist independently of the proposition.  

In addition to inferring what teachers believe, research on beliefs often seeks to describe how 
those various beliefs are related to each other (often referred to as belief systems) and how these 
beliefs influence actions. In order to conceptualize such a system, the framework presumes 
individuals develop beliefs into organized systems that make sense to them. This view is 
informed by the philosophy of coherentism:  

Our knowledge is not like a house that sits on a foundation of bricks that have to be solid, 
but more like a raft that floats on the sea with all the pieces of the raft fitting together and 
supporting each other. A belief is justified not because it is indubitable or is derived from 
some other indubitable beliefs, but because it coheres with other beliefs that jointly support  
each other…. To justify a belief… we do not have to build up from an indubitable 
foundation; rather we merely have to adjust our whole set of beliefs… until we reach a 
coherent state. (Thagard, 2000, p. 5)  

In coherentism, beliefs become viable for an individual when they make sense with respect to 
that individual’s other beliefs. This viability via sense making implies an organization or system 
of beliefs, which I refer to as a sensible system. To discuss what this sensible system might look 
like, I turn to the works of Rokeach (1968) and Green (1971).  

Green (1971) suggested three dimensions one can consider as a metaphor for visualizing a 
belief system. One dimension, referred to as “psychological strength” (p. 47), describes the 
relative importance a person might ascribe to a given belief. Both Rokeach (1968) and Green 
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(1971) describe this dimension as varying from central to peripheral. Assuming “the more central 
a belief, the more it will resist change” (Rokeach, 1968, p. 3), Rokeach introduces the idea of 
connectedness as a means of exploring the central or peripheral nature of a belief. Beliefs can 
vary with respect to the degree to which they are existential, shared, derived, or matters of taste. 
Existential beliefs are those we associate with our identity—with who we are and how we fit into 
our world. They have a high degree of connectedness and are thus more strongly held—more 
central. We also tend to hold more centrally those beliefs we think we share with others. If, 
however, a belief is derived from an association with a group, then it may be less connected and 
thus more peripheral in nature. Finally, “many beliefs represent more or less arbitrary matters of 
taste” (p. 5). These beliefs, as implied by the use of the word arbitrary, are less connected and 
thus more peripheral in nature. I find it helpful to visualize the placing of beliefs along this 
dimension (and each of the other dimensions as well) as a sense-making activity. Beliefs 
naturally go where they make the most sense to us—where they fit in.  

A second dimension considers the quasi-logical relationships that may exist between an 
individual’s beliefs (Green, 1971, p. 44). Consider the following statements:  

A: Students need to learn their times tables.  
B: Students should not use calculators.  

Some teachers maintain there is a logical relationship between these statements. That is, for 
some, A implies B: IF you want students to learn their times tables THEN they should not be 
allowed to use calculators. And if a person believes that A implies B, and they believe that A is 
true, then B is seen as true because it is the logical conclusion from knowing that A is true. 
Green (1971) refers to the relationship as quasi-logical. Whether B does in fact follow from A is 
not at issue. In this person’s belief system, A implies B; that is how they hold these beliefs. In 
this case, belief B is referred to as derivative, and belief A is referred to as primary. This quasi-
logical relationship need not correlate directly with the central-peripheral dimension. That is, the 
same person described in the preceding example may hold belief B considerably stronger than 
belief A, even though belief A is a primary belief. Belief B may be much more important to the 
person than belief A. One of the reasons we may posit such a quasi-logical relationship is a 
desire to make two beliefs more coherent when considered in tandem.  

A third dimension of beliefs is the extent to which beliefs are clustered in isolation from 
other beliefs (Green, 1971, p. 47). Beliefs seen as contradictory to an external observer are not 
likely to be seen as contradictory to the one holding those beliefs. In one sense, this dimension 
allows for the contextualization of beliefs; a person may believe one thing in one instance and 
the opposite in another. There are often exceptions to rules. One need not, however, be 
consciously aware of these beliefs. Consequently, seemingly contradictory beliefs may exist in 
different belief clusters with no explicit exception or delineation of context. Although not all 
beliefs are based on evidence (for instance, matters of taste), even those based on evidence are 
based on what is seen as evidence by the one holding the belief. In this same light, the same 
evidence may be used to bolster different beliefs, beliefs clustered in isolation. Thus, defining a 
belief to be a “conviction of the truth of some statement or the reality of some being or 
phenomenon especially when based on examination of evidence” (Merriam-Webster online 
dictionary, 2000) is more specific than I have chosen to be in my definition of belief. Whether a 
belief is “based on examination of evidence” is a question of how a belief is held; it is a question 
of structure.  

The assumption that belief systems are sensible systems does not allow contradictions. 
Whenever beliefs that might be seen as contradictory come together, the person holding those 



 

 947 

beliefs finds a way to resolve the conflict within the system—to make the system sensible. As 
observers, we may not find the resolution sensible. It may not seem logical, rational, justifiable, 
or credible. But our incredulity does not diminish another’s coherence. As researchers, however, 
it is often difficult to look beyond the beliefs we assume must have been (or should have been) 
the predisposition for a given action. The sensible system framework attempts to minimize these 
assumptions. In essence, when belief structures are viewed as sensible systems, observations of 
seeming contradictions are, in the language of constructivism, perturbations, and thus an 
opportunity to learn. Thus, teacher actions do not prove our belief inferences. When a teacher 
acts in a way that is consistent with the beliefs we have inferred, we have evidence that we may 
be on track, but we do not know what belief the teacher really was acting on at the time. When a 
teacher acts in a way that seems inconsistent with the beliefs we have inferred, we look deeper, 
for we must have either misunderstood the implications of that belief, or some other belief took 
precedence in that particular situation.  

Evidence: Examples from the Literature  
Several examples from the literature illustrate how theoretical assumptions have influenced 

how research on teachers’ beliefs has been conducted and interpreted. In her case of Joanna, 
Raymond (1997) stated the following with regard to the relationship between Joanna’s beliefs 
and her teaching practice:  

Joanna’s model shows factors, such as time constraints, scarcity of resources, concerns 
over standardized testing, and students’ behavior, as potential causes of inconsistency. 
These represent competing influences on practice that are likely to interrupt the 
relationship between beliefs and practice. (p. 567)  

From the context of the article, as well as from the fact that Raymond’s model only defined 
mathematics-related beliefs, the beliefs referred to in this last sentence are Joanna’s beliefs about 
mathematics learning and teaching. These were defined as “personal judgments about 
mathematics formulated from experiences in mathematics, including beliefs about the nature of 
mathematics, learning mathematics, and teaching mathematics” (p. 551). The factors of time, 
resources, standardized testing, and students’ behavior are simply described as influences; there 
is no mention of Joanna’s beliefs with respect to these factors. Certainly Joanna has beliefs about 
how she should use the amount of time she is given or about what must be done in order to keep 
students’ behavior in check. That these beliefs seemed to be more strongly held than her beliefs 
about learning mathematics through group work was interpreted as an inconsistency.  

If instead we view Joanna’s beliefs as a sensible system, the strength of Joanna’s beliefs 
about learning mathematics through group work varies by context. In some circumstances, such 
as the one Joanna found herself in at the time of Raymond’s research, strategies other than group 
work were more appropriate. This reinterpretation of the case of Joanna highlights the influence 
of theoretical frameworks on the analysis of research on beliefs. One need not interpret the case 
of Joanna as a case of beliefs being inconsistent with practice. When one defines belief systems 
as sensible systems, certain beliefs have more influence over certain actions in certain contexts. 
Joanna may have chosen to keep her students working quietly in their desks rather than working 
in groups because her beliefs about classroom management outweighed her beliefs about group 
work. If so, she was then predisposed to deal with issues of behavior management over issues of 
group work in this context. Her actions are sensible, not inconsistent, when Joanna’s beliefs are 
viewed as a sensible system.  

Raymond (1997) referred to the case of Fred (Cooney, 1985) as an example of a study that 
found inconsistencies between beliefs and practice. Based on coherentism, I believe there is 
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another valid and valuable way to interpret the findings of this study. Perhaps Cooney found the 
meanings Fred attached to such concepts as “problem solving” and “the essence of mathematics” 
were different than the meanings Cooney had originally supposed. Although there is little 
question as to the struggle Fred had as a beginning teacher, it does not appear to be a struggle of 
belief. In fact, with respect to belief, the biggest struggle in this case study seemed to be similar 
to what others have found—the difficulty, despite an incredible amount of quality research, to 
get into Fred’s mind and characterize the structure of his beliefs. There is some evidence in the 
case of Fred to suggest that Fred’s core belief about mathematics was that mathematics is 
interesting in its own right. I am not sure what Fred thought “problem solving” meant, but it may 
have been merely a catchword he came to associate with what he enjoyed about doing 
mathematics. In this sense, motivating students to engage in mathematics was getting them to 
“problem solve”—just not in the exact same sense the researcher thought of problem solving. 
Thus Fred seems to have constructed a meaning for “problem solving” that differed from the 
intended meanings he had been taught and these two meanings differed in important ways. With 
this interpretation, Fred’s core beliefs are indeed manifested by his actions. Thus, the 
inconstancy is not between Fred’s beliefs and his practice. The inconsistency is between Fred’s 
practice and the beliefs Cooney thought would most likely influence that practice. As 
mathematics teacher educators often advocate mathematics-influenced pedagogy, it is not 
surprising when research presupposes that teachers’ beliefs about mathematics are the core 
beliefs that should influence their teaching.  

This reinterpretation of the cases of Fred and Joanna is not meant to call into question the 
value of the research. I only mean to point out the necessity to take into account the conceptual 
framework for beliefs when interpreting the findings of research on beliefs. Raymond’s (1997) 
model only defined mathematics beliefs, defined as “personal judgments about mathematics 
formulated from experiences in mathematics, including beliefs about the nature of mathematics, 
learning mathematics, and teaching mathematics” (p. 551). Note the relationships between 
certain beliefs and actions implied by this definition. In addition, Raymond’s model placed 
Joanna in the position of being able to explicitly state her beliefs as well as the relationships 
between her beliefs and her teaching practice. In this sense, Raymond believed a person can not 
only verbally articulate their own beliefs about such complex issues as the nature of 
mathematics, but a person can also verbally articulate the relationships existing between their 
various beliefs and their teaching practices. The assumption someone can simultaneously 
articulate their own beliefs AND be inconsistent in their actions with respect to those beliefs is 
not an assumption I am willing to make. I assume, rather, when Joanna was asked to articulate 
her beliefs, Joanna simply took her best shot at it. I am convinced not only is it insufficient to ask 
someone what their beliefs are, it may be impeding. As Kagan (1992) said, “A direct question 
such as ‘What is your philosophy of teaching?’ is usually an ineffective or counterproductive 
way to elicit beliefs” (p. 66). Participants may try so hard to figure out what they are supposed to 
believe that their responses get in the way of sufficiently revealing what they do believe.  

Skott (2001) attempted to solve the problem of viewing beliefs and practice as inconsistent 
by limiting the type of beliefs he studied. He did this by focusing his research on the beliefs he 
described as “teachers’ explicit priorities” (p. 6)—beliefs of which teachers are explicitly aware 
and that they can articulate. His purpose was then to study the relationships that might exist 
between these priorities and what takes place in the classroom. Skott focused on finding what 
made these explicit priorities and practices consistent rather than inconsistent. This approach is 
illustrated through the case of a novice teacher referred to as Christopher.  
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Christopher’s explicit priorities with respect to teaching mathematics were that mathematics 
should be about experimenting and investigating, so teaching mathematics should be about 
inspiring students to learn independently. Much of Christopher’s teaching (action) that Skott 
(2001) observed seemed consistent with these priorities. Christopher was seldom the center of 
attention at the front of the classroom and his students spent a significant amount of time 
working on open-ended problems in small groups. There were actions, however, that initially 
appeared to be inconsistent with Christopher’s priorities. In particular, as Christopher moved 
about from group to group, Skott observed he would often use what Skott described as 
mathematics-depleting questioning. This kind of questioning would often replace rather than 
facilitate students’ mathematical explorations. Rather than viewing this apparent inconsistency as 
something needing to be fixed, Skott tried to make sense of it. His analysis revealed there were 
other related yet competing priorities Christopher was attempting to manage. In particular, 
Christopher’s priorities with respect to student learning focused on his ability to interact with as 
many students as possible and on each student feeling confident and successful. In light of these 
other priorities, Skott stated that the teaching he observed  

should not be seen as a situation that established new and contradictory priorities, but 
rather as one in which the energizing element of Christopher’s activity was not 
mathematical learning. He was, so to speak, playing another game than that of teaching 
mathematics. (p. 24)  

It turns out, as has been previously postulated, the apparent inconsistency with respect to the case 
of Christopher was in the researcher initially assuming Christopher’s beliefs about mathematics 
would have the strongest influence on his pedagogical decisions. The more centrally held belief 
for Christopher was his belief in the importance of individuals and their need to feel successful. 
The importance of this belief meant mathematical beliefs sometimes took a back seat. The way 
Skott (2001) describes the consistency between beliefs and practice has important implications 
for teacher education and for future research on teachers’ beliefs. It illustrates the power in 
searching for consistency in the participants’ accounts, in viewing their beliefs as sensible 
systems—systems that help them to make sense of and operate in the world around them.  

Conclusions & Implications  
The notion of consistency is an overlooked theoretical assumption in research on teachers’ 

beliefs. Not only is the definition of belief often glossed over, the idea of a belief system and of 
how this system might be related to practice is often ignored. Thus, researchers claim beliefs 
impact practice, then call “foul” when the beliefs they thought would most influence practice do 
not. Research on teachers’ beliefs should focus on building coherent models of teachers’ belief 
systems. The process of exploring and explaining apparent inconsistencies rather than merely 
pointing out inconsistencies facilitates a deeper understanding of the nature of beliefs and how 
they are held.  

This understanding, in turn, has the potential to significantly influence the application of 
research on teachers’ beliefs to the practice of teacher education. The challenge for teacher 
education is not merely to influence what teachers believe—it is to influence how they believe it. 
When it comes to making pedagogical decisions, there are certain desirable beliefs (Brouseau & 
Freeman, 1988) teacher educators want teachers to hold; they also want those beliefs to strongly 
influence practice. Coherence theory offers teacher educators a constructive approach for 
viewing teachers’ belief systems as well as changes in those systems. By way of coherentism, 
teachers are seen as complex, sensible people who have reasons for the many decisions they 
make. When teachers’ belief systems are viewed in this way, we have a basis for constructing a 
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different type of teacher education. Teacher educators should provide teachers with opportunities 
to explore their beliefs about mathematics, teaching and learning. Teacher education strategies 
such as critiquing tradition, demonstrating by case and example, and encouraging rigorous 
discussion take on new meaning when beliefs are explicitly examined. In the process, teachers 
acquire terms and expressions requisite for ongoing, meaningful reflection on their beliefs and 
practice.  

For example, one goal of mathematics teacher education might be to affect teachers’ beliefs 
about mathematics such that those beliefs move high on the list of those beliefs that most 
influence teaching. In order to have this impact, however, teacher educators and the teachers 
themselves need to become aware of the beliefs that are currently filling those “most influential” 
roles. From this perspective, teachers’ belief systems are not simply “fixed” through a process of 
replacing certain beliefs with more desirable beliefs. Rather, teachers’ beliefs must be challenged 
in such a way that “desirable” beliefs are seen by teachers as the most important beliefs with 
which to cohere.  
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Background  
The Ontario mathematics curriculum calls for students to be actively engaged in a problems-

based curriculum, while strengthening skills in arithmetic and algebra.  Students are assessed in 
knowledge/understanding, application, communication, and thinking/inquiry/ problem solving 
using four levels of achievement.  The reform efforts in Ontario are supported by the National 
Council of Teachers of Mathematics (NCTM)’s Principles and Standards for School 
Mathematics (2000), with both formative and summative assessments used.  Lambdin (1998) 
states that there are four purposes to assessment:  evaluate student achievement; monitor student 
progress; make instructional decisions; and evaluate programs.     

Objectives  
The objectives of this presentation are:  
(a)  discuss the factors in my study that impede or facilitate the implementation of multiple 

assessments when beliefs and practices are critically examined;  
(b) explore, critique, and elaborate on Lambdin and Forseth’s (1996) claim that “good 

teaching is seamless – assessment and instruction are often one and the same” (p. 298).  
Perspectives/Theoretical Framework  

Theories of learning and cognition view learning as a “complex process of model building” 
where students construct their own understanding (Lambdin, p. 98, 1998).  Long and Benson 
(1998) argue that more emphasis needs to be placed on aligning assessment with curriculum and 
instruction since alignment does not occur naturally.    

Raymond’s “Mathematics Beliefs and Practices Model” (1997) provides a framework that 
illustrates the complexity of teachers’ beliefs and practices.  Before commencing the study, I 
applied Raymond’s “Criteria for the Categorization of Teachers’ Beliefs About the Nature of 
Mathematics, Learning Mathematics, Teaching Mathematics, and Mathematics Teachers’ 
Teaching Practice” to determine where I was positioned on the continuum using her five-point 
scale.  Edwards (2000) states that teachers who are successful in changing their practices do so 
through their commitment to change as well as visualizing what that change looks like.  

Research Methodology/Data Sources  
This qualitative study is based on action research.  Berg (2001) states that action research has 

been used increasingly to investigate classroom teaching practices since both the researcher 
(educator) and subjects (students) are highly engaged in the study, and that teachers enhance 
their understanding between knowledge and practice that can result in making informed 
decisions for their students.  Although various models exist, Berg states that all models view the 
action research process as a spiral.  

This study took place in the second semester of the 2000 – 2001 school year in a grade 9 
class in southeastern Ontario.  A case study approach of changing my assessment practices 
followed a six-stage process as described by Shaw and Jakubowski (1991).  Field notes were 
maintained to document thoughts, reactions, next steps, issues, concerns, and interpretation and 
analysis of the data, along with informal conversations with students.    
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Findings  
Five factors emerged that impeded the implementation of multiple assessments:  
•  time (additional half-course to teach; co-curricular activities; providing feedback to 

journals and creating rubrics; outside responsibilities as an editor and textbook author)  
•  collaboration (taught in isolation)  
•  curriculum content (difficult to implement alternative assessments in skills-based units 

such as number sense and algebra; very challenging and overcrowded curriculum)  
•  students (lacked prerequisite content and skills; not risk-takers; weak literacy and 

numeracy skills; several high-needs students)  
•  reporting to parents (stressful to evaluate student portfolios with report card marks due 

within 48 hours; Parents’ Night in 4th week of school did not allow for presentation of 
portfolios)  

Three factors facilitated the implementation of multiple assessments:  
•  examining beliefs (use of Raymond’s model before conducting the study)  
•  resources (ministry funding for graphing calculators, geometry software, textbooks)  
•  planning/organization (template to balance instruction, curriculum, and assessment; field 

journal for reflection)  
From my study, I argue that assessment can affect instruction and curriculum, but it is the 

curriculum content that is the driving force.  
Educational Significance  

This study adds to the existing literature on classroom-based assessment and is timely to 
mathematics educators attempting to implement student-centred assessment.  Whether teachers, 
as in Ontario, are mandated to align assessment with curriculum or instruction, or choose to 
incorporate assessments besides tests and examinations in their courses, this study will provide 
them with a case study of one mathematics teacher.  Of particular importance is for teachers to 
challenge their beliefs and practices so teachers are convinced of the need to change, especially 
when reform uses a “top-down” approach.    
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Teachers’ beliefs and conceptions about mathematics play an important role in shaping their 
characteristics and efforts in the classroom (Thompson, 1992), and are, indeed, reflected in their 
classroom actions. Because preservice teachers are required to go through certain stages before 
practicing in the field, it is important to investigate their beliefs and conceptions while they are 
still building and forming their views, philosophies, and ways of teaching. Thus, the purpose of 
this study is to investigate the beliefs and conceptions of preservice teachers about mathematics 
and mathematics teaching and learning.  

Method  
This study is part of a large ongoing study of preservice teachers’ beliefs, which started in the 

spring 2002 semester. At the beginning of each semester when the study took place, surveys 
were administered and interviews were conducted. The subjects, students enrolled in an 
elementary math methods course, completed a 75-item survey.  A subsample also participated in 
a semi-structured interview consisting of 21 questions. During the interview, the subjects were 
asked to complete three scenarios used by Ma (1999). In this paper, only two students’ 
interviews were focused on to provide in-depth information about their beliefs, and to give a 
clearer picture of how they perceive themselves as future teachers. The two students were 
selected because they were extreme cases– one was very positive about mathematics and the 
other very negative.  

Preservice Teachers’ Profiles  
Tom, 23 years old, rated himself as an excellent student in mathematics and his liking of 

math on a scale of 1 to 10 was 9. Believing he could make a difference and teach kids some 
math, he felt he had “a very good grasp on concepts so that [he could] be a good teacher.” Tom 
thought that all math teachers should have strong math skills and varieties of teaching 
techniques. He claimed that elementary schools should focus on problem solving rather than just 
computational skills. In his words, “I think problem solving is probably the way to go, if you can 
do the problem solving, you will be able to grasp the computational knowledge.”  

When asked about memorization as an aspect of mathematics, Tom argued that it is not very 
important, “if you figure out why you are memorizing the things that you memorize then you 
will be better off…[however], well memorizing speeds up the process.” Further, “A peer can 
help and explain difficult concepts.” However, in the elementary classroom, “kids might tend to 
just give answers instead of giving knowledge.” 

 Emily, 23 years old, rated her math ability as below average and her liking of math on a 
scale of 1 to 10 was 3. Her past experience influenced her to be a teacher. She “had some really 
great teachers, especially in elementary school that left a really strong impression.” Regarding 
teaching mathematics, she felt she “definitely need[s] a lot of practice because [she is] not 
personally good at math.” Whereas she thought that it was important for teachers to have strong 
math skills, it was not necessary to have specific techniques because “research is so big 
and…you can find specific techniques that work.”  
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Emily thought that both problem solving and computational skills are of great importance. 
“You have got to do both.” Moreover, memorization was not important “I do not think 
memorizing is a good idea.” Struggling on a concept is important. “I was not taught to think for 
myself and that has been a real big problem.” She continued that working with others was very 
important. “A student can learn more from another student. It is appropriate to work with a group 
when there is a new concept.”  

Discussion  
These in-depth interviews produced some unexpected results. Tom was an excellent student 

and fond of mathematics. However, despite the fact that he was proud of and pleased with his 
ability to understand mathematics easily, he was not able to show insightful thought while 
working on the tasks. In contrast, Emily was uncomfortable with mathematics and had a great 
fear of it. Thus, she struggled when she was asked about the tasks. She had been a weak student, 
striving to understand mathematics and working hard to overcome her shortcomings. She valued 
perseverance, yet she could barely make sense of a concept.  

In spite of their individual background differences and what they think about mathematics, 
they have shared views on several issues, including group work, math usefulness, and the notion 
of problem solving. To some extent they both opposed memorization. However, they 
emphasized the idea that memorizing procedures may help students to some degree.    

Both Tom and Emily advocated problem solving as a strategy in the teaching and learning of 
mathematics. However, despite the fact that Tom strongly supported teaching with conceptual 
understanding, he implied that the procedural method is important as well because of “we could 
not overlook the significance of computational procedures.” Emily thought that problem solving 
was the most important way of helping students to learn; however, she believed this way is not 
appropriate for primary grades. This idea contradicts research that suggests children should be 
exposed to problem solving early in order for them to be good problem solvers later on 
(Kloosterman & Stage, 1992).  

Conclusion  
It can be noted that the two preservice teachers have differing thoughts toward mathematics 

and the teaching and learning of mathematics. According to the results of the two interviews and 
scenarios, it can be said that the subjects have dissimilar attitudes toward mathematics: one was 
positive and the other was negative, but they have similar views on how to teach. Furthermore, 
the interviewees showed inconsistency between reality and how they portrayed themselves as 
mathematics teachers. Nevertheless, they appeared to hold narrow views and were reluctant in 
adopting the trends that most educators call for. Moreover, the interviewees indicated that their 
beliefs were influenced by a number of different factors including past experience, schooling, 
and teachers.  
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The purpose of this qualitative research was to add to a sparsely existing body of knowledge in 
the area of the beliefs and practices of college mathematics faculty. This research was conducted 
with the intention of providing community college mathematics instructors with effective 
practices that promote mathematical learning in students with learning disabilities (LD) and the 
underlying beliefs of these instructors. Interviews with students and instructors regarding beliefs 
and effective practices along with classroom observations constituted the methodology of data 
collection. Research from the students suggested that affective social factors and particular 
instructional design promoted mathematical self-efficacy which affected achievement outcomes. 
Instructors who exhibited the most knowledge of the learner were the instructors who were rated 
the most effective and who had the most self-efficacy in teaching these students.  
 

Rationale   
Because mathematics is one of the most multi-modal subject areas, mathematics instructors, 

in particular, need adequate education in working with students who have learning disabilities. 
Most faculty are generally uninformed and unprepared to work with students who have 
disabilities (Greenbaum, Graham, & Scales, 1995). Negative attitudes of faculty are cited as a 
primary reason that students with disabilities fail at postsecondary institutions (Deshler, Ellis, & 
Lenz, 1996), whereas positive interactions with faculty are considered one of the most important 
elements in the students‘ college experience (Stage & Milne, 1966). Mathematics is often the 
gatekeeper which either allows students with learning disabilities to continue their postsecondary 
education or prevents their admission to four-year institutions.  Faculty with faulty knowledge of 
learners with disabilities could result in beliefs that underlie ineffective practices in the 
classroom context. Thus, it is incumbent that mathematics instructors at the community college 
level be educated and equipped to work with this particular population of students.  

Methodology  
Participants in this research consisted of a purposeful sample of four community college 

mathematics students or alumnae with learning disabilities and their previous college 
mathematics instructors. Students with above average verbal IQs were chosen because these 
students are strongest in verbal conceptualization, reasoning in processing information, and 
thinking skills (Waldron, & Saphire, 1990). Since this was a qualitative research, these students 
could provide the thick description necessary to generate a model of what these students 
considered to be effective instructor practices. Based on student referrals of effective and 
ineffective mathematics instructors, seven of the mathematics faculty were selected and 
interviewed, and four of these were observed in the classroom context. Most of the students and 
faculty were interviewed twice, with the follow-up interview consisting of questions that arose as 
transcriptions and analyses were conducted. Field notes were taken during classroom 
observations and a researcher journal was also used in generating a model. Each interview was 
coded and then compared to other interviews and observations. The triangulation of the multiple 
data sources provided internal validity of the research project.  
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Results  

Coding the answers of the students’ interviews revealed twenty-nine practices that the 
students deemed as effective in the mathematics classroom. These were consolidated into the 
following categories and are listed by order of importance: a risk-free environment to seek help, 
being respected and valued as a human being, and explicit step-by-step instruction with 
classroom notes made available. Students often felt embarrassed and misunderstood by 
instructors they deemed as ineffective. The instructors interviewed that had been classified as 
effective also strongly emphasized the social-emotional needs of these students as well as 
explicit instruction. Classroom observations revealed that students were much more likely to 
speak out and ask and/or answer questions in the classrooms of effective instructors. These 
findings concur with Ryan, Gheen, and Midgley (1998) who reported that instructors who had 
warm, supportive relationships with their students empower even those with low efficacy to seek 
help. Also in the literature, Carnine (1997) recommends explicit practice as an instructional 
design for students with learning disabilities. A severe limitation of this research, however, is 
that none of the students interviewed had ever participated in a reform mathematics classroom. 
Therefore, generalities that all students with disabilities will benefit from explicit instruction as 
opposed to reform instruction are unwarranted.   

Implications  
Students with learning disabilities often have low mathematical self-efficacy due to past 

mathematical failures. Instructors who believe all students can learn mathematics and make an 
effort to know their students and provide a learning environment in their classrooms where all 
students feel the freedom to seek help, empower students with learning disabilities and motivate 
these students to succeed. As one student said, “Cause he made me feel, maybe I am competent 
in math.” And her final grade in Statistics revealed that Maylynn was indeed competent in math.   
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The idea of the use of projects in the teaching and learning of mathematics has been around a 

long time, but, traditionally, has not been reflected in the mathematics classroom, particularly at 
the senior high school level. Like word problems, projects could “bring reality into the 
mathematics classroom, to create occasions for learning and practising the different aspects of 
applied problem solving, without the practical … inconveniences of direct contact with the real 
world situation” [Verschaffel, 2002, p. 65]. A project-based curriculum, then, has the potential of 
enhancing school mathematics. However, the curriculum by itself is unlikely to make a 
significant difference in the classroom. How it is realized will likely depend on the teacher. This 
paper reports on mathematics teachers’ beliefs in implementing a new project-based high school 
mathematics curriculum.  

In recent years, studies on mathematics teachers’ beliefs have taken on significant 
importance as a basis for understanding mathematics education. These studies suggest that in 
order for us to achieve a comprehensive conception of the relationship between mathematics 
teachers’ beliefs and practice, it is important to understand the belief content (what teachers 
believe), the belief structure (how the beliefs are held), and the belief function (impact on 
teaching). In this study the focus is on the belief content and function.  

The project-based curriculum is the new Alberta [Canada] Applied Mathematics Program for 
students of grades 10 to 12 who are likely to not pursue an academic area at university that 
requires mathematics. The curriculum was implemented beginning in 2000 through to 2002. The 
curriculum is officially described in its introduction by the designers as follows:   

[It] focuses on the application of mathematics in problem solving. Through challenging 
and interesting activities and projects, students further develop their skills in mathematical 
operations and in understanding concepts. …The curriculum, in general, emphasizes the 
application and relevance of math in daily life.   

The textbooks for this program consist predominantly of projects. An example of a grade 10 
project topic is: In this project, you will work in a group of three to design your own line of 
jewelry. The members of your group will include two jewelry designers and one marketing 
manager. You will work with area, volume, scale factors, and metric units of measurement. An 
example of a grade 11 project topic is: In this project you will explore some of the mathematics 
of population growth. You will study different mathematical models that describe the growth of 
the world’s population, write a report on the subject, and create a poster display.  

A case study was conducted with three experienced high school mathematics teachers. They 
were selected because they were at the beginning of the second year of implementation of the 
new curriculum, they were experienced and they were willing to participate. Data collection 
consisted of a semi-structured interview of mainly open-ended questions. The interview focused 
on the teachers’ thinking about the applied curriculum, their experience implementing it, their 
beliefs about and attitude towards the curriculum and their teaching of it. The interviews were 
tape recorded and transcribed. Analysis involved scrutinizing the transcripts for significant 
statements that conveyed the participants’ beliefs and attitudes, and organizing them into themes.   
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The findings of the study describe the teachers’ attitudes and beliefs that were related to their 
implementation and teaching of the new curriculum. Only the beliefs that were common to the 
three teachers are presented in this summary of the findings. Three themes emerged as consisting 
of their most dominant, common beliefs as follows:  

Beliefs About Nature of Projects: The teachers’ beliefs about the nature of the projects 
focused on the utility of mathematics and relevance to students. They viewed mathematics as 
meaningful to students only when it is related to applications that were relevant to them. The 
projects in this curriculum focused on real world applications and this made them appealing to 
the teachers. They believed the curriculum content was more relevant and meaningful to students 
because of the focus on real-world situations. This supported their positive attitude to implement 
the curriculum and screened out concerns about lack of depth in mathematics content that they 
claimed other teachers had. Thus their teaching focused on motivating students. In general, their 
beliefs about projects limited the scope and depth in which they implemented the curriculum. 
These beliefs were reinforced by the positive attitude the students displayed with these projects, 
which they had not encountered before.  

Beliefs About Group Learning: The teachers believed that the teaching approach required for 
the new curriculum was the way to teach mathematics and should result in a more interesting 
way of learning for the students, although they did not use it in their prior teaching, in particular, 
the use of investigations and groups. The projects were set up as small-group investigations, 
which challenged the teachers’ beliefs about using groups in the mathematics classroom. They 
considered groups as unnecessary in learning mathematics. Thus, the focus on group work was 
not considered an asset. For example, one teacher explained, “I don’t see the point of why we 
have to work in groups. The projects could have been fine to do individually.” Another teacher 
thought that this was changing a unique part of mathematics instruction.  

Mathematics classrooms had something that was a little different. In science they group up, 
in English they group up, in social [studies] they group up, so we [math] didn’t group up, 
so I don’t mind the grouping up, but it had strong points to not group up.  

Thus their implementation of groups was very controlled. In spite of this, they recognized the 
importance for students’ autonomy. For example:  

Anytime you can give the student the opportunity to learn first, the better it is for the 
student. I think that the kind of an inverse relationship, the less the teacher does, the better 
the teaching is. That is what this new curriculum is saying; it’s great!  

Beliefs About Support: The teachers believed that the best form of support was from within 
their schools. While they valued the workshops they attended in the school board, they 
considered the internal support to be more important in influencing their implementation of the 
new curriculum. They also believed that getting time to read the text book, to plan the lessons, 
and to ask questions was more important “to figure it out” than the workshops by the school 
system. In conclusion: The findings provide evidence of how teachers’ beliefs can influence if 
and how a new curriculum gets implemented and an example of what teachers could believe is 
important to aid the implementation process. This has implication for teacher development in 
terms of the importance to attend to beliefs. It also draws attention to examples of beliefs that 
could enhance or hinder the implementation process.   
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Educators claim that teachers’ thinking and beliefs have powerful influences on their 

teaching (Clark & Peterson, 1986; VanLeuvan, 1997). Fennema (1990) and Li (1999) found that 
teachers' belief systems influence their perceptions, decisions related to classroom planning and 
actions, as well as students' learning, beliefs and attitudes. Suggestions for effective teaching of 
mathematics vary. Some educators weigh both affective and management elements equally, 
while others do not. Some focus on theoretical perspectives, and some specify practical strategies 
for effective teaching. Some consider the teacher’s role as a key element of learning, while 
others emphasize the importance of the student’s part in effective learning.  

Tharp and Gallimore (1988) proposed three major mechanisms - modeling, contingency 
management, and feedback - that can become meta-cognitive strategies for learners to control 
their own learning. Bliss and her colleagues (1996) suggested that “pupils make sense of 
teachers’ instructions in their own ways, sometimes very different from those of the teacher” 
(p.41). In other words, teachers can help students to organize their own experience by suggesting 
cognitive strategies, which can be used in developing structures for memorization or rules for 
storing information and experience. Wood (1991) argued that effective teaching does not always 
guarantee sufficient and necessary conditions for learning. He placed emphases on both the 
learner’s need to make sense of the world and the teacher’s task of initiating pupils into ways of 
conceptualizing and reasoning. He proposed two fundamental rules for effective teaching with 
contingent controls of learning: immediate increase in help or control for a child’s failure; 
following a child’s success, apply less help than was given before the success. Reynolds and 
Muijs (1999) reviewed the research on teacher effectiveness in teaching mathematics and 
summarized the elements of the active teaching models: high opportunity to learn, an academic 
orientation from the teacher, effective classroom management, high teacher expectations of the 
pupils, a high proportion of whole-class teaching, and heavily interactive teaching that involves 
pupils in classroom attitudes. Van de Walle’s (2001) seven strategies for effective teaching are 
exclusively practical. According to him, teachers need to create a mathematical environment; to 
pose worthwhile mathematical tasks; to use cooperative learning groups; to use models and 
calculators as thinking tools; to encourage discourse and writing; to require justification of 
student responses; and to listen actively- focus more on the instructional process rather than 
considering all the possible factors that influence teaching. On the other hand, some studies 
discussed standard qualifications of effective teaching. For example, the NCTM (2000) requires 
the following principles for effective mathematics teaching: understanding what students know 
and need to learn and then challenging and supporting them to learn it well; knowing and 
understanding mathematics, students as learners, and pedagogical strategies; providing a 
challenging and supportive classroom learning environment; and continually seeking 
improvement. Wong & Wong (1998) suggested that a successful teacher must know and practice 
the three characteristics of an effective teacher. According to them, the effective teacher has 
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positive expectations for student success, is an extremely good classroom manager, and knows 
how to design lessons to help students reach mastery.  

The participants in this study were forty-two preservice teachers enrolled in mathematics 
methods courses, which is part of the University’s 5-year teacher preparation program. Concept 
maps were used to collect data on a) students’ entering and exit perspectives about effective 
teaching of mathematics and b) their conceptual changes throughout the teacher preparation 
process. The participants were asked to develop a concept map of “Effective Teaching in the 
Mathematics Classroom” in the beginning and the end of the program. Both qualitative and 
descriptive analyses were used to compare and contrast responses of the elementary education 
students’ entering and exiting perspectives about teaching mathematics effectively.  

To understand the conceptualization and structural organization of the preservice teachers’ 
concept mapping, the total number of concept map entries, the degree of hierarchical 
organization, categorical centrality and specificity, and density were measured. The major 
finding claims that preservice teachers developed changes in conceptual and structural 
organization, as well as similar tendencies throughout the teacher preparation program. Overall, 
instructional methods, curriculum/planning, and teachers were considered as prominent factors 
for effective teaching. Instructional methods and classroom management showed increased 
centrality while curriculum/planning, social context, students, and teachers were factors that did 
not. In addition, the factors proportions for curriculum/planning, instructional methods and 
classroom management increased from premaps to postmaps, whereas social context, students, 
and teachers percentage decreased. This study is expected to be useful in developing a reflective 
teacher education program, as well as guiding subsequent program evaluation efforts.  

As a whole, group mean density scores showed an increase from 2.56 on premaps to 2.78 on 
postmaps. There were either substantial or slight increases in the density scores for twenty-two 
student teachers’ concept maps. With regard to the density scores by category, student teachers’ 
attention to instructional methods increased from premaps (2.95) to postmaps (3.57). Classroom 
management factors also showed a slight increase, while other factors decreased from pre- to 
post-maps. However, as Artiles & McClafferty (1998) stated, one “cannot assume that greater 
density means greater understanding and vise versa” (p.198). Rather, the density scores show 
changes in student teachers’ conceptualizations.  

There was a change in the rank order of the centrality from premaps to postmaps. For the 
premaps, categories were centered according to centrality in the following order: teachers, 
curriculum/planning, instructional methods, social context, classroom management, and students. 
For the postmaps, the centrality rank order was: instructional methods, classroom management, 
teachers, curriculum/planning, social context, and students. On the other hand, a change in the 
rank order of the categorical specificity was insubstantial. Instruction, curriculum/planning, and 
teacher factors showed strong specificity for both pre- and postmaps. Even though there were 
some changes indicated, a similar tendency was also observed in the categorical centrality and 
specificity between premaps and postmaps. Instructional methods and classroom management 
showed increased centrality, while curriculum/planning, social context, students, and teachers 
showed decreased centrality from entering maps to exit maps. With regard to the categorical 
specificity, student teachers included the most items in curriculum/planning and instruction 
categories. Curriculum/planning, instructional methods and classroom management proportion 
increased from premaps to postmaps, while the social context, students, and teachers percentage 
decreased.  
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While this study reported the results as a descriptive study, it provides useful information for 
the teacher education curriculum, which will help decide course offering, topics to be 
emphasized in supervision, content of methods courses, and so on. The most important 
contribution of this study is that the results include information about the needs and desires of 
preservice teachers. It is also indicated that responses (items) in the concept maps and the 
structural organization of the mapping reflect their previous experiences as students during the 
methods courses, or as teachers during field experience and student teaching.  
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Helping teachers construct and maintain reform-based views of the nature of mathematics 

and beliefs about teaching of mathematics is a central goal of any teacher preparation program.  
These beliefs influence the type of instruction enacted in the mathematics classroom; thus giving 
attention to the beliefs and views of mathematics teachers is critical as teacher education 
programs develop new pathways for students to obtain certification. This study explores the 
beliefs and views of students who are participating in an early recruitment course with the hope 
of providing direction to those who are developing teacher preparation programs.    

The students in this study participate in the UTeach program at the University of Texas, a 
project between faculty and staff from the Colleges of Education and Natural Sciences that 
prepares secondary science, mathematics and computer sciences teachers. The program 
coursework draws upon content and pedagogical courses, as well as field experiences in local 
school districts.  In particular, the program has an early recruitment component, referred to as 
Step 1 and Step 2.  These one-credit courses allow students to explore teaching as a profession 
prior to enrollment in the professional development program.    

This poster describes the first year of a longitudinal study examining the development of 
mathematics teachers in the UTeach program.  Data from several different sources will be 
examined collectively in order to determine how an early recruitment program impacts the 
development of mathematics teachers.  Students currently enrolled in Step 1 who indicated that 
they were mathematics majors were contacted through e-mail about participation in the study.  
Those willing to participate (n = 7) were observed during the Step 1 class and interviewed.  
Semi-standardized interviews are used to collect background information from the participants as 
well as to ascertain the reason the students have elected to consider teaching as a career.  Each 
student is interviewed regarding beliefs about teaching and learning in mathematics using the 
TPPI.  There are eight questions, which include: How will your students learn best? How do you 
know when your students understand?  The interviews will be assessed in order to determine if 
the students hold reform-based, instructional, transitional, or traditional beliefs about teaching.  

Views on the Nature of Mathematics Surveys (VNOMS) – Each student also completed the 
VNOMS, which is a 10 question open-ended survey on their views about the discipline of 
mathematics and how it is best represented in the classroom.  The VNOMS survey was 
developed from the Views About the Nature of Math (VAMS) (Carlson, Buskirk & Halloun, 
2002) and it intends to identify the factors that affect teachers’ understanding of mathematics and 
how they design and implement their instructional material.  Each participant’s responses will be 
coded as naïve, expert or a particular level of transition.    
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The modified Moore method (MMM) has been recognized as a successful instructional 
strategy for teaching undergraduate and graduate mathematics (Jones, 1977; Renz, 1999).  One 
of the salient features of the MMM is that students individually construct proofs and solve 
problems, and then present their solutions during class meetings.  Though the MMM is not based 
on a particular theory of learning, it reflects current reform efforts in mathematics education 
emphasizing the active involvement of students in the learning process (NCTM, 2000; National 
Research Council, 2001).  Experienced MMM instructors report that the method is the ideal way 
to teach undergraduate and graduate mathematics (Halmos, 1985).  However, it is often difficult 
for beginning MMM instructors to conduct the class in such a way that improved mathematics 
learning is apparent.  The research presented in this poster focuses on the experience of a 
mathematician who was implementing the MMM in an undergraduate course for the first time.    

Research has demonstrated that teachers pass through several stages of concern when 
attempting to change from a traditional to a more student-centered teaching style: (1) concern for 
self, (2) concern for task, and (3) concern for students (Brown & Borko, 1992; Luft, 1999).  Our 
results demonstrate that this framework may be an effective lens for examining the development 
of post-secondary mathematics instructors, who frequently have little or no pedagogical training.  
The instructor’s strategies and approaches to the course changed over the semester as she moved 
from concern for herself as a teacher towards concern for the learning of the students.  Primary 
teaching issues she identified during the semester included strategies for encouraging student 
presentations and participation in discussions, appropriateness of the use of brief lectures to 
introduce and explain concepts, posing questions to elicit student understanding, facilitating 
students’attempts to construct difficult proofs in and out of class, and strategies for encouraging 
the learning of the weaker students in the course.  Factors that appeared to influence her 
progression towards a more student-centered teaching style were discussion and collaboration 
with both novice and expert MMM instructors, reflection on her own teaching experiences in the 
form of a journal, time spent talking with students outside of class, and exposure to research on 
the learning of mathematics, which she requested from the researchers.  
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